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Abstract

From the massive international space station to nanosatellites, all space missions
share a common principle: orbiting an object requires energy. The greater the
satellite’s mass, the higher the launch cost. In astrodynamics, this translates into
the motto “use whatever you can”. This concept encompasses a broad spectrum of
missions, e.g., Earth’s oblateness is exploited for sun-synchronous orbits and the
kinetic energy of a planet is used to accomplish fly-by maneuvers. Nowadays, the
same paradigm is coming on stream in the context of distributed space systems,
where complex missions are envisaged by splitting the workload of a single satellite
into multiple agents. Orbital perturbations – often regarded as disturbances – can
be turned into an opportunity to control the relative motion of the agents in order
to reduce or even remove the need for on-board propellant.

This thesis combines uncertainty quantification, analytical propagation, and op-
timal control of satellite trajectories in the atmosphere to effectively and robustly
exploit the aerodynamic force. Specifically, by means of a probabilistic estimation
and prediction of the aerodynamic force and an efficient and consistent propaga-
tion of low-Earth orbits, a robust reference trajectory for the realization of relative
maneuvers between two satellites in a realistic environment can be generated.

The main contributions of the dissertation consist of: a probabilistic modeling
and inference of satellite aerodynamics with applications to orbit propagation and
lifetime assessment; an analytical solution of satellite motion in the atmosphere of an
oblate planet; a novel methodology for trajectory planning of uncertain dynamical
system and its application to propellantless orbital rendez-vous using differential
drag.
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Introduction

From the massive international space station to nanosatellites, all space missions
share a common principle: orbiting an object requires energy. The greater the
satellite’s mass, the higher the launch cost. In astrodynamics, this translates into
the motto “use whatever you can”. This concept encompasses a broad spectrum of
missions, e.g., the Earth’s oblateness is exploited for sun-synchronous orbits, the
kinetic energy of a planet is used to accomplish fly-by maneuvers, and the stability
of Lagrangian points enables low-cost trips to the Moon. Nowadays, the same
paradigm is coming on stream in the context of distributed space systems, where
complex missions are envisaged by splitting the workload of a single satellite into
multiple agents. Orbital perturbations – often regarded as disturbances – can be
turned into an opportunity to control the relative motion of the agents in order to
reduce or even remove the need for on-board propellant.

For low-Earth orbits (LEO), the residual atmosphere is responsible for a mono-
tonic dissipation of the satellite’s energy, resulting in a slow but continuous “fall”
toward the Earth’s surface. Exploiting the residual aerodynamic force is not a recent
idea, see, e.g., natural-decay-based deorbiting strategies [Petro, 1992, Roberts and
Harkness, 2007] or drag-assisted relative maneuvers [Leonard et al., 1989]. Although
these concepts date back to a couple of decades, their practical realization is still
largely unexplored. The reason is that, owing to outstanding challenges in satellite
aerodynamics modeling and estimation, e.g., lack of knowledge and experimental
data on gas-surface interaction principle, uncertainties in attitude determination,
and stochastic dynamics of the upper atmosphere, a deterministic assessment of
satellite trajectories in the atmosphere is likely to be bound to considerable errors.
This is not only true for long-term propagations, for which the uncertainty in the
aforementioned monotonic energy dissipation cumulates in time, but it is also a ma-
jor concern for short-term – read few days – high-fidelity predictions. For example,
on October the 21st 2013 European Space Agency (ESA) announced that the satel-
lite GOCE was expected to re-enter in about two weeks1. Eventually, because of
uncertainties due to attitude control limitations, re-entry occurred on November the
11th, which represents a 30% error in a twenty-day-long estimation.

This thesis addresses different issues related to uncertainty characterization, effi-
cient propagation, and robust control of satellite trajectories in the atmosphere. The

1http://www.esa.int/For_Media/Press_Releases/ESA_s_GOCE_mission_comes_to_an_
end.
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proposed methodologies are used for developing a propellantless technique based on
the differential drag concept. By controlling the surface exposed to the residual
atmosphere, it is possible to change the magnitude of the atmospheric drag and
therefore to create a differential force, between one spacecraft (the deputy) and
either another spacecraft (the chief) or a desired target point. This force can be
exploited to control the relative position between the deputy and the target in the
orbital plane, which enhances the maneuverability of small satellites in LEO.

Three main questions are addressed in the thesis:

• how can we characterize the uncertainty sources affecting the evolution of
satellite orbits in the atmosphere by using physical considerations and available
experimental data?

• how can we efficiently propagate the trajectory of a satellite in the atmosphere?

• how can we exploit the aerodynamic force for accomplishing complex propel-
lantless maneuvers?

Challenges

In order to answer these questions, we have to tackle several important challenges.
Dominant sources of parametric uncertainties and modeling errors in aerodynamic

force estimation include atmospheric properties, physical properties of the satellite,
and gas-surface interaction in free molecular flow. The uncertainty quantification
(UQ) of satellite trajectories is highly dependent on the characterization of these
uncertainties. For this reason, the probabilistic model of the sources should be
inferred only from experimental data and available information. In addition, the
model must be consistent with mechanical modeling considerations.

Targeting efficient but physically meaningful orbital propagation requires that
all dominants effects are modeled. In LEO this includes the perturbations due
both to the Earth’s oblateness and the atmosphere. Their combined effect causes
the orbit to dramatically drift from the Keplerian unperturbed model. While the
oblateness perturbation falls in the range of conservative forces, allowing the classical
perturbation methods to be applied, this is not the case for the atmospheric force,
which is non-conservative. For this reason, using the tools of analytical mechanics
to accomplish analytical propagation in LEO is, at best, challenging.

The realization of orbital maneuvers relies on a broad spectrum of propulsive
means ranging from impulsions to low thrust. This latter is aimed at accomplish-
ing the maneuver by means of the integral effect of a continuous – but very small –
control force, which results in long-period control arcs during the maneuver. Target-
ing the optimization of the available resources, an adequate planning of the whole
maneuver is generally envisaged before its realization. The exploitation of drag
as a control force falls into this category. In this case, planning the maneuvers is
challenging because the control force is uncertain. Existing approaches for robust
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maneuver planning lead to a deterministic control action associated to a probabilis-
tic description of the reference path. When the dynamics of the system is extremely
sensitive to the outcome of the uncertain environment, as it is the case for drag-
assisted maneuvers, the confidence bounds of the trajectory might be too large to
make it of practical interest.

Outline of the dissertation

The outline of the thesis is presented in Figure 1.
Chapter 1 opens with preliminaries on orbital dynamics in LEO with a special

focus on satellite aerodynamics modeling. The coordinates and reference frames
used in the thesis are also detailed. The QB50 and QARMAN missions, which serve
as case study in the other chapters, are introduced.

Chapter 2 proposes an UQ study of LEO trajectories. In view of the stochastic
nature of the thermosphere and of the complexity of drag modeling, a deterministic
assessment of LEO trajectories is likely to be bound to failure. Uncertainties in the
initial state of the satellite and in the atmospheric drag force, as well as uncertainties
introduced by modeling limitations associated with atmospheric density models, are
considered. Firstly, a probabilistic model of these variables is inferred from exper-
imental data and atmospheric density models by means of mathematical statistics
methods like maximum likelihood estimation and maximum entropy. Secondly, this
probabilistic characterization of inputs is mapped through orbital propagation into
a probabilistic characterization of the variable of interest (VoI), e.g., trajectory, life-
time, or position at the end of a maneuver; this can be achieved in several ways,
which include Monte Carlo simulation and stochastic expansion methods such as
those based on polynomial chaos. Lastly, the probabilistic model thus obtained is
used to gain insight into the impact that the input uncertainties have on the VoI,
for example, by carrying out stochastic sensitivity analyses. The developments are
exploited for the lifetime estimation of a nanosatellite. The same characterization
of the uncertainty sources also proves useful in Chapters 3 and 6.

Chapter 3 discusses the recursive estimation and prediction of non gravitational
forces. For this purpose, a particle filter is developed. The generation of the pro-
posal distributions for the particles relies on the developments of Chapter 2. Slow-
dynamics parameters are used to build a model for the non-gravitational forces,
and they are estimated by the filter. The current estimation can be exploited for
short-term predictions, i.e., of the order of few orbits. By averaging the effects of the
perturbations, it is shown that the filter can accurately estimate the aerodynamic
force from global positioning system (GPS) observations without using accelerome-
ters, enhancing the general interest in the filter.

Chapter 4 offers a closed-form solution for the motion of a satellite about an
oblate planet with a uniform atmosphere. Specifically, osculating orbital elements
are projected into their mean counterparts by means of a Brouwer-Lyddane contact
transformation. Assuming that the orbit is near-circular, i.e., the fourth power of
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4. Analytical propagation of LEO

Analytical propagator for the absolute and 
relative motion about an oblate planet with 
an atmosphere.

Averaging.

2. Uncertainty quantification of drag

Characterization of the uncertainty sources 
affecting LEO satellites.

Maximum likelihood, maximum entropy, 
Monte Carlo, variance decomposition.

Three-step methodology for the realization of 
optimal maneuvers using differential drag.

Pseudospectral optimal control,
model predictive control.

5. Optimal control with differential drag

Planning of maneuvers which are feasible for 
most outcomes of the uncertain set.

Differential flatness, positive polynomials, 
scenario approach.

6. Robust maneuver planning

3. Aerodynamic force estimation

Recursive filter for the estimation of non-
gravitational forces acting on LEO satellites.

Bayesian inference, particle filter, averaging.

1. Satellite mechanics in LEO

A brief introduction to satellite drag modeling.

Figure 1: Outcome of each chapter together with the considered analytical and
numerical methods (in italics)
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the eccentricity is neglected, a time-explicit solution of the averaged equations of
motion is derived. Finally, without further assumptions, a closed-form solution for
the relative dynamics is also achieved by using simple tensorial transformations.
The analytical predictions are validated against numerical simulations.

Chapter 5 is devoted to the exploitation of the aerodynamic force for differential-
drag-based maneuvers. A three-step optimal control approach to the problem is
proposed. At first, the inertial position of the chief and the deputy are observed to
deduce their ballistic properties. An optimal maneuver is then planned by means
of a pseudo-spectral transcription of the optimal control problem. The method is
flexible in terms of cost function and can easily account for constraints of various
nature. Finally, the on-line tracking of the reference trajectory is achieved by means
of model predictive control (MPC). These developments are illustrated using high-
fidelity simulations including a coupled 6-degree-of-freedom model with advanced
aerodynamics.

Chapter 6 bridges the gap between Chapters 2, 3, 4, and 5 to offer a general-
purpose methodology for the maneuver planning of dynamical systems in the pres-
ence of uncertainties. After introducing the novel concept of robust deterministic
trajectory as the solution of an infinite-dimensional optimization problem, sufficient
conditions for its existence are outlined. For this purpose, the notion of differential
flatness is used. Then, a discretization of the infinite-dimensional problem guaran-
teeing the feasibility of the trajectory over an arbitrary user-defined portion of the
uncertain set is proposed. Taking advantage of the formalism of squared functional
systems and of the scenario approach, the methodology does not require a temporal
grid and is able to include uncertainty sources of various nature. The usefulness
of the proposed methodology is demonstrated in the framework of differential-drag-
based maneuvers.

A discussion on the achievements of this work closes the thesis. Limitations and
perspectives for future research are also discussed.
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Chapter 1

Satellite Mechanics in Low-Earth
Orbits

Abstract

LEO is arguably the most perturbed dynamical environment for satellites
in geocentric orbits. Specifically, perturbations due to the Earth’s oblate-
ness and residual atmosphere dominate satellite dynamics below 600 km.
This chapter provides an introduction to orbital dynamics in LEO and de-
scribes the coordinates and reference frames used in the thesis. The phys-
ical principles governing satellite aerodynamics and the resulting mathe-
matical models are outlined. This survey encompasses the structure of the
upper atmosphere and gas-surface interaction principles in free molecular
flow, and it serves as a foretaste of the challenges related to drag modeling
and estimation encountered in the thesis.

7
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1.1 Introduction

The region ranging from the Earth’s surface up to 2000 km altitude is referred to as
LEO. Because of its privileged position, e.g., for global monitoring, telecommunica-
tions, and astronomical observations, and because of the relatively low cost for the
launch (compared to any other space mission), most existing satellites are orbiting
in this region. However, LEO is also the most perturbed dynamical environment for
satellites in geocentric orbits.

Perturbations due to the Earth’s oblateness and residual atmosphere strongly
affect satellite dynamics below 600 km. If the accurate assessment of the effects
of non-spherical harmonics is possible thanks to the gravitational maps provided
by the GOCE and GRACE missions, long-term aerodynamic prediction is, at best,
challenging owing to complex physical phenomena governing gas-surface interaction
mechanisms and the dynamical behavior of the upper atmosphere.

This chapter offers an introduction to orbital dynamics in LEO. The physical
principles governing satellite aerodynamics and the resulting mathematical models
are outlined. This survey encompasses the structure of the upper atmosphere and
gas-surface interaction principles in free molecular flow, and it serves as a foretaste
of the challenges about drag modeling and estimation encountered in the thesis.

The chapter is organized as follows. Section 1.2 introduces the perturbed Kepler
problem. The coordinates and reference frames used in the thesis are defined in
Section 1.3. The equations governing the relative motion are detailed in Section 1.4.
An overview of satellite aerodynamics modeling is proposed in Section 1.5. Section
1.6 describes the high-fidelity computational environment exploited in this thesis
to carry out numerical simulations. Finally, Section 1.7 introduces the QARMAN
CubeSat and the QB50 mission, which serve as case studies in the thesis.

1.2 The inertial motion

The initial value problem (IVP) governing the motion of the inertial position, r, of
a non-propelled satellite in LEO, is:

r̈ +
µ

r3
r = f p (r, ṙ, t) ,

r (t0) = r0,

ṙ (t0) = ṙ0,

(1.1)

where µ, r0, ṙ0, and f p denote the Earth’s gravitational parameter, the inertial posi-
tion and velocity at the initial time t0, and the perturbing specific force, respectively.
The dot indicates the derivative with respect to the time variable t ≥ t0.

Targeting accurate orbital prediction in LEO, the perturbing force has to ac-
commodate the effects of the non-spherical gravitational field, residual atmosphere,
solar radiation pressure, and third-body perturbations of Sun and Moon. In ad-
dition, general relativity, albedo, and tidal effects may also be relevant for very
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accurate predictions. In particular, tides could be evident for very long-term propa-
gations due to tidal friction Perturbations of the polar axis, i.e., precession, nutation,
and polar wandering, need to be considered as well1. Their modeling is discussed
in [Montenbruck and Gill, 2000, Vallado, 2001]. Figure 1.1 illustrates the order of
magnitude (OoM) of the perturbations in LEO emphasizing the variability of non-
gravitational forces. Beyond the OoM, we stress that the way perturbations act
is crucial for the long-term evolution of the orbit, i.e., secular effects. For exam-
ple, aerodynamic drag provides a continuous dissipation of the energy resulting in a
monotonic decrease of the semi-major axis and circularization of the orbit.

The unperturbed problem associated to Equation (1.1), i.e., when f p = 0, is
Kepler’s problem, which has the classic first integrals:

h = r × ṙ,

e =
1

µ
ṙ × h− r̂,

ε =
1

2
ṙ2 − µ

r
,

(1.2)

namely the specific angular momentum, the eccentricity vector and the specific total
energy, respectively. In this thesis, the notation α̂ denotes the unit vector in the

1Neglecting the precession, nutation, and polar wandering results into inconsistent modeling of
non-spherical gravitational effects.
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direction α, i.e., α̂ = α
‖α‖ .

If ε < 0, then the unperturbed trajectory is an ellipse with eccentricity e = ‖e‖
and semimajor axis a = − µ

2ε
. Kepler’s problem is super-integrable and, indeed, only

five of the aforementioned first integrals are independent.
The use of the vectorial orbital elements h and e together with the specific

total energy E to study the perturbed motion provides insight into the geometrical
evolution of the orbit before solving the IVP. Such an approach is inspired by
[Hestenes, 1999] and [Condurache and Martinusi, 2013].

1.3 Coordinates and reference frames

The following reference frames are used in the thesis (see Figure 1.2(a)):

Earth-centered inertial (ECI)
{
î, ĵ, k̂

}
: the origin is in the center of the Earth.

The î and k̂-axis are toward the true vernal equinox and north pole at Epoch
January 1st 2000 12:00 UTC, respectively; ĵ completes the right-hand frame.

true of date (ToD)
{
îToD, ĵToD, k̂ToD

}
: it is analogous to the ECI but the îToD

and k̂ToD axes are toward the true equinox and north pole at the current
epoch, respectively. This frame evolves very slowly with respect to the ECI,
so that gyroscopic effects are safely neglected.

perifocal (PF)
{
ê, p̂, ĥ

}
: the origin is in the center of the Earth. The ê and ĥ-

axis are toward the instantaneous eccentricity vector and angular momentum,
respectively; p̂ completes the right-hand frame.

local-vertical-local-horizontal (LVLH)
{
r̂, t̂, ĥ

}
: the origin is in the center of

mass of the satellite. The r̂ and ĥ-axis are toward the instantaneous position
and angular momentum, respectively; t̂ completes the right-hand frame, i.e.,

r̂ =
r

||r||
, ĥ =

r × ṙ
||r × ṙ||

, t̂ = ĥ× r̂. (1.3)

body frame {x̂b, ŷb, ẑb}: the origin is in the center of mass of the satellite. The
axes are aligned toward the principal axes of inertia of the satellite.

Beside vectorial representation, Keplerian and equinoctial elements are used to
describe the state of the satellite.

Keplerian elements, E = (a, e, i,Ω, ω,M), yield an intuitive geometrical interpre-
tation of the orbit (see Figure 1.2(b)):

• the semi-major axis, a, and the eccentricity, e, define the geometry of the orbit;
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Figure 1.2: Reference frames used in the thesis. Purple denotes the ECI frame. Red
denotes the perifocal frame. Blue denotes the LVLH frame. Green denotes the body
frame (of the deputy).

• the inclination, i, and the right ascension of the ascending node (RAAN), Ω,
locate the orbital plane in the space;

• the argument of perigee (AoP), ω, positions the orbit within its plane;

• the mean anomaly, M , locates the satellite on the orbit. Specifically, given the
true anomaly, f , Kepler equation is used to compute M as follows:

M = E − e sin(E), (1.4)

where the eccentric anomaly, E, is defined as

tan
E

2
=

√
1− e
1 + e

tan
f

2
. (1.5)

Let BRA denote the rotation matrix from the reference frame A to B, and define
the elementary rotation matrices:

R1 (α) =

 1 0 0
0 cosα sinα
0 − sinα cosα

 ; R2 (α) =

 cosα 0 − sinα
0 1 0

sinα 0 cosα

 ;

R3 (α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 .
(1.6)
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The following relations hold:

PFRToD = ToDRT
PF = R3 (ω)R1 (i)R3 (Ω) ,

LV LHRPF = PFRT
LV LH = R3 (f) ,

(1.7)

We note that in this thesis the orbital elements are referred to the ToD frame.
The position and velocity vectors are given by:

r =
a (1− e2)

1 + e cos f
(cos f ê+ sin f p̂)

ṙ =

√
µ

a (1− e2)
(− sin f ê+ (e+ cos f) p̂)

(1.8)

Gauss variational equations (GVE) for the Keplerian elements are singular for
circular and equatorial orbits. On the contrary, equinoctial elements [Broucke and
Cefola, 1972],

Eeq =

(
a, P1 = e sin (ω + Ω) , P2 = e cos (ω + Ω) , Q1 = tan

i

2
sin Ω,

Q2 = tan
i

2
cos Ω, L = ω + Ω + f

)T
,

(1.9)

are singularity-free. GVE for the equinoctial elements are [Battin, 1999]:

ȧ =
2a2

h

[
(P2 sinL− P1 cosL) fp,r +

p

r
fp,t

]
Ṗ1 =

r

h

[
−p
r

cosLfp,r +
(
P1 +

(
1 +

p

r

)
sinL

)
fp,t − P2 (Q1 cosL−Q2 sinL) fp,h

]
Ṗ2 =

r

h

[p
r

sinLfp,r +
(
P2 +

(
1 +

p

r

)
cosL

)
fp,t + P1 (Q1 cosL−Q2 sinL) fp,h

]
Q̇1 =

r

2h

(
1 +Q2

1 +Q2
2

)
sinL fp,h

Q̇2 =
r

2h

(
1 +Q2

1 +Q2
2

)
cosL fp,h

L̇ =
h

r2
− r

h
(Q1 cosL−Q2 sinL) fp,h

(1.10)
where p = a (1− e2), h = ||h||, and fp,r, fp,t, and fp,n are the components of f p in
the LVLH frame, respectively. In some chapters, the argument of true longitude, L,
is replaced by the argument of mean longitude, l = ω + Ω +M .

The mean counterpart of Keplerian and equinoctial elements is denoted by E and
Eeq, respectively. Mean elements are computed by means of a Brouwer-Lyddane
contact transformation [Schaub and Junkins, 2003].
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1.4 The relative motion

Consider two satellites, a chief (or target) and a deputy (or chaser). In the following,
the subscripts (·)C and (·)D denote anything related to the chief and the deputy,
respectively. Let ∆r = LV LHRECI (rD − rC) be the relative position of the deputy
with respect to the chief in the LVLH frame of the chief.

Let ωωω be the instantaneous velocity of the LVLH frame, and assume that the
absolute motion of the chief, i.e., referred to ECI, is known. Consequently, rC and
ωωω are considered to be known functions of time. Let t0 denote the initial time, and
∆r0, ∆ṙ0 denote the initial relative position and velocity vectors of the deputy with
respect to the chief.

The IVP governing the relative motion is:

∆r̈ + 2ωωω ×∆ṙ +ωωω × (ωωω ×∆r) + ω̇ωω ×∆r = −µ
(

rC + ∆r

‖rC + ∆r‖3 −
∆r

‖∆r‖3

)
+ ∆f p,

∆r (t0) = ∆r0,

∆ṙ (t0) = ∆ṙ0,

(1.11)

where ∆f p (∆r,∆ṙ, rC , ṙC , t) = f p,D − f p,C .

Relative states

The following relative coordinates are used in the thesis [Alfriend et al., 2009]:

Cartesian states are the position and velocity in the LVLH frame, i.e., ∆r =
xr̂ + yt̂+ zĥ and ∆ṙ = ẋr̂ + ẏt̂+ żĥ, respectively.

mean equinoctial relative orbital elements (ROE) are defined as

∆Eeq = Eeq,D − Eeq,C .

Mean equinoctial ROE are used in the control plant. The advantage over
LVLH Cartesian states is that ∆Eeq is constant in the unperturbed motion and
it evolves linearly in time in the presence of J2 [Schaub et al., 2000, Schaub,
2003]. In addition, differently from Keplerian ROE, variational equations in
the equinoctial ROE are singularity-free.

curvilinear states are defined in Figure 1.3 as:

x̃ =rD − rC ṽx = ẋ cos ∆θ − ẏ sin ∆θ

ỹ =rD ∆θ ṽy = ẋ sin ∆θ + ẏ cos ∆θ
(1.12)

where ∆θ = cos−1 (r̂D · r̂C). These coordinates are used to illustrate the
relative trajectories in the thesis.
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Figure 1.3: Curvilinear relative states.

1.5 Aerodynamic force modeling

This overview on satellite aerodynamics is inspired by [Klinkrad, 2006, Doornbos,
2012, Hughes, 2012, Prieto et al., 2014].

The aerodynamic specific force is modeled as:

f drag = −1

2
Ca

S

m
ρ v2

TAS (1.13)

where Ca, S, m, ρ, and vTAS are the dimensionless aerodynamic coefficient, the
projected surface of the satellite in the direction v̂TAS, the satellite’s mass, the
atmospheric density, and the true airspeed (TAS), i.e., the velocity of the spacecraft
with respect to the atmosphere.

The component of the aerodynamic force toward v̂TAS is referred to as drag. The
subscript drag in Equation (1.13), emphasizes that drag is the major component of
the aerodynamic force acting on satellites, i.e., f drag · v̂TAS ≈

∥∥f drag∥∥. Although not
rigorous, referring to “drag force” instead of “aerodynamic force” is common practice
in astrodynamics.

The component of the aerodynamic coefficient toward v̂TAS is referred to as drag
coefficient, Cd = Ca · v̂TAS. Finally, Cb = Cd

S
m

denotes the ballistic coefficient.
High-fidelity modeling of Ca, ρ, and v2

TAS is challenging. The following sections
recall the physical principles behind their modeling.

1.5.1 Atmospheric density

The main contributors to the determination of the structure and dynamics of the
atmosphere are summarized in Table 1.1.

Let Pj, ρj, mj, T , R be the partial pressure, density and molecular weight of the
j-th constituent, the temperature, and the universal gas constant, respectively. The
vertical rarefaction of the atmosphere is obtained by differentiating the equation of
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Table 1.1: Sources of variation of the atmospheric density.

Source
Spatial variations
Vertical rarefaction Hydrostatic equilibrium
Day-night bulge Direct heating of the Sun
Seasonal-latitudinal variations Sun’s declination
Space weather
Solar activity Extreme ultraviolet radiation
Geomagnetic activity Coulomb heating through charged solar wind particles
Temporal variations
Semiannual Eccentricity of Earth’s heliocentric orbit

More complex, not fully understood, phenomena

ρ
µ

(req + Z)2
dz

P + dP

P

dz

(a) Vertical rarefaction. (b) Delay in local solar time of the diurnal density
bulge with respect to the sub-solar point.

Figure 1.4: Structure of the atmosphere.

ideal gases
Pj
ρj

=
R

mj

T ⇒ dPj
dz

=
R T

mj

dρj
dz

+
ρj R

mj

dT
dz
, (1.14)

and by combining it with the hydrostatic equation of an infinitesimal cube of air at
altitude Z (see Figure 1.4(a)). Introducing thermal diffusion, the diffusive equilib-
rium atmospheric state equation is thus obtained:

1

ρj

dρj
dZ

+
1 + αj
T

dT
dZ

+
mj

R T

µ

(req + Z)2 = 0 (1.15)

where req denotes the equatorial radius and αj is the thermal diffusion coefficient,
which is equal to −0.4 for He and H and zero for the remaining species. Integration
of Equation (1.15) yields

ρj(Z) = ρj(Z0)

(
T (Z0)

T (Z)

)1+αj

exp

(
−
∫ Z

Z0

mj

R T

µ

(req + Z)2dz

)
. (1.16)

Because the argument of the integral in Equation (1.16) decreases with the molec-
ular mass mj, the number density of lightweight species like helium and hydrogen
decreases with slower rate than heavy species like molecular oxygen and nitrogen, as
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illustrated in Figure 1.5. The mass concentration at very high altitude is essentially
constituted by lightweight species only.

The temperature profile, T (Z), depends on the specific atmospheric model. It can
account for the direct heating of the Sun, i.e., the day-night bulge in Figure 1.4(b)
and seasonal-latitudinal variations, for the variations of the Earth-Sun distance, and
for the current space weather.

1.5.2 True airspeed

The TAS is the relative velocity of the satellite with respect to the atmosphere. It
is given by three contributions: (1) inertial velocity of the satellite, (2) co-rotating
atmosphere, (3) wind, i.e.,

vTAS = ṙ︸︷︷︸
inertial velocity

− ωeîToD × r︸ ︷︷ ︸
co−rotating atmosphere

− vw︸︷︷︸
wind

(1.17)

where ωe is the angular velocity of the Earth sidereal rotation rate.
Thermospheric winds can be of several hundreds of meters per second [Doornbos,

2012], but they are most often neglected in numerical simulations. In first approx-
imation, their gross effect on the semi-major axis is compensated throughout one
revolution in near-circular orbits.
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1.5.3 Aerodynamic coefficient

The computation of the ballistic coefficient is a challenging and important problem
for LEO propagation. The drag coefficient is itself a function of the atmospheric
conditions, i.e., gas composition and external temperature, of the ballistic properties
of the spacecraft, i.e., geometry and attitude, of the wall temperature, and of the
gas-surface interaction.

Two complementary approaches exist for the determination of drag coefficients.
Fitted drag coefficients are deduced from observation of the orbital dynamics of the
spacecraft. This method is not based on physical modeling of the aerodynamic force,
but it just requires an underlying atmospheric model. The result is a coefficient
that is consistent with the observed dynamics and that rectifies the bias of the
atmospheric model. However, fitted coefficients can be computed only after the
launch. On the contrary, physical drag coefficients are based on physical models
of the gas-surface interaction in free molecular flow regime. These methods do not
require an atmospheric model and they are appropriate for pre-launch analyses.
However, the resulting coefficient is generally biased with respect to observations.

A large body of literature on the determination of physical drag coefficients is
available, see, e.g., [Storz et al., 2005, Marcos, 2006]. For non-convex geometries,
Monte Carlo (MC) based methods are arguably the only way to compute physical
drag coefficients, e.g., direct simulation Monte Carlo (DSMC), test-particle MC,
and ray-tracing method. These methods use probabilistic MC simulations to solve
Boltzmann’s equation for fluid flows with finite Knudsen number. However, this
technique is extremely computationally intensive. For simple convex geometries,
semi-empirical analytic methods relying on the decomposition into elementary panels
provide an accurate and computationally-effective alternative.

The semi-analytic method discussed herein is based upon the research of Sentman
[Sentman, 1961] and Cook [Cook, 1965] and upon the more recent contributions of
Moe [Moe and Moe, 2005], Sutton [Sutton, 2009], Fuller [Fuller and Tolson, 2009],
and Pilinski [Pilinski et al., 2011a].

The following notions are used to model gas-surface interaction (Figure 1.6):

• Impacting particles exchange energy with the surface. The accommodation
coefficient, α, determines whether the impacting particles are reflected and
retain their mean kinetic energy (for α = 0) or they acquire the spacecraft wall
temperature Tw (for α = 1). At low altitudes, a layer of atomic oxygen covers
the surface and it “captures” the largest part of impacting particles2. Full
accommodations of the energy is a good approximation in this case. When the
partial pressure of the atomic oxygen decreases, partial accommodation occurs.
It is responsible for an increase of the drag coefficient3 and for a misalignment
of the force with respect to TAS. Advanced gas-surface interaction models

2This layer is softer at atomic level than materials like aluminum. This causes impacting
particles to remain in this soft layer.

3Full vs partial accommodation of the energy can be compared with perfectly elastic and non-
elastic impacts, respectively.
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−vTAS
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Figure 1.6: Physical principles of gas-surface interaction in free molecular flow.

also consider the way non-accommodated particles are reflected, e.g., diffuse
or specular reflection.

• The most-probable-thermal velocity, vmp,j, is an indicator of the isotropic ran-
dom velocity of the particles of the j-th gas species. This velocity is added
to the TAS, so that some particles can also impact surfaces whose outward
normal, n̂, is orthogonal to vTAS or even such that n̂ · vTAS < 0. For this
reason, long-shaped satellites flying “as an arrow” have larger drag coefficients
as compared to shorter satellites with similar cross-section-to-mass ratio. Be-
cause the thermal velocity is inversely proportional to the square root of the
molecular mass, this effect is more pronounced at high altitudes, where the
atmosphere is mostly composed by lightweight particles.

• Accommodated particles assume the temperature of the surface, Tw. Subse-
quently, they are re-emitted with most-probable thermal velocity correspond-
ing to such temperature. This causes a force toward the normal of the surface
– which is not generally aligned toward vTAS – and an increase of the aerody-
namic coefficient at high altitude.

Consider a one-sided elementary panel, say the k-th spacecraft panel, with out-
ward normal n̂ and provided with surface Sk. Define ψk = v̂TAS · n̂ and φk =
‖v̂TAS × n̂‖. Given the TAS to most-probable thermal velocity ratio of the j-th gas
species

Wj =
vTAS
vmp,j

= vTAS

(
2
B T

mj

)− 1
2

, (1.18)

where B is the Boltzmann constant, the dimensionless drag and lift coefficients are
provided by Sentman’s equation

C
(k,j)
d =

[
Pk,j√
π

+ ψk

(
1 +

1

2W 2
j

)
Zk,j +

ψk
2

vre
vTAS

(√
πZk,jψk + Pk,j

)] Sk
S
,

C
(k,j)
l =

[
φk

1

2W 2
j

Zk,j +
φk
2

vre
vTAS

(√
πZk,jψk + Pk,j

)] Sk
S
,

(1.19)
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with

Pk,j =
exp

(
−W 2

j ψ
2
k

)
Wj

,

Zk,j = 1 + erf (Wj ψk) , (1.20)

vre
vTAS

=

√
1

2

(
1 + α

(
4RTw
mjv2

TAS

− 1

))
,

where vre is the velocity of the re-emitted particles.
Summing up the contributions of all the panels and of the different gas species

yields the aerodynamic coefficient:

Ca =
∑
k,j

[
ρj
ρ

(
C

(k,j)
d v̂TAS + C

(k,j)
l

v̂TAS × n̂
‖v̂TAS × n̂‖

× v̂TAS
)]

. (1.21)

Missions may assume that the drag coefficient is constant and the aerodynamic
force proportional to the projected cross section and toward v̂TAS. Although conve-
nient for most applications, these assumptions are only rigorous when considering
hyper-velocity, free-molecular flow, i.e., vTAS

vmp,j
→ ∞, full accommodation of the en-

ergy, and negligible re-emission velocity.

1.6 High-fidelity orbital propagation

The numerical simulations performed in Chapters 2, 3, 5, and 6 are carried out in a
highly-detailed environment. Both attitude and orbital dynamics of the satellites are
propagated in their complete nonlinear coupled dynamics by means of our homemade
MATLAB propagator (Figure 1.7(a)). Figure 1.7(b) shows a validation of our code
against Systems Tool Kit (STK).

The orbital perturbations include aerodynamic force, a detailed gravitational field
with harmonics up to order and degree 10, SRP and third-body perturbations of Sun
and Moon. The external torques are due to aerodynamics and gravity gradient, and
the models proposed by [Wertz, 1978] for the reaction wheels and magnetic rods are
exploited. The control torque is computed with the quaternion feedback algorithm
[Wie, 2008].

The aerodynamic coefficient is computed by means of Equations (1.21) at every
time step. This model assumes free-molecular flow, random thermal velocity, vari-
able accommodation of the energy, and non-zero re-emission velocity. An analogous
model is used for the aerodynamic torque [Hughes, 2012].

The atmospheric model is NRLMSISE-00 [Picone, 2002]. Short-term random
variations are included by adding a second-order stationary stochastic process to the
total mass density. The power spectral density of the process is the one proposed
by Zijlstra [Zijlstra et al., 2005] rescaled for the altitude of the maneuver. The
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(a) Graphical user interface.
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(b) Validation against STK. Solid lines are computed with our propagator. Dashed lines (almost
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Figure 1.7: Our MATLAB propagator.
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Figure 1.8: QARMAN’s mission timeline. DiffDrag, AeroSDS, and Reentry corre-
spond to the differential drag, aerodynamic stability and deorbiting, and reentry
phases, respectively.

atmosphere is assumed to co-rotate with the Earth, but thermospheric winds are
neglected.

Precession, nutation, and wandering of the polar axis are modeled according to
[Montenbruck and Gill, 2000].

1.7 The QB50 and QARMAN missions

The QB50 Project initiated by the Von Karman Institute for Fluid Dynamics (VKI)
aims at being the biggest network of CubeSats for scientific research and technol-
ogy demonstration in orbit. QB50 has the scientific objective to study in situ the
temporal and spatial variations of a number of key constituents and parameters in
the lower thermosphere (100-400 km) with a network of about 40 double CubeSats,
separated by tens to few hundreds kilometers and carrying identical sensors. QB50
will also study the reentry process by measuring a number of key parameters during
reentry and by comparing predicted and actual CubeSat trajectories and orbital life-
times. QB50 will also accommodate about 10 double or triple CubeSats for in-orbit
demonstration (IoD) of novel technologies.

One satellite of the constellation is QARMAN (QubeSat for Aerothermodynamic
Research and Measurements on AblatioN), a triple-unit CubeSat developed by a
joint collaboration between VKI and University of Liège (ULg). The primary mis-
sion objective of QARMAN is to carry out research during the reentry phase. Other
mission objectives involve the validation of an aerodynamic stabilization and de-
orbiting system and the in-orbit demonstration of propellantless maneuvers using
differential drag. The fulfillment of these objectives corresponds to different phases
of the operational lifetime of QARMAN, as illustrated in Figure 1.8. Specifically, the
first month of the lifetime of QARMAN is devoted to differential drag maneuvers.

The architecture of QARMAN is depicted in Figure 1.9.
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Figure 1.9: Architecture of QARMAN.

1.8 Conclusion

This chapter offered an overview on modeling of satellite orbits in LEO. Owing
to complex physical phenomena governing gas-surface interaction in free molecular
flow and the structure of the upper atmosphere, accurate satellite aerodynamics
modeling is a challenging task and accommodating its underlying uncertainties is
mandatory when propagating trajectories in LEO. For this reason, Chapters 2 and
3 are devoted to the uncertainty characterization and estimation of the aerodynamic
force, respectively.



Chapter 2

Uncertainty Quantification of
Satellite Drag

Abstract

In view of the stochastic nature of the thermosphere and of the complex-
ity of drag modeling, a deterministic assessment of medium-to-long term
predictions of the dynamics of a satellite in low-Earth orbit is likely to
be bound to failure. The present chapter performs a probabilistic charac-
terization of the dominant sources of uncertainty inherent to low-altitude
satellites. Uncertainties in the initial state of the satellite and in the
atmospheric drag force, as well as uncertainties introduced by modeling
limitations associated with atmospheric density models, are considered.
Mathematical statistics methods in conjunction with mechanical model-
ing considerations are used to infer the probabilistic characterization of
these uncertainties from experimental data and atmospheric density mod-
els. This characterization step facilitates the application of uncertainty
propagation and sensitivity analysis methods, which, in turn, allow gain-
ing insight into the impact that these uncertainties have on the variables
of interest. The probabilistic assessment of the orbital lifetime of a Cube-
Sat of the QB50 constellation is used to illustrate the methodology. The
same uncertainty characterization also proves useful in Chapters 3 and 6.

23
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2.1 Introduction

In view of the stochastic nature of the thermosphere and of the complexity of drag
modeling, the LEO region is arguably the most perturbed region for satellites in
geocentric orbit, and a deterministic assessment of medium-to-long term predictions
of the dynamics of a satellite in LEO is likely to be bound to failure. An outstanding
example concerns orbital lifetime estimation: the continuing growth of space debris
is a problem of great concern to the astrodynamics community. Most national space
agencies and the Inter-Agency Space Debris Coordination Committee (IADC) now
firmly accept a maximum orbital lifetime [iad, 2010]. Specifically, spacecraft must
be able to deorbit within 25 years from protected regions, namely from LEO and
geostationary orbits. Spacecraft most often exploit chemical propulsion for this
purpose, although novel deorbiting strategies, including electrical propulsion [Ryden
et al., 1997], solar sails [Johnson et al., 2011], and tethers [Bombardelli et al., 2013],
are currently being investigated as well. In other cases, proving through supporting
long-term orbit propagations that the natural orbital decay of the spacecraft requires
less time than the prescribed 25-year limit may suffice to satisfy the requirement.
In this context, the design and optimization of deorbiting strategies require reliable
orbital lifetime estimation.

Lifetime estimation began with the early space age with the method developed
by Sterne [Sterne, 1958], which was based upon analytical expressions for the rate of
change of apogee and perigee. Ladner and Ragsdale [Ladner and Ragsdale, 1995] im-
proved this method and through recommendations in the choice of the most sensitive
parameters, they emphasized the importance of uncertainties. Orbital propagation
efficiency was then improved by Chao and Platt [Chao and Platt, 1991] thanks to a
novel set of simplified averaged equations of classical orbital elements. The adequate
treatment of atmospheric density led to renewed interest in lifetime estimation. For
instance, Fraysse et al. [Fraysse et al., 2012] described good practices for lifetime
computation of LEO satellites where drag may be significant and introduced the
concept of equivalent solar activity.

However, owing to various experimental and modeling limitations, various para-
metric uncertainties and modeling errors impede accurate orbital lifetime estimation.
For example, Monte Carlo simulations performed in the position paper on space de-
bris mitigation [pos, 2006] indicated that the orbital lifetime of a spacecraft with
an initial 36,000 × 250 km orbit can vary between about 8 years (with a relative
frequency of 5%) to about 70 years (with a relative frequency also of 5%). Oltrogge
and Leveque [Oltrogge et al., 2011] provided another example of the variability of
three different lifetime estimation tools in the analysis of orbital decay of Cube-
Sats. Variations of the order of 50% were observed between predicted and observed
lifetime.

Dominant sources of parametric uncertainties and modeling errors in orbital life-
time estimation include atmospheric properties, the initial state of the satellite,
and the physical properties of the satellite. First, although remarkable efforts were
performed to gain insight into the nature of the atmosphere [Jacchia, 1965, 1971,
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Hedin, 1991], a complete and thorough understanding of the mechanisms that de-
termine the gas composition, the temperature, and other atmospheric properties
has not been achieved yet; even if further detailed models were available, their ef-
ficient numerical implementation would probably be prohibitive. In addition, most
atmospheric models available in the literature rely on the correlation of the density
with solar and geomagnetic activity indicators, which are subject to uncertainties
themselves. Next, uncertainty in the initial state of the satellite may arise either
because the mission design status, e.g., some initial orbital parameters, is not known
yet or because of experimental limitations, e.g., limitations associated with GPS or
two-line elements (TLE) datasets. Finally, uncertainties in the physical properties
of the satellite may include the drag and reflectivity coefficients, the mass, and the
geometry. Although all these uncertainties exist for every mission, their relative
importance is case-dependent.

Although there is a large body of literature concerning lifetime estimation, UQ
of orbital propagation is a more recent research topic. By expressing the analytical
solution with a Taylor series expansion and by solving the Fokker-Planck equation,
Park and Scheeres [Park and Scheeres, 2006] were able to propagate Gaussian uncer-
tainty in the initial states of a non-linear deterministic evolution problem. Non-linear
dynamics propagation resulted in a progressive distortion of the probability distri-
bution of the states, which became non-Gaussian. Further work on the propagation
of the uncertainty in the initial states by means of the Fokker-Planck equation was
performed by Giza et al. [Giza et al., 2009], who were also able to efficiently propa-
gate uncertainty by considering a simplified drag model. Analytical propagation of
uncertainties in the two-body problem was then achieved by Fujimoto et al. [Fuji-
moto et al., 2012]. Concerning uncertainty propagation techniques, Doostan et al.
introduced the polynomial chaos expansion (PCE) method in astrodynamics [Jones
et al., 2012, 2013]. Important issues in lifetime estimation are summarized by Saleh
[Saleh et al., 2002], while Scheeres et al. [Scheeres et al., 2006] pointed out the exis-
tence of a rigorous and fundamental limit in squeezing the state vector uncertainty.
In summary, non-linear and long-period dynamics propagation [Junkins et al., 1996]
as well as severe uncertainty sources make UQ of orbital lifetime a difficult problem.

We view probabilistic UQ of orbital lifetime estimation as a three-step problem.
The first step involves using methods from mathematical statistics in conjunction
with mechanical modeling considerations to characterize the uncertainties involved
in the orbital lifetime estimation problem as one or more random variables. The
second step is to map this probabilistic characterization of inputs through the orbital
propagator into a probabilistic characterization of the orbital lifetime; this can be
achieved in several ways, which include MC simulation [Casella and Casella, 2013]
and stochastic expansion methods such as those based on polynomial chaos [Ghanem
and Spanos, 1991, Le Maître and Knio, 2010]. Lastly, the third step involves using
the probabilistic model thus obtained to gain insight into the impact that the input
uncertainties have on the orbital lifetime, for example, by carrying out stochastic
sensitivity analyses. The three-step methodology is illustrated in Figure 2.1

In this chapter, we focus mainly on the first step, i.e., the probabilistic charac-
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Figure 2.1: Proposed uncertainty quantification approach.

Table 2.1: Nominal parameters for the simulations.

Variable Value
Initial conditions Initial altitude 380 km

Eccentricity 10−3

Orbital inclination 98 deg
Launch date 2016

Spacecraft properties Mass 2 kg
Size 0.2 m× 0.1 m× 0.1 m

terization of the dominant sources of uncertainty involved in the lifetime estimation
of low-altitude satellites. Uncertainties in the initial state of the satellite and in the
atmospheric drag force, as well as uncertainties introduced by modeling limitations
associated with atmospheric density models, are considered. A brief outline of the
results of the propagation and sensitivity analysis is also provided; a more detailed
description is available in [Dell’Elce and Kerschen, 2014a].

To illustrate the proposed methodology, the standard two-unit (2U) CubeSat of
the QB50 constellation is considered. This case study is particularly relevant for
two reasons. First, the objective of the constellation is to study in situ the spatial
and temporal variations in the lower thermosphere. The initial circular orbit will
have an altitude of 380 km where atmospheric drag is significant. Second, it is a
real-life mission that should be launched in 2016; hence, the results described here
can be useful not only to the astrodynamics community but also to the CubeSat
developers. The simulation parameters are summarized in Table 2.1.

The chapter is organized as follows. Section 2.2 details the modeling assump-
tions and identifies the dominant sources of uncertainty. Section 2.3 summarizes
two stochastic methods for uncertainty characterization. Subsequently, the char-
acterization of the uncertainties in the initial conditions and in the drag force is
examined in Sections 2.4 and 2.5, respectively. Finally, Sections 2.6 and 2.7 briefly
outline the uncertainty propagation and sensitivity analysis steps, respectively.
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2.2 Modeling assumptions and uncertainty source
identification

The motion of the center of gravity of a non-propelled Earth orbiting spacecraft is
governed by the IVP (1.1), which we rewrite here for convenience:

r̈ = − µ
r3
r + f p (r, ṙ, t,p, q) , (2.1)

with the following initial conditions

r (t0) = r0,

ṙ (t0) = ṙ0;
(2.2)

here, p(t) and q(t) are a vector of parameters, e.g., geometrical and inertial proper-
ties of the satellite, and the spacecraft attitude quaternion, respectively.

The gravitational constant is known with high accuracy, µ = 3.986 · 1014 m3s−2±
8 · 105 m3s−2 [Ries et al., 1992]; hence, it is supposed to be deterministic in this
work. Thus, the uncertainties in the spacecraft dynamics, and, in particular, in
the orbital lifetime, originate from the initial conditions and the perturbing forces,
as shown in Figure 2.2. The main perturbations for a LEO spacecraft are due to
the gravitational forces, i.e., non-spherical harmonics of the Earth’s gravitational
field and third-body disturbances of sun and moon, f g, to the atmospheric drag
f drag, and to the SRP fSRP ; hence, f p ' f g + f drag + fSRP . Their respective
OoM depend on the considered orbit. Figure 1.1 illustrates the amplitude of these
perturbations for a 2U CubeSat for various LEO altitudes. Minor perturbing forces
include radiation pressure of the Earth’s albedo which is due to the diffuse reflection
of the sunlight, Earth infrared radiation, relativistic accelerations, tides, and third-
body perturbations of the planets. Nonetheless, they are at least one OoM smaller
than SRP, so that their influence can be safely neglected in most applications.

Both the Earth’s gravitational attraction and third-body perturbations are con-
sidered as deterministic quantities in this study because they can be modeled with
high accuracy. Concerning the Earth’s attraction, Fraysse et al. [Fraysse et al.,
2012] reported that it is sufficient to include zonal harmonics up to J4 for lifetime
estimation1. Figure 2.3 provides the numerical evidence that this recommendation
is valid for our QB50 case study. Because of the strong non-linearity of this problem
and possible chaotic dynamics, the convergence of the relative error is not mono-
tonic, especially if zonal-only perturbations are considered. As a result, the relative
error tends to stabilize at a value of about 0.1% beyond order 4; this error can be
safely neglected with respect to the large uncertainties inherent to orbital lifetime

1Special cases may require a more complete modeling of the perturbing agents. For instance,
if sectorial perturbations have very little influence on long-term propagations in LEO, we note
that some special orbits could require a more detailed modeling of the gravity field, e.g., it is
recommended to include zonal harmonics up to J15 for orbits with inclination close to 63.4deg.
Lamay et al. propose a survey of these resonance effects in [Lamy et al., 2012].
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Figure 2.2: Schematic representation of uncertainty quantification of orbital lifetime
in LEO. White box: deterministic modeling, gray box: stochastic modeling, black
box: unmodeled dynamics.

estimation. The modeling of the perturbing force due to SRP is a challenging and
demanding task. However, SRP can usually be neglected for very low altitudes, as
confirmed in Figure 1.1, and it is also considered deterministic in this work. We
therefore assume in the context of this study that only the perturbations due to at-
mospheric drag play an important role for UQ of orbital lifetime estimation. Besides
the great magnitude of drag perturbations in LEO, this assumption is supported by
the fact that drag is uncertain in nature and does not exhibit any relevant compen-
sation throughout one orbit, e.g., it is responsible for a monotonic decrease of the
semi-major axis.

The popular Runge-Kutta 8(7) [Montenbruck and Gill, 2000] is exploited as nu-
merical integrator for orbital propagation. To reduce the computational burden, the
relative precision was set to 10−9, which provides a relative error of O (10−2) on the
lifetime with respect to a precision of 10−13.

2.3 Stochastic methods for uncertainty characteri-
zation

Within a probabilistic framework, the objective of characterization is to model the
sources of uncertainty involved in the problem under study as one or more random
variables2 X with values in the support IX . The extension of the methods dis-

2It is common practice in statistics to use uppercase letters to denote random variables; by
contrast, lower-case letters indicate deterministic variables. We use this system of notation only
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Figure 2.3: Error on the orbital lifetime in the nominal case in function of the order
of the gravity model.

cussed in this section to the multivariate case is straightforward, but we preferred
to illustrate the scalar case to ease the notation. This requires that an adequate
probability distribution, or, if X is continuous, its PDF, pX : IX → R+, be assigned
to these random variables. The information available for obtaining this distribution
typically consists of one or more of the following sources. First, various types of ex-
perimental data can be available. Next, there can be mechanical laws that impose
constraints on the values that the random variables may take, e.g., mechanical laws
can require that the uncertain atmospheric density is positive. These constraints act
as sources of information because the inferred probability distribution must assign a
vanishing probability to those values of the random variables that do not satisfy the
constraints. Finally, various other sources can contribute information, for example,
in the form of nominal values.

Methods from mathematical statistics are most often used in conjunction with
mechanical modeling considerations to infer a characterization of uncertainties from
the available information. Providing an exhaustive account of all available methods
from mathematical statistics is beyond the scope of this chapter. Instead, we confine
ourselves to a succinct presentation of two fundamental methods.

2.3.1 Maximum likelihood estimation

The first method involves selecting an adequate ‘labeled’ probability distribution,
followed by inferring suitable values for its parameters from data, for example, by

in this section, which focuses on the mathematical aspects.
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using the method of maximum likelihood estimation (MLE). By labeled probability
distribution we mean Gaussian, uniform, and other probability distributions given in
catalogs in the literature. Consider a set of n samples x1, . . . , xn of a random variable
X and a PDF pX(x;ϑ1, . . . , ϑd), where ϑ1, . . . , ϑd are the parameters defining the
distribution, e.g., the mean and the standard deviation for the normal distribution.
According to the maximum likelihood method, the d parameters of the PDF have to
be chosen such that they are consistent, e.g., they have a positive standard deviation,
and maximize the likelihood function

L(ϑ1, ..., ϑd) =
n∏
j=1

pX(xj;ϑ1, ..., ϑd). (2.3)

In practice, the logarithm of the likelihood function is generally considered as the
objective function in order to reduce numerical errors due to the product of small
numbers.

Care should be taken to select a labeled PDF that is consistent with the phys-
ical constraints; for example, the Gaussian probability distribution should not be
selected to characterize an uncertain atmospheric density because its support is R,
and its selection would thus lead to the assignment of a non-vanishing probability
to negative values.

2.3.2 Maximum entropy

If no adequate labeled probability distribution is available, the possibility of con-
structing a new adequate distribution can be considered, using, for example, the
maximum entropy principle [Shannon, 1948]. The maximum entropy principle states
that the probability distribution with the largest entropy should be selected from
among those that are consistent with the available information. The entropy of a
continuous random variable X with PDF pX(x) and support IX is defined as

sX = −
∫
IX
pX(x) log pX(x) dx. (2.4)

For most of the sources of uncertainty that we characterize using the principle of
maximum entropy, the probability distribution is obtained as the one that maximizes
entropy,

max
pX

sX (pX) , (2.5)

from among those that are consistent with available information of the following
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form ∫
IX
pX (x) dx− 1 = 0,∫

IX
x pX (x) dx− µX = 0,∫

IX
(x− µX)2 pX (x) dx− σ2

X = 0;

(2.6)

here IX = [xmin, xmax], µX and σX are a given support, a given mean, and a given
standard deviation, respectively. The exact analytical solution to this constrained
optimization problem can be obtained using Lagrange multipliers, and it is the
truncated Gaussian distribution with support IX and with second-order statistical
descriptors µX and σX 3.

pX (x; µ̃X , σ̃X , xmin, xmax) =
1

σ̃X

pN

(
x−µ̃X
σ̃X

)
cN

(
xmax−µ̃X

σ̃X

)
− cN

(
xmin−µ̃X

σ̃X

) ; (2.7)

here pN , cN , µ̃X and σ̃X are the PDF and the CDF of the standard Gaussian
distribution, and the parameters of the associated unbounded Gaussian distribution,
respectively. µ̃X and σ̃X , are obtained by solving

µ̃X + [pX (xmin)− pX (xmax)] σ̃
2 =µX ,[

1 + (xmin − µ̃X) pX (xmin)− (xmax − µ̃X) pX (xmax)

− (pX (xmin)− pX (xmax))
2 σ̃2

X

]
σ̃2
X =σ2

X ,

(2.8)

where the dependency of pX on its parameters are omitted for the sake of conciseness.
For more general applications of the maximum entropy principle, the numerical

solution of the problem is an alternative. An interesting approach that is particularly
suitable for high-dimensional problems was proposed by Soize [Soize, 2008]. A simple
numerical implementation is proposed in Appendix A, and it is illustrated for the
characterization of the initial altitude.

2.4 Uncertainty characterization of initial conditions

As discussed in Section 2.2, the two main sources of uncertainties considered in
the present study are those in the initial states and atmospheric drag. Uncertainty
characterization of the initial states is strongly related to the current status of the
mission. Two scenarios may occur:

• The spacecraft is in orbit. The uncertainty in the initial states depends on
3These are the second-order descriptors of the actual PDF, i.e., the truncated normal distribu-

tion, and not of the associated unbounded normal distribution.
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measured data, while the initial epoch can generally be considered as determin-
istic. TLE and GPS are two common measurement techniques. The former is
responsible for wider dispersion than the latter, but it is often the only option
available for debris and nanosatellites. Relevant work on TLE uncertainty
was performed by Vallado [Vallado et al., 2011] and Flohrer et al. [Flohrer
et al., 2008]. Kahr et al. [Kahr et al., 2013] estimated the uncertainty in the
TLE-based positioning of nano and micro-satellites by means of GPS data. In
the same paper, it is shown that the exploitation of intermittent GPS data in
conjunction with TLE can enhance the accuracy of few-day predictions by one
order of magnitude.

• The mission is still in a design phase, which is the scenario studied in this
paper. In this case, uncertainty in the initial states is related to the launch
vehicle injection accuracy and to the deployment strategy. The set of nominal
initial conditions may also not be fully defined, e.g., the initial RAAN may be
unknown.

For the QB50 network, the reference initial conditions before the deployment are
href0,l = 380 km, iref0,l = 98 deg, and eref0,l = 10−3, where href0,l , i

ref
0,l and eref0,l are the initial

altitude above the equatorial radius, the orbital inclination, and the eccentricity,
respectively. Keplerian elements are used for orbit parametrization because the mean
anomaly is the only fast variable in this parameter set. Mean elements, instead of
osculating elements, are considered to avoid an important sensitivity of the lifetime
with respect to the initial anomaly resulting from short-period variations of the
semi-major axis. Doing so, we can remove the initial anomaly from the uncertainty
sources. Since the reference orbit is circular, the characterization of the initial
AoP is not relevant either. As no information is available yet, the initial RAAN is
modeled as an aleatory variable with uniform uncertainty between 0 and 360 deg, in
accordance with the maximum entropy principle.

The uncertainty in h0,l, i0,l, and e0,l depends on the accuracy of the launcher.
Standard deviations of the Keplerian elements consistent with the performance of
current launchers used for LEO are considered, namely, σh = 2.5 km, σi = 0.03 deg,
and σe = 3.5 · 10−4. These three variables are supposed to be independent because
no information about their correlation is usually provided, and univariate PDFs are
constructed in the following.

The initial altitude of the spacecraft is a non-negative random variable, so that
its support is R+. The mean and standard deviation of the PDF are constrained
to be equal to the nominal values href0,l and σh, respectively. Thus, according to the
maximum entropy principle, h0,l is modeled as a truncated Gaussian distribution
with support R+ and with the imposed second-order descriptors, as shown in Figure
2.4(a). A similar problem is solved for the initial orbital eccentricity (Figure 2.4(b))
and inclination. For these variables the support is [0, 1] and R, respectively.

The initial date t0 is the last parameter necessary to fully define the initial state
right before the deployment of the constellation. The launch is foreseen for early
2016. However, because of the frequent delays in space missions, t0 is modeled
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entropy principle).
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as a uniform random variable between January the 1st 2016 and January the 1st

2017. A wider launch window is not necessary, since the long-term variations in the
atmospheric models are not considered herein.

A second source of uncertainty for the initial conditions is the deployment of
the QB50 constellation. Even though the exact strategy for deployment is still
unknown, the nanosatellites will be ejected thanks to a spring-loaded pusher plate
with an ejection velocity between 1 and 1.5m.s−1. Though negligible with respect
to the orbital speed, the ejection velocity may be responsible for uncertainties of the
order of launcher accuracy. For example, an ejection velocity in the flight direction
leads to an increment of the semi-major axis of 2.6 km, which is larger than σh.
Therefore, the ejection velocity is modeled as a vector with norm, vej, and direction
uniformly distributed in [1.0, 1.5]ms−1 and in the space, respectively. Parameterizing
the direction with azimuth, Θ, and elevation, χ, yields

pΘ,χ (Θ, χ) =
1

360

cosχ

2

[
deg−2

]
; (2.9)

here Θ and χ are defined in [0, 360] deg and [−90, 90] deg, respectively. This distri-
bution is uniform over the radian sphere, and it is obtained by considering that the
infinitesimal surface with these parameters is given by cosχdΘ dχ.

2.5 Uncertainty characterization of atmospheric drag

The second main source of uncertainty considered herein is the atmospheric drag.
The aerodynamic force per unit of mass is computed using the Equation (1.13).
According to Vallado [Vallado, 2001], all the terms involved in Equation (1.13) and
the equation itself are affected by uncertainties.

In this work, the TAS is calculated using the assumption of a co-rotating atmo-
sphere, i.e.,

vTAS = ṙ − ωE × r, (2.10)

where ωE is the Earth’s angular velocity. This means that we do not consider the
upper-thermosphere winds, which can be of the order of several hundreds of meters
per second [Häusler et al., 2007, Wu et al., 1994, Liu et al., 2006]. However, the
basic dynamics of the wind involves a movement from daylight to night-time, which
approximately results in a compensation of their effects throughout one orbit. Rele-
vant work on the determination of these winds from experimental data is performed
in [Doornbos, 2012], and different models are available in the literature [Hedin et al.,
1988, Killeen et al., 1987]. The thermospheric cooling trend [Emmert et al., 2008]
is also ignored herein.

We stress that the drag force is just one component of the aerodynamic force.
Lift forces are also considered in our simulations, although their OoM and influence
on lifetime are much smaller.
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2.5.1 Atmospheric model

The dominant uncertainty source in the drag estimation is the atmospheric density.
One of the most advanced atmospheric models is NRLMSISE-00, which is a global,
i.e., from ground to exosphere, empirical model developed by the US Naval Re-
search Laboratory (NRL). The model is calibrated by means of mass spectrometer,
incoherent scatter, and accelerometer measurements. Two important inputs of the
model are the daily and 81-day averaged radio flux indices, F10.7 and F̄10.7. The
3-hour geomagnetic index, ap, is another input of the model, but, for long-period
propagations, its daily average, Ap, can be exploited. The other inputs required by
NRLMSISE-00 are the position of the spacecraft and the Julian date, which are com-
puted throughout the numerical integration of the equations of motion. Although
they depend on random variables, e.g., JD(t) = t+ t0, they are not primary sources
of uncertainty. Given these inputs, NRLMSISE-00 is able to estimate the number
densities of helium, atomic and molecular oxygen, atomic and molecular nitrogen,
argon, and hydrogen, together with the local atmospheric temperature. The total
mass density is deduced directly from these outputs.

Solar and geomagnetic proxies

Correlation between gas density and space weather proxies, e.g., solar radio flux
and geomagnetic index, is crucial in the development of an atmospheric model. The
sensitivity of the orbital lifetime with respect to these variables is very substantial
[Naasz et al., 2007]. This section focuses on the characterization of the solar and
geomagnetic random variables. Different approaches were proposed in the literature
to address this important problem. Among them, Ashrafi et al. [Ashrafi et al.,
1993] developed a prediction tool based on chaos theory, and they proved that it is
more suitable than statistical approaches for short-term prediction. Watari [Watari,
1996] and Loskutov et al. [Loskutov et al., 2001] introduced methodologies for the
identification of periodic and chaotic components and for solar activity forecasting
based on singular spectrum analysis. To generate realizations of realistic future solar
flux trajectories (geomagnetic activity was not considered), Woodburn [Woodburn
and Lynch, 2005] proposed to superpose to the trend of the trajectory a scalar
exponential Gauss-Markov sequence.

The consideration of time-varying series complicates the uncertainty propaga-
tion because the problem belongs to the family of stochastic differential equations
[Øksendal, 1992]. As an alternative for orbital lifetime estimation, Fraysse et al.
introduced the concept of constant equivalent solar activity [Fraysse et al., 2012].
The idea is to consider a constant solar flux and geomagnetic index throughout the
propagation. If the satellite has a 25-year lifetime for the chosen constant equivalent
solar activity, then its lifetime for possible future solar activities will also be 25 years
with a probability of 50%. The equivalent solar flux is a function of the ballistic
coefficient Cb and of the altitude of the apogee hp, whereas the daily geomagnetic
index is set to 15. This technique is particularly appropriate for very long prop-
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agations in the order of one or several solar cycles. In [Dell’Elce et al., 2014], we
proposed another approach to the problem. It was also based upon the idea of using
an effective solar activity, but it was more suitable for propagations of the order of
a fraction of the solar cycle. Instead of a deterministic effective solar activity we
considered a random effective solar activity. The main underlying assumption was
that neglecting variations of the space weather proxies with respect to their averaged
value in time does not yield drastic variations of the orbital lifetime. This approach
has the effect to reduce the dimension of the uncertainty source set, enabling the
possibility to use efficient techniques for uncertainty propagation, e.g., polynomial
chaos expansion (PCE) was used in [Dell’Elce and Kerschen, 2014a] thanks to the
exploitation of the random effective solar activity.

Because this thesis also focuses on short-term propagations, e.g., rendez-vous
maneuvers lasting a couple of weeks, we model solar activity by means of a stochastic
process also in this chapter. In this way, the same probabilistic model will be also
exploited in Chapters 3 and 6.
F10.7, F̄10.7, and AP are characterized using the data measured over the last

50 years provided by the Celestrack database4. Bearing in mind that QB50 has a
lifetime of a few months and that the launch window is [January 2016, January 2017],
the portion of the solar cycle between [January 2014, January 2018] is considered
to be a conservative mission window. Thus, only the data of the previous cycles
corresponding to the same portion of the solar cycle are exploited for uncertainty
characterization. Because of the important variations in correspondence of the solar
maxima and of the variability in the period of the solar activity, the identification
of the selected data set is achieved by identifying the minima of the solar flux curve
smoothed by a moving-average filter of 2-year width. These minima are then used to
define a dimensionless position between two consecutive minima of the solar cycle.
This process is illustrated for the daily solar flux in Figure 2.5; a similar process can
be carried out for F̄10.7 and Ap. The data in the shaded windows are retained for
uncertainty characterization of the solar weather proxies.

Given the relatively short time span of the lifetime, i.e., O(1 year), compared to
the solar cycle, the processes are assumed to be reasonably stationary within the
maneuvering time, i.e., the random variables used for the modeling of the sequence
of each of the three proxies are assumed to have the same marginal distribution,
and all the points of the selected dataset are exploited for its generation. The
statistical model must be able to represent both the marginal distributions and the
correlation between the three variables. In addition, because the proxies are modeled
as stochastic processes, the autocorrelation of the time series must also be accounted
for.

Let tproc be a temporal window large enough to accommodate all the relevant
autocorrelations of the processes. In other words, it is assumed that the values of
the proxies at time t are correlated to their past history until t − tproc. In this
study we set tproc to 20 days. The selected dataset is split into sequences of length

4http://www.celestrak.com/SpaceData/sw19571001.txt

http://www.celestrak.com/SpaceData/sw19571001.txt
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Figure 2.5: Observed daily solar activity.

nkn = ceil(tproc). The stochastic processes are modeled by means of three nkn-
elements vectors of random variables, F10.7, F̄10.7, and Ap, such that the generic
k-th element is the value of the proxy evaluated at time t = k ceil(tf ).

The Gaussian copula [Marriott and Eaton, 1984]

Z1

Z2

Z3

 chol(C)−−−−→


Ξ1

cN (ξ1)−−−−→ U 1

F−1
F10.7

(u1;ϑF10.7)
−−−−−−−−−−→ F10.7

Ξ2
cN (ξ2)−−−−→ U 2

F−1
F̄10.7

(u2;ϑF̄10.7
)

−−−−−−−−−−→ F̄10.7

Ξ3
cN (ξ3)−−−−→ U 3

F−1
Ap(u3;ϑAp)
−−−−−−−−→ Ap

; (2.11)

is used to account for the statistical dependence both within and among F10.7, F̄10.7,
and Ap. Here

• Z1, Z2, and Z3 are nkn-element vectors of independent standard Gaussian
random variables,

• Ξ1, Ξ2, and Ξ3 are nkn-element vectors of correlated standard Gaussian ran-
dom variables; chol (C) is the Cholesky decomposition of their correlation ma-
trix. It holds

[
ΞT

1 ,Ξ
T
2 ,Ξ

T
3

]
=
[
ZT

1 ,Z
T
2 ,Z

T
3

]
chol (C),

• U 1, U 2, and U 3 are nkn-element vectors of correlated uniform random vari-
ables with support [0, 1],

• F(·) is the CDF of the marginal distribution that is chosen to fit the model,
and ϑ(·) is the vector of parameters defining the distribution.
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Figure 2.6: Marginal distributions of the geomagnetic and solar activity proxies
(identified with maximum likelihood).

The identification of the parameters of the statistical model is achieved by means
of the MLE. The design variables of the MLE problem are the parameters of the
marginal PDF and the correlation matrix:

pF10.7,F̄10.7,Ap
= pF10.7,F̄10.7,Ap

(
F10.7, F̄10.7,Ap;ϑF10.7 ,ϑF̄10.7

,ϑAp , C
)

(2.12)

Physical constraints impose that the chosen distributions of the solar flux proxies
are defined on R+, whereas the support of the geomagnetic indicator is [0, 400]. In
addition, the correlation matrix is symmetric with ones on the diagonal and off-
diagonal terms with modulus smaller than one by definition. These constraints have
to be considered, as well.

Several labeled PDF and histogram distributions were tested to model the marginal
PDF. On the one hand, labeled distributions are interesting because the resulting
model can be tuned with a very limited number of parameters. On the other hand,
histogram distributions are able to represent with the highest fidelity the statisti-
cal content of the dataset, but several parameters are necessary to tune the model,
i.e., the height of each bin. Histogram distributions for the marginal PDF are used
herein. Figure 2.6 depicts the obtained marginal distributions.

Figure 2.7 presents the values of the correlation matrix. The autocorrelation of
the daily solar flux smoothly decreases with the time increment, while the one of
the 81-day averaged flux is always close to one. This is due to the fact that the
averaged flux exhibits negligible variations within the window tf,max. Nonetheless,
large variations can be expected from one realization of the process to the other
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Figure 2.7: Correlation matrix of the Gaussian cupola used to model the solar and
geomagnetic proxies. Axes labels denote elapsed days.

according to the marginal distribution. Indeed, high values of the daily flux are
expected when its average is also high. This consideration is consistent with the
high cross-correlation between daily and averaged values.

Once the probabilistic model of pF10.7,F̄10.7,Ap
is available, it is possible to propa-

gate the stochastic processes. Specifically, the values of F10.7, F̄10.7, and Ap at time
t are computed by means of the conditional probability

pF10.7,F̄10.7,Ap|F10.7,∼nk ,F̄10.7,∼nk ,Ap,∼nk
(2.13)

of the Gaussian copula. Here the notation F10.7,∼nk indicates the vector of F10.7

without the nk-th element. Figure 2.8 illustrates a sample trajectory generated with
the probabilistic model and a real one.

Model uncertainty

Targeting practicality and efficient numerical computation, the most popular atmo-
spheric models exploit a limited number of proxies to take the correlation between
density and stochastic processes into account. This is why the uncertainty character-
ization of the density should also consider the uncertainty related to the discrepancy
of the model with respect to reality. For instance, Scholz et al. compared the at-
mospheric densities given by different models including NRLMSISE-00, DTM-2009,
JB-2008 and GITM [Scholz et al., 2012]. They observed deviations in the order of
50% considering the same environmental conditions. In addition to the discrepan-
cies among different models, Pardini et al. [Pardini et al., 2012] and Bowman et al.
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Figure 2.8: Solar flux trajectories. The red curve are observed data. The blue curve
is generated with the Gaussian copula.

[Bowman and Moe, 2005, Bowman and Hrncir, 2008] studied the biases of different
models by comparing physical and fitted drag coefficients. Overestimation of the
density at low altitudes was observed for all models with peaks of the order of 20%.
The oversimplified physical drag modeling exploited for the tuning of old models and
the absence of long-term thermospheric cooling are responsible for this systematic
overestimation.

To cope with model uncertainty of NRLMSISE-00, the work of Picone et al.
[Picone, 2002] is exploited in this chapter. They performed a statistical analysis
between the NRLMSISE-00 model and experimental data, and they tabulated the
biases and standard deviations of the gas composition and temperature for different
ranges of altitudes, for in-situ and ground based measurements, and for quiet (Ap ≤
10), active (Ap ≥ 50) and all geomagnetic conditions. Biases for number density of
gas species nj and for the temperature T are defined as

β(k)
nj

= exp

[
E

(
log

n
(data,k)
j

n
(model)
j

)]
− 1, (2.14)

β
(k)
T = E

(
T (data,k) − T (model)

)
, (2.15)

respectively. Superscriptsmodel and data correspond to the outputs of the NRLMSISE-
00 model and experimental data, respectively. E[·] denotes the expectation operator
with respect to the different measurements within a single dataset, k. The corre-
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sponding standard deviations are

σ(k)
nj

=

√√√√E

(
log2

n
(data,k)
j

n
(model)
j

)
− log2

(
β

(k)
nj + 1

)
, (2.16)

σ
(k)
T =

√
E
(

(T (data,k) − T (model))
2
)
− β(k) 2

T . (2.17)

In what follows, the measurements for all levels of geomagnetic activity in the
altitude range [200, 400 ]km are considered5. To account for this variability, we define
random variables, denoted ηnj and ηT , for each output of NRLMSISE-00 such that
the corrected atmospheric properties are given by

nj = n
(model)
j exp

(
ηnj
)
, (2.18)

T = T (model) + ηT . (2.19)

These random variables are considered constant throughout a single orbit propa-
gation and are characterized using the maximum entropy principle. Because the
available information is given in terms of the bias and standard deviation and be-
cause their support is R, the random variables ηnj are characterized by a normal
distribution with second-order descriptors

µnj = E
(

log
(

1 + β(k)
nj

))
, (2.20)

σnj =

√
E
(
σ

(k) 2
nj + µ

(k) 2
nj

)
− µ2

nj
; (2.21)

here the expectation operator is with respect to the different datasets.
For the random variable ηT , non-negativity of the temperatures must be enforced,

i.e., IηT = [−T,∞). The resulting distribution depends on the temperature T and
no feasible solution exists for T < −βT , βT being the mean value of β(k)

T across the
different datasets. In practice, however, this temperature range is not physically
meaningful; it is never reached using the NRLMSISE-00 model. The resulting dis-
tribution is a truncated Gaussian with left bound equal to −T and second-order
descriptors βT and σT . We note that the distributions converge to the unbounded
normal distribution for T � −βT + 3σT , as illustrated in Figure 2.9.

The obtained second-order statistical descriptors of ηnj and ηT are listed in Table
2.2.

5This is where most of the lifetime will be spent in our test case. The residual lifetime below
200km is of the order of one day.
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Figure 2.9: PDF of the model correction factor of the temperature in function of
the external temperature (maximum entropy principle).

Table 2.2: Global biases and standard deviations of the model correction factors of
the outputs of NRLMSISE-00 for all levels of geomagnetic activity and an altitude
range of [200, 400]km.

Output Mean Std
Temperature (K) -27.9 121.2
Helium (%) 8.0 34.7
Total oxygen (%) 1.6 25.4
Molecular nitrogen (%) -1.1 35.9
Argon (%) 18.6 52.0
Hydrogen (%) 4.0 31.4
Atomic nitrogen (%) -15.7 53.0
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2.5.2 Ballistic Coefficient

We consider the model of physical ballistic coefficients presented in Section 1.5.3.
According to this theory, the drag coefficient is determined as a function of the at-
mospheric conditions, i.e., gas composition and external temperature, of the physical
properties of the spacecraft, i.e., the mass and geometry, of the wall temperature
Tw, of the gas-surface interaction, and of its attitude, i.e.,

Cb = Cb (nj, T,m, geometry, Tw, α, δ, ε) , (2.22)

where α, δ, and ε are the energy flux accommodation coefficient, the angle of attack6,
and the side slip angle, respectively. The accommodation coefficient is an indicator
of the gas-surface interaction. It determines whether the reflected particles retain
their mean kinetic energy (for α = 0) or they acquire the spacecraft wall temperature
Tw (for α = 1) [Doornbos, 2012].

Numerical simulations we carried out pointed out that the term 4RTwv
−2
TAS in

Equation (1.20) is very small with respect to 1. We therefore consider it as de-
terministic with Tw = 300K. For the energy accommodation coefficient, to our
knowledge, data for its stochastic characterization are not available, and we model
it as

α = 5 · 10−7nOT (1 + 10−7nOT )−1, (2.23)

as suggested by Pilinski [Pilinski et al., 2011b].
The main contribution to uncertainty depends on the outputs of the atmospheric

model, which were already characterized in the previous section. Another contribu-
tion is spacecraft attitude, which determines the coefficients ψk and φk in Equation
(1.19). The requirements for a standard QB50 spacecraft impose that the angle δ
between the CubeSat’s long axis and the velocity be smaller than 5 deg with 3-σ
confidence [Muylaert, 2012]. There is no requirement on the side slip angle ε. Ac-
cording to the maximum entropy principle, the attitude angles δ and ε are modeled
as a Gaussian random variable with zero mean and a standard deviation of 5

3
deg,

and a uniform random variable with values in [0, 360] deg, respectively. We empha-
size that this analysis does not account for the commissioning, which in the case
of QB50 is required to be within the first two orbiting days. For other spacecraft,
commissioning might last several weeks, especially for nanosatellites with limited
attitude control. During commissioning, the spacecraft is tumbling and considering
this phase would require 6 degree-of-freedom propagation and the characterization
of the initial angular rates, which is beyond the scope of this paper.

The results of the discussed analytical method were compared with full-blown
DSMC simulations performed at the VKI. Table 2.3 shows that errors of the order
of 1% were achieved, thus validating our approach. Another interesting finding from
this table is that the ballistic coefficient is indeed insensitive with respect to wall
temperature.

6For a 2U CubeSat it is defined as the angle between the long axis and the TAS direction.
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Table 2.3: Errors between the analytic and DSMC-based numerical predictions for
the ballistic coefficient. Full accommodation of the energy is considered for both the
analytical and the numerical approaches.

Altitude [km] AoA [deg] Wall temperature [K] Analytical Cb
[

m2

kg

]
Relative error [%]

120 0.00 273.15 1.21e-02 0.36
120 0.00 298.15 1.21e-02 0.38
120 0.00 323.15 1.21e-02 0.38
120 5.00 273.15 1.34e-02 1.34
120 5.00 298.15 1.34e-02 1.33
120 5.00 323.15 1.34e-02 1.34
120 10.00 273.15 1.51e-02 0.89
120 10.00 298.15 1.51e-02 0.86
120 10.00 323.15 1.51e-02 0.85
120 15.00 273.15 1.69e-02 1.10
120 15.00 298.15 1.69e-02 1.08
120 15.00 323.15 1.69e-02 1.05
200 0.00 273.15 1.33e-02 -0.03
200 0.00 298.15 1.34e-02 -0.02
200 0.00 323.15 1.34e-02 -0.02
200 5.00 273.15 1.46e-02 3.40
200 5.00 298.15 1.47e-02 3.39
200 5.00 323.15 1.47e-02 3.38
200 10.00 273.15 1.59e-02 0.66
200 10.00 298.15 1.59e-02 0.66
200 10.00 323.15 1.60e-02 0.65
200 15.00 273.15 1.76e-02 0.03
200 15.00 298.15 1.76e-02 0.04
200 15.00 323.15 1.76e-02 0.04
280 0.00 273.15 1.38e-02 0.01
280 0.00 298.15 1.38e-02 0.01
280 0.00 323.15 1.38e-02 -0.01
280 5.00 273.15 1.51e-02 4.11
280 5.00 298.15 1.51e-02 4.10
280 5.00 323.15 1.52e-02 4.09
280 10.00 273.15 1.63e-02 1.22
280 10.00 298.15 1.63e-02 1.21
280 10.00 323.15 1.63e-02 1.22
280 15.00 273.15 1.79e-02 0.16
280 15.00 298.15 1.79e-02 0.16
280 15.00 323.15 1.79e-02 0.16
350 0.00 273.15 1.40e-02 -0.02
350 0.00 298.15 1.40e-02 -0.01
350 0.00 323.15 1.41e-02 -0.01
350 5.00 273.15 1.54e-02 4.43
350 5.00 298.15 1.54e-02 4.40
350 5.00 323.15 1.54e-02 4.41
350 10.00 273.15 1.65e-02 1.50
350 10.00 298.15 1.65e-02 1.49
350 10.00 323.15 1.65e-02 1.49
350 15.00 273.15 1.80e-02 0.20
350 15.00 298.15 1.80e-02 0.20
350 15.00 323.15 1.81e-02 0.21
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2.6 Uncertainty propagation via Monte Carlo

The MC algorithm is now used to compute the orbital lifetime of one nanosatellite of
the QB50 constellation considering the uncertainty sources discussed in the previous
sections and summarized in Table 2.4.

The mapping y = g(x) is considered for which the stochastic input vector x and
the (scalar) VoI y are defined on the supports IX and IY , respectively. MC prop-
agation is a means of quantifying uncertainty in the VoI by mapping uncertainties
in the inputs through the model g (·). The generation of a set of N realizations
x1,x2, . . . ,xN of the stochastic vectorX according to the joint PDF of its elements
is the first step of the MC propagation.

The direct evaluation of the mapping for each generated sample leads to N sam-
ples of the VoI from which statistics can be computed. Specifically, the second-order
descriptors are given by

µ
(N)
Y =

1

N

N∑
j=1

yj, (2.24)

σ
(N)
Y =

1

N

N∑
j=1

(
yj − µ(N)

Y

)2

. (2.25)

The convergence and rate of convergence of MC propagation are ensured by the law
of large numbers and the central limit theorem under limited assumptions. If the
mean value µY of the VoI exists, the law of large numbers states that the sample
mean µ(N)

Y converges almost surely to µY as N increases. If the standard deviation
σY of the VoI exists and if Lindeberg’s condition is satisfied, the central limit theorem
states that the error µ(N)

Y − µY is a normally distributed random variable with zero
mean and standard deviation σY√

N
.

Figure 2.10 shows that 50000 evaluations were necessary for achieving the con-
vergence of the mean value within ±1 day with a confidence level of 3σ. Because
a single orbital propagation lasts 10 minutes on average, the complete propagation
was run on a computer cluster; it resulted in an accumulated computational burden
of about 350 days.

Kernel density evaluation is implemented to derive a non-parametric representa-
tion of the PDF and CDF of orbital lifetime. It is presented in Figure 2.11. Useful
information can be inferred from Figures 2.10 and 2.11:

• The mean orbital lifetime is 248.4 days, which is enough considering the min-
imum desired lifetime of 3 months.

• The standard deviation amounts to 59.0 days, which results in standard devi-
ation to mean ratio of about 0.24. This reflects a substantial, but expected,
variability of orbital lifetime that invalidates a deterministic estimation of this
quantity.
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Table 2.4: Summary of uncertainty characterization.

Variable Symbol Units Stochastic modeling
Launch date t0 day Uniform in [1/01/2016, 1/01/2017].
Altitude before injection h0,l km Truncated Gaussian [0,+∞), 380km mean, 2.5km std
Inclination before injection i0,l deg Normal with 98deg mean and 0.03deg std
Eccentricity before injection e0,l - Truncated Gaussian [0,+∞), 10−3 mean, 3.5 · 10−4 std
RAAN before injection Ω0,l deg Uniform in [0, 360]deg
Ejection velocity (norm) vej m/s Uniform in [1, 1.5]ms−1

Ejection velocity (azimuth) Θ deg Uniform in [0, 360]deg
Ejection velocity (elevation) χ deg Cosine distribution in [−90, 90]deg

Daily solar activity F10.7 sfu Gaussian cupola (Figures 2.6 and 2.7)
81-day averaged solar activity F̄10.7 sfu Gaussian cupola (Figures 2.6 and 2.7)
Geomagnetic index Ap - Gaussian cupola (Figures 2.6 and 2.7)
Model error density ηnj - Gaussian with parameters listed in Table 2.2
Model error temperature ηT K Truncated Gaussian, temperature dependent (Figure 2.9)

Angle of attack δ deg Gaussian with 0deg mean and 5/3deg std
Roll angle ε deg Uniform in [0, 360]deg

Number of samples
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Figure 2.10: Convergence of the mean of the orbital lifetime. The shaded area
indicates 3− σ confidence bounds on the mean.
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Figure 2.11: Kernel density estimations of the PDF and CCDF of the orbital lifetime.
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• The lifetime can be as short as 55 days and as long as 597 days depending on
the considered input sample. The fact that lifetime can vary over an entire
order of magnitude emphasizes the interest of this study.

2.7 Stochastic sensitivity analysis

Uncertainty propagation allows us to obtain a statistical description of the VoI,
which is useful for estimating precisely the variability affecting this quantity. The
present section is devoted to stochastic sensitivity analysis for gaining insight into
the nature of the propagation itself. Such an analysis is relevant for engineering
purposes, particularly for decision making and for assessing the efforts needed to
reduce uncertainties on the VoI. In this section, we focus on the so-called global
sensitivity analysis [Saltelli et al., 2007]. For the sake of completeness, results on
local sensitivity analysis are discussed in [Dell’Elce and Kerschen, 2014a].

The objective of global sensitivity analysis is to measure the contribution of each
stochastic source in the generation of the uncertainty of the VoI, measured through
its variance. The total-effect sensitivity index for the input Xj is the expected value
of the variance of the VoI given all the variables but Xj.

E
(
Var
(
Y |X∼j

))
(2.26)

where X∼j means all the elements of X except the component j. The sensitivity
index can be interpreted as the portion of the uncertainty in the VoI that can be
attributed to the input Xj and its interactions with other variables. The sensitivity
indices are often normalized with the variance of the VoI. These dimensionless
coefficients are referred to as total-effect Sobol indices in the literature [Sobol’, 1990].

The numerical computation consists in the integration of:

E
(
Var
(
Y |X∼j

))
=

∫
IX∼j

[∫
IXj

g(x)2pXj |X∼j (xj|x∼j) dxj

−
(∫
IXj

g(x)pXj |X∼j (xj|x∼j) dxj

)2
]
pX∼j(x∼j) dx∼j

(2.27)
where pXj |X∼j (xj|X∼j) ≡ pX

pX∼j
is the conditional probability of xj given X∼j. For

a set of independent variables,

pX∼j (x∼j) =
N∏

k=1,k 6=j

pXk (xk) . (2.28)

Both deterministic and non-deterministic integration techniques can be imple-
mented for the numerical computation of Equation 2.27. When numerical simu-
lation is computationally demanding, the computation of the Sobol indices might
be unfeasible. It is possible to speed up the evaluation by means of a surrogate
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Table 2.5: Total effect Sobol indices of the orbital lifetime. Only the indices above
0.01 are listed.

Variable Sobol index
Launch date
Altitude before injection 0.05
Inclination before injection
Eccentricity before injection
RAAN before injection
Ejection velocity (norm)
Ejection velocity (azimuth)
Ejection velocity (elevation)

Daily solar activity (mean) 0.43
81-day averaged solar activity (mean) 0.37
Geomagnetic index (mean) 0.35

Model error O +O2 0.43
Model error N2 0.08
Model error other species
Model error temperature

Angle of attack
Roll angle

model. For this purpose, we fitted a neural network surrogate model. The input for
the model were all the scalar uncertain variables listed in Table 2.4 and the mean
of each realization of the solar and geomagnetic activity proxies. The idea to re-
place the time series of the proxies with an effective solar and geomagnetic activity
to reduce the dimension of the UQ problem was investigated in [Dell’Elce et al.,
2014]. With 99% confidence, this model predicts the VoI within 6% accuracy. In
our opinion, such precision is sufficient to estimate an OoM of the sensitivity indices.

Table 2.5 lists the Sobol indices obtained in the case study. Model error on
partial density of oxygen is the main contributor to the uncertainty in the lifetime.
This result confirms that a more profound knowledge of drag in rarefied flows and of
thermospheric models would be highly beneficial, as heavily stressed in the literature,
e.g., [Saleh et al., 2002, Moe and Moe, 2005, Woodburn and Lynch, 2005, Doornbos
et al., 2005, Doornbos and Klinkrad, 2006, Naasz et al., 2007]. However, solar and
geomagnetic activities are also major contributors. This is why stochastic modeling
of this problem is particularly relevant and important: although some uncertainty
sources might be more influential in other case study, e.g., attitude could play a
more important role for tumbling spacecraft, the uncertainty due to space weather
proxies is always present and it cannot be cancelled because of the stochastic nature
of solar and geomagnetic activity.

2.8 Conclusion

Although some assumptions were introduced, e.g., neglecting thermospheric winds,
the first challenge discussed in the Introduction of the thesis was addressed and
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yielded a probabilistic characterization of the uncertainties in satellite aerodynamic
modeling. This characterization was used to propagate uncertainties in the lifetime
of a LEO satellite. The results obtained confirm the relevance and importance of
UQ of LEO trajectories.

Chapters 3 and 6 will make use of the same characterization for other purposes,
i.e., recursive drag estimation and UQ of relative maneuvers.



Chapter 3

Aerodynamic Force Estimation

Abstract

Thanks to accurate ephemerides and detailed gravitational maps, third-
body and non-spherical gravitational perturbations can be modeled with
sufficient precision for most applications in LEO. On the contrary, compu-
tational models of satellite aerodynamics and SRP are bound to be biased
with respect to in-situ observations. Targeting accurate maneuvers and
high-fidelity on-board propagation, the real-time estimation of these per-
turbations is desired. In this chapter, we develop a particle filter for the
recursive estimation and prediction of non-gravitational forces. Although
the integration of accelerometer data in the filter is straightforward, we
offer a formulation that requires only GPS data. This feature makes the
proposed algorithm a valuable resource for small satellites which often
cannot afford accelerometers.

51
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3.1 Introduction

Thanks to high-fidelity ephemeris and detailed gravitational maps, third-body and
non-spherical gravitational perturbations can be modeled with sufficient precision
for most applications in LEO. On the contrary, owing to severe uncertainty sources
and modeling limitations, mathematical models of the main non-gravitational forces
– namely, aerodynamics and SRP – are generally biased even when advanced for-
mulations are considered.

To date, accurate satellite drag and SRP estimation is only envisaged in chal-
lenging missions and the recursive estimation of non-gravitational forces is gener-
ally carried out by means of high-sensitivity accelerometers [Gotlib et al., 2004].
Nonetheless, unmodeled force estimators using satellite observations only were also
proposed. The method of dynamic model compensation (DMC) is arguably the most
popular example of this class [Tapley et al., 2004]: first, an underlying parametric
model of the unknown perturbation is adopted; then, the parameters of such model
are assumed to be first-order Gauss-Markov processes and they are appended to the
state vector of a recursive estimator (most often an extended Kalman filter). Pro-
vided accurate1 and sufficiently dense satellite observations, DMC was successfully
applied to the estimation of atmospheric force [Tapley et al., 1975]. In that study,
no other process noise but the one in the atmospheric force itself was considered.
On the other end of the spectrum, when no non-keplerian perturbation is inclued
in the filter model and similar measurement noise is considered, DMC was shown
to properly estimate forces of the order of 10−3 N

kg [Winn, 1975]. Similar accuracy
was obtained when basic differentiation of GPS data is implemented [Zhang et al.,
2006]. Nonetheless, this is far from being sufficient to estimate drag or SRP which,
in general, are 3 or more orders of magnitude smaller. Batch estimators were used
for ground-based estimation using observations [Bowman and Moe, 2005]. In this
case, measurement noise could be largely relaxed – e.g., TLE were used in [Saunders
et al., 2012] – but they were not suitable for recursive implementation. An alter-
native approach based on optimal control policies was recently developed in [Lubey
and Scheeres, 2014]. This technique was able to account for both atmospheric drag
and SRP and it could be naturally extended to complex models of the force, but it
did not lend itself to recursive estimation, neither.

In the broader context of Bayesian estimation of dynamical systems, sequential
Monte Carlo (SMC) algorithms – which include the popular particle filters – are
valuable tools to optimally approximate the posterior distribution of hidden Markov
processes [Doucet et al., 2000, 2001]. Compared to Kalman filtering techniques, par-
ticle filters do not require any assumption on neither the linearity of the system nor
the nature of the noise. Such generality is obtained at the price of a greater com-
putational burden. Particle filters were used in several problems in astrodynamics,
e.g., space object tracking [McCabe and DeMars, 2014], orbit determination [Kim
et al., 2012, Mashiku et al., 2012], and relative state estimation [Zeng et al., 2012,

1Standard deviations of 5m for the position and 1mm
s for the velocity.
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Hwang and Speyer, 2011]. However, to the best of our knowledge, no attempt of
non-gravitational force estimation using particle filters is available in the literature.

In this chapter, we propose an SMC algorithm for the recursive inference of non-
gravitational perturbations from satellite observations with no supporting in-situ
acceleration measurements. Our approach is conceptually similar to DMC but, on
the top of the aforementioned advantages and drawbacks of SMC, we show that
it provides good estimates of the non-gravitational perturbations even when fairly
inaccurate measurements and a modest underlying propagator are used. The filter
works by updating the empirical distribution of a prescribed number of weighted
particles. Each particle consists of some dynamical states – read one set of orbital
elements and non-gravitational perturbations – and some parameters involved in
the computation of unknown forces, e.g., drag and reflectivity coefficients. Weights
are assigned to the particles based on the agreement between propagated states
and observations. Secular effects of the non-gravitational perturbations allow ‘good’
particles to emerge when weights are recursively updated.

Mean orbital elements are exploited as the only measurements. They can be
obtained either by converting GPS states with a contact transformation – as in the
present chapter – or by using TLE. This feature has a twofold interest: first, TLE
of most LEO objects are available; second, analytical and semi-analytical propaga-
tors, e.g., SGP4, can be naturally integrated in the algorithm to propagate particles.
For these reasons, this work can be a valuable resource both for space situational
awareness (SSA) applications, e.g., space debris’ orbit determination and propaga-
tion from TLE, and to enhance short-term trajectory predictions on-board small
satellites with moderate computational resources.

The chapter is organized as follows. Section 3.2 discusses the mathematical back-
ground on SMC and it outlines the algorithm of the filter. Section 3.3 details the
different ‘ingredients’ of the specific problem of non-gravitational force estimation.
Insight and caveats on the choice of the parameters of the filter are discussed, as
well. Finally, numerical simulations in high-fidelity environment are carried out in
Section 3.4.

3.2 Particle filtering for mixed parameter and state
estimation

Let P ∈ IP and {Xτ ∈ IX , τ ∈ N+} be an IP -valued vector2 of uncertain param-
eters and an IX-valued discrete-time m-th order Markov process provieded with
transitional prior distribution

Xτ+1 | (xτ ,xτ−1, . . . ,xτ−m,p) ∼ f (xτ+1 | xτ , . . . ,xτ−m,p) ∀ t ≥ m, (3.1)
2Column vectors are considered throughout the whole chapter.
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respectively; here, f (xτ+1 | xτ , . . . ,xτ−m,p) is the PDF defining how the process
evolves given outcomes of the parameters’ vector and the past m+ 1 realizations of
the state, i.e., P = p, Xτ−j = xτ−j ∀ j = 0, . . . ,m. The tilde means “distributed ac-
cording to”. Some IY -valued observations {Yτ ∈ IY , τ ∈ N+} are available. Given
the outcomes of the current and past states and of the parameters, measurements
are assumed to be conditionally independent in time:

Y τ | (xτ , . . . ,x0,p) ∼ g (yτ | xτ ,p) ∀ t ≥ 0; (3.2)

the PDF g (yτ | xτ ,p) is referred to as marginal likelihood distribution. Equations
(3.1) and (3.2) define a hidden Markov model (HMM).

The filtering problem consists in estimating the marginal posterior distribution of
the process3, which is the joint PDF of P and Xτ conditional to the observations
Y 0, . . . ,Y τ [Doucet et al., 2001]:

pdf(xτ ,p | y0, . . . ,yτ ) ∝ g(yτ | xτ ,p) pdf(xτ ,p | y0, . . . ,yτ−1). (3.3)

Closed-form solution of Equation (3.3) is not generally available. Particle filters
approximate the posterior by means of SMC sampling of Equation (3.3). If direct
sampling from pdf(xτ ,p|y0, . . . ,yτ−1) is not possible or inconvenient, an auxiliary
proposal distribution, q

(
xτ+1,p|yτ+1,xτ , . . . ,xτ−m

)
, is used yielding the impor-

tance sampling approach. In theory, any PDF can be used as importance distri-
bution provided that its support covers IX and IP . However, the adequate choice
of the proposal distribution is crucial to achieve good performance of the filter and
avoid degeneracy [Daum, 2005].

Several SMC formulations exist [Doucet et al., 2000, 2001], but most of them do
not consider parameters estimation. Our algorithm is mainly inspired by the work of
Liu et al. [Liu and West, 2001], which combines state and parameter estimation by
means of artificial evolution and kernel smoothing of parameters. The filter works
by propagating a set of n particles from τ to τ + 1 . Each particle consists of the
last m+ 1 states, a set of parameters, and a weight:

j-th particle :=
{
x(j)
τ , . . . ,x

(j)
τ−m; p(j)

τ ; w(j)
τ

}
j = 1, . . . , n; (3.4)

weights are nonnegative and such that
∑1

j=0w
(j)
τ = 1. The notation p(j)

τ indicates
the outcome of P for the j-th particle at time τ . However, we stress that P is a
multivariate random variable and it is not part of the dynamical states.

Monte Carlo approximation of the posterior at time t is given by the empirical
3The analogy with Kalman filtering is estabilished by considering f and g as non-linear and non-

Gaussian generalizations of the predictor and innovation equations, respectively, and the marginal
of the posterior distribution as the updated state and covariance estimates.
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measure4

pdf(xτ ,p | y0, . . . ,yτ ) ≈
n∑
j=1

w(j)
τ δ
(
xτ − x(j)

τ

)
δ
(
p− p(j)

τ

)
, (3.5)

where δ (·) is the multi-dimensional Dirac delta function.
Figure 3.1 depicts the procedure for the recursive update of the particles, which

consists of three steps:

Prediction prediction of the states is provided by their expected value at time
τ + 1:

x̃
(j)
τ+1 =

∫
IX
xτ+1 q

(
xτ+1,p

(j)
τ |yτ+1,x

(j)
τ , . . . ,x

(j)
τ−m

)
dxτ+1, j = 1, . . . , n.

(3.6)

Artificial evolution of the parameters using kernel smoothing consists of using
a Gaussian mixture Model (GMM) to update p(j)

τ [Liu and West, 2001]. Prior
update is given by the location of GMM’s kernels

p̃
(j)
τ+1 = γ p(j)

τ +
1− γ
n

n∑
i=1

p(i)
τ , j = 1, . . . , n; (3.7)

where γ ∈ [0, 1) is a discount factor for the dispersion of the variance of the
parameters. Section 3.3 provides with further insight into this parameter.

The weights of the mixture’s kernels are computed with the outcomes of Equa-
tions (3.6) and (3.7):

w̃
(j)
τ+1 ∝ w(j)

τ α
(
yτ+1, x̃

(j)
τ+1,x

(j)
τ , . . . ,x

(j)
τ−m, p̃

(j)
τ+1

)
. (3.8)

Here, function α is defined as

α
(
yτ+1,xτ+1,xτ , . . . ,xτ−m,p

)
=

f (xτ+1 | xτ , . . . ,xτ−m,p) g
(
yτ+1 | xτ+1,p

)
q
(
xτ+1,p|yτ+1,xτ , . . . ,xτ−m

) .
(3.9)

Re-sampling when multiple recursive updates are performed, weights might be-
come unevenly distributed, with most of them approaching zero. When this
happens, only one to very few particles efficiently contribute to the measure
of Equation (3.5) – whose variance degenerates – and the quality of the pos-
terior’s approximation to computational cost ratio is necessary poor. In lay-
man’s terms, huge effort is devoted to propagate particles which inadequatly

4We refer to this measure as a PDF with an abuse of notation.
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Figure 3.1: Algorithm for the recursive estimation of states and parameters. At
every time step, this loop is repeated for the n particles.
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contribute to approximate the posterior5. This issue is referred to as degener-
acy.

To prevent degeneracy from occurring, a new set of uniformly-weighted parti-
cles is re-sampled from Equation (3.5). This is achieved by sampling n integer
coefficients, k(j) j = 1, . . . , n, with values in In = {1, 2, . . . , n} and correspond-
ing probabilities

{
w̃

(1)
τ+1, w̃

(2)
τ+1, . . . , w̃

(2)
τ+1

}
:

k(j) ∼ mnpdf
(
k|In, w(1)

τ+1, . . . , w
(n)
t+1

)
, j = 1, . . . , n. (3.10)

Here, mnpdf
(
·|In, w(1)

τ+1, . . . , w
(n)
τ+1

)
denotes the In-valued multinomial distri-

bution. After re-sampling, predicted weights are reset to w̃
(j)
τ+1 = 1

n
, j =

1, . . . , n.

Several existing algorithms perform re-sampling at each time step. Because
secular effects of non-gravitational forces need long observation windows to
become appreciable, recursive updates are needed to identify good particles6.
For this reason, we discourage systematic re-sampling in this problem. Hence,
we re-sample only if both of the following conditions are satisfied:

1. at least r time steps elapsed since the last re-sampling;

2. the degeneracy indicator, 1∑n
j=1

(
w̃

(j)
τ+1

)2 , is below a prescribed threshold7.

If re-sampling does not occur, weights w̃(j)
τ+1 are not modified and k(j) = j ∀j ∈

[1, n].

Update all kernels of the GMM used for artificial evolution share the same variance,

V τ = (1− γ2)
1

n− 1

n∑
j=1

(
p(j)
τ − p̄τ

) (
p(j)
τ − p̄τ

)T
, (3.11)

where p̄τ = 1
n

∑n
i=1 p

(i)
τ . Coefficient (1− γ2) is introduced so that both mean

and variance of the sample
[
p

(1)
τ ,p

(2)
τ , . . . ,p

(n)
τ

]
are preserved by the unweighted

mixture.

Hence, states and parameters are updated by sampling from the GMM and
5We emphasize that the memory to store a particle and the computations involved in its update

is the same regardless the specific value of the weight.
6To put it another way, good particles have to collect multiple ’good marks’ before we are able

to distinguish them from bad ones.
7We note that, because weights are nonnegative and sum to one, the indicator is in the range

[1, n]. In addition, it equals the two corner case 1 and n if all weights but one are equal to zero
and if particles are uniformly weighted, respectively.
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importance distribution, respectively,

p
(j)
τ+1 ∼ N

(
pτ+1|p̃

(k(j))
τ+1 ,V t

)
, (3.12)

x
(j)
τ+1 ∼ q

(
xτ+1|yτ+1,x

(k(j))
τ , . . . ,x

(k(j))
τ−m ,p

(j)
τ+1

)
, (3.13)

w
(j)
τ+1 ∝ w̃

(j)
τ+1

α

(
yτ+1,x

(j)
τ+1,x

(k(j))
τ , . . . ,x

(k(j))
τ−m ,p

(j)
τ+1

)
α

(
yτ+1, x̃

(k(j))
τ+1 ,x

(k(j))
τ , . . . ,x

(k(j))
τ−m , p̃

(k(j))
τ+1

) , (3.14)

for j = 1, . . . , n.

3.3 Non-gravitational force estimation

The exploitation of the algorithm in Figure 3.1 requires the definition of:

• the states, x, and parameters, p, to be estimated,

• the proposal distribution, f (xn|xn−1,p) and f0 (x0|p),

• the measurement model,

This section is devoted to the assessment of these entities. In addition, recommen-
dations on the choice of the parameters of the filter are provided.

3.3.1 States and parameters

The main objective of this study is to obtain a probabilistic model for non-gravitational
forces which is consistent with the observations of the satellite’s motion and, if pos-
sible, which yields short-to-medium period predictions of these quantities, i.e., of the
order of a couple of orbits or days, respectively. For this reason, the aerodynamic
force, f drag, and SRP, fSRP , are included in the states. In addition, in view of the
measurement model discussed in Section 3.3.3, also the mean equinoctial states, Eeq
are included, so that

x =

 f dragfSRP
Eeq

 . (3.15)

Targeting a flexible parametric modeling of the aerodynamic force, the nexp-th order
harmonic expansion

f drag = −1

2
λ(r, t)

ρ0CD
m

(SD + S0)

nexp∑
j=1

(aj cos(jθ) + bj sin(jθ)) vTASvTAS (3.16)
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is considered. Here, θ is the argument of latitude, while aj, bj, S0, and λ(r, t) are
a set of coefficients which locally capture the principal features of the atmospheric
drag, i.e.,

• aj and bj model the short-period variations (O(torb)) due to the day-night
atmospheric bulge and the variations of the altitude of the satellite due to the
orbit’s eccentricity and Earth’s oblateness,

• S0 models the variable energy accommodation, which causes drag not to be
proportional to the cross section SD,

• λ models medium-period variations (O(day)) due to variations in the solar
and geomagnetic activity indices, F10.7, F̄10.7, Ap. It is defined as:

λ(r, t) =
ρJ71

(
r, t, F10.7(t), F̄10.7(t), Ap(t)

)
ρJ71

(
r, t, F10.7(0), F̄10.7(0), Ap(0)

) (3.17)

where the ρJ71 denotes the Jacchia-71 atmospheric model [Jacchia, 1971]. In-
deed, any model accounting for space weather can serve this purpose.

When filtering, it is reasonable to assume that the information on the current space
weather is available so that, given the GPS position, λ is known. On the contrary, the
other coefficients have to be estimated by the filter. We note that, for completeness,
an exponential term should be included to fully capture the local behavior of the
atmosphere. However, we did not observe any relevant improvement when including
the exponential decay in our simulations. Possibly, the exponential term should be
included for long propagations. On the contrary, the drag coefficient is not included
in the vector of parameters because its influence cannot be distinguished from ρ0.

The detailed modeling of SRP is beyond the scope of this thesis. For this reason,
we model SRP with a single reflectivity coefficient, Cr. When the satellite is in
sunlight, the SRP is evaluated as [Montenbruck and Gill, 2000]:

fSRP = −PSun Cr
SSRP
m

rSun
r3
Sun

AU2 (3.18)

where PSun = 4.56 · 10−6 N
m2 , SSRP , and rSun are the radiation pressure, the cross

section toward the Sun direction, and the sun position vector, respectively. Both
the information on SSRP and on PSun are assumed to be available when filtering.

The vector of parameters is thus:

p = [ρ0, S0, a1, . . . , am, b1, . . . , bm] . (3.19)

Medium-period predictions

We open a brief digression to note that when the estimated parameters are available,
it is possible to use Equation (3.16) in conjunction with the characterization of the
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space weather proxies proposed in Chapter 2 to generate stochastic medium-period
predictions of the atmospheric drag, i.e., of the order of a couple of days.

For this purpose, it is sufficient to introduce random time series of the space
weather proxies in the coefficient λ(t). MC analysis can be implemented to estimate
statistical descriptors of the probability distribution.

We will use this feature in Chapter 6.

3.3.2 Proposal and prior distributions

The proposal distribution is aimed at generating the samples x̃ in the second block
of Figure 3.1.

First, the proposal of the mean elements is computed as:

Ẽeq,t+1 ≈ Ẽeq,t +
tpf
torb

∫ torb

0

Ėeqdt (3.20)

where torb and tpf are the orbital period and the time step of the filter, respectively.
The integral is approximated with high-order Gaussian quadrature rules, so that
arbitrary perturbations like Equations (3.16) and (3.18) can be accommodated in
the integral.

Equations (3.16) and (3.18) are then used to update the drag and SRP, respec-
tively.

Concerning the prior distributions, f(xt+1 | xt,p), a second-order stationary
stochastic process with the power spectral density (PSD) proposed by [Zijlstra et al.,
2005] is added to Equation 3.16. In addition, process noise for the mean elements is
inferred by means of the maximum likelihood principle from the time series of the
“real” mean elements obtained by integrating the osculating elements with high-order
Gaussian quadratures (blue curves in Figure 3.2)

Because these two sources of noise are not correlated, the prior is given by their
product.

3.3.3 Measurement model

In this Thesis, we stressed in several occasions that the aerodynamic force is a
dominant perturbation in LEO. Nonetheless, this is not evident by considering its
OoM in Figure 1.1. For example, we note that neglecting a tenth-order harmonic
of the gravity field or introducing a three-meter measurement error on the position
result in perturbations of the same OoM of the atmospheric force. What makes
drag a dominant perturbation is its integral action, which results in a systematic
dissipation of the energy.

For this reason, owing to measurement errors and unmodeled perturbations, es-
timating drag by differentiating the GPS position is not an option. For this reason,
the likelihood function, g(yt | xt) must account for the integral action of the drag.
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Figure 3.2: Comparison between the mean equinoctial elements a and P1 computed
with the first-order Brouwer model and with a Gaussian quadrature. The input
parameters are listed in Table 3.2 but the aerodynamic force and SRP are turned
off.

In this context, the measurements y we consider are the mean elements computed
from the Brouwer-Lyddane contact transformation [Lyddane, 1963].

The distribution, g, is estimated by means of the MLE by comparing the observed
and ”true” mean elements, i.e., first-order Brouwer against numerical integration.

According to Figure 3.2, the measurement noise is much larger than the process
noise for the semi-major axis. In addition, bias occurs for other elements, e.g., the
equinoctial element P1 in the figure. For this reason we cannot afford systematic
re-sampling as discussed in the introduction. In fact, when resampling we reset the
weights of the particle filter. Because of the huge measurement error compared to
the process noise, if re-sampling occurs periodically, i.e., no more than once per
orbit, the errors of the contact transformation are partially compensated, so that
the good particles can emerge.

We finally note that GPS noise is negligible compared to the noise injected by
the contact transformation. In this study it was neglected.

3.3.4 Recommendations for the choice of filter’s parameters

A satisfactory trade-off between accurate and rapid convergence is achieved by care-
fully setting up the parameters of the filter. The first parameter to consider is
clearly the number of particles, n. Increasing n nearly-linearly grows up the overall
computational burden. However, particles must be enough to adequately represent
the posterior distribution and to delay degeneracy. This is particularly true dur-
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Table 3.1: Influence of the filter’s parameters on the quality of the estimation.

Parameter Benefits when increased Drawbacks when increased
n Enhanced representation of the posterior Computational cost increases

Convergence when p has large variance
∆t Improved signal-to-noise ratio Low sensitivity to short-period variations
r Improved signal-to-noise ratio Degeneracy might occur
m Reduced sensitivity to process noise Increased memory to store particles

Enhanced convergence Increased complexity PDFs
γ Enhanced identification of good particles Diversity particles after multiple updates

ing the early phase of the estimation, when uncertainty in the parameters p is still
very large. Adaptive choice of n is encouraged. This can be achieved during the
re-sampling step.

Because of the aforementioned secular effects of non-gravitational perturbations
and because measurement are statistically independent of time, increasing filter’s
time step, ∆t, and re-sampling rate, r, enhances signal-to-noise ratio and, as such,
improves the convergence of the estimation. Augmenting r is preferred when high-
fidelity models of the non-gravitational force are used since large time steps would
reduce sensitivity to short-period variations. Nonetheless, degeneracy may occur
for large r. Based on our experience, the product r ∆t should be of the order of
one-to-few orbital periods8.

Neglected gravitational harmonics are the major source of process noise for aver-
aged orbital elements. The order of the HMM, m, is a crucial parameter to mitigate
their impact. Specifically, Earth’s rotation causes relevant correlations in the time
series of the noise after about one-day. For example, Figure 3.3 depicts the auto-
correlation of the process noise for the case-study detailed in Section 3.4. Ideally,
the order of the HMM should be large enough to cover this interval, but this may
dramaticaly increase the required memory to store particles and augument the com-
plexity of the importance and marginal prior distribution. Autocorrelations below
few minutes lag – say ∆t ≤ 10min – are close to one, so that we suggest using m = 1
if filter’s time step is of this order of magnitude9.

Finally, the parameter γ regulates the memory of the particles: according to
Equations (3.7) and (3.11), parameters p are nearly unchanged after being updated
if γ ' 1; on the contrary, they lose most memory of their previous value if γ ' 0.
According to [Liu and West, 2001], values between 0.96 and 0.99 are valuable for this
parameter. We sustain this recommandation herein, owing to the need for multiple
updates to identify ‘good’ particles.

Table 3.1 summarizes all these caveats.
8One being sufficient for orbits below 500km.
9In this case, using m = 0 would result in extremely severe process noise, while larger m would

be an unnecessary waste of computational resources.
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Figure 3.3: Autocorrelation of the process noise of averaged elements using the
analytical propagator.

3.4 High-fidelity simulations

The highly-detailed environment described in Section 1.6 is exploited to validate the
developments. The atmospheric density of the propagator is modeled by means of
NRLMSISE-00. We note that λ was defined on purpose with a different model. The
simulation parameters are listed in Table 3.2.

In order to train both S0 and ρ0, an attitude maneuver is performed after 6
hours. The maneuver works by re-orientating the satellite from its minimum to its
maximum drag configuration.

Figure 3.4 illustrates the filtered and true non-gravitational force. Thanks to
the variable λ, the filter is agile to follow variations due to the solar activity. The
close-up zoom of the initial and terminal phases show important difference in the
width of the 90% confidence bounds. This is because the parameters need about 50
hours to converge adequately, as shown in Figure 3.5. Nonetheless, the true signal
is captured in the bounds since the earliest phases of the simulation.

Finally, Figure 3.6 proves that the filter performs well also at higher altitude.
Owing to the vertical rarefaction of the atmosphere, the convergence of the param-
eters is slower compared to Figure 3.4. However, also in this case the true force
is captured in the 90% confidence bounds since the early phase of the simulation
and, eventually, the accuracy at the end of the simulation is comparable to the one
obtained at lower altitude.
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Figure 3.4: Non-gravitational force estimation assuming constant space weather
proxies in the simulations. The red-dashed curve is the norm of the true non-
gravitational force. The blue-solid curve is its median estimate. The shaded region
depicts 90% confidence bounds.
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Figure 3.5: Convergence of the parameters for the estimation of drag and SRP.
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Figure 3.6: Results at 600km altitude. The other simulation parameters are listed
in Table 3.2. In the top plot: the red-dashed curve is the norm of the true non-
gravitational force, the blue-solid curve is its median estimate, and the shaded region
depicts 90% confidence bounds.
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Table 3.2: Simulation parameters.

Initial osculating elements semi-major axis req + 380 km
eccentricity 0.001
inclination 98 deg
RAAN 30 deg
argument of perigee 120 deg
true anomaly 15 deg
Epoch 1/04/2013

Space weather proxies observed time history at Epoch
Spacecraft’s properties mass 4 kg

dimensions (parallelepiped) 0.1× 0.3× 0.1 m3

drag coefficient 2.2
reflectivity coefficient 1.2

Particle filter particles, n 200
time step, ∆t 30 s
re-sampling rate, r round

(
2torb
∆t

)
HMM’s order, m 1
discount factor, γ 0.99

3.5 Conclusion

A particle filter for the recursive estimation of non-gravitational forces was pro-
posed. By using GPS data only, the filter is able to estimate these forces with an
adequate accuracy, which makes it interesting for small satellites which cannot af-
ford high-sensitivity accelerometers. The performance of the filter can be improved
by considering a second-order contact transformation which could reduce the mea-
surement noise.

The medium-period prediction capabilities of the filter are exploited in Chapter
6 to generate sample predictions of the drag.
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Chapter 4

Analytical Propagation of Low-Earth
Orbits

Abstract

This chapter offers a time-explicit solution for the motion of a satellite
under the influence of the two dominant perturbations in LEO, namely
the Earth’s oblateness and the atmospheric drag. Averaging technique
and series expansions are used to obtain the analytical solution assuming
constant atmosphere and either small or very small orbital eccentricity,
i.e., e4 ≈ 0 and e2 ≈ 0, respectively. Thanks to a vectorial formula-
tion, the methodology is singularity-free and results can be expressed, for
example, in osculating Keplerian and equinoctial elements. Then, an an-
alytical propagator for the relative motion is obtained by means of the
inertial solution and a succession of rotations with the advantage that no
simplifying assumption is made on the relative dynamics. Numerical sim-
ulations show that the accuracy of the propagator is dominated by the
underlying Brouwer-Lyddane contact transformation used to map initial
conditions from osculating to mean elements. The loss of accuracy due
to the introduction of drag in the model is negligible. In the propagator
for the relative motion, most errors due to the contact transformation are
compensated. The practical outcome of the chapter is an efficient orbit
propagator suitable for on-board implementation.

69
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4.1 Introduction

The main perturbations affecting LEO are due to the planet’s oblateness and to the
atmosphere. Their combined effect causes the orbit to dramatically drift from the
Keplerian unperturbed model. While the oblateness perturbation falls in the range
of conservative forces, allowing the classical perturbation methods to be applied, the
atmospheric drag is a non-conservative force, so that using the tools of analytical
mechanics is, at best, challenging.

While the search for analytical models that accommodate the planet’s oblateness
– referred to as the main problem in artificial satellite theory – brought a multitude of
approximate solutions [Garfinkel, 1959, Brouwer, 1959, Kozai, 1959, Lyddane, 1963,
Vinti, 1960, Lara and Gurfil, 2012], the analytical solutions for the atmospheric drag
are present in a much less significant amount. In most cases they are not suitable
for realistic orbit propagation.

The study of the effect of atmospheric drag on satellite orbits dates back to the
early spaceflight era. One of the initial and most important contributions in this
area belongs to [King-Hele, 1964]. Although the effects of the atmospheric drag were
approached thoroughly, the effects of the other perturbations were neglected. [Bat-
tin, 1999] developed closed-form expressions for the averaged variation of semi-major
axis and eccentricity in terms of modified Bessel functions of the first kind. [Vallado,
2001] and [Roy, 2004] presented approximate variational equations for eccentricity
and semi-major axis, deriving expressions for the secular rates of change of the or-
bital elements which are suitable for series expansion in powers of the eccentricity.
[Mittleman and Jezewski, 1982] offered the solution to a modified problem, where
an approximate expression for the drag acceleration was used such that the prob-
lem becomes integrable. [Vinh et al., 1979] also derived closed-form expressions for
the variational equations of the orbital elements with respect to a new independent
variable, and then used numerical techniques to integrate the equations of motion.
All aforementioned studies either treat the atmospheric drag exclusively, and hence
ignore the Earth’s oblateness, or they do not provide analytical closed-form solution,
but offer instead numerical techniques to integrate them.

Combining the effects of the two major perturbations is challenging, and few
attempts were made so far. [Brouwer and Hori, 1961] extended the Poincaré-von
Zeipel-based method developed previously by [Brouwer, 1959] to accommodate the
atmospheric drag, failing to reach closed-form equations of motion, but rather focus-
ing on the separation of the variables in order to ease numerical integration. [Parks,
1983] included the averaged effects of the atmospheric drag in the contact transfor-
mation developed in [Brouwer, 1959], but this methodology rises issues regarding
the possibility to invert the contact transformation, which is needed to propagate
osculating elements. [Franco, 1991] developed an approximate model for the motion
about an oblate planet with atmosphere, but only for the equatorial case.

With the emergence of distributed space systems flying in LEO, the problem of the
relative motion between satellites is also of significant importance [Alfriend et al.,
2009]. Reliable propagators for the relative dynamics in LEO cannot neglect the
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two dominant perturbations, especially when the satellites have different ballistic
properties. The relative equations of motion in the unperturbed case were first
deduced by Clohessy and Wiltshire [Clohessy and Wiltshire, 1960] by assuming an
approximate linearized model and a circular reference trajectory. They were then
extended to an elliptic reference trajectory by Tschauner and Hempel [Tschauner and
Hempel, 1964]. The solution to the full nonlinear model of the unperturbed relative
motion was derived by several authors [Gurfil and Kasdin, 2004, Condurache and
Martinusi, 2007a,b], then extended to the relative motion in a general central force
field [Condurache and Martinusi, 2007c]. The effect of the J2 zonal harmonic term
on the relative motion of satellites was approached by several authors, and a closed-
form solution expressed in mean orbital elements was also provided [Condurache and
Martinusi, 2009]. To our knowledge, a closed-form solution of the relative motion
of satellites in the presence of both J2 and atmospheric drag perturbations is still
missing in the literature.

The first objective of this chapter is to develop a new analytical propagator for the
absolute motion suitable for on-board implementation and for short-term predictions
under J2 and drag perturbations. A second objective is to obtain a closed-form
solution for the relative motion. The latter can be directly obtained from the inertial
solution without any further assumption by using kinematic transformations inspired
by [Condurache and Martinusi, 2007a,b].

The present approach is based on the so-called perturbation averaging method,
which consists of an expansion in trigonometric series (with respect to the mean
anomaly) where only the first term is retained. This approach already exists for the
J2-only perturbation, namely the Brouwer first-order model, and it is possible to de-
velop it by simple manipulations, as in [Hestenes, 1999, Condurache and Martinusi,
2013]. The same averaging technique can be applied to the drag acceleration, ob-
taining the variational equations for the orbital elements with the combined effect of
J2 and drag. Assuming that (i) the atmospheric density is constant and (ii) the orbit
eccentricity is small (both situations e2 ≈ 0 and e4 ≈ 0 are addressed), a new time-
explicit solution to the equations of motion for the averaged classical orbital elements
is achieved. Thanks to the vectorial formalism, the solution is singularity-free.

The chapter is organized as follows. Section 4.2 details the modeling assumptions
inherent to this chapter and describes the approach for the solution of the problem.
The analytical solution for the inertial motion is detailed in Section 4.3, and Section
4.4 shows how it can be used to obtain closed-form solution for the relative motion
by means of a simple change of frame. Finally, the numerical validation of the
developments is discussed in Section 4.5.

Dr Martinusi was the main contributor to this study. This chapter is the result
of the close collaboration with him [Martinusi et al., 2014, 2015].
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4.2 Variational method and averaging

Consider the IVP (1.1) with:

f p = fJ2
+ f d (4.1)

where fJ2
and f d model the specific forces due to the Earth’s oblateness and to the

drag, respectively. Assuming a constant atmospheric density, ρ0, and neglecting the
co-rotating component of the TAS in Equation (1.17) and the lift, the expressions
of the perturbing accelerations are:

fJ2
= −3k2

r4

[(
1− 5

z2

r2

)
r̂ + 2

z

r
k̂ToD

]
(4.2a)

f drag = −C0 ‖ṙ‖ ṙ (4.2b)

with the notations:

k2 =
µJ2r

2
eq

2
, C0 =

1

2
CD

Sref
m

ρ0

Here, J2 and z are the second zonal harmonic – J2 = 1.08263·10−3 for the Earth – and
the projection of the position vector on the Earth’s rotation axis, i.e., z = r · k̂ToD,
respectively.

If the perturbing specific force f p is taken into account, the integral of motion
defined in Equation (1.2), i.e., h, e, and ε, are no longer constant. The motion
can still be referred to these quantities, but their variations must be accounted for.
A classical perturbation method of averaging is used, where the averages over one
period of the unperturbed motion are computed for the aforementioned integrals of
motion. For computational purposes, it is more convenient to use the semi-major
axis a instead of the specific energy ε. The derivatives of h, e, and a are [Hestenes,
1999]:

ḣ = r × f p,

ė =
1

µ

[
f p × h−

(
r × f p

)
× ṙ
]
,

ȧ =
2a2

µ
(ṙ · ad) .

(4.3)

Denote by Torb the main period of the unperturbed motion, and by n the mean
motion, i.e.,

Torb =
2π
√
µ
a3/2 =

2π

n
.

The averages over one period Torb of the unperturbed motion of the derivatives
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expressed in Equations (4.3) are defined as follows:

ḣ =
1

Torb

∫ Torb

0

(
r × f p

)
dt (4.4a)

ė =
1

µTorb

∫ Torb

0

[
f p × h−

(
r × f p

)
× ṙ
]
dt (4.4b)

ȧ =
2a2

µTorb

∫ Torb

0

(
ṙ · f p

)
dt (4.4c)

It is convenient to refer all the vector functions used in Equations (4.4) to a reference
frame, which is classically chosen to be the averaged perifocal frame,

{
ê, p̂, ĥ

}
,

defined in Section 1.3.
Unless stated otherwise, all the vectors which are expressed as column matrices

are referred to this particular reference frame. The position and velocity vectors in
the perifocal frame are:

r = r

 cos f
sin f

0

 ; v =
h

p

 − sin f
e+ cos f

0


if expressed with respect to the true anomaly, and:

r =

 a (cosE − e)
b sinE

0

 ; v =
na

r

 −a sinE
b cosE

0


if expressed with respect to the eccentric anomaly. Here, b = a

√
1− e2 denotes the

semi-minor axis.
In the right-hand side of Equations (4.4), the expressions are linear with respect

to f p, and therefore they may be separated as:

d
dt

( ) =
d
dt

( )J2
+

d
dt

( )drag

The expressions of ḣJ2 , ėJ2 and ȧJ2 are computed as [Condurache and Martinusi,
2013]:

ḣJ2 = −3k2

b
3

(
k̂ToD · ĥ

)(
k̂ToD × ĥ

)
(4.5a)

ėJ2 =
3ek2

2hb
3

{
−
[
1− 3

(
k̂ToD · ĥ

)2
]
p̂+ 2

(
k̂ToD · p̂

)(
k̂ToD · ĥ

)
ĥ

}
(4.5b)

ȧJ2 = 0 (4.5c)
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where
b = a

√
1− e2

As expected, the magnitudes of vectors hJ2 and eJ2 remain constant, based on the
fact that:

d
dt
∥∥hJ2

∥∥2
= 2hJ2

(
ĥ · ḣJ2

)
= 0

d
dt
‖eJ2‖

2 = 2eJ2

(
ê · ėJ2

)
= 0

For this reason, the magnitudes h and e are only affected by the atmospheric drag.
Their derivatives are computed in the following.

Let K (·) and E (·) be the complete elliptic integrals of the first and second kinds,
respectively [Abramowitz and Stegun, 1964]:

K (w) =

∫ 1

0

du√
1− w2u2

, E (w) =

∫ 1

0

√
1− u2

√
1− w2u2

du 0 ≤ w ≤ 1

Then, the variations of h, e and a that are due to the atmospheric drag are computed
from Equations (4.4) by using the equality:

1

Torb

∫ T

0

F (E (t)) dt =
1

2πa

∫ 2π

0

rF (E) dE,

which is valid for any continuous vector or scalar function F , and is deduced from
dE = (na/r)dt. It follows:

ḣdrag = −µC0

√
1− e2

2π

(∫ 2π

0

√
1− e2 cosEdE

)
ĥ

ėdrag = −
4C0
√
µ (1− ē2)

π
√
ā

[(∫ 2π

0

√
1− e2 cosE

1− e cosE
cosEdE

)
ê

+

(
1√

1− e2

∫ 2π

0

√
1− e2 cosE

1− e cosE
sinEdE

)
p̂

]
ȧdrag = −Co

2π

√
µ

a3

∫ 2π

0

√
1− e2 cosE

1− e cosE
(1 + e cosE) dE

After manipulations, the closed-form expressions for the variations of h, e and a
due to the atmospheric drag are obtained as:

ḣdrag = −2C0µ
√

1− ē2

π
E (ē) ĥ (4.6a)

ėdrag = −
4C0
√
µ (1− ē2)

πē
√
ā

[K (ē)− E (ē)] ê (4.6b)

ȧdrag = −4C0

√
µā

π
[2K (ē)− E (ē)] (4.6c)
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The variations due to drag of the magnitudes of vectors h and e are determined
based on Equations (4.6) as follows:

ḣ = −2C0µ
√

1− ē2

π
E (ē) , ė = −

4C0
√
µ (1− ē2)

πē
√
ā

[K (ē)− E (ē)] . (4.7)

The variation of the averaged semi-major axis, namely Equation (4.6c), is used
instead of ḣ, because one of the Equations (4.7) is redundant, i.e.,

ḣ =
√
µ

(√
1− ē2

2
√
ā

ȧ− e
√
ā√

1− ē2
ė

)
.

Using the average variation of the angular momentum yields the same results.
Equations (4.7) govern the evolution of the orbit, without any reference to the

specific motion on the trajectory. For this purpose, the variational equation for one
of the anomalies (true, eccentric or mean) is required:

d
dt

( ) =
∂

∂t
( ) +

[
∂

∂ṙ
( )

]
· f p (4.8)

where ( ) is any of the anomalies f, E orM [Battin, 1999] (pp. 501–503). The mean
anomaly M is subjected to the averaging procedure in this work, since it contains the
sixth constant of the unperturbed motion, related to the time of periapsis passage,
tP . The closed-form expressions for the variation of the mean anomaly is [Battin,
1999] (pp. 502-503):

Ṁ = n+
rb

ha2e

[
cos f

(
r · f p

)
− a

h
(r + p) sin f

(
ṙ · f p

)]
. (4.9)

Averaging over one period of the unperturbed motion yields:

Ṁ = n+ Cu
√

1− e2
(
3 cos2 i− 1

)
, (4.10)

where Cu is defined as:

Cu =
3k2

2b
3
h

=
3

4
nJ2

(
req
p

)2

. (4.11)

4.3 Analytical solution for the absolute motion

By means of few manipulations of Equations (4.7) and (4.10) [Martinusi et al., 2014],
the IVP governing the motion of the satellite can be reformulated in terms of GVE:
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ȧ = ȧJ2 + ȧdrag = − 4C0

√
µā

2K (ē)− E (ē)

π
, a (t0) = a0, (4.12a)

ė = ėJ2 + ėdrag = −
4C0
√
µ

√
ā

(1− ē2) [K (ē)− E (ē)]

πē
, e (t0) = e0, (4.12b)

i̇ = i̇J2 + i̇drag = 0, i (t0) = i0, (4.12c)

Ṁ = ṀJ2 + Ṁdrag = n+ Cu
√

1− e2
(
3c2 − 1

)
, M (t0) = M0 (4.12d)

ω̇ = ω̇J2 + ω̇drag = Cu
(
5c2 − 1

)
, ω (t0) = ω0, (4.12e)

Ω̇ = Ω̇J2 + Ω̇drag = − 2Cuc, Ω (t0) = Ω0, (4.12f)

where c = cos i. The expression of Cu = Cu (a, e, req, J2) is given in Equation (4.11).
Equations (4.12a) and (4.12b) need to be solved first, since the quantities a and e
are involved in all other equations.

In order to obtain the closed-form solution to Equations (4.12), Taylor series
expansions with respect to the averaged eccentricity e are performed, together with
the introduction of a new independent variable τ, defined by:

dt =
dτ

R (a, e)
, τ (t0) = a0, (4.13)

where the expression of R (a, e) is a regularization factor. A new system of differen-
tial equations emerges, where the derivatives, denoted with ( )′, are computed with
respect to the new independent variable τ :

( )′ =
d
dτ

( ) =
1

R (a, e)

d
dt

( ) ,

A new differential equation, which links the time variable t to the independent
variable τ (similar to Kepler’s equation in the unperturbed case), is to be derived
and solved explicitly.

4.3.1 The case of small eccentricity (e4 ' 0)

Since the averaged inclination remains constant, its differential equation is omitted.
By choosing the regularizing factor R (a, e) to be:

R (a, e) = −1

2
C0
√
µ
√
a
(
4 + 3e2

)
(4.14)
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Equations (4.12) are recast into:

a′ = −4C0
√
µā

2K (ē)− E (ē)

πR (a, e)
(4.15a)

e′ = −
4C0
√
µ

√
ā

(1− ē2) [K (ē)− E (ē)]

πēR (a, e)
(4.15b)

M
′

=
n

R (a, e)
+
Cu
√

1− e2 (3c2 − 1)

R (a, e)
(4.15c)

ω′ =
Cu (5c2 − 1)

R (a, e)
(4.15d)

Ω
′

= − 2Cuc

R (a, e)
(4.15e)

t′ =
1

R (a, e)
(4.15f)

After expanding the right-hand sides of Equations (4.15a)–(4.15e) in Taylor series
and assuming that O (e4) = 0, the system becomes:

a′ = 1 (4.16a)

e′ =
e

2a
(4.16b)

M
′

= − 1

8C0

4− 3e2

a2 − 3k2 (3c2 − 1)

16µC0

(4 + 3e2)

a4 (4.16c)

ω′ = −3k2 (5c2 − 1)

16µC0

(4 + 5e2)

a4 (4.16d)

Ω
′

=
3k2c

8µC0

(4 + 5e2)

a4 (4.16e)

t′ = − 2

C0
√
µ

1√
a (4 + 3e2)

(4.16f)

The solutions to Equations (4.16a) and (4.16b) are:

a = τ (4.17a)

e = α0

√
τ , α0 =

e0√
a0

(4.17b)

From Equation (4.16f), the time-explicit expression of the averaged semi-major axis
is obtained:

β0 =

√
3

2
e0

a =
a0

β2
0

tan2 [arctan (β0)− β0n0a0C0 (t− t0)] (4.18)
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The remaining differential equations are solved by simple integration, yielding:

e =
2√
3

tan [arctan (β0)− β0n0a0C0 (t− t0)] (4.19a)

M −M0 =
1

8

1

C0

[
4

τ
+ 3α2

0 ln
τ

a0

]∣∣∣∣τ=a

τ=a0

+

3k2 (3c2 − 1)

16µ

1

C0

[
3α2

0

2

1

τ 2
+

4

3τ 3

]∣∣∣∣τ=a

τ=a0

(4.19b)

ω − ω0 =
3k2 (5c2 − 1)

16µ

1

C0

[
5α2

0

2

1

τ 2
+

4

3τ 3

]∣∣∣∣τ=a

τ=a0

(4.19c)

Ω− Ω0 = −3k2c

8µ

1

C0

[
5α2

0

2

1

τ 2
+

4

3τ 3

]∣∣∣∣τ=a

τ=a0

(4.19d)

In order to avoid the singularities inherent to classical orbital elements, the equations
of motion may be written in terms of equinoctial variables:

a =
a0

β2
0

tan2 [arctan (β0)− β0n0a0C0 (t− t0)] (4.20a)

P 1 =
2√
3

tan [arctan (β0)− β0n0a0C0 (t− t0)] sin$ (4.20b)

P 2 =
2√
3

tan [arctan (β0)− β0n0a0C0 (t− t0)] cos$ (4.20c)

Q1 = u0 sin Ω (4.20d)
Q2 = u0 cos Ω (4.20e)

l = l0 +
1

8C0

[
4

τ
+ 3α2

0 ln
τ

a0

]∣∣∣∣τ=a

τ=a0

+ (4.20f)

k2

16µC0

[
3α2

0 (17c2 − 5c− 4)

τ 2
+

8 (4c2 − c− 1)

τ 3

]∣∣∣∣τ=a

τ=a0

where Ω is defined in Equation (4.19d), and:

u0 = tan
i0
2

; $0 = ω0 + Ω0; l0 = ω0 + Ω0 +M0; (4.21a)

$ = $0 +
k2 (5c2 − 2c− 1)

32µC0

[
15α2

0

τ 2
+

8

τ 3

]∣∣∣∣τ=a

τ=a0

(4.21b)

The coefficient C0 in the denominator of Equations (4.19) introduces a singularity.
However, it is only an apparent singularity, due to the fact that expressions of the
type (a− a0) g (a, a0) , g (a, a0) 6= 0, are present in the numerators. By taking into
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account Equation (4.18), it follows that:

lim
C0→0

a− a0

C0

= −2n0a
2
0

(
1 + β2

0

)
(t− t0) (4.22)

If the limit C0 → 0 is made in Equations (4.19), the classical averaged variational
equations for J2 only are obtained. The singularity is therefore removed. For nu-
merical purposes, in order to avoid small values of C0 in Equations (4.19), the series
expansion of the difference a − a0 in powers of C0, is considered, which is deduced
from Equation (4.18):

a− a0 = a0

(
1 + β2

0

) ∞∑
k=1

[n0a0C0 (t− t0)]k dk (4.23)

where the first relevant values of the coefficients dk are:

d1 = −2

d2 = 1 + 3β2
0

d3 = −4

3
β2

0

(
2 + 3β2

0

)
d4 =

1

3
β2

0

(
15β4

0 + 15β2
0 + 2

)
d5 = − 2

15
β2

0

(
45β4

0 + 60β2
0 + 17

)
For the logarithmic term in Equation (4.19b), a series expansion should be used:

1

C0

ln
a

a0

= n0a0

(
1 + β2

0

)
(t− t0)

∞∑
k=1

[n0a0C0 (t− t0)]k gk (4.24)

where the first relevant values of the coefficients gk are:

g1 = −2

g2 = −1 + β2
0

g3 = −2

3

(
1 + β4

0

)
g4 =

1

6

(
1− β2

0

) (
3β4

0 + 4β2
0 + 3

)
g5 = − 2

15
β2

0

(
3β8

0 + 2β6
0 + 2β2

0 + 3
)

4.3.2 The case of very small eccentricity (e2 ' 0)

Simpler expressions may be obtained if a more restrictive assumption is made,
namely that the eccentricity is such that O (e2

0) = 0. Expanding in Taylor series
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Equations (4.18) and (4.19) yield:

a = a0 − 2C0
√
µ (t− t0)

√
a0 + µC2

0 (t− t0)2 a0 +O
(
e2

0

)
,

e =

[
1−

C0
√
µ

√
a0

(t− t0)

]
e0 +O

(
e3

0

)
,

so that the closed-form solution becomes:

a =
[√
a0 − C0

√
µ (t− t0)

]2 (4.25a)

e = e0

√
a

a0

(4.25b)

M −M0 =
1

2C0

(
1

a
− 1

a0

)
+
k2 (3c2 − 1)

4µC0

(
1

a3 −
1

a3
0

)
(4.25c)

ω − ω0 =
k2 (5c2 − 1)

4µC0

(
1

a3 −
1

a3
0

)
(4.25d)

Ω− Ω0 = − k2c

2µC0

(
1

a3 −
1

a3
0

)
(4.25e)

The inconvenience of having C0 in the denominator is removed by accounting for
Equation (4.25a):

1

C0

(
1

a
− 1

a0

)
=

√
µ
(√

a0 +
√
a
)

a0a
(t− t0) (4.26a)

1

C0

(
1

a3 −
1

a3
0

)
=

√
µ (a2

0 + aa0 + a2)
(√

a0 +
√
a
)

a3
0a

3 (t− t0) (4.26b)

The singularities occurring at low inclinations and small eccentricities are removed
by expressing the solution in terms of equinoctial elements. Using Equations (4.24),
Equations (4.25) are recast into:

P 1 =
e0√
a0

[√
a0 − C0

√
µ (t− t0)

]
sin$ (4.27a)

P 2 =
e0√
a0

[√
a0 − C0

√
µ (t− t0)

]
cos$ (4.27b)

Q1 = u0 sin Ω (4.27c)
Q2 = u0 cos Ω (4.27d)

l = l0 +

√
µ
(√

a0 +
√
a
)

2a0a[
1− k2 (−4c2 + c+ 1)

µ

(a2
0 + aa0 + a2)

a2
0a

2

]
(t− t0) (4.27e)
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where are u0, $0, l0 are defined in Equation (4.21a) and

$ = $0 −
k2 (−5c2 + 2c+ 1)

4
√
µa3

0a
3

(
a2

0 + aa0 + a2
) (√

a0 +
√
a
)

(t− t0) (4.28)

4.4 Analytical solution for the relative motion

Consider two satellites (chief and deputy) orbiting the Earth, under the influence
of oblateness and atmospheric drag perturbations. Given the time-explicit expres-
sions of the orbital elements obtained in Section 4.3, and based on some simple
geometric considerations, the time-explicit equations of the relative orbital motion
are expressed via the sets of orbital elements of the two satellites.

Recalling Section 1.4, the motion of the deputy with respect to the LVLH reference
frame attached to the center of mass of the chief,

{
r̂C , t̂C , ĥC

}
, is given by:

∆r (t) = rD
CRDr̂D − rC r̂C , (4.29)

where the position vectors are defined in the LVLH frame of each satellite, and CRD

is the rotation matrix from the LVLH of the deputy to the LVLH of the chief.
The expression of CRD is given by Equations (1.7), i.e.,

CRD =
(
LV LHRPF

PFRToD

)
C

(
ToDRPF

PFRLV LH

)
D

= R3 (−θC)R1 (−iC)R3 (−ΩC)R3 (ΩD)R1 (iD)R3 (θD) ,
(4.30)

where the total anomaly, θ, is defined as θ = ω + f .
The components of vector ∆r in the chief’s LVLH frame are obtained from Equa-

tions 4.29 and 4.30:

x = rD [(L1 sin ΩC + L2 cos ΩC) cos ΩD + (L2 sin ΩC − L1 cos ΩC) cos ΩD

+ sin iC sin iD sin θC sin θD]− rC , (4.31a)
y = rD [(M1 sin ΩC +M2 cos ΩC) cos ΩD + (M2 sin ΩC −M1 cos ΩC) cos ΩD

+ sin iC sin iD cos θC sin θD] , (4.31b)
z = rD [(N1 sin ΩC +N2 cos ΩC) cos ΩD + (N2 sin ΩC −N1 cos ΩC) cos ΩD

+ cosC sin iD sin θD] , (4.31c)
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where L1,2, M1,2 and N1,2 are defined as:

L1 = − cos(iC) sin(θC) cos(θD) + cos(θC) cos(iD) sin(θD), (4.32a)
L2 = cos(θC) cos(θD) + cos(iC) sin(θC) cos(iD) sin(θD), (4.32b)
M1 = − cos(iC) cos(θC) cos(θD)− sin(θC) cos(iD) sin(θD), (4.32c)
M2 = − sin(θC) cos(θD) + cos(iC) cos(θC) cos(iD) sin(θD), (4.32d)
N1 = sin(iC) cos(θD), (4.32e)
N2 = − sin(iC) cos(iD) sin(θD). (4.32f)

For non-polar and non-equatorial orbits of the chief, Equation (4.31) can be
simplified by noting that:

L2
1 + L2

2 =
(
1− sin2 iC sin2 θC

) (
1− sin2 iD sin2 θD

)
= sin2 φC sin2 φD

M2
1 +M2

2 =
(
1− sin2 iC cos2 θC

) (
1− sin2 iD sin2 θD

)
=
(
1− sin2 iC cos2 θC

)
sin2 φD

N2
1 +N2

2 = sin2 iC
(
1− sin2 iD sin2 θD

)
= sin2 iC sin2 φD

where φ(·) ∈ [0, π] denotes the collatitudes of the satellites and satisfies the relation
[Battin, 1999]:

cosφ(·) = sin i(·) sin θ(·)

Denote:

AL = sinφC sinφD; BL = sin iC sin iD sin θC sin θD
AM =

√
1− sin2 iC cos2 θC sinφD; BM = sin iC sin iD cos θC sin θD

AN = sin iC sinφD; BN = cosC sin iD sin θD

(4.33)

and define the quantities αU ∈ [0, 2π), U ∈ {L,M,N} by their sines and cosines:

cosαU =
U1 sin ΩC + U2 cos ΩC

AU
; sinαU =

U2 sin ΩC − U1 cos ΩC

AU
. (4.34)

Then Equations (4.31) become:

x = rD [AL sin (αL + ΩC − ΩD) +BL]− rC (4.35a)
y = rD [AM sin (αM + ΩC − ΩD) +BM ] (4.35b)
z = rD [AN sin (αN + ΩC − ΩD) +BN ] (4.35c)

Substituting Equations (4.18) and (4.19) or (4.25) in Equations 4.32–4.35 yields
the time-explicit solution for the relative motion.

4.5 Validation of the analytical propagator

The time-explicit solution obtained in Section 4.3 describes the averaged motion
under the influence of J2 and atmospheric drag. After averaging, the new varia-
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Figure 4.1: Proposed orbit propagation.

tional equations do not belong to the space of osculating orbital elements – which
describe the real motion of the satellite – but to a new set of variables often referred
to as mean elements in astrodynamics [Cain, 1962], or new variables in classical
mechanics. A mapping between the old and the new variables needs to be estab-
lished via a canonical contact transformation. This can either be of Jacobian type
or infinitesimal, e.g., as in the Poincaré-von Zeipel method [Brouwer, 1959] or in
[Deprit, 1969, 1981], respectively. In the context of short-term orbit prediction, us-
ing the canonical contact transformation of the Hamiltonian system (in this case the
J2-only dynamical system) appears legitimate. In other words, the new dynamical
system, corresponding to the averaged equations of motion, takes into account the
effects of the atmospheric drag, while the transformation back to the (approximate)
osculating elements is made by ignoring the drag effect. In this work, the Brouwer’s
first-order canonical contact transformation [Brouwer, 1959] is used. For the sake
of precision, to avoid the singularity of the Brouwer’s contact transformation occur-
ring at small orbital eccentricity, a slightly-modified version is used [Lyddane, 1963,
Schaub and Junkins, 2003].

The orbit propagation paradigm is illustrated in Figure 4.1. At the initial epoch,
t = t0, the input is the set of osculating orbital elements E0 = (a0, e0, i0, ω0,Ω0,M0).
The osculating to mean transformation is applied to these coordinates to obtain
the mean initial conditions E0 =

(
a0, e0, i0, ω0,Ω0,M0

)
. The equations derived in

Section 4.3 are used to propagate the averaged orbital elements, starting from E0.
At each step of the propagation, the inverse contact transformation is applied in
order to recover the osculating orbital elements, which constitute the output of the
propagation.

In the case of relative motion, the same paradigm is applied both to the chief and
the deputy.

4.5.1 Inertial motion

The validation of our analytical propagator is carried out by comparing its pre-
dictions with the brute-force numerical integration of the equinoctial GVE. The
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Table 4.1: Input parameters for the simulations of the absolute motion. The same
inputs are used for the chief in the simulations of the relative motion.

Initial conditions
Altitude 400, 600 km
Eccentricity 0.001
Inclination 98 deg
AoP 0 deg
RAAN 0 deg
True anomaly 20 deg

Drag model
Ballistic coefficient 0.022 m2 kg
Density 5 · 10−12, 1 · 10−13 kg m−3

Gravitational model
Equatorial radius 6378.137 km
Gravitational parameter 3.986004418 · 1014 m3s−2

Second zonal harmonic 1.08263 · 10−3

analytical propagator for very-small-eccentric orbits, i.e., the one developed in Sec-
tion 4.3.2, is used in this validation. Similar accuracy is achieved with the more
advanced propagator developed in Section 4.3.1.

Table 4.1 lists the parameters exploited in the simulations. Two case studies are
analyzed, namely at 400 and 600 kilometers altitude.

Figure 4.2 depicts the norm of the error in the position made by our analytical
propagator and by neglecting the aerodynamic force. The substantial divergence
between the two curves motivates the interest in the present work, especially at
very low altitude, where the drift after two days of propagation is two OoM greater
when drag is neglected.

Because of the vertical exponential rarefaction of the atmosphere, the error when
drag is neglected is drastically reduced at higher altitude. On the contrary, the error
of our analytical propagator is essentially unchanged at 400 and 600 km, i.e., slightly
more than one kilometer after 2 days. This means that the drift of our propagator is
dominated by the J2 effects, while the drift obtained when neglecting drag is indeed
dominated by drag itself.

To support this claim, we note that the same one-kilometer drift of our propagator
is observed if ρ0 is set to zero in the simulations. In addition, the fact that the error
of our propagator evolves nearly linearly – and with non-horizontal initial slope – is
another indicator that the drift is imputable to the Earth’s oblateness. In fact, small
errors in the initial mean state estimation – due to the use of a first-order contact
transformation – are mapped into errors in the coefficient Cu = Cu (a, e, req, J2),
which, in turn, modifies the mean orbital period (Equation (4.12d)) and results in
a linear drift of the mean anomaly.

In [Martinusi et al., 2015], we carry out a MC analysis aimed at comparing the
drift of our propagator with and without the atmosphere. The errors in the two cases
have a correlation of 99.8%, which proves our conjecture on the nature of the drift.
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Figure 4.2: Numerical simulations for the absolute motion. The blue-solid curves
depict the error of our analytical propagator. The red-dashed curves are the error
made by neglecting drag.
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Figure 4.3: Comparison of the drift of our propagator when the simulation environ-
ment accounts for or neglects the atmospheric drag. The black line is the median of
the Monte Carlo samples. The grey region indicates 90% confidence bounds.

Figure 4.3 illustrates the difference between the drift with and without atmosphere
as a function of altitude.

4.5.2 Relative motion

Two case studies are considered for the validation of the relative motion propagator,
i.e., at 400 and 600 kilometers altitude. The inputs for the absolute states and
ballistic properties of the chief are the same as in Table 4.1. Table 4.2 lists the
inputs for the initial relative states and ballistic properties of the deputy.

Figure 4.4 depicts the norm of the relative position between the two spacecraft

Table 4.2: Input parameters for the deputy.

Relative conditions
Altitude 20 m
Eccentricity 0.0003
Inclination 0 deg
AoP 0.001 deg
RAAN 0.0001 deg
True anomaly 0.0011 deg

Drag model
Ballistic coefficient 0.044 m2 kg
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Figure 4.4: Numerical simulations for the relative motion. The blue-solid curves
depict the relative distance estimated by our analytical propagator. The red-dashed
curves – essentially superimposed – are the true relative distance. The norm of the
position error is depicted in the bottom plots.
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and the error made by our analytical propagator. Because no assumption on the
relative dynamics was introduced to develop the propagator, the error is extremely
modest even when the two satellites are separated by several tens of kilometers.

The error is considerably smaller than the one obtained for the absolute motion
in Figure 4.2. This enhanced accuracy is due to the fact that the chief and deputy
are in close proximity, so that the error injected by the contact transformation is
similar for the two satellites and it is almost fully compensated when considering
relative states.

Because most errors due to J2 are compensated, the drift of the relative propa-
gator is dominated by the drag, as shown by the nonlinear trend of the error at 400
km altitude.

4.6 Conclusion

Time-explicit solution of the equations of motion for a satellite moving in the at-
mosphere of an oblate planet was derived and validated. The propagator is able
to run on a processor with very limited capabilities, such as those on-board small
satellites. In addition, a closed-form solution for the relative motion was developed
based on the aforementioned propagator of the absolute motion. The equations of
the relative motion are expressed in the LVLH frame and no simplifying assumption
on the relative distance between the two satellites is made.

The solutions were developed in two cases, namely small and very small initial
osculating eccentricities. Numerical simulations show that most errors are inherited
from Brouwer’s first-order model, through the truncation of the development in
Fourier series of the J2 potential, and to a lesser amount by the Brouwer-Lyddane
contact transformation.

In Chapters 5 and 6, the propagator of the inertial motion is integrated in the
control plant we use to plan and execute differential-drag-based maneuvers.



Chapter 5

Differential Drag: an Optimal
Control Approach

Abstract

Optimization of fuel consumption is a key driver in the design of spacecraft
maneuvers. For this reason, growing interest in propellant-free maneuvers
is observed in the literature. Because it allows to turn the often-undesired
drag perturbation into a control force for relative motion, differential drag
is among the most promising propellantless techniques for low-Earth or-
biting satellites. An optimal control approach to the problem of orbital
rendez-vous using differential drag is proposed in this chapter. Thanks
to a direct transcription of the optimal control problem resulting in the
scheduling of a reference maneuver, the method is flexible in terms of cost
function and can easily account for constraints of various nature. Consid-
erations on the practical realization of differential-drag-based maneuvers
are also provided. The developments are illustrated by means of high-
fidelity simulations including a coupled 6-degree-of-freedom model with
advanced aerodynamics

89
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5.1 Introduction

Optimization is a key factor in mission design, especially when dealing with forma-
tion flying, where severe size and weight constraints may strongly limit the perfor-
mance of the propulsive system. Nowadays, propellantless techniques for formation
flying, e.g., solar sail [Williams and Wang, 2002], geomagnetic [Peck et al., 2007],
and Coulomb formation flying [King et al., 2002], are envisaged as possible solutions
to either reduce or even remove the need for on-board propellant.

This chapter focuses on the use of differential drag as a means of controlling
relative motion. By modifying the surface exposed to the residual atmosphere, it is
possible to change the magnitude of the atmospheric drag to obtain a differential
force between the deputy and either the chief or a desired target point.

The idea of exploiting differential drag for relative maneuvers dates back to a
couple of decades with the pioneering research of Leonard [Leonard et al., 1989],
who developed a strategy for controlling the cross section aimed at achieving a
rendez-vous within the linear dynamics equations of Hill-Clohessy-Wiltshire. The
relative motion was decomposed into a mean and a harmonic component, yielding
insight into the physical behavior of the problem. However, the methodology relied
upon several restrictive assumptions, including circular orbits, spherical Earth, and
uniform atmosphere. Motivated by the desire to consider more representative sce-
narios, Bevilacqua et al. included the secular perturbations of the Earth’s oblateness
in Leonard’s method [Bevilacqua and Romano, 2008]. They also proposed a hybrid
approach combining differential drag and continuous low-thrust [Bevilacqua et al.,
2009] aimed at enhancing out-of-plane controllability. Finally, a novel approach for
bang-bang control based on an adaptive Lyapunov control strategy was developed
to account for nonlinear orbital dynamics [Pérez and Bevilacqua, 2013]. Kumar et
al. implemented the solution in a high-precision propagator [Kumar and Ng, 2008],
and they highlighted the importance of accurate relative states estimation in order
to prevent the solution from drastic deterioration. Lambert et al. [Lambert et al.,
2012] overcame this issue by exploiting a conversion from osculating to mean orbital
elements of both the target and the chaser. Targeting long-term cluster keeping and
collision avoidance using differential drag, Ben-Yaacov et al. [Ben-Yaacov and Gur-
fil, 2013, 2014] proposed a nonlinear control approach based on mean and osculating
ROE, respectively. Differently from the other references, the feedback loop relies
on the geometry of the relative trajectory only, i.e., it does not require to estimate
the magnitude of the differential drag. In addition, the use of ROE yielded the
advantages discussed in Section 1.4.

Several forthcoming missions highlight the overall interest in this technique and
the opportunities it enables, e.g., JC2sat [Ng, 2010], SAMSON [Gurfil et al., 2012],
and CYGNSS [Ruf et al., 2013] plan to use differential drag for orbital rendez-vous,
cluster keeping, and constellation deployment, respectively. Nonetheless, the ORB-
COMM constellation is currently the only application of the differential drag tech-
nique in space and it is only limited to support station-keeping maneuvers [Lewin,
1998]. The reason for this shortage of real missions is that most existing theoret-
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ical works on differential drag rely on several restrictive hypotheses, e.g., constant
atmosphere and linear relative dynamics equations, while relevant uncertainties in
satellite aerodynamic modeling make the practical realization of differential-drag-
based maneuvers a challenge.

In this chapter we focus on the initial phase of a rendez-vous maneuver. Starting
from a distance of tens-to-hundred kilometers, the maneuver is aimed at driving
two satellites in close proximity. Docking is not considered because the maneuver is
performed without any propulsive means but differential drag, which has limitations,
as discussed in Section 5.2. The chapter has a twofold objective:

• First, a novel formulation of the rendez-vous maneuver using differential drag
is proposed. This is an improved version of the optimal control approach
developed in [Dell’Elce and Kerschen, 2013, 2015]. The method consists of
three main blocks, namely the drag estimator, the maneuver planner, and
the on-line compensator. The drag estimation is carried out by means of a
simple density model which, nonetheless, is able to detect the main features
of the upper atmosphere. The planner is then in charge of the scheduling
of an optimal reference path. For this purpose, the problem is formulated
as a two-point boundary value problem (TPBVP). The dynamics equations
are formulated in terms of mean equinoctial ROE and they use the analytical
propagator developed in Chapter 4 to estimate the dynamics of the chief. The
proposed formulation results in time-continuous control of the cross section,
as in [Ben-Yaacov and Gurfil, 2013, Kumar and Ng, 2009]. On the contrary,
most of the literature on differential drag considers the bang-bang control of
the cross section. When the relative ballistic coefficient is imposed through
attitude control, the assumption of bang-bang control is restrictive, especially
for small satellites with limited power available. Finally, on-line compensation
relying on a MPC algorithm is implemented to account for uncertainties and
unmodeled dynamics.

• Second, some practical challenges intimately related to the exploitation of
differential drag in a realistic scenario are addressed. For this purpose, high-
fidelity 6-degree-of-freedom (DoF) propagation including advanced drag mod-
eling and detailed space environment is exploited to validate the algorithm.
We note, for instance, that the entire literature on differential drag assumes
that drag is proportional to the cross-section of the spacecraft and that it is
the only component of the aerodynamic force. In addition, the present chap-
ter assumes that the two satellites have different geometries, which result in
different ballistic properties, as discussed in Section 1.5.3.

The chapter is organized as follows. The modeling assumptions of the control
plant are discussed in Section 5.2. Section 5.3 describes the different building blocks
of the proposed optimal control strategy. Finally, numerical simulations based on
the QARMAN mission are detailed in Section 5.4.
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Figure 5.1: Nominal attitude of deputy (left) and chief (right).

5.2 Modeling assumptions

This study focuses on the rendez-vous problem between two satellites, namely the
chief and the deputy, using differential drag as the only control force. The chief
can also be a fictitious target point. It is assumed that the orbits of the satellites
are nearly circular and quasi coplanar. Though the former assumption could be
removed, it is not the case for the latter, which comes from the extremely modest
authority of the differential drag in the out-of-plane direction. Specifically, Ben-
Yaacov et al. showed that the controllability is two orders of magnitude smaller in
this direction even for highly inclined orbits [Ben-Yaacov and Gurfil, 2014]. For this
reason, only the in-plane position and velocity of the relative dynamics are controlled
herein.

Differential drag is imposed by changing the ballistic coefficient of the deputy.
This can be achieved either by reorienting solar panels or through attitude control.
The second option is considered herein, so that rotational and translational degrees
of freedom are coupled. Depending on the specific actuators considered, attitude
constraints of various nature are introduced into the problem. In this chapter, the
combination of three reaction wheels and 3-axis magnetotorquers is exploited.

The chief is assumed to be passive, i.e., its ballistic coefficient cannot be con-
trolled. The proposed methodology is only applicable if the attitude of the chief is
predictable. This includes not only fully-stabilized configurations, but also spinning
and tumbling satellites. Scheduled maneuvers can be included, as well. On the
contrary, the method fails if the chief performs, for example, attitude and orbital
maneuvers or solar panel reconfigurations which were not expected before the be-
ginning of the rendez-vous maneuver. The same methodology applies for spinning
and tumbling targets, while minor modifications should be included to account for
prescribed maneuvers of the chief.

Because the case study in Section 5.4 considers CubeSats without deployable pan-
els, the two satellites are modeled with a parallelepiped shape and the principal axes
are assumed to be aligned with the symmetry axes of the parallelepiped. However,
the proposed formulation is independent from the specific geometry, provided that
minimum and maximum drag configurations of the deputy are identified.

Considering Figure 5.1 and the notations of Section 1.3, the reference attitude of
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Figure 5.2: High-level optimal control strategy. The asterisk denotes the reference
trajectory and control.

the two satellites is such that:

• the chief is in its minimum-drag configuration, which here is assumed to be
such that its long axis is toward its orbital velocity direction, ṙC

ṙC
. The ẑb,C

axis is toward ĥC ;

• the deputy’s ẑb,D axis is toward ĥD ≈ ĥC . The magnitude of the differential
drag is changed by pitching the deputy about ẑb,D. The pitch angle is given
by

α = cos−1

(
ṙD
||ṙD||

· ŷb,D
)
sign (ṙD · x̂b,D) , (5.1)

where ŷb,D is toward the long axis of the deputy. We note that differential drag
can also be controlled by yawing rather than pitching. However, for highly-
inclined orbits, pitching is preferred because it enhances the de-saturation
capabilities of the magnetotorquers.

5.3 Optimal maneuvers using differential drag

The proposed optimal control strategy consists of three modules: i) the drag estima-
tor evaluates the ballistic coefficient of the two satellites, ii) the maneuver planner
schedules an optimal reference trajectory, iii) the on-line compensator corrects the
deviations from the reference path due to unmodeled dynamics and uncertainties.
The high-level control strategy is schematized in Figure 5.2.

The drag estimator and the maneuver planner are activated only a few times
during the whole maneuver, e.g., they can be executed either when the divergence
between the real and the planned path is beyond a given threshold or after a fixed
period of one-to-few days1. In this work, we execute these two modules only once
at the beginning of the maneuver.

1In our experience, the maximum update rate of the reference path should exceed 5 days.
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5.3.1 Drag estimator

This module is in charge of the estimation of the ballistic properties of the satellites.
The estimation using particle filtering is not considered in this chapter because it
was developed only at the very end of the thesis.

The estimator requires that the position of the two spacecraft is monitored during
an observation time tobs. Their attitude is imposed throughout this period. If a sin-
gle pose is sufficient for the determination of the ballistic coefficient of the chief, this
is not the case for the deputy: because thermal flow is assumed in the simulation
environment, the ballistic coefficient is not proportional to the cross section. Mini-
mum and maximum drag configurations must be observed. Each pose is monitored
for a time equal to tobs

2
.

The ballistic coefficient is estimated by minimizing the drift between observed
and simulated inertial positions. Simulated data are generated on-board through
a low-precision propagation including J2 gravitational effect and drag perturbation
only. The aerodynamic force of the simulated data is given by:

f drag = −1

2
ρCb ||vTAS||vTAS (5.2)

where vTAS = v−Ωe×r, Cb, ρ, r, v, and Ωe are the airspeed, the ballistic coefficient,
the atmospheric density, the inertial position and velocity, and the Earth’s angular
velocity, respectively. A basic analytical model is exploited to estimate the density:

ρ (r, θ, i;A,B,C,D) = A (1 +B cos (θ − C)) exp

r − req
√

1− e2
eq sin2 i sin2 θ

D


(5.3)

where θ, i, (A,B,C,D), req, and eeq, are the argument of latitude and orbital incli-
nation, the calibration coefficients of the model, and the Earth’s equatorial radius
and eccentricity, respectively. Though relatively simple, this model is able to outline
the most relevant characteristics of the upper atmosphere, namely the exponential
vertical structure, the day-night bulge, and the Earth’s oblateness. Neglecting these
contributions results in inconsistent predictions of the short-term evolution of the
density, e.g., the day-night bulge is responsible for variations of approximatively a
factor 5 at 500 km according to [Doornbos, 2012], which lead to the generation of
an unreliable reference path.

The coefficients of the model are orbit-dependent and they are tuned using a
more advanced model, i.e., Jacchia 71 in this work, by minimizing the root mean
square error between the density provided by Equation (5.3) and the advanced model
during one orbit.
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Figure 5.3: Schematic representation of the estimation of the ballistic coefficient.

The estimation is then performed by solving:

Cb,C =arg
[
min
Cb

(∫ tobs

0

(robs,C − rsim,C (Cb))
2 dt
)]

Cb,D (αi) =arg

[
min
Cb

(∫ tobs
2
i

tobs
2

(i−1)

(robs,D − rsim,D (Cb))
2 dt

)]
i = 1, 2

(5.4)

Here, robs and rsim are the observed and simulated inertial position, respectively.
The subscripts C and D indicate chief and deputy, respectively. The pitch angles α1

and α2 correspond to the minimum and maximum drag configuration of the deputy,
respectively. The computation of the ballistic coefficient is illustrated in Figure 5.3.

The necessary condition for the exploitation of the differential drag is that the
estimated ballistic coefficient of the chief must lie between the minimum and max-
imum ballistic coefficients of the deputy, i.e., Cb,D (α1) < Cb,C < Cb,D (α2). In this
case, the target point is feasible.

Finally, the ballistic coefficient of the deputy is fitted with a linear interpolation
as a function of the exposed cross section, S. The simple geometry considered in
this study yields:

S = Sx |sinα|+ Sy |cosα| , α1 = 0, α2 = tan−1 Sx
Sy
, (5.5)

where Sx and Sy are the surface of the faces of the deputy with normal x̂b,D and
ŷb,D, respectively.

The outputs of the drag estimator are the fitted ballistic coefficient of the deputy,
Cb,D(α), and the constant ballistic coefficient of the chief, Cb,C.

5.3.2 Maneuver planner

The maneuver planner schedules an optimal reference trajectory for the rendez-vous
maneuver. An optimal control formulation of the maneuver planning problem is
envisaged.

Let ẋ = f (x,u, t) be a dynamical system with x ∈ Rnx and u ∈ Rnu states
and control variables, respectively. Optimal control in this chapter is aimed at
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driving the system from its initial state, x(0) = x0, to a desired state, x (tf ) = xf ,
where tf is the maneuvering time. The trajectory is required to minimize a cost
function J (x,u, tf ) = M(tf ) +

∫ tf
0
L (x,u, t) dt. The trajectory must also satisfy

the inequality constraints, g (x,u, t) ≤ 0. Here g : Rnx × Rnu × R → Rng is
a ng-dimensional vectorial function of path constraints which need to be enforced
continuously in time.

This set of constraints yields the Bolza problem:

[x∗,u∗] = arg

[
min

x(t),u(t),t∈[0,tf ]
J (x,u, tf )

]
s.t.

ẋ = f (x,u, t) ∀ t ∈ [0, tf ],

g (x,u, t) ≤ 0 ∀ t ∈ [0, tf ],

x (0) = x0,

x (tf ) = xf .

(5.6)

In our study, the different quantities of Problem (5.6) are:

Cost function, J (x, u, tf )

The performance index is aimed at minimizing a desired convex functional,∫ tf

0

L (x, u, t) dt,

chosen according to the needs of the mission. It can for instance include the dissi-
pated to collected power ratio, i.e., the consumption of the attitude control system
over the incoming solar power, the mean squared differential drag (as in Section
5.4.2), the optimization of a geometrical feature of the trajectory (as shown later in
Equation (6.53)).

Although time optimality could be included in the cost function, i.e.,M(tf ) = tf ,
we observed that the maneuvering time is highly determined by the initial guess
provided to the optimal control solver. For this reason, time optimal maneuvers are
not considered in this work.

Dynamical system, ẋ = f (x, u, t)

The proper choice of the differential equations is the core of the trade-off between
accuracy and computational efficiency of the planner:

• the planner is required to be consistent with the real dynamics. Consistency
implies that all the dominant effects are modeled. This includes short-period
and altitude-dependent variations of the drag. When propagating the open-
loop control, we observed that neglecting short-period variations results in
inconsistent predictions of the oscillatory movement, while neglecting altitude
dependency results in greater in-track errors at the end of the maneuver.
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• targeting computational efficiency, we want that only the dominant effects are
modeled in the planner. This excludes all the orbital perturbations but the
drag and secular J2 effects. The same simplified drag modeling of the drag
estimation module is used, i.e., Equations (5.2) and (5.3).

Further efficiency is achieved by considering only a reduced set of equations of
motion in the control plant. This includes only the pitch of the deputy for attitude
dynamics, and only the in-plane motion for translational dynamics. For the latter,
we use mean equinoctial ROE – which evolve in a “smoother” way than Cartesian
or curvilinear relative states – so that the state of the control plant is:

x =


∆Eeq,pl
α
α̇
ωw

 (5.7)

where ωw and ∆Eeq,pl are the angular velocity of the reaction wheel controlling
the pitch and the subset of equinoctial ROE describing the in-plane motion, i.e.,
∆Eeq,pl =

[
∆a,∆P 1,∆P 2,∆l

]
.

Attitude dynamics about the ẑb,D axis is expressed as:

α̈ =I−1
zz

((
rcg × f drag,D

)
· ẑb −Mmag(ωw, t)− u

)
ω̇w =

(
I−1
zz + I−1

w

)
u− I−1

zz

((
rcg × f drag,D

)
· ẑb,D −Mmag(ωw, t)

) (5.8)

where Iw, Izz, rcg, and Mmag are the rotational inertia of the reaction wheel and of
the deputy about the ẑb,D direction, the position of the center of mass of the deputy
with respect to its geometric center, and the torque provided by the magnetotor-
quers, respectively.

Concerning the relative motion, linearized equations for the mean equinoctial
ROE are computed by differentiating the averaged equinoctialGVE Equation (1.10)
with respect to the equinoctial elements and perturbing force:

∆Ėeq,pl = A
(
Eeq,C ,f drag,C

)
∆Eeq,pl +B

(
Eeq,C ,f drag,C

)
∆fdrag (5.9)

where A
(
Eeq,C ,f drag,C

)
and B

(
Eeq,C ,f drag,C

)
are the Jacobian of the GVE with

respect to Eeq,pl and to the tangential perturbing force, respectively. The effect of
Earth’s oblateness is introduced by means of Equations 4.5 and, as such, it is accom-
modated in A

(
Eeq,C ,f drag,C

)
and B

(
Eeq,C ,f drag,C

)
. This approach was proposed

in [Schaub, 2003], but Keplerian elements were used. To the best of our knowledge,
an analytical expression of the linearized equations of mean equinoctial ROE is not
available in the literature, so that it is provided in Appendix B.

Equations (5.9) assume that the differential relative orbital elements are small
enough, but no assumption is introduced on the dynamics of the chief. This is why
these equations are superior to popular linearized models assuming circular orbits,
e.g., [Clohessy and Wiltshire, 1960, Schweighart and Sedwick, 2002]. Although
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Equation (5.9) is expressed in terms of mean elements, the instantaneous differential
drag is used. The underlying assumption is that the differential perturbing force
acting on the mean elements has the same effect on the osculating ones. This
approximation is justified in [Schaub et al., 2000] by noting that the gradient of the
contact transformation, T is close to the identity matrix.

The computation of the matrices A and B requires that the absolute motion
of the chief is integrated, too. We avoid this task by using the analytical model
developed in Chapter 4, which yields a time explicit analytical expression for the two
matrices.

Because the only in-plane motion is modeled in the planner, differential drag is
defined as:

∆fdrag (Eeq,C ,∆Eeq, α) =
ṙD
ṙD
· f drag,D −

ṙC
ṙC
· f drag,C . (5.10)

Rendez-vous conditions, x(tf ) = xf

At the end of the maneuver the deputy should be in close proximity of the target.
This constraint is imposed as:

∆a(tf ) = ∆P 1(tf ) = ∆P2(tf ) = ∆l(tf ) = 0. (5.11)

Path constraints, g (x, u, t)

Physical constraints include the maximum available torque, Tw, and operating range
of the wheel, [ωw,l, ωw,u], and the saturation of the magnetic coils, i.e.,

ωw ∈ [ωw,l, ωw,u] , |u| ≤ Tw, |Mmag(ωw, t)| ≤Mmag,max(t) ∀ t ∈ [0, tf ] (5.12)

where Mmag,max(t) is the maximum available torque of the magnetotorquers in the
direction ẑb,D.

Direct transcription of the optimal control problem

The Pontryagin minimum principle [Pontryagin, 1987] provides first-order optimal-
ity conditions of Problem (5.6) consisting of an unconstrained TPBVP, i.e., without
path and dynamics constraints, with the 2nx-dimensional state vector given by the
initial states x plus a set of so-called co-states. Indirect techniques attempt to solve
Problem (5.6) by enforcing optimality conditions. Such an approach requires a
guess of the initial co-states. Unfortunately, these variables usually have no physical
interpretation, which complicates the exploitation of indirect approaches.

Direct techniques are a valuable alternative aimed at directly tackling Prob-
lem (5.6) via the paradigm discretize and then optimize [Betts, 1998, 2010, Con-
way, 2010, Yan et al., 2011]. The optimal control problem is recast into a finite-
dimensional non-linear programming (NLP) optimization problem by expressing the
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state and control variables with a finite-dimensional basis and by enforcing path and
dynamics equations on a temporal grid. Analogously, the cost function is approxi-
mated with a quadrature rule. Direct methods comprise four main blocks, namely
the function generator (i.e., dynamics equations), discretization, optimization, and
convergence analysis.

Although direct techniques yield large dimensional NLP, they are flexible be-
cause constraints of various nature can be naturally included in the formulation. In
addition, direct approaches are more robust than indirect ones which suffer from
dramatic sensitivity with respect to the initial guess.

The direct approach used in this chapter belongs to the pseudospectral family
[Fahroo and Ross, 2002, 2008], which provides efficient approximation of the cost
function, state dynamics, and path constraints by means of orthogonal polyno-
mial bases and carefully selected nodes. Specifically, we use a hp-adaptive Radau
pseudospectral transcription [Garg et al., 2010] using the software GPOPS, which
tackles the discretization by means of an implicit Gaussian quadrature based on the
Legendre-Gauss-Radau collocation points. This approach lends to an hp-adaptive
strategy for the convergence analysis and mesh refinement. The optimization is
carried out by means of the sparse solver SNOPT.

The initial guess for the NLP is provided by the analytical solution of Bevilacqua
et al. [Bevilacqua and Romano, 2008], which relies on the linearized Schweighart-
Sedwick equations of relative motion [Schweighart and Sedwick, 2002], and it pro-
vides a bang-bang control for the differential drag, whose magnitude is assumed to
be constant. This model yields a non-feasible solution to Problem (5.6). However,
this is not a crucial issue for pseudospectral techniques which, as discussed in the
previous paragraph, exhibit a modest sensitivity to the initial guess compared to
indirect approaches.

We stress that the only inputs to the planner are the initial conditions and the
outputs of the drag estimator.

The outputs of the planner are the reference control and states as a function of
time, namely u∗ and x∗.

5.3.3 On-line compensator

On-line compensation is mandatory to account for unmodeled dynamics and uncer-
tainties. The former issue arises from the assumptions introduced in the definition
of the control plant. In addition, the density model of the drag estimator is another
source of unmodeled dynamics, because different atmospheric models generate dif-
ferent outputs given the same inputs. The latter issue reflects the practical difficul-
ties in the prediction of stochastic processes like the solar and geomagnetic activity
proxies and thermospheric winds.

No matter the origin, the effect of all these perturbations is the deviation of the
observed trajectory from the scheduled path. A model predictive control algorithm
is developed to cope with such deviations.
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At each evaluation, the on-line compensator solves a problem analogous to the
maneuver planner. The only differences are the boundary conditions, the fixed
horizon, and the performance index.

Initial conditions are provided by the current states at the beginning of the eval-
uation at time t. MPC is based upon the receding horizon principle, i.e., the final
time is fixed to t + th, where th is the horizon. The computed corrected control is
then applied to the plant for a time tc ≤ th.

The performance index is aimed at minimizing the divergence from the reference
path ∫ t+th

t

nx∑
j=1

Wxj

(
xj − x∗j

)2 dτ (5.13)

where W(·) are user-defined weights. A direct contribution of the controlled variable
is not included, because its variation is dominated by the variations of α. The
proper selection of the weights is not trivial, and stability issues may arise. Large
Wα means high confidence in the reference path, but a less efficient tracking of the
reference trajectory itself. Ideally, a large Wα is more suitable for the first phase of
the maneuver. We tested different setups with initial in-track distances ranging up
to 300km. Setting coefficients such that the three contributions have the same order
of magnitude resulted in a stable controller within this range. However, a robust and
automatic procedure for tuning the coefficients would be a relevant contribution.

5.4 Rendez-vous between two satellites of the QB50
constellation

The proposed case study consists of the rendez-vous between QARMAN and an-
other CubeSat of the QB50 constellation [Muylaert et al., 2009]. QB50 will be a
constellation of 40 double and 10 triple CubeSats [Heidt et al., 2000]. The QB50
requirements for the ‘standard 2U CubeSats’ [Muylaert, 2012] impose that the long
axis of the CubeSat must be aligned with the orbital velocity. One of these stan-
dard CubeSats is considered to be the chief. QARMAN, a 3U CubeSat, will be the
deputy. Both satellites are assumed to be equipped with 3-axis magnetotorquers
and 3 reaction wheels with spin axes aligned with the geometric axes of the Cube-
Sat. Quaternion feedback algorithm [Wie, 2008] is exploited to follow the required
attitude of the two satellites. Table 5.1 lists the input parameters of the numerical
simulations.

Numerical simulations are carried out in a highly-detailed environment. Both
attitude and orbit are propagated. Table 5.2 summarizes the main features of the
simulation environment and compares them to those of the control plant. As dis-
cussed in Section 1.6, the aerodynamic model of the propagator assumes thermal
flow, variable accommodation of the energy, and non-zero re-emission velocity. We
will show that exploiting this aerodynamic model affects the accuracy of the ma-
neuver.
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Table 5.1: Simulation parameters.

Mean elements of the target semi-major axis 6758 · 103 m
eccentricity 0.001
inclination 98 deg
RAAN 45 deg
argument of perigee 0 deg
true anomaly 0 deg
Julian date 2455287.5 days

Initial curvilinear states in-track position, i.e., ỹ 50 · 103 m
radial position, i.e., x̃ 100 m
out-of-plane position, i.e., z 20 m
in-track velocity, i.e., ṽy 0 m s−1

radial velocity, i.e., ṽx 0 m s−1

out-of-plane velocity, i.e., vz 0 m s−1

Initial target’s attitude (LVLH) pitch, roll, yaw 0 deg
Initial chaser’s attitude (LVLH) pitch, roll, yaw 0 deg
Space weather Daily solar flux 200 sfu

81-day averaged flux 155 sfu
geomagnetic index Kp 4

Chief’s properties mass 2 kg
dimensions 0.1× 0.2× 0.1 m3

inertia Iy = 8 · 10−3 kg m2,
Ix = Iz = 3 · 10−3 kg m2

offset of the center of mass 0.01yb m
Deputy’s properties mass 4 kg

dimensions 0.1× 0.3× 0.1 m3

inertia Iy = 25 · 10−3 kg m2,
Ix = Iz = 5 · 10−3 kg m2

offset of the center of mass 0.01yb m
Attitude actuators wheels’ maximum torque 0.03 · 10−3 N m

wheels’ operating range [−6000, 6000] rpm
wheels’ inertia 0.25 · 10−6 kg m2

Magnetic rods’ dipole 0.2 A m2

On-line compensator’s weights W∆a 1 m−2

W∆P1
,W∆P2

106

Wα 104 rad−2

Wα̇ 108 s2 rad−2



102 CHAPTER 5. DIFFERENTIAL DRAG: AN OPTIMAL CONTROL APPROACH

Table 5.2: Differences between the simulation environment and the plant of the
controller.

Simulation environment Control plant

Orbital dynamics Full nonlinear osculating relative dynam-
ics.

Linearized equations for mean equinoc-
tial ROE.

Attitude dynamics 3 DoF Euler equations. Single DoF dynamics about the pitch
axis.

Atmospheric model
NRLMSISE-00 with short-term stochas-
tic variations. Geodetic altitude from
the reference ellipsoid.

Exponential vertical structure and si-
nusoidal periodic variations (day-night).
Geocentric altitude from the reference el-
lipsoid.

Aerodynamic force Sentman’s model with more recent up-
dates.

Drag force only. Cubic polynomial fit-
ting of the estimated ballistic coefficients
with the different poses.

Gravitational model Harmonics up to order and degree 10. J2 secular effect.

Other perturbations
Luni-solar third-body perturbations, so-
lar radiation pressure. Nutation, preces-
sion and polar wandering.

None.

External torques
Gravity gradient and aerodynamic
torque computed with Sentman’s model
and more recent updates.

Simplified aerodynamic torque consist-
ing of the cross product between the drag
and the aerodynamic-to-gravity center
distance vector.

Attitude control

Three-axis magnetic coils and three re-
action wheels. Quaternion feedback con-
trol algorithm. Magnetic coils desatu-
rate wheels in permanence.

Single reaction wheel about the pitch an-
gle. Magnetic coils desaturate the wheel
in permanence. The control torque is
determined by the planner and on-line
compensator.
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Figure 5.4: Drag force of the chief. The solid line is the real drag. The dashed line
is the estimated drag with the simple atmospheric model. The dash-dot line is the
estimated drag with the Jacchia 71 model.

We note that the calibration of the simple model defined in Equation (5.3) was
not performed with the same model exploited for the high-fidelity simulations, i.e.,
Jacchia 71 and NRLMSISE-00, respectively. This is motivated by the scope of the
chapter to consider a realistic scenario. In this way, the controller does not know the
exact structure of the atmosphere. Nonetheless, uncertainty in the space weather is
not considered here. Its impact on the maneuver is assessed in Chapter 6.

For the sake of clarity, in the remainder of the paper we will refer to high-precision
propagation with the adjectives ‘observed’ or ‘real’. This will avoid confusion with
data generated by the control plant, which we will refer to as ‘simulated’.

5.4.1 Drag estimator

We selected tobs = 8 torb, where torb is the orbital period of the chief, so that we
observed each pose of the deputy during 4 orbits.

Figure 5.4 compares the real drag force of the chief with the one estimated with
the identified Cb,C and the simplified density model of the drag estimator (Equa-
tion (5.3)). Because the controller does not know the exact structure of the atmo-
sphere, there is an important difference between the estimated and real drag forces.
Nonetheless, the good match between the simple and the largely more advanced
Jacchia 71 model validates our claim that the former model is able to detect the
main features of the structure of the upper atmosphere.
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Figure 5.5: Minimum-differential-drag off-line (i.e., scheduled) maneuver. In the
upper figure, the color indicates the elapsed time since the beginning of the maneu-
ver, including the drag estimation time. The trajectory is illustrated with relative
curvilinear states (defined in Section 1.4).

5.4.2 Maneuver planner

The first cost function considered consists of the mean-squared differential drag:

1

tf

∫ tobs+tf

tobs

∆f 2
drag (Eeq,C ,∆Eeq, α) dt. (5.14)

The objective is to achieve a trajectory that can be robustly followed: minimizing
the differential drag used by the planner results in the maximization of the remain-
ing differential drag that can be exploited to compensate for deviations from the
reference path. In other words, this objective function avoids bang-bang-like solu-
tions. In fact, this latter strategy is such that differential drag is for most of the
time at its extreme values, so that on-line compensation cannot provide two-sided
maneuverability.

Figure 5.5 displays the scheduled trajectory generated by the planner. The refer-
ence pitch exhibits a gradual transition from a maximum to a minimum differential
drag configuration. This is consistent with the above explanation on the purpose of
the cost function.

The pseudospectral solver is able to converge to a feasible solution, so that, at
the end of the planned maneuver, rendez-vous conditions are satisfied.

The interest in the proposed approach is its flexibility, i.e., the trajectory can
be optimized according to the needs of the mission. Assume, for example, that a
smooth relative trajectory is envisaged. The objective function of the planner can
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Figure 5.6: ’Flattest trajectory’ off-line maneuver (i.e., scheduled). In the upper
figure, the color indicates the elapsed time since the beginning of the maneuver,
including the drag estimation time. The trajectory is illustrated with relative curvi-
linear states (defined in Section 1.4).

then be selected as follows

1

tf − tobs

∫ tobs+tf

tobs

(ṙD − ṙC)2 dt (5.15)

Figure 5.6 illustrates the solution obtained by considering this cost function. The
benefit of the optimization process is evident. Achieving this trajectory with other
approaches would be at best challenging.

5.4.3 On-line compensator

The horizon and the control time of the on-line compensator are set to th = 2tc =
2torb. This combination allows for an adequate averaging of short period variations
that are the most critical to predict. The on-line controller is thus activated once
per orbit, and it computes an open loop control with two-orbit horizon.

Figure 5.7 illustrates the trajectory obtained in the high-fidelity simulations and
the corrected pitch angle. The overshoot in the ŷ direction at the end of the sched-
uled maneuver, tf + tobs, is of the order of 20 m, as shown in the close-up of the
terminal phase in Figure 5.8. The on-line compensator is able to track the reference
path with an adequate accuracy, given the limitations and the uncertainties inher-
ent to differential drag. We note that this result outperforms the one obtained in
[Dell’Elce and Kerschen, 2015] where Sedwick-Schweighart equations were used in
the control plant.
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Figure 5.7: Minimum-differential-drag on-line maneuver. In the upper figure, the
black-dotted and the colored line are the planned and the on-line trajectories, re-
spectively. The color indicates the elapsed time since the beginning of the maneuver,
including the drag estimation time. In the bottom figure, the dashed and the solid
lines are the scheduled and the on-line pitch angles, respectively. The trajectory is
illustrated with relative curvilinear states (defined in Section 1.4).

The accuracy of the maneuver is affected by the assumptions used in the devel-
opment of the control plant. As said, the rendez-vous conditions are met with an
accuracy of the order of 20 m, which is worse than the accuracy shown in previous
works where a simpler aerodynamic model is considered in the simulations, e.g.,
[Dell’Elce and Kerschen, 2013]. This loss of accuracy needs to be considered when
including collision avoidance constraints. The reason why it is not possible to im-
prove the accuracy further is that the satellites have different geometries and masses.
Recalling that the aerodynamic coefficients are computed on the actual geometry
at every time step of the high-fidelity simulations and that drag is not proportional
to the exposed surface, it follows that the real zero-differential drag configuration is
unknown. In addition, the MPC algorithm is open-loop over the control horizon.

However, in our opinion, it is not the scope of differential-drag maneuvers to
achieve the highest accuracy, especially given the limited out-of-plane controllability.
In the numerical simulations, in fact, out-of-plane oscillations are of the same order
as the accuracy of the terminal phase.

The importance of the weights of the reference pitch angle and its derivative in
the cost function of the on-line compensator is given in Figure 5.9. Here, the weights
related to the tracking and the derivative of the pitch are removed from the objective
function of the MPC algorithm, i.e., Wα = Wα̇ = 0. In this case, the quality of the
tracking of the reference path is slightly improved, but the corrected pitch exhibits
spurious oscillations. This time history of the pitch is more demanding for the
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Figure 5.8: Minimum-differential-drag on-line maneuver. Zoom of the terminal
phase. The black-dotted and the colored line are the planned and the on-line trajec-
tories, respectively. The color indicates the time since the beginning of the maneuver.
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Figure 5.9: Minimum-differential-drag on-line maneuver without tracking of the
reference pitch angle. In the upper figure, the black-dotted and the colored line
are the planned and the on-line trajectories, respectively. The color indicates the
elapsed time since the beginning of the maneuver, including the drag estimation
time. In the bottom figure, the dashed and the solid lines are the scheduled and the
on-line pitch angles, respectively.
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Figure 5.10: ’Flattest trajectory’ maneuver. In the upper figure, the black-dotted
and the colored line are the planned and the on-line trajectories, respectively. The
color indicates the elapsed time since the beginning of the maneuver, including the
drag estimation time. In the bottom figure, the dashed and the solid lines are the
scheduled and the on-line pitch angles, respectively. The trajectory is illustrated
with relative curvilinear states (defined in Section 1.4).

attitude control system and results in larger power consumption.
For completeness, Figure 5.10 depicts the on-line solution for the ‘flat’ trajectory.

5.5 Conclusion

This chapter proposed a three-step optimal control approach for differential-drag-
based maneuvers. The maneuver planning is solved by means of a direct transcrip-
tion of the optimal control problem, which enhances the flexibility for the choice
of the cost function and allows us to naturally include constraints of various na-
ture. For these reasons, the proposed approach enables the possibility to accomplish
complex and realistic maneuvers using differential drag.

The formulation of the control plant in terms of mean ROE and the exploitation of
the analytical propagator developed in Chapter 4 enhanced the accuracy of the ma-
neuver with respect to previous results based on the linearized Sedwick-Schweighart
equations.

The method was validated with high-fidelity simulations of a rendez-vous ma-
neuver between satellites with different masses and geometries and advanced drag
modeling.

This chapter raises two open questions: how can we improve drag estimation and
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prediction? How can we plan trajectories that can account for the uncertainty in
the atmospheric force?

The first question is addressed by replacing the drag estimation module with the
particle filter developed in Chapter 3. Concerning the second question, a general-
purpose methodology for the planning of robust maneuvers is proposed in Chapter
6.
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Chapter 6

Robust Maneuver Planning

Abstract

The maneuver planning of a dynamical system subject to uncertain con-
straints and dynamics can be formulated as an infinite-dimensional opti-
mization problem: the design variables are continuous functions of time
and dynamics and path constraints must be enforced for every time in-
stant and for every occurrence of the generally-dense uncertain set. Start-
ing from such an infinite-dimensional formulation and assuming that the
system is differentially flat, this chapter proposes a discretization of the
problem which guarantees the feasibility of the trajectory over an arbi-
trary user-defined portion of the uncertain set. Taking advantage of the
formalism of squared functional systems and of the scenario approach, the
methodology does not require a temporal grid and it is able to include
uncertainty sources of various nature. The methodology is applied to the
differential-drag-based rendez-vous maneuver. It also integrates the out-
comes of Chapters 3 and 4: both the analytical propagator and the particle
filter are used to accomplish the robust rendez-vous maneuver.

111
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6.1 Introduction

The optimal control methodology developed in Chapter 5 is in principle able to
cope with unmodeled dynamics and uncertainties. However, the feasibility of the
planned trajectory cannot be guaranteed. For instance, it could happen that there
is not enough differential drag for a specific realization of the solar and geomagnetic
activities.

This is why the present Chapter proposes a general methodology for the robust
planning of constrained trajectories. We consider a two-point boundary value prob-
lem with both uncertainties in the dynamics equations and in the path constraints,
e.g., saturation of the actuators or collision avoidance. The feasibility of the solution
of the problem must be guaranteed for a prescribed portion of the possible outcomes
of the uncertain set.

The study is focused on the class of differentially flat systems theorized by Fliess
et al. [Fliess et al., 1995]. Differential flatness is an attractive property for control
purposes because it establishes an equivalence between the original and a trivial
algebraic and invertible system. This facilitates the problem of maneuver planning
by removing the need for the explicit enforcement of the dynamics equations. For
this reason, a large body of literature exists on the deterministic counterpart of
the problem tackled herein [Lévine, 2009, Ross and Fahroo, 2004, Faulwasser et al.,
2014]. Algorithms suitable for the real-time generation of both constrained and un-
constrained trajectories of flat systems were also proposed by Faiz et al. [Faiz et al.,
2001] and by van Nieuwstadt et al. [Van Nieuwstadt and Murray, 1998], respec-
tively. Henrion et al. [Henrion and Lasserre, 2004] and Louembet et al. [Louembet
et al., 2010, Louembet and Deaconu, 2011] offered methodologies which guarantee
the feasibility of the trajectory continuously in time. These latter contributions
inspired the present work.

The generation of robust trajectories is also a problem of great timeliness in the
control community [Svestka and Overmars, 1998]. The tradeoff between computa-
tional efficiency and generality led to the development of both sampling-less and
randomized methodologies. In the former case, the computation of the robust ref-
erence maneuver is performed by solving a single optimization problem [Ono and
Williams, 2008, Blackmore, 2008, Blackmore and Ono, 2009, Blackmore et al., 2011],
but these methodologies are often limited to a small class of dynamical systems and
perturbations, e.g., linear time invariant system and Gaussian random variables. In
the latter case, the identification of the feasible maneuvers is achieved by construct-
ing a random tree of possible trajectories [Marti, 1999, Kewlani et al., 2009, Kothari
and Postlethwaite, 2012, van den Berg et al., 2011]. Finally, Ross et al. [Ross et al.,
2014] proposed to approximate the probability distribution of the uncertain quan-
tities by means of the unscented transform and to solve a single classical optimal
control problem for the augmented dynamical system defined by the sigma points
of the transform and a single common control signal.

Most approaches cited in the previous paragraph lead to the determination of a
deterministic control action associated with a probabilistic description of the refer-
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Figure 6.1: Conceptual difference between the existing and the proposed approaches
to robust maneuver planning.

ence path. When the dynamics of the system is extremely sensitive to the outcome
of the uncertain environment, e.g., like in the drag-assisted rendez-vous, the confi-
dence bounds of the trajectory might be too large to make it of practical interest.
For this reason, we propose a different paradigm in this Chapter, as illustrated in
Figure 6.1. The idea is to find a deterministic reference trajectory which is feasi-
ble for most of the outcomes of the uncertain set. In this case, the control action
required for the execution of this maneuver depends on the uncertain set and, as
such, it is stochastic. The proposed methodology is unaware of the feedback loop
implemented for tracking the reference trajectory. However, the feasibility of the
on-line maneuver can be guaranteed within a prescribed convex set in the tracking
error’s space. A similar “reference-trajectory-oriented” perspective was proposed by
Graettinger and Krogh [Graettinger and Krogh, 1992] in the framework of linear
time-varying systems. However, such approach is still missing in the literature on
robust maneuver planning.

The resulting formulation consists of an infinite-dimensional optimization prob-
lem. Two fundamental results existing in the literature are combined to achieve a
finite-dimensional tractable form with guaranteed feasibility both in time and in the
uncertain set:

• after generating an inner polytopic approximation of the feasible set, the theory
of positive functional systems developed by Nesterov [Nesterov, 2000] is used
to guarantee the feasibility continuously in time. As anticipated, this approach
is analogous to the one developed in [Henrion and Lasserre, 2004, Louembet
et al., 2010]. A less conservative implementation is proposed herein in order to
improve the performance of the maneuver in the presence of affine exogenous
perturbations sufficiently smooth in time;

• the scenario approach developed by Calafiore and Campi [Calafiore and Campi,
2004, 2006] is then exploited to guarantee that the solution is feasible for a de-
sired portion of the event space of the uncertain set. Although few simplifying
assumptions are introduced, the use of the scenario approach yields a method-
ology applicable to a wide class of dynamical systems and of exogenous per-
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turbations, e.g., non-Gaussian random variables or non-stationary stochastic
processes. In addition, the scenario approach does not require the constraints
to be convex with respect to the uncertain parameters.

The chapter is organized as follows. Section 6.2 introduces the concept of robust
deterministic trajectory as the solution of an infinite-dimensional worst-case opti-
mization problem. After recalling the notion of differentially flat system, sufficient
conditions for the existence of the solution of the problem are derived. Semi-infinite
and discrete approximations are then developed in Section 6.3 by using positive
polynomials and the scenario approach. A simple example consisting of a steering
maneuver of a car is proposed to illustrate the methodology step-by-step. Finally,
the rendez-vous using differential drag is tackled in Section 6.5.

6.2 Robust maneuver planning

This Section details our proposed maneuver planning approach. The concept of
robust deterministic trajectory is firstly introduced as being the solution of a worst-
case optimization problem. Such notation is used to emphasize the fact that we
seek a trajectory which is independent from the specific outcome of the uncertain
set. Sufficient conditions for the existence of the solution are outlined. Finally, the
inclusion of tracking error constraints is discussed yielding the formulation which is
tackled in Section 6.3.

6.2.1 The robust deterministic trajectory

Consider the dynamical system ẋ = f (x,u, δ). Here x ∈ Rnx , u ∈ Rnu are the state
and control variables, respectively. The variable δ ∈ ∆ indicates a generic exogenous
perturbation defined on the uncertain environment ∆ and provided with probability
distribution Pr∆. The perturbation can be any generic random quantity provided
with a probabilistic description, e.g., a set of random variables, a non-stationary
stochastic process indexed by the time, t, a nx-valued random field, or any of their
combinations. For the sake of conciseness, δ(x, t) is only referred to as δ in the
following.

The objective of this study is to determine a reference path driving the state vector
from its initial condition x0 to a desired final state xf after a prescribed maneuvering
time tf . The reference trajectory is required to be globally feasible and to minimize
a cost function J (x,u, δ) with respect to x and u. The trajectory must also satisfy
the inequality constraints g (x,u, t, δ) ≤ 0. Here g : Rnx × Rnu × R ×∆ → Rng is
a ng-dimensional vectorial function of path constraints which needs to be enforced
continuously in time and for every possible realization of the uncertain quantities.

By globally feasible, we mean that the feasibility of the trajectory must be en-
sured for all realization of the uncertain set, i.e., we are looking for a deterministic
trajectory x∗ such that, ∀δ ∈ ∆, a control input uδ exists which exactly steers the
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system along x∗:

x∗ = arg

[
min

x(t),t∈[0,tf ]

(
max
δ∈∆
J (x,uδ, δ)

)]
s.t.

∀ t ∈ [0, tf ], δ ∈ ∆ ∃ uδ(t) = u(t, δ) s.t.

ẋ = f (x,uδ, δ) ,

g (x,uδ, t, δ) ≤ 0,

x (0) = x0,

x (tf ) = xf .

(6.1)

The solution x∗ is referred to as robust deterministic trajectory. This terminology
is used to emphasize that the temporal evolution of the states is always the same,
regardless of the outcome of the uncertain set, as indicated by the second equation
of Problem (6.1).

The distinction between δ and δw indicates that the trajectory x∗ is feasible for
all outcomes of ∆ and not only for the one which maximizes the cost function J .

Remark 1. The robust deterministic trajectory is executable for all possible realiza-
tions of the uncertain quantity, i.e., for any δ ∈ ∆ a control uδ(t) exists such that
ẋ∗(t) = f (x∗,uδ, δ) , ∀t ∈ [0, tf ]. Nonetheless, uδ(t) is generally unknown for real-
life problems because it requires the knowledge of the actual value of the uncertain
quantity and of the states. This is why tracking error constraints are introduced in
Paragraph 6.2.2.

Problem (6.1) does not necessarily admit a solution even in its simple uncon-
strained TPBVP form, i.e., without path constraints g. In this Section, we provide
sufficient conditions for the existence of a solution. For this purpose, we firstly recall
the concept of differential flatness for a deterministic system.

Definition 1 (Differential flatness [Fliess et al., 1995]). The system ẋ = f (x,u)
with nx states, x ∈ Rnx , and nu ≤ nx inputs, u ∈ Rnu , is differentially flat if a set
of nu variables

q = Q
(
x,u, u̇, ü, . . . ,u(c)

)
, (6.2)

exists such that
x = X

(
q, q̇, q̈, . . . , q(d)

)
,

u = U
(
q, q̇, q̈, . . . , q(d)

)
.

(6.3)

The variables q ∈ Rnu are referred to as flat outputs. Here the superscripts (c) and
(d) indicate the c-th and d-th order derivatives, respectively. Differential flatness is
a property of the system.

In the remaining of the chapter, the compact notation q(0−d) is exploited to
indicate the column vector

{
qT , . . . , q(d),T

}T .
When uncertainties are accounted for, the three mappings can also be non-

deterministic, i.e., q = Q
(
x,u(0−c), δ

)
, x = X

(
q(0−d), δ

)
, and u = U

(
q(0−d), δ

)
.
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Sufficient conditions for the existence of the robust deterministic trajectory are
now discussed. The unconstrained TPBVP case is firstly addressed. Path con-
straints are then included.

Lemma 1. Consider the TPBVP

x∗ = arg

[
min

x(t),t∈[0,tf ]

(
max
δ∈∆
J (x,uδ, δ)

)]
s.t.

∀ t ∈ [0, tf ], δ ∈ ∆ ∃ uδ(t) = u(t, δ) s.t.

ẋ = f (x,uδ, δ) ,

x (0) = x0,

x (tf ) = xf .

(6.4)

Let system f (x,u, δ) be differentially flat and the mapping between flat outputs
and states be deterministic, i.e., x = X

(
q(0−d)

)
, and let x0 and xf belong to the

same connected component of Rnx × Rnu that does not contain singularities of the
Lie-Bäcklund isomorphism (X ,U), then Problem (6.4) admits solutions.

Proof. Differential flatness implies that the system is controllable; in addition,
because the isomorphism (X ,U) has no singularities on the connected component
of Rnx × Rnu including x0 and xf , it is always possible to find a path that satisfies
boundary conditions, i.e., for any possible realization of the uncertain quantity δ ∈
∆, the set

Bδ =
{
q(t) ∈ Cd : X

(
q(0−d)(0), δ

)
= x0,X

(
q(0−d) (tf ) , δ

)
= xf

}
(6.5)

is not empty.
In addition, because the mapping X is deterministic, there exists a strict one-to-

one relationship between the trajectory in the state and in the flat output spaces,
so that Bδ can be replaced by its deterministic counterpart

B =
{
q(t) ∈ Cd : X

(
q(0−d)(0)

)
= x0,X

(
q(0−d) (tf )

)
= xf

}
(6.6)

which is still not empty and valuable for all the possible realizations of ∆.
Problem (6.4) can thus be recast into the flat formulation

q∗(t) = arg

[
min
q(t)∈B

(
max
δ∈∆
J̃
(
q(0−d), δ

))]
. (6.7)

Here J̃
(
q(0−d), δ

)
= J

(
X
(
q(0−d)

)
,U
(
q(0−d), δ

)
, δ
)
and q∗ is such that x∗ =

X
(
q∗(0−d)

)
.

Because B 6= ∅, Problem (6.7) admits deterministic solutions x∗(t).

Sufficient conditions of Lemma 1 guarantee that the control uδ actually exists for
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Figure 6.2: Schematic representation of the sets. From the lightest to the darkest,
the gray regions indicate the feasible sets of Problems (6.1), (6.12), (6.27), and
(6.29), respectively. The notation I(∆) is used to indicate

⋂
δ∈∆ I(δ).

all δ ∈ ∆. The uniqueness of the solution can only be guaranteed if J̃
(
q(0−d), δ

)
is

convex with respect to q(0−d).
Compared to Problem (6.4), the corresponding flat formulation (Problem (6.7))

does not require dynamics equations to be enforced as equality constraints of the
optimization problem.

Theorem 1. Problem (6.1) admits solutions if the conditions of Lemma 1 are sat-
isfied and if G ∩ B 6= ∅, where

G =
{
q(t) ∈ Cd : g̃

(
q(0−d), t, δ

)
≤ 0,∀ t ∈ [0, tf ], δ ∈ ∆

}
, (6.8)

and g̃ is defined as

g̃
(
q(0−d), t, δ

)
= g

(
X
(
q(0−d)

)
,U
(
q(0−d), δ

)
, t, δ

)
. (6.9)

Given Lemma 1, the proof of Theorem 1 is straightforward. Problem (6.1) can
now be recast into its flat formulation

q∗(t) = arg

[
min

q(t)∈(B∩G)

(
max
δ∈∆
J̃
(
q(0−d), δ

))]
. (6.10)

We note that a large class of problems falls in the assumption of a deterministic
mapping, e.g., fully-actuated manipulators. Specifically, the methodology is appli-
cable whenever the nonholonomic constraints are not subject to uncertainty. This
assertion is further clarified with the example in Section 6.4).

Different sets are introduced in the next sections. In order to facilitate the lecture,
Figure 6.2 provides a graphical representation of these sets.
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6.2.2 Inclusion of the tracking error

Remark 1 offers a theoretical interpretation of the robust deterministic trajectory.
In most real-life applications, the available information on the uncertain quantity
and on the state estimation is incomplete, so that the control action required for
the exact execution of the reference trajectory is unknown and the implementation
of a feedback loop on the tracking error is mandatory. Because the feasibility of the
trajectory is only guaranteed on the trajectory itself, Problem (6.10) lacks practical
interest. For this reason, conditions on the tracking error are introduced herein in
order to extend the feasibility of the solution within a prescribed region close to the
robust reference trajectory.

Specifically, it is required that the executed maneuver q(t) is feasible whenever
the tracking error e(t) = q(t) − q∗(t) is such that h

(
e(0−d)

)
≤ 0, where h

(
e(0−d)

)
is a convex closed set of constraints defining the desired feasible region in the neigh-
borhood of the reference path. This function is chosen by the user according to
the performance of the on-line control algorithm implemented to track the reference
path. A smaller region delimited by h generally improves the cost function, J̃ , but
it requires a more accurate on-line controller.

In order to avoid unnecessary notations, the set delimited by h is assumed to be a
polyhedron in the nu(d+1) dimensional phase space, i.e., the constraints h are linear
combinations of e(0−d). We note that this assumption is not affecting the generality
of the methodology because an outer polyhedric approximation of a generic convex
and closed set can be found, for example, with the methodology proposed in [Cerone
et al., 2012].

Including these constraints is equivalent to guaranteeing that the solution remains
feasible whenever the tracking error stays in the set

E =
{
e(t) ∈ Cd : h

(
e(0−d)

)
≤ 0, ∀ t ∈ [0, tf ]

}
. (6.11)

Accounting for these constraints yields the flat formulation of the problem

q∗(t) = arg

[
min

q(t)∈(B∩H)

(
max
δ∈∆
J̃
(
q(0−d), δ

))]
. (6.12)

Here, the set H is such that

H =
{
q(t) ∈ Cd : g̃

(
q(0−d) + e(0−d), t, δ

)
≤ 0,

∀ t ∈ [0, tf ], δ ∈ ∆, e(t) ∈ E
}
.

(6.13)

All trajectories q∗(t)+e(t) are executable for all possible realizations of the track-
ing error e(t) ∈ E .

The corresponding sufficient conditions for the existence of the solution of Prob-
lem (6.12) are:
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Corollary 1. Problem (6.12) admits solutions if the conditions of Theorem 1 are
satisfied and if H ∩ B 6= ∅.

From now, it is assumed that the conditions required by Corollary 1 are satisfied.

6.3 Discretization of the problem

This Section offers a methodology for the solution of Problem (6.12). First, the
problem is recast into a semi-infinite approximation by using a polytopic inner ap-
proximation of the set G, a truncated polynomial expansion of the flat outputs, and
basic properties of the convex sets. Second, the finite dimensional formulation of
the problem is achieved by sampling from the uncertain set according to the theory
of the scenario approach.

On top of the conditions required by Corollary 1, additional simplifying assump-
tions are introduced herein.

Assumption 1. At any time instant t ∈ [0, tf ] and for any outcome of the uncertain
set δ ∈ ∆, the set defined as

G(t, δ) =
{
c ∈ Rnu(d+1) : g̃ (c, t, δ) ≤ 0

}
(6.14)

is either a polytope or it can be replaced by an inner polytopic approximation,
I(t, δ) ⊆ G(t, δ).

Going into the details of inner approximations techniques is beyond the scope of
the chapter. We suggest these references on the topic: Henrion et al. [Henrion and
Louembet, 2012] proposed a methodology for the semi-algebraic convex approxima-
tion of semi-algebraic sets. Based on the local reduction technique for semi-infinite
programming [Hettich and Kortanek, 1993], Faiz et al. [Faiz et al., 2001] developed
a maximum-volume approach for the computation of the inner approximation. Fi-
nally, Louembet et al. [Louembet and Deaconu, 2011] proposed a basic strategy to
treat multiply-connected domains, e.g., collision avoidance constraints.

Assumption 2. The mapping between G(t1, δ) and G(t2, δ) is affine for all t1, t2 ∈
[0, tf ] and for all δ ∈ ∆.

Assumption 3. The path constraints are assumed to be sufficiently smooth func-
tions with respect to the time variable, i.e., g̃

(
q(0−d), t, δ

)
∈ Cd, ∀ q(t) ∈ Cd, δ ∈ ∆.

Specifically, it is supposed that they can be modeled with a nψ-dimensional poly-
nomial basis, Ψ(t) =

[
ψ1(t), . . . , ψnψ(t)

]T .
When the problem does not encompass Assumptions 2 or 3, the method is still

valuable if at any time the instantaneous stochastic feasible sets, G(t, δ), are replaced
by their intersection for all t ∈ [0, tf ]. In this case, the solution will be more
conservative.

Figure 6.3 summarizes the theoretical framework we exploited in our methodol-
ogy.
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Infinite dimensional

Semi­infinite dimensional

Finite dimensional

Dynamics Equations
Boundary conditions
Path constraints

Dynamics Equations
Boundary conditions
Path constraints

Dynamics Equations
Boundary conditions
Path constraints

Theoretical tools exploited: differential flatness, positive polynomials, properties of convex sets, scenario approach

Figure 6.3: Theoretical framework of the proposed methodology.

6.3.1 Semi-infinite formulation

The discretization of the design variables is achieved by expanding the flat outputs’
trajectories through a finite dimensional (possibly complex-valued) polynomial basis,
Φ(t) =

[
φ1(t), . . . , φnφ(t)

]T ⊆ Ψ(t), i.e.,

qj(t) = 〈cj,Φ(t)〉H , j = 1, . . . , nu. (6.15)

Here 〈·, ·〉H and cj ∈ Cnφ denote the Hermitian inner product and a vector of nφ
coefficients, respectively. The notation q(t) ∈ P (Φ(t)) is exploited to indicate that
the vectorial function q(t) has a polynomial representation in the base Φ(t).

By virtue of Assumptions 1 and 2, the matricesA(t, δ) ∈ Rni×nu(d+1) and b(t, δ) ∈
Rni exist such that

I(t, δ) =
{
c ∈ Rnu(d+1) : A(t, δ)c ≥ b(t, δ)

}
⊆ G(t, δ)

∀ t ∈ [0, tf ], δ ∈ ∆,
(6.16)

i.e., A(t, δ) and b(t, δ) define the H-representation (ni half spaces), of I(t, δ). Thus,
given an outcome δ ∈ ∆, the set of feasible flat outputs defined by the temporal
sequence of I(t, δ) is

I(δ) =
{
q(t) ∈ Cd : (q(t) + e(t)) ∈ I(t, δ),

∀ t ∈ [0, tf ], e(t) ∈ E
}

=
{
q(t) ∈ Cd : A(t, δ)

(
q(0−d) + e(0−d)

)
≥ b(t, δ),

∀ t ∈ [0, tf ], e(t) ∈ E
}
,

(6.17)

Limiting the variety of the flat outputs to the curves expressed by Equation (6.15)
yields the subset of I(δ):

Iφ(δ) = {q(t) ∈ [P (Φ(t)) ∩ I(δ)]} . (6.18)



6.3 Discretization of the problem 121

Assumption 3 allows to recast the set Iφ(δ) into:

Iφ(δ) =
{
q(t) ∈ P (Φ(t)) :

qj(t) = 〈cj,Φ(t)〉H , j = 1, . . . , nu;〈
Ψ(t),

nu∑
j=1

αjk(δ)cj + γk(δ)e
(0−d) − βk(δ)

〉
H

≥ 0,

∀ t ∈ [0, tf ], e ∈ E , k = 1, . . . , ni

}
,

(6.19)

where αik(δ) ∈ Cnψ×nφ , γk(δ) ∈ Cnψ×(d+1)nu , and βk(δ) ∈ Cnψ are such that

Ψ#(t)αjk(δ) =
d∑
l=0

(
ak,nul+j(t, δ)Φ

(l)(t)
)#

,

Re
(
Ψ#(t)γk(δ)

)
= ak(t, δ),

Re
(
Ψ#(t)βk(δ)

)
= bk(t, δ),

(6.20)

ak,l(t, δ), ak(t, δ), and bk(t, δ) being the element of A(t, δ) located at the k-th row
and l-th column, the k-th row ofA(t, δ), and the k-th element of b(t, δ), respectively.
The superscript # indicates the complex adjoint operator.

The inclusion in Iφ(δ) requires the enforcement of the constraints on the dense sets
[0, tf ] and E . Thanks to the fundamental theory of positive polynomials postulated
by Nesterov [Nesterov, 2000] and to few other basic properties of convex sets, the
inclusion can be recast into a set of linear matrix inequalities (LMI). In what
follows, we show that this reformulation has the effect of canceling the density of
the problem without the need for other trade-offs than Assumptions 1-3. Specifically,
the enforcement of the constraints is not relaxed on subsets of [0, tf ] and E .

Let Ξ(t) =
[
ξ1(t), . . . , ξnξ(t)

]T be a polynomial basis such that its corresponding
squared functional system Ξ2(t) = Ξ(t)Ξ#(t) is covered by Ψ(t), i.e., the linear
operator ΛH : Cnψ → Cnξ×nξ exists such that

ΛH (Ψ(t)) = Ξ(t)Ξ#(t), (6.21)

and let the adjoint operator Λ∗H : Cnξ×nξ → Cnψ be defined as

〈Λ∗H (Y ) ,y〉H = 〈Y ,ΛH (y)〉H , ∀ Y ∈ Cnξ×nξ , y ∈ Cnψ . (6.22)

Let
{
e

(0−d)
1 , e

(0−d)
2 , . . . , e

(0−d)
ne

}
be the V-representation, i.e., the ne vertexes of

the polyhedron, of the set delimited by
{
c ∈ Rnu(d+1) : h (c) ≤ 0

}
.
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Lemma 2. The inclusion in the set

Iφ,ξ(δ) =
{
q(t) ∈ P (Φ(t)) :

q(t) = Re
(

[c1, . . . , cnu ]# Φ(t)
)
,

∃ Y kl(δ) � 0,
nu∑
j=1

αjk(δ)cj + γk(δ)e
(0−d)
l − βk(δ) = Λ∗H (Y kl(δ)) ,

k = 1, . . . , ni, l = 1, . . . , ne

}
.

(6.23)

implies the inclusion in Iφ(δ).

Proof. Let pkl =
∑nu

j=1αjk(δ)cj + γk(δ)e
(0−d)
l − βk. According to Theorem 18.7

in [Nesterov, 2000], the conditions expressed in Equation (6.23) guarantee that the
polynomial pkl(t) = 〈pkl,Ψ(t)〉H is nonnegative for any t ∈ [0, tf ]. In fact:

pkl(t) = 〈pkl,Ψ(t)〉H = 〈Λ∗H (Y kl) ,Ψ(t)〉H
= 〈Y kl,ΛH (Ψ(t))〉H =

〈
Y kl,Ξ(t)Ξ#(t)

〉
H

= Ξ#(t)Y klΞ(t)︸ ︷︷ ︸
≥0 given Y kl�0

≥ 0.
(6.24)

As such, the constraints are satisfied continuously in time for each vertex of the
tracking error set,

{
e

(0−d)
1 , e

(0−d)
2 , . . . , e

(0−d)
ne

}
, i.e.,

A(t, δ)
(
q(0−d) + e

(0−d)
l

)
− b(t, δ) =


p1l(t)
...

pnil(t)

 ≥ 0,

l = 1, . . . , ne,∀t ∈ [0, tf ].

(6.25)

Because I(t, δ) and the tracking error set are polytopes, the enforcement of the
path constraints at the vertexes

{
e

(0−d)
1 , e

(0−d)
2 , . . . , e

(0−d)
ne

}
is necessary and sufficient

condition for the satisfaction in all the interior points of E . In fact, according
to the theory of convex polytopic sets, for every e(t) ∈ E , a set of coefficients{
λj(t) ≥ 0, j = 1, . . . , ne :

∑ne
j=1 λj(t) = 1 ∀t ∈ [0, tf ]

}
exists such that e(0−d)(t) =
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∑ne
j=1 λj(t)e

(0−d)
j . This yields:

A
(
q(0−d) + e(0−d)

)
= A

(
q(0−d) +

ne∑
j=1

λje
(0−d)
j

)
=

=
ne∑
j=1

λjA
(
q(0−d) + e

(0−d)
j

)
︸ ︷︷ ︸

≥b

≥ b
ne∑
j=1

λj = b
(6.26)

where the dependencies on t and δ were omitted for the sake of conciseness.

The inner semi-infinite approximation of Problem (6.12) is thus:

q∗(t) = arg

[
min

q(t)∈P(Φ(t))

(
max
δ∈∆
J̃
(
q(0−d), δ

))]
s.t.

q(t) ∈

[
B ∩

(⋂
δ∈∆

Iφ,ξ(δ)

)]
.

(6.27)

The inclusion in the set Iφ,ξ(δ) does not require that constraints are satisfied for
all elements of [0, tf ] and E , but it only requires the existence of nine Hermitian
semi-positive definite matrices. Thus, it consists of a set of LMI and, as such, it is a
convex feasibility problem. Nowadays, solving LMI is achieved by means of efficient
numerical techniques in polynomial time.

6.3.2 Discrete formulation

Solving the min-max optimization Problem (6.27) is challenging because the uncer-
tain sets are generally dense and unbounded. When the enforcement of the path
constraints does not strictly need to be guaranteed for all possible outcomes of the
uncertain set, Problem (6.27) can be recast into the more relaxed chance-constrained
formulation by replacing the set ∆ with a subset ∆ε such that Pr∆(δ ∈ ∆ε) ≥ 1− ε.
Here, ε ∈ (0, 1] and ∆ε are the risk parameter and a subset of ∆ whose probability
is no smaller than 1− ε, respectively. The risk parameter represents the hazard that
the user is willing to run. The higher the risk, the better the performance in terms
of cost function.

The scenario approach is a general-purpose methodology aimed at solving chance-
constrained problems. Specifically, given the convexity of the problem with respect
to the design variables, it provides a guarantee that the solution obtained by enforc-
ing the constraints for only a prescribed finite number of independent outcomes of
the uncertain quantity is feasible on a prescribed portion of the uncertain set. This
result was postulated by the seminal work of Campi et al. in [Campi et al., 2009].

Another appealing property of the scenario approach is that it does not require a
probabilistic characterization of the stochastic sources of the problem. In fact, even
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though it assumes the existence of a probability distribution Pr∆, it does not re-
quire its knowledge but only the realization of a certain number of samples. For this
reason, the scenario approach facilitates the inclusion of uncertainty sources of arbi-
trary nature in the dynamics, e.g., non-Gaussian random variables, non-stationary
stochastic processes, and random fields.

The results of Lemma 2 are now used in conjunction with the scenario approach
to achieve the finite dimensional formulation of Problem (6.27).

Theorem 2. Let β ∈ (0, 1] and ε ∈ (0, 1] be the user-defined confidence and the
risk parameters, respectively. Let δ1, δ2, . . . , δns be a set of ns independent random
samples of ∆ distributed according to Pr∆(δ) and such that

ns ≥
2

ε

[
1 + 2 (nunφ − nx) + ln

1

β

]
. (6.28)

Then, with probability 1− β, the solution of the finite-dimensional problem

q∗(t) = arg

[
min

q(t)∈P(Φ(t))

(
max

δ={δ1,...,δs}
J̃
(
q(0−d), δ

))]
s.t.

q(t) ∈

[
B ∩

(
ns⋂
j=1

Iφ,ξ(δj)

)]
.

(6.29)

is guaranteed to be feasible on a subset ∆ε ⊆ ∆ such that Pr∆ (δ ∈ ∆ε) ≥ 1− ε.
Remark 2. The confidence parameter, β, appears as the argument of a logarithm in
Equation (6.28). When β approaches 0 its logarithm decreases slowly. For practical
purposes, the confidence parameter can be chosen small enough to be neglected,
e.g., β = 10−7 ⇒ − ln β ' 16.

Proof. The demonstration is carried out by firstly reformulating Problem (6.29)
according to the formalism exploited in [Formentin et al., 2014], i.e.,

y∗ = arg

[
min

y∈Rny ;ζ1,...,ζns∈Z

(
jTy

)]
s.t. :

ρ(y, ζm, δm) ≤ 0 δm ∼ Pr∆(δm)

m = 1, . . . , ns,

(6.30)

with
ns ≥

2

ε

(
ny + ln

1

β

)
, (6.31)

where ρ(y, δ) ≤ 0, ζm ∈ Z, and j ∈ Rny are a generic constraint convex with
respect to y, a set of so-called certificate variables and a constant vector, respectively.
According to Theorem 1 in [Formentin et al., 2014] and Proposition 2.1 in [Calafiore,
2009], with probability 1− β, the solution y∗ of Problem (6.30) satisfies

∀ δ ∈ ∆ε ⊆ ∆ ∃ ζ ∈ Z s.t. ρ(y∗, ζ, δ) ≤ 0, (6.32)
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where ∆ε is a subset of ∆ such that Pr∆ (δ ∈ ∆ε) ≥ 1−ε. Then, the results of Lemma
2 are exploited yielding the finite-dimensional formulation (Problem (6.29)).

Let Q = [c1, . . . , cnu ]T . In order to remove the constraints which impose the
inclusion in B in Problem (6.27), the basis Φ(t) is projected into a self-boundary-
compliant subspace. For this purpose, Φ(t) is partitioned into nφ−nx independent1

and nx dependent elements2 Φ(t) =

[
Φind(t)
Φdep(t)

]
. An analogous partition is per-

formed for the corresponding columns ofQ, which is rearranged asQ =
[
Qind,Qdep

]
.

The discretized flat output becomes

q(t) = q(t,Qind) = [Re (Qind) , Im (Qind)] Φq(t) + Φ0(t) (6.33)

where
Φq(t) =

[
Re (Φind(t))
Im (Φind(t))

]
−BindB

−1
dep

[
Re (Φdep(t))
Im (Φdep(t))

]
,

Φ0(t) =
[
q(0|d)(0), q(0|d)(tf )

]
B−1
dep

[
Re (Φdep(t))
Im (Φdep(t))

]
,

B(·) =

 Re
(
Φ

(0|d)
(·) (0)

)
, Re

(
Φ

(0|d)
(·) (tf )

)
Im
(
Φ

(0|d)
(·) (0)

)
, Im

(
Φ

(0|d)
(·) (tf )

)  ;

(6.34)

here, the notation a(0|d) =
[
a, . . . ,a(d)

]
is exploited. In practice, given any Qind ∈

Cnu×(nφ−nx), the nx dependent complex coefficients are imposed such that boundary
conditions are satisfied.

Problem (6.29) is recast into

[Q∗ind, J
∗] = arg

[
min

Qind,J,Y
(1)
1,1,...,Y

(ns)
nine

J

]
s.t. :

J̃ (q(t,Qind), δm) ≤ J,

Y
(m)
kl � 0,
nu∑
j=1

αjk(δm)cj(Qind) + γk(δm)e
(0−d)
l − βk(δm) = Λ∗H

(
Y

(m)
kl

)
,

k = 1, . . . , ni, l = 1, . . . , ne, m = 1, . . . , ns,

(6.35)

where the slack variable J is introduced to have a linear objective function as in
Problem (6.30), and q(t,Qind) is given by Equation (6.33), so that the inclusion in
B is guaranteed. Matrices Y (m)

kl serve as certificate variables.
Problem (6.35) has 1 + 2 (nunφ − nx) design variables. The assumption in Equa-
1We note that only nx dependent elements are required to cope with the 2nx boundary condi-

tions because Q is a complex-valued matrix.
2The choice of dependent functions is arbitrary provided that Bdep as defined in Equation (6.34)

is not singular.



126 CHAPTER 6. ROBUST MANEUVER PLANNING

Figure 6.4: Notation of the car steering example.

tion (6.28) is thus equivalent to the condition in Equation (6.31). This latter can
be invoked to solve Problem (6.35), i.e., the enforcement on the constraints on ∆ε

is replaced by the enforcement on the only ns independent samples of ∆, such that
ns satisfies Equation (6.28).

Remark 3. Problem (6.29) requires the enforcement of nsneni LMI of nξ × nξ ma-
trices. In Section 6.4, we will show that this number can be drastically reduced
a priori in several problems. Specifically, if the feasible domain is stationary or if
the matrix A(t, δ) is deterministic, the number of LMI can be reduced by a factor
ranging between ne and nens.

6.4 Step-by-step implementation

The proposed methodology is now illustrated by means of a simple example in-
volving the steering maneuver of a car. It serves as a guidance for the practical
implementation of the methodology, so that all the necessary steps are detailed.
The possibility to reduce a priori the number of inequality constraints of Problem
(6.29) is investigated as well.

Consider the steering maneuver of the car illustrated in Figure 6.4. The dynamics
of the car is approximated by means of a bicycle model. The states x = [x, y, v, θ]T

are the position of the center of the rear axis, the norm of the velocity, and the
angle between the x̂ axis and the longitudinal axis of the car. The control variables
u = [u1, u2]T are the force transmitted by the rear wheels on the ground and the
steering angle, respectively. The dynamics equations assume perfect rolling of the
wheels.
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Table 6.1: Steering a car. Simulation parameters.

Mass of the car, M 1000 kg
Length of the car, L 3 m
Terminal states, xf

[
1500m, 500m, 0, 0m s−1

]T
Maximum power, Wmax 100 kW
Maximum traction force, u1,max 5.55 kN
Atmospheric density, ρ 1.225 kg m−3

Cross section, S 1.5 m2

Maneuvering time 60 s
Targeted trajectory, robj

(
25t, 500 cos(πt/tf )

)
m

Probability distribution of Cd, PCd
(Cd) 0.5 [1 + tanh(50(Cd − 0.3))]

The formulation of the robust maneuver planning problem is:

x∗ = arg

[
min
x

√
1

tf

∫ tf

0

(
(x− xobj)2 + (y − yobj)2) dt]

∀ t ∈ [0, tf ], δ ∈ ∆ ∃ u1(t, δ), u2(t, δ) s.t.

d
dt


x
y
θ
v

 =


v cos θ
v sin θ
v
L

tanu2
1
M

(u1 − fd(v, δ))

 ,

|u1v| ≤ Wmax, |u1| ≤ u1,max, |u2| ≤ 0.5π,

x(0) = 0, x(tf ) = xf ,

(6.36)

where fd(v, δ), M , L, and Wmax are the drag force, the mass and the length of the
car, and the maximum available power, respectively. The drag force is given by
fd(v, δ) = 0.5ρSCd(δ)v

2 where ρ, S, and Cd are the atmospheric density, the cross
section, and the drag coefficient, respectively. This latter is uncertain and provided
with a known probability distribution PrCd(Cd).

The objective function, J , is aimed at minimizing the distance between a desired
trajectory, robj = [xobj, yobj]

T , and the robust one.
Table 6.1 summarizes the numerical values of the parameters.

6.4.1 Flat formulation

System (6.36) is differentially flat and it admits the position of the center of the rear
axis as flat outputs, i.e., q = [x, y]T , as discussed in the catalog of differentially flat
system proposed by Martin et al. in [Martin et al., 2003]. In more general applica-
tions, proving that a system is differentially flat can be a difficult task. Necessary
and sufficient condition for differential flatness are proposed by Antritter et al. in
[Antritter and Lévine, 2010].
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The mapping between the flat outputs and the state and control variables is

x =


q1

q2√
q̇2

1 + q̇2
2

q̇2
|q̇2| cos−1 q̇1√

q̇2
1+q̇2

2


u =


M

(
q̇1q̈2+q̇2q̈1√

q̇2
1+q̇2

2

)
+ 0.5ρSCd(δ) (q̇2

1 + q̇2
2)

tan−1 L q̈1q̇2−q̈2q̇1
(q̇2

1+q̇2
2)

3/2


(6.37)

By means of this mapping, the path constraints are recast into∣∣∣M (q̇1q̈2 + q̇2q̈1) + 0.5ρSCd(δ)
(
q̇2

1 + q̇2
2

)3/2
∣∣∣ ≤ Wmax∣∣∣∣∣M

(
q̇1q̈2 + q̇2q̈1√

q̇2
1 + q̇2

2

)
+ 0.5ρSCd(δ)

(
q̇2

1 + q̇2
2

)∣∣∣∣∣ ≤ u1,max∣∣∣∣∣L q̈1q̇2 − q̈2q̇1

(q̇2
1 + q̇2

2)
3/2

∣∣∣∣∣ ≤ ∞
(6.38)

Because it is assumed that there is no side slip of the rear wheel, the mapping is
deterministic and the conditions for Theorem 1 are satisfied.

Tracking error constraints are now included. We note that all the constraints are
expressed in terms of q̇ and q̈ only. For this reason, tracking error constraints on q
would not affect the solution of the problem. In this example, we want the solution
to be feasible for all the e(1) ≤ [1, 1]T m s−1.

6.4.2 Choice of the polynomial basis

The polynomial expansion of the flat outputs is performed by means of a trigono-
metric polynomial basis Φ(t) such that

φk(t) = exp

(
π
t

tf
(k − 1)i

)
, k = 1, . . . , nφ, i =

√
−1, (6.39)

Because the path constraints do not have explicit dependency on time, it holds that
Ψ(t) ≡ Φ(t).

As detailed in [Nesterov, 2000], all the positive polynomials in the basis Φ(t), t ∈
[0, 2tf ] admit a sum of square representation in the same basis, i.e., Ξ(t) ≡ Φ(t). By



6.4 Step-by-step implementation 129

noting that ξjξ#
k = φj−k, the operators ΛH and Λ∗H are straightforwardly deduced:

ΛH (p) =
1

2

nφ∑
j=1

(
T jpj + T T

j p̄j
)

Λ∗H (Y ) =
[
〈Y ,T 1〉C , . . . ,

〈
Y ,T nφ

〉
C

]T (6.40)

where p ∈ Cnφ , Y ∈ Cnφ×nφ . The matrices T j ∈ Rnφ×nφ are such that

T 1 = I, Tj,(k,l) = 2 kron(k − l, j − 1), j = 2, . . . , nφ. (6.41)

here kron(·, ·) denotes the Kronecker’s delta operator.
In this work we chose nφ = 11.

6.4.3 Discretization of the path constraints

We start by generating ns independent samples of Cd according to its probability
distribution (see Table 6.1). By choosing the risk parameter ε = 0.1 and the con-
fidence parameter small enough to be considered zero in practice, β = 10−6, the
minimum number of samples according to Equation (6.28) is ns = 937.

The inner approximation of the feasible set of each outcome of the uncertain
variable is generated by means of the methodology proposed by Faiz et al. which
is aimed at maximizing the volume of the polytope. Here, ni = 24 half-spaces
were exploited. Figure 6.5 illustrates the obtained feasible sets associated with the
minimum and maximum drag coefficients among the samples.

Finally, by noting that

Φ(l)(t) = diag
(
π

tf
i[0, 1, . . . , nφ − 1]

)l
Φ(t),

the matrices defined in Equation (6.20) are

αjk (δm) =
d∑
l=0

ak,nul+j(δ)

[
diag

(
π

tf
i[0, 1, . . . , nφ − 1]

)l]#

,

γk (δm) = [1, 0, 0, . . . , 0]Tak(δ),

βk (δm) = [1, 0, 0, . . . , 0]T bk(δ).

(6.42)

6.4.4 Solution of the problem

Before proceeding with the numerical solution of the problem, few considerations
are proposed in order to reduce the number of constraints that need to be enforced:

• The feasible set of each outcome is stationary, i.e., [A, b](t, δ) = [A, b](δ), ∀ t ∈
[0, tf ], δ ∈ ∆. For this reason, the outward normal vector to the half-spaces
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Figure 6.5: Steering a car. Inner approximation of the feasible set. The dark and
light grey regions are related to the maximum and minimum samples of the drag
coefficient, respectively. The dashed lines are the hidden edges of the light-grey
regions.

defining the feasible set, nk, k = 1, . . . , ni, does not change in time. In this
case, every constraint needs only to be enforced for the vertex e(0−d)

l such that
e

(0−d)
l = max

e
(0−d)
j ,j=1,...,ne

(
e

(0−d)
j · nk

)
. The number of constraints is thus

reduced of a factor ne.

• Because the constraints are linear in the drag coefficient, the intersection of the
feasible sets of all the samples is equal to the intersection of the ones delimited
by the extreme values minδ∈{δ1,...,δns}Cd(δ) and maxδ∈{δ1,...,δns}Cd(δ). Their
intersection yields the feasible set for the chance constrained maneuver. The
number of LMI to be enforced is thus further reduced of a factor 0.5ns.

Thanks to the above considerations, only 2ni = 48 LMI and the boundary con-
ditions need to be enforced. CVX, a package for specifying and solving convex
programs [Grant and Boyd, 2014, 2008], is exploited to solve the optimization prob-
lem. Figure 6.6(a) illustrates the obtained solution in the phase space of the flat
outputs. The dark-gray region delimits the tolerated tracking error. If the real state
vector happens to be in that region the trajectory remains still feasible. More severe
requirements on the tracking error would allow q∗(t) to be further pushed toward
the boundaries this resulting in potential improvements of the cost function at the
price of a more accurate on-line tracking.

The close up zoom of Figure 6.6(b) emphasizes that the path constraints are
enforced with continuity in time. The trajectory of the rear wheel of the car is
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illustrated in Figure 6.6(c).
Figure 6.7(a) illustrates the performance index, J̃ , obtained by sweeping the risk

parameter. By reducing ε, the number of required samples increases, this resulting
into a reduction of the size of the feasible set. In fact, the more samples, the higher
the probability to obtain samples in the tails of the distribution, as shown by the
min-max values of the sampled Cd. The analysis of the performance-risk diagram
allows to spot a good trade-off between the gain obtained by accepting larger risks
and the risk itself. For example, little gain is obtained by choosing ε > 0.2 in this
example. The trajectories corresponding to three different levels of ε are shown in
Figure 6.7(b). The more relaxed feasible domain allows higher absolute values of
the accelerations in the initial and terminal phase of the maneuver, yielding the
increase in the maneuverability of the car and the consequent improvement of the
cost function.

6.5 Orbital rendez-vous using differential drag

We consider the maneuver orbital rendez-vous via differential drag discussed in
Chapter 5. The maneuver is accomplished in three steps, namely drag estimation,
maneuver planning, and on-line compensation, as illustrated in Figure 5.2.

Because the aim of this section is to point out the benefits of the robust deter-
ministic trajectory, attitude dynamics and constraints are removed from the planner
for the sake of simplicity, so that x =

[
∆a,∆P 1,∆P 2,∆L,

]
. Differential drag is

now the controlled variable, u = ∆fdrag. Equations (5.9) and the saturation of the
differential drag are thus the only constraints for the planner.

Uncertainty in the differential drag bounds is considered, i.e., ∆f
(max)
drag (t, δ) =

fdrag,D (t, α1, δ) − fdrag,C (t, δ) and ∆f
(min)
drag (t, δ) = fdrag,D (t, α2, δ) − fdrag,C (t, δ),

where α1 and α2 are the pitch angles corresponding to the minimum and maxi-
mum drag configurations of the deputy, respectively. We note that these bounds
should also depend on the position of the chief and on the state x. Because the for-
mer is provided by the propagator presented in Chapter 4 and small displacements
are assumed, we neglect this dependency.

According to these assumptions, the problem becomes:

x∗ = arg

[
min

x(t),t∈[0,tf ]
J (x, uδ, tf )

]
s.t.

∀ t ∈ [0, tf ], δ ∈ ∆ ∃ uδ = u(t, δ) s.t.

ẋ = A (t)x+B (t)uδ

∆f
(min)
drag (t, δ) ≤ uδ ≤ ∆f

(max)
drag (t, δ)

x (0) = x0,

x (tf ) = 0.

(6.43)

where A(t) = A
(
Eeq,C(t),f drag,C(t)

)
and B(t) = B

(
Eeq,C(t),f drag,C(t)

)
and the
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Figure 6.6: Steering a car. Solution of the chance constrained optimization problem.
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evolution of the vector Eeq,C is modeled with the time-explicit solution developed in
Chapter 4.

6.5.1 Flat formulation

Linear time-varying systems are differentially flat if and only if they are uniformly
controllable. According to [Silverman, 1966], the couple (A(t),B(t)) is uniformly
controllable if the controllable matrix K(t) has full rank in the interval [0, tf ]. For
a single-input system it holds

K(t) = [k0(t),k1(t), . . . ,knx(t)] , (6.44)

where

k0(t) = B(t), kj(t) = k̇j−1(t)−A(t)kj−1 for j = 1, . . . , nx. (6.45)

The canonical control form yields the mappings X and U , i.e.,

x =X
(
q(0−(nx−1))

)
= P (t)q(0−(nx−1))

u =U
(
q(0−(nx−1))

)
= qnx +

nx−1∑
j=0

aj(t)q
(j)

(6.46)

where aj(t) are the instantaneous coefficients of the canonical form of the couple
(A(t),B(t)) and P (t) = K̂(t) K−1(t) defines the instantaneous transformation in
canonical form

Â(t) = P (t)A(t)P−1(t) + Ṗ (t)P (t), B̂ = P (t)B(t) (6.47)

with

Â(t) =


0 1 0 · · · 0
0 0 1 · · · 0

... . . . ...
0 0 · · · 0 1

−a0(t) −a1(t) −a2(t) · · · −anx−1(t)

 , B̂ =


0
0
...
0
1

 . (6.48)

The conditions of Theorem 1 are satisfied if the matrix P (t) is deterministic.
Although this requirement does not necessary preclude any uncertainty in A(t) and
B(t), we have not yet been able to obtain an analytical expression for P (t). For
this reason, we have to assume that A(t) and B(t) are deterministic. Specifically,
this means that we cannot introduce the uncertainty in the dynamics of the chief.
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6.5.2 Choice of the polynomial basis

The same polynomial basis of the previous example is exploited both to expand the
flat outputs and the coefficients aj(t). By noting that φkφl = φk+l−1, the basis Ψ(t)
becomes

Ψ =

[
Φ(t)

exp
(
π t
tf
nφi
)

Φ(t)

]
. (6.49)

6.5.3 Discretization of the path constraints

According to Equation (6.46), the path constraints are:

∆f
(min)
drag (t, δl) ≤ q(4) +

3∑
j=0

aj(t)q
(j) ≤ ∆f

(max)
drag (t, δl), l = 1, . . . , ns. (6.50)

The samples ∆fmindrag(t, δl) and ∆fmaxdrag (t, δl), l = 1, . . . , ns, are generated by means of
the medium-period predictor discussed in Section 3.3.1. In this way, the samples are
provided both with short-period variations due to the posterior distribution of the
particle filter and with medium-period variations due to the stochastic evolution of
the space weather proxies. The samples of ∆fmindrag and ∆fmaxdrag are expanded on the
basis Ψ(t).

Because the coefficients aj(t) are deterministic, it is possible to replace all the
samples by only two inner barriers ∆f

(MIN)
drag (t) and ∆f

(MAX)
drag (t) such that

∆f
(MIN)
drag (t) ≥ ∆f

(min)
drag (t, δl)

∆f
(MAX)
drag (t) ≤ ∆f

(max)
drag (t, δl)

l = 1, . . . , ns. (6.51)

The theory of positive polynomials can be used to compute these barriers.
Based on these considerations, only two LMI have to be enforced in the optimiza-

tion problem, i.e.,

q(4) +
3∑
j=0

aj(t)q
(j) ≤ ∆f

(MAX)
drag (t)

q(4) +
3∑
j=0

aj(t)q
(j) ≥ ∆f

(MIN)
drag (t)

(6.52)

6.5.4 Results

The main purpose of these simulations is to assess the benefit of using the robust
reference trajectory against a non-robust one. For this reason, a MC analysis is
carried out as follows:

• a single propagation is performed from t = 0 to t = tobs. The parameters of
the particle filter are trained;



136 CHAPTER 6. ROBUST MANEUVER PLANNING

Table 6.2: Initial space weather proxies.

Initial daily solar activity 150 sfu
Initial 81-day averaged solar activity 130 sfu
Initial geomagnetic activity, Ap 27
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Figure 6.8: Differential drag bounds. The colored region is the envelop of the
samples required by the scenario approach. Solid red lines are the worst case of
these samples.

• a nominal and a robust reference trajectories are generated. The nominal one
is generated without the scenario approach by using the mean prediction of
the particle filter. The robust trajectory is computed by setting the risk and
confidence parameters of the scenario approach to ε = 0.1, and β = 10−3,
respectively;

• starting from t = tobs, 1000 realizations of the stochastic processes related to
the space weather proxies are generated by exploiting the conditional proba-
bility of the Gaussian cupola defined in Equation (2.11) given the values of the
proxies for t < tobs. The on-line propagation is performed for each realization.

The simulation parameters of Chapter 5 are exploited (see Table 5.1). Only the
space weather proxies are changed: their values at the beginning of the simulation
are listed in Table 6.2.

The objective function is the amplitude of the oscillations of the relative trajec-
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Figure 6.9: Scheduled reference trajectory in curvilinear coordinates.

tory, i.e.,

J =
1

tf

∫ tf

0

(ṙD − ṙC)2 dt (6.53)

The blue curve in Figure 6.8 illustrates the bounds imposed to the differential
drag by the mean drag estimated by the particle filter. The region shaded in light
red is the envelop of the samples required by the scenario approach generated by the
medium-period predictor. The inner barriers, ∆f

(MIN)
drag and ∆f

(MAX)
drag , are outlined

by the red solid lines. These bounds become closer and closer as time passes. This is
due to the fact that variations of the space weather proxies yield much lower values
of the atmospheric density at the end of the maneuver compared to the initial value
(which is used to fit the deterministic component of the drag model). In addition,
the robust bounds are also narrower than the nominal ones at the very beginning
because of the posterior distribution of the parameters of the particle filter.

The robust and nominal reference paths are illustrated in Figure 6.9. As expected,
because of the larger control bounds, the nominal solution is ‘smoother’, i.e., it is
more optimal than the robust one. Nonetheless, the solution obtained in the nominal
case is infeasible for the bounds imposed in the robust case. This is emphasized in
Figure 6.10 (bottom), where the robust bounds are superimposed to the differential
drag required for the realization of the nominal solution. Most violation of the
bounds occurs during the final phase of the maneuver.

The satisfaction of the rendez-vous conditions for the two cases is plotted in
Figure 6.11. The confidence regions in the robust case are smaller and closer to the
origin than in the nominal case.

The probability distribution of the root mean square distance between the planned
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Figure 6.10: Planned differential drag. The red and blue curves depict the robust
and nominal feasible regions. The black curve in the first and second plots depicts
the differential drag required to accomplish the robust and nominal trajectory, re-
spectively. The third plot superimposes the robust bounds to the planned differential
drag in the nominal case.
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Figure 6.11: Satisfaction of the rendez-vous conditions. From the lighter to the
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regions refer to the robust trajectory. The blue regions are related to the nominal
one.
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Figure 6.12: Probability density distribution of the root mean square distance be-
tween planned and on-line trajectory. Red and blue are related to the tracking of
the robust and of the nominal reference path, respectively.
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ỹ [km]

x̃
[k
m
]

−65 −50 −25 0 5
−0.2

−0.1

0

0.1

0.15
Planned

(a) Robust reference path.
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Figure 6.13: Comparison between the reference trajectories and the Monte Carlo
samples. The colored regions indicate 99% confidence bounds on the trajectory of
the samples. The tracking of the reference path is better with the robust reference
path.
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and the real curvilinear states is illustrated in Figure 6.12. The robust solution per-
forms systematically better than the nominal one. In addition, not only the peaks of
the distributions in the robust case are shifted to the left, but they are also higher,
i.e., with a narrower distribution.

The enhanced performance of the tracking in the robust case can also be appre-
ciated in Figure 6.13, where 99% percentiles of the on-line trajectories are superim-
posed to the reference path. At the end of the maneuver, these bounds are much
closer to the origin when using the robust reference trajectory.

Appendix C provides a statistical validation of the controller and it shows that
the method performs well for a broad set of initial relative states.

6.6 Conclusion

This chapter introduces the novel concept of robust deterministic trajectory for ma-
neuver planning under uncertainties and proposes a numerical method to compute
this trajectory based on a limited number of assumptions. The feasibility of the
solution is guaranteed both continuously in time and for a desired portion of the
uncertain set. The theory of positive polynomials and the scenario approach were
exploited for these purposes, respectively. Targeting a practical exploitation of the
trajectory, the feasibility of the solution can be further extended for a desired set of
tracking errors.

Eventually, the initial infinite-dimensional NLP is recast into a LMI problem.
Although the number of matrix inequalities could be large enough to be considered
as a limitation of the methodology, we showed in two applications that this number
can be drastically reduced by means of simple considerations on the nature of the
problem at hand.

The methodology was implemented to accomplish differential-drag based rendez-
vous and integrates the contributions of Chapters 3 and 4. The combination of these
contributions yields a remarkable enhancement of the accuracy of differential-drag-
based maneuvers.
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Conclusions

This thesis is an attempt to combine uncertainty quantification, analytical propa-
gation, and optimal control of satellite trajectories in the atmosphere to effectively
and robustly exploit the aerodynamic force. Specifically, by means of a probabilistic
estimation and prediction of the aerodynamic force and an efficient and consistent
propagation of LEO orbits, a robust reference trajectory for the realization of rela-
tive maneuvers between two satellites in a realistic environment can be generated.
The main outcome of this work is presented schematically in Figure 1.

Contributions

The objective of the thesis was formulated using three fundamental questions in the
introduction. Addressing them led to the following contributions:

How can we characterize the uncertainty sources affecting the evolution
of satellite orbits in the atmosphere by using physical considerations and
available experimental data?

We proposed a probabilistic characterization of the dominant sources of uncertainty
affecting drag modeling. Mathematical statistics methods, i.e., maximum entropy
and MLE, in conjunction with mechanical modeling considerations were used to
infer the probabilistic characterization of these uncertainties from experimental data
and atmospheric density models. This characterization facilitates the application of
uncertainty propagation and sensitivity analysis methods, which, in turn, allows us

Uncertainty quantification

Robust exploitation
of drag

Propagation

Optimal control

characterization sources
particle filter

Direct transcription of propellantless maneuvers
Robust maneuver planning

time-explicit EoM

Figure 1: Contributions of the thesis.
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to gain insight into the impact that these uncertainties have on absolute and relative
satellite dynamics. Based on the same uncertainty characterization, a particle filter
for the recursive estimation and prediction of the aerodynamic force was developed.
The filter provides accurate estimations even when only GPS data are available, i.e.,
when accelerometers aboard the satellite are not available.

How can we efficiently propagate the trajectory of a satellite in the at-
mosphere?

We developed an analytical propagator for the absolute and relative motion of LEO
satellites. The model incorporates the two dominant perturbations, namely the at-
mospheric drag and the Earth’s oblateness. Assuming constant atmospheric density
and near-circular orbits, a time-explicit solution of the governing equations of motion
was first obtained. Without further assumptions, a closed-form solution for the rela-
tive dynamics was also achieved. The resulting model is suitable to be incorporated
in on-board propagators for short-term orbit predictions.

How can we exploit the aerodynamic force for accomplishing complex
propellantless maneuvers?

We established a novel methodology for the realization of differential-drag-based
maneuvers. The core of the control loop is the off-line planning of a so-called ro-
bust deterministic trajectory which is conceived to be “easily” tracked by an on-line
controller. For this purpose, the problem is formulated as an infinite-dimensional
nonlinear programming problem. We proposed a discretization of this problem that
guarantees the feasibility of the trajectory continuously in time and over an arbitrary
user-defined portion of the uncertain set.

Perspectives

This thesis paves the way for both application-oriented and methodological perspec-
tives.

Potential applications of the methodology are:

Uncertainty quantification: the methodology for the characterization of the un-
certainty sources can be extended to other perturbations, e.g., SRP and ther-
mospheric winds, and could therefore be used in other missions, including
interplanetary transfer.

Orbital propagation: more advanced atmospheric models can be included in the
analytical propagator. We already obtained some results in this direction, i.e.,
an analytical solution for the case of exponential density [Martinusi et al.,
2014]. An analytical solution for the “harmonic” density model used by the
particle filter is currently under investigation.
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Optimal control: the methodology developed in Chapter 6 can be applied to other
problems where uncertainty plays a major role, i.e., whenever the trajectory
is highly sensitive to the uncertainty sources. It is no surprise that most
problems in astrodynamics fall into this category, e.g., interplanetary transfer
and asteroid deflection.

Potential improvements of the methodology are:

Uncertainty quantification: efficient techniques can be exploited to speed up
the uncertainty propagation step. They include both smart randomized ap-
proaches, e.g., Markov chain Monte Carlo, and stochastic expansion methods,
e.g., polynomial chaos expansion. In our view, because of the great number of
uncertainty sources we identified, the former techniques are more suitable for
our problem since they are less affected by the curse of dimensionality than the
latter techniques. In addition, the use of Gaussian process surrogate models
could be investigated to obtain a rigorous probabilistic description of the total
effect sensitivity indexes [Marrel et al., 2009].

Orbital propagation: the accuracy of the analytical propagator can be enhanced
by developing a pseudo-contact transformation that accommodates the non-
conservative effects of the drag. For this purpose, the use of the Lie transform
method could be investigated.

Optimal control: the assumptions in the definition of the robust deterministic tra-
jectory can be relaxed to accommodate uncertainties in non-holonomic con-
straints into the maneuver planning. The inclusion of non-convex path con-
straints could also be a major improvement of the methodology. This could be
accomplished, for example, by means of fictitious dynamical variables whose
introduction “convexifies” the path constraints. Finally, the possibility to op-
timize the maneuvering time of the robust deterministic trajectory can be
investigated, for example, by means of the geometrical approach proposed in
[Loock et al., 2014].
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Appendix A

Maximum Entropy: a Numerical
Approach

In this appendix, a numerical implementation of the principle based on piecewise
linear shape functions is carried out. The support IX = [xmin, xmax] is divided into
M uniform intervals of width ∆x = xmax−xmin

M
with nodes x0, x1, ..., xM

1. The generic
PDF is constructed using linear shape functions ϕi(x)

pX(x) =
M∑
j=0

ϕj(x) ϑj (A.1)

where ϑj is non-negative and represents the evaluation of the PDF at node xj,
whereas ϕj is such that

ϕ0(x) =

{
x1−x
∆x

if x0 ≤ x < x1

0 otherwise

ϕj(x) =


x−xj−1

∆x
if xj−1 ≤ x < xj

xj+1−x
∆x

if xj ≤ x < xj+1

0 otherwise

for j = 1, ...,M − 1 (A.2)

ϕM(x) =

{ x−xM−1

∆x
if xM−1 ≤ x ≤ xM

0 otherwise

According to Equation 2.4, the entropy of the synthesized PDF is:

SX = −∆x2

4

M∑
j=1

SX,j (A.3)

1If either xmin or xmax is unbounded, a finite xmin or xmax should be selected such the PDF
value at this modified bound is practically zero.
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where:

SX,j =


0 if ϑj = ϑj−1 = 0
2ϑj (3 log (ϑj∆x)− 1) if ϑj = ϑj−1
ϑ2
j (2 log(ϑj∆x)−1)−ϑ2

j−1(2 log(ϑj−1∆x)−1)

ϑj−ϑj−1
otherwise

(A.4)

Equations 2.5 and 2.6 are therefore recast into

max
ϑ0,...,ϑM

SX (ϑ0, . . . , ϑM) s.t. (A.5a)

IX =

∫
IX
pX (x;ϑ0, . . . , ϑM) dx = ∆x

(
ϑ0

2
+

M−1∑
j=1

ϑj +
ϑM
2

)
= 1 (A.5b)

ϑj ≥ 0 j = 0, . . . ,M (A.5c)
z (ϑ0, . . . , ϑM) ≥ 0 (A.5d)
g (ϑ0, . . . , ϑM) = 0 (A.5e)

Equations A.5b and A.5c impose that pX satisfies the properties of a PDF, while
the available information related to the specific problem is expressed by equations
A.5d and A.5e. For instance, the moments of the distribution are often known and
can be expressed in terms of the shape functions. For the second-order descriptors,
it follows that

µX =
1

∆x

M∑
j=1

[(
x3
j

6
−
xj x

2
j−1

2
+
x3
j−1

3

)
ϑj−1+

(
x3
j−1

6
−
xj−1 x

2
j

2
+
x3
j

3

)
ϑj

] (A.6a)

σ2
X =

1

∆x

M∑
j=1

[(
−1

4
x4
j,j−1 +

2µX + xj
3

x3
j,j−1 −

2µXxj − µ2
X

2
x2
j,j−1+

µ2
Xxjx

1
j,j−1

)
ϑj−1 +

(
1

4
x4
j,j−1 −

2µX + xj−1

3
x3
j,j−1+

2µXxj−1 − µ2
X

2
x2
j,j−1 − µ2

Xxj−1x
1
j,j−1

)
ϑj

] (A.6b)

where xkj,m = xkj − xkm. All the other constraints of the problem should also be
expressed as a function of the design variables ϑ0, . . . , ϑM .

This implementation through linear shape functions turned out to be computa-
tionally effective in our simulations, as discussed in Sections 2.4 and 2.5, but it can
also be extended to any suitable family of shape functions.

Figure A.1 displays the application of the method to the initial altitude before
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ejection and the weighted divergence√∫
R

(pX̄(x̄)− p̃X̄(x̄))2 p̃X̄(x̄) dx̄ with X̄ =
X

σX
(A.7)

between the discrete PDFs pX̄(x̄) computed using the numerical implementation of
the maximum entropy principle and the analytical solution p̃X̄(x̄). We note that
this norm attributes high weights to errors corresponding to high probabilities. The
figure shows that the convergence rate is quadratic for the three cases. We note that
the solution of the optimization problem showed no sensitivity to the initial guess.



Appendix B

Linearized equations of motion

Linearized equations for mean equinoctial ROE are written in the form1:

∆Ė = A
(
Eeq
)

∆E +B
(
Eeq
)

∆f p (B.1)

where, neglecting the gradient of the contact transformation, [Schaub et al., 2000],

A
(
Eeq
)

= A(J2)
(
Eeq
)

+∇Eeq Ėeq (B.2)

Because GVE are linear in the perturbing force, the matrix B is straightforwardly
deduced from Equations 1.10. The analytical expressions for the matrices A(J2) and
∇Eeq Ėeq are provided in the following.

Secular effects of the Earth’s oblateness

Define K = nJ2

(
req
p

)2

. The elements of the matrix A(J2) are:

A
(J2)
11 = 0;

A
(J2)
21 = −

21

8

KP2

a

(
5c2 − 2c− 1

)
A

(J2)
31 =

21

8

KP1

a

(
5c2 − 2c− 1

)
A

(J2)
41 =

21

4

KQ2

a
c

A
(J2)
51 = −

21

4

KQ1

a
c

A
(J2)
61 = −

3n

2a
−

21K

8a

[
5c2 − 2c− 1 +

b

a

(
3c2 − 1

)]
A

(J2)
12 = 0;

A
(J2)
22 =

3KP1P2a

p

(
5c2 − 2c− 1

)
1Although a subset of these Equations is used in Chapter 5, we detail the complete form for

completeness. In addition, the matrix B is calculated for a generic perturbation here, while in
chapter 5 the perturbation was assumed to be toward the velocity.
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A
(J2)
32 = −

3K

2

(
2P 2

1 a

p
+

1

2

)(
5c2 − 2c− 1

)
A

(J2)
42 = −

6KQ2P1a

p
c

A
(J2)
52 =

6KQ1P1a

p
c

A
(J2)
62 =

3KP1a

p

[
5c2 − 2c− 1 +

3b

4a

(
3c2 − 1

)]
A

(J2)
13 = 0;

A
(J2)
23 =

3K

2

(
2P 2

2 a

p
+

1

2

)(
5c2 − 2c− 1

)
A

(J2)
33 =

−3KP1P2a

p

(
5c2 − 2c− 1

)
A

(J2)
43 =

−6KQ2P2a

p
c

A
(J2)
53 =

6KQ1P2a

p
c

A
(J2)
63 =

3KP2a

p

[
5c2 − 2c− 1 +

3b

4a

(
3c2 − 1

)]
A

(J2)
14 = 0;

A
(J2)
24 =

3KQ1P2

2
(1− 5c) (c+ 1)2

A
(J2)
34 = −

3KQ1P1

2
(1− 5c) (c+ 1)2

A
(J2)
44 =

3KQ1Q2

2
(c+ 1)2

A
(J2)
54 =

3K

8

[(
4Q2

1 − 1
)

(c+ 1)2 + (1− c)2
]

A
(J2)
64 = −

3KQ1

2
(c+ 1)2

(
5c− 1 +

3b

a
c

)
A

(J2)
15 = 0;

A
(J2)
25 =

3KQ2P2

2
(1− 5c) (c+ 1)2

A
(J2)
35 =

−3KQ2P1

2
(1− 5c) (c+ 1)2

A
(J2)
45 =

3K

8

[(
4Q2

2 − 1
)

(c+ 1)2 + (1− c)2
]

A
(J2)
55 = −

3KQ1Q2

2
(c+ 1)2

A
(J2)
65 = −

3KQ2

2
(c+ 1)2

(
5c− 1 +

3cb

a

)
A

(J2)
16 = 0;

A
(J2)
26 = 0

A
(J2)
36 = 0

A
(J2)
46 = 0

A
(J2)
56 = 0

A
(J2)
66 = 0
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Jacobian of the equinoctial GVE

Define:

P1 cosL− P2 sinL = κ

Q1 cosL−Q2 sinL = λ

Q1 sinL+Q2 cosL = ζ

1 +Q2
1 +Q2

2 = ξ

Classical notations:

p = a
(
1− P 2

1 − P 2
2

)
h =

√
µp

b = a
√

1− P 2
1 − P 2

2

n =
√
µa−3/2

r =
p

1 + P1 cosL+ P2 sinL

Partial derivatives of L :

∂L

∂P1

= −P1a

p

κ

P 2
1 + P 2

2

(p
r

+ 1
)

∂L

∂P2

= −P2a

p

κ

P 2
1 + P 2

2

(p
r

+ 1
)

∂L

∂l
=

ab

r2

The elements of the matrix ∇Eeq Ėeq are:
∂

∂a

(
da

dt

)
fr

= −
3aκ

h

∂

∂a

(
da

dt

)
ft

=
3ap

hr

∂

∂a

(
da

dt

)
fh

= 0

∂

∂a

(
dP 1

dt

)
fr

= −
b

2na3
cosL

∂

∂a

(
dP 1

dt

)
ft

= −
r

2ha
(−2P1 − 2 sinL+ κ cosL)

∂

∂a

(
dP 1

dt

)
fh

= −
rP2

2ha
λ

∂

∂a

(
dP 2

dt

)
fr

= −
p sinL

2ha

∂

∂a

(
dP 2

dt

)
ft

=
r

2ha

[
P2 + 2 cosL+

(p
r
− 1
)

cosL
]
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∂

∂a

(
dP 2

dt

)
fh

=
rP1

2ha
λ

∂

∂a

(
dQ1

dt

)
fr

= 0

∂

∂a

(
dQ1

dt

)
ft

= 0

∂

∂a

(
dQ1

dt

)
fh

=
r

4ha
ξ sinL

∂

∂a

(
dQ2

dt

)
fr

= 0

∂

∂a

(
dQ2

dt

)
ft

= 0

∂

∂a

(
dQ2

dt

)
fh

=
r

4ha
ξ cosL

∂

∂a

(
dl

dt

)
fr

= −
1

h

[
br

a2
+

p (p− r)
2 (a+ b) r

]
∂

∂a

(
dl

dt

)
ft

= −
(r + p)κ

2h (a+ b)

∂

∂a

(
dl

dt

)
fh

= −
br

2pna3
λ

∂

∂P 1

(
da

dt

)
fr

=
2a2

h

[(p
r
− 1
) ∂L

∂P 1

−
aP1

p
κ− cosL

]
∂

∂P 1

(
da

dt

)
ft =

2a2

h

[
κ
∂L

∂P 1

+
aP1

r
+ sinL

]
∂

∂P 1

(
da

dt

)
fh

= 0

∂

∂P 1

(
dP 1

dt

)
fr

=
a

h

[
P1 cosL+

p

a
sinL

∂L

∂P 1

]
∂

∂P 1

(
dP 1

dt

)
ft

=
fr

hp

{
p

a

[
−
rκ

p
(P1 + sinL)

∂L

∂P 1

+
(

1 +
p

r

)
cosL+1 + sin2 L

]
−
[
P1 +

(
1 +

p

r

)
sinL

] (
P1 +

r

a
sinL

)}
∂

∂P 1

(
dP 1

dt

)
fh

=
r2P2

hp

{[
λκ+

p

r
ζ
] ∂L

∂P 1

+

(
aP1

r
+ sinL

)
λ

}
∂

∂P 1

(
dP 2

dt

)
fr

=
p

h
cosL

∂L

∂P 1

−
aP1

h
sinL

∂

∂P 1

(
dP 2

dt

)
ft

= −
r

h

[
r

p
(P2 + cosL)κ+

(
1 +

p

r

)
sinL

]
∂L

∂P 1

+
r

hp

{
−
[
P2 +

(
1 +

p

r

)
cosL

]
(aP1 + r sinL) + p sinL cosL

}
∂

∂P 1

(
dP 2

dt

)
ft

= −
rP1

h

[
r

p
λκ+ζ

]
∂L

∂P 1

+
rλ

h

[
−
aP1

p

(
P1 +

r

a
sinL

)
+ 1

]
∂

∂P 1

(
dQ1

dt

)
fr

= 0

∂

∂P 1

(
dQ1

dt

)
ft

= 0

∂

∂P 1

(
dQ1

dt

)
fh

=
r2

2hp
ξ

[
(P2 + cosL)

∂L

∂P 1

−
a

p
(κP2 + P1 + sinL) sinL

]
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∂

∂P 1

(
dQ2

dt

)
fr

= 0

∂

∂P 1

(
dQ2

dt

)
ft

= 0

∂

∂P 1

(
dQ2

dt

)
fh

= −
r2

2hp
ξ
[
κ cosL+

p

r
sinL

] ∂L

∂P 1

−
ar2

2hp2
ξ [P2κ+ P1 + sinL] cosL

∂

∂P 1

(
dl

dt

)
fr

=
r

h

{
κ

[
2
br

ap
−

ap

(a+ b) r

]}
∂L

∂P 1

+
r

h

{
aP1

p

[
ap

(a+ b) r

(p
r
− 1
)

+ 2
b

a

]
+

[
2
br

ap
−

ap

(a+ b) r

]
sinL

−
aP1

b

[
a2p

(a+ b)2 r

(p
r
− 1
)
− 2

]}
∂

∂P 1

(
dl

dt

)
ft

=
ra

h (a+ b)

[
p2

r2
+
r

p
κ2 − 1

]
+

raκ

h (a+ b)

[[
1

p

(
1 +

p

r

)
(aP1 + r sinL)−

a2P1

b (a+ b)

(
1 +

p

r

)
− sinL

]
−
(

1 +
p

r

)
cosL

]
∂

∂P 1

(
dl

dt

)
fh

=
r

h

[
r

p
λκ+ ζ

]
∂L

∂P 1

+
r

hp
λ (aP1 + r sinL)

∂

∂P 2

(
da

dt

)
fr

=
2a2

h

[(p
r
− 1
) ∂L

∂P 2

−
aP2

p
κ+ sinL

]
∂

∂P 2

(
da

dt

)
ft

=
2a2

h

[
κ
∂L

∂P 2

+
aP2

r
+ cosL

]
∂

∂P 2

(
da

dt

)
ft

= 0

∂

∂P 2

(
dP 1

dt

)
fr

=
p

h
sinL

∂L

∂P 2

+
aP2

h
cosL

∂

∂P 2

(
dP 1

dt

)
ft

=
r

h

[
−
r

p
κ (P1 + sinL) +

(
1 +

p

r

)
cosL

]
∂L

∂P 2

+
r

hp

{
−
[
P1 +

(
1 +

p

r

)
sinL

]
(aP2 + r cosL) + p sinL cosL

}
∂

∂P 2

(
dP 1

dt

)
fh

=
rP2

h

[
r

p
λκ+ ζ

]
∂L

∂P 2

+
r

h

[
P2

p
(aP2 + r cosL)− 1

]
λ

∂

∂P 2

(
dP 2

dt

)
fr

=
p

h
cosL

∂L

∂P 2

−
aP2

h
sinL

∂

∂P 2

(
dP 2

dt

)
ft

=
r

h

[
−
r

p
κ (P2 + cosL)−

(
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p

r

)
sinL

]
∂L

∂P 2

+
r

h

{
−
ra

p2
(P2 + cosL− P1κ)

[
P2 +

(
1 +

p

r

)
cosL

]
+ 1 + cos2 L

}
∂

∂P 2

(
dP 2

dt

)
fh

= −
r2P1

hp
(Q1P1 +Q2P2 + ζ)

∂L

∂P 2

− λ
ar2P1

hp2
(P2 + cosL− P1κ)

∂

∂P 2

(
dQ1

dt

)
fr

= 0

∂

∂P 2

(
dQ1

dt

)
ft

= 0

∂

∂P 2

(
dQ1

dt

)
fr

=
r2

2hp
ξ (P2 + cosL)

∂L

∂P 2

−
rξ

2hp
(aP2 + r cosL) sinL

∂

∂P 2

(
dQ2

dt

)
fr
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∂

∂P 2

(
dQ1

dt

)
ft
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∂

∂P 2
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dQ1

dt

)
fh
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r2
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∂P 2
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ar2
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Appendix C

QARMAN

This appendix provides additional results on the validation of the overall methodol-
ogy proposed in this thesis. The inputs of Chapter 6 are used. The uncertainties in
the initial absolute conditions of the chief and in the aerodynamic force are modeled
according to the probabilistic characterization of Chapter 2. Ten percent uniformly
distributed uncertainty in the deputy’s mass is also considered.

The initial relative states are distributed over a large range of initial conditions in
order to provide a “broadband” validation of the algorithm. Specifically, the initial
position in the curvilinear states is uniformly distributed in:

x̃ ∈ [−0.5, 1.5] km
ỹ ∈ [−200, 200] km

(C.1)

In addition, the relative orbital inclination is distributed in [0, 0.1] deg. Out of
these distributions, only the planned maneuvers that are such that tf ≤ 15 days are
executed.

The results obtained with the controller proposed in Chapter 6 are compared
to those of an earlier version of the controller proposed in Chapter 5 [Dell’Elce
and Kerschen, 2014b], i.e., the control plant is based on the Schweighart-Sedwick
equations [Schweighart and Sedwick, 2002].

Figure C.1 compares the CDF of the root-mean-squared distance between the
planned and the executed trajectories. The satisfaction of the rendez-vous conditions
is portrayed in Figure C.2. In both cases, the new controller outperforms the old
controller. In addition, we note that the old algorithm exhibited an important
correlation with the chief’s orbital eccentricity, i.e., 31% and 29% for the root-mean
squared error and rendez-vous conditions, respectively. This correlation is essentially
canceled when ROE are used.

Figure C.3 depicts how rendez-vous conditions improve if additional maneuvering
time is added. With the old algorithm, a relevant improvement is observed in the
first hours. This improvement stabilizes as time passes by. The explanation for this
result is that the satellites have different geometries and masses. Recalling that the
aerodynamic coefficients are computed on the actual geometry at every time step
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Figure C.1: CDF of the root-mean-squared distance between the reference and the
executed trajectories.
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Figure C.2: Satisfaction of the rendez-vous conditions. From the lighter to the
darker, the shaded regions indicate 90%, 50%, and 10% confidence regions.
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Figure C.3: Median (blue) and 90% confidence bounds (red) of the satisfaction of the
rendez-vous conditions when additional time is added after the planned maneuvering
time.
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of the high-fidelity simulations and that drag is not proportional to the exposed
surface, it follows that the real zero-differential drag configuration is unknown. The
same result is observed for the new controller. However, in this case the magnitude
of the error is smaller. The improvement of the enforcement of the rendez-vous
conditions is less impressive than in the old results. This means that the trajectory
is tracked in a more efficient way, thanks to the robust maneuver planning and to
the recursive drag estimation.
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