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Abstract—We consider an uplink power control which provide a dedicated channel for each user.
problem where each mobile wishes to maximize its The shared nature of the wireless channel implies
throughput (which depends on the transmission pow- {5t the rate obtained by a user depends not only

ers of all mobiles) but has a constraint on the average it t it | | but al th
power consumption. A finite number of power levels on Its own transmit power ievel but also on the

are available to each mobile. The decision of a transmit power levels of Fhe other users. A user
mobile to select a particular power level may depend who transmits at a relatively high power level,
on its channel state. We consider two frameworks though may increase its own rate, will interfere with
concerning the state information of the channels of the transmissions of the other users and prompt

other mobiles: (i) the case of full state information th to i thei { o
and (ii) the case of local state information. In each of em [0 Increase their own transmission power.

the two frameworkS, we consider both Cooperative as SUCh a Situation iS Undesirable in Wireless netWOka
well as non-cooperative power control. We manage to where mobile devices are usually equipped with
characterize the structure of equilibria policies and, [imited-lifetime batteries which require judicious
more generally, of best-response policies in the non- iz ation. It is, therefore, in the interests of the

cooperative case. We present an algorithm to compute ¢ trol their t it | |
equilibria policies in the case of two non-cooperative users to control their fransmit powers 1evels so as

players. Finally, we study the case where a malicious 0 increase the information transfer rate and the
mobile, which also has average power constraints, lifetime of the devices. Power control also has
tries to jam the communication of another mobile. the added benefit of allowing the spatial reuse of
Our results are illustrated and validated through channels, i.e., the same channel can be concurrently

various numerical examples. : . . .
P used by mobiles at locations where interference is
Index Terms—Cooperative/non-cooperative opti- sufficiently low.

mization In this paper, we considelynamicuplink power

control in cellular networks: mobiles choose their
I. INTRODUCTION transmission power level from a discrete set in a

The multiple access nature of wireless network%yncirggce\;]vagé;':d’ (t)r:]e ﬂt_]ré’m;gifasgg Er?;vner:e:e\s/?;te
represents a fundamentally different resource dr

location problem as compared to wired networkg'format'on' By _c_ontrolllng the power one can
Improve connectivity and coverage, spend less bat-
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temporarily as base stations [1]-[3], which cai\. Related work

involve a heavy burden in terms of energy. The

limited processing capacity and battery lifetime of

devices precludes the use of centralized schemes;There has been an intensive research effort on

thereby making decentralized approaches for powgpn-cooperative power control in cellular networks
control more appropriate in such networks. Thﬁ], [9]-[16]. In all these work, however, the set of
wireless sensor networks greatly benefit from thgyajlable transmission powers has been assumed to
decentralized power control_ si_nce the wireless sefe 3 whole interval or the whole set of nonnegative
sor networks have very limited energy budgeteal numbers. In this paper we consider the case
Examples of the application of the decentralizedf 5 discrete set of available power levels, which
power control schemes to wireless sensor networks i ine with standardized cellular technologies.
are given in [4]-[6]. In [4]-[6] one can also find\sry little work on power control has been done
diverse use cases for wireless sensor networks suygh discrete power control. Some examples are [17]
as body sensor networks and habitat monitoring,no considered the problem of minimizing the sum
Furthermore, we note that the design of decemyt powers subject to constraints on the signal to
tralized power control has for long interested thggise ratio, [18] who studied joint power and rate

networking community even before ad-hoc andontrol, and [11] (which we describe in more detail
sensors networks have been introduced (see [7], [S4low).

and references therein). _ _

We obtain results for both the cooperative setting | "€ mathematical formulation of the power con-
in which the mobiles’ objective is to maximize the{f®! Problem shows much similarity with a well
global throughput, as well as the non-cooperativ%“d'ed problem of assigning transmission powers

case in which the objective of each mobile is 4o parallel channels between a mobile and a base
maximize its own transmission rate. station with a constraint on the sum of assigned

We identify the structure of equilibria policies forPOWErS, Se€ €.9. [19, p. 161]. This problem is often

the decentralized non-cooperative case. We sh tovvtn as t?ethwate; f||||?g (IWhIChTIr? 'ndflj?Ct the
that the following structure holds for any mobile ETC ure t?] € dOFI) '”_‘athp‘: |_cy). ed erencel_t
given any set of policies;~* chosen by mobiles etween he models IS that In our case we spl

other thani. Any best response policy (i.e. anPOWers over time, Where‘?‘s in the water filling
optimal policy for playeri for a given policyu— problem the powers are split over space. Our results

of other mobiles) has the following properties: are therefore quite relevant to the \{vgter filling
problem as well. Some work on water filling games

(i) It needs randomization between at most twegan be found in [12] where not only mobiles take

) adjacerjt power levels, _ decisions, but also the base station does, with the
(ii) the optimal power levels are non-decreasingoal of maximizing a weighted sum of the individ-
functions of the channel state, and ual rates. In [20], the non-cooperative water filling

(i) if two power levels are both optimal at game is studied in the context of the interference

a given channel state then they cannot bghannel; two mobiles and two corresponding base
jointly optimal for another channel state.  stations.

We present an algorithm to compute equilibria Game theoretic formulations for non cooperative
policies in the case of two non-cooperative playergower control with finite actions (power levels) and

For the cooperative centralized problem withstates (channel attenuations) have been proposed
two mobiles, we obtain insight on the structurgn [11]. An e equilibrium is obtained there for
of optimal policies through a numerical study. Anthe case of a large number of players. The cost
interesting property that we obtain is the fact thab be minimized by a playei is the quadratic
the optimal policy has a TDMA structure: in eachifference between the desired and the actual SINR
combined statgxq,z2) there is only one mobile (Signal to Interference plus Noise Ratio) of that
that will transmit information. This will of course player. In contrast, in the model we introduce in
eliminate the interference. We also show that unlikgis paper, the choice of the transmission power is
the decentralized case, the average power lev@ne in the purpose of maximizing the mobile’s
constraints may hold with strict inequality whenown throughput subject to a limit on the average
using the optimal policy. power. Our setting is different also in the following.

We finally study the case where a maliciousn our model, in a given channel state, each mobile
mobile, which also has average power constraintsan either choose a fixed power level or can make
tries to jam the communications of another mobileandomized decisions, i.e. it can make the choice
Our results are illustrated and validated througbf power levels in a state based on some (state
various numerical examples. dependent) randomization.



.,xN) is given by

The structure of the paper is as follows. We gi(x;)hi(a;)
first present the model (Section II) as well as SINR;(x,a) = (z:)hi(a;)"
p ( ) No+ 3 gj(xj)hi(as)
the mathematical formulation of both the case of J#i
centralized information (Section Ill) as well as We consider the following instantaneous utility
the one of decentralized information (Section IV)of mobile i:
In Section V we identify the structure of best-
response policies and thus of equilibria for the ri(x,a) = logy (1 + SINRi(x,a)). (1)
decentralized case. Power control in the presenggx a) is known as the Shannon capacity and can
of a malicious mobile is studied in Section VI. |nthus be interpreted as the throughput that mobile
Section VII we present numerical examples. The can achieve at the uplink when the channel
examples illustrate the theoretical results that weonditions are given by and the power levels used
had obtained and provide some additional insightgy all mobiles area.
After a concluding section we present a computa- Notation: In the rest of the paper, we shall use
tion methodology for computing equilibria in thethe following notation. We shall denote an element
game of two players. of the setX by x. Theith component ok will be
denoted byz,, i.e., x = (1, x2,...,zn), Where
z; € X; fori=1,2,..., N. We definea anda; in
a similar manner. LeX ~* and A~ denote the set
A. Preliminaries of channel states and the set of actions, respectively,
Consider a set ofV mobiles and a single basecorresponding to all the players other than player
station. As in several standard wireless networks FOr an elemenk™ € X, let z;* denote the
(e.g., UMTS and IEEE 802.11), we assume thath component ofk™*. We definea™ anda; " in
time is slotted. In each time sldt each mobile; & similar way.
transmits data with power level;(¢) chosen from
a finite setA; = (1,2,3,...,q;) containing a;
power levels. Denote by;(a) the actual power
corresponding to theth power level where < A;.  power levels is made based on the information
N
DenoteA = [[;_, A. it has. The latter could be local, in which case
The channel state model:We assume that the the policy is said to be distributed. We shall also
channel between mobilé and the base stationconsider centralized policies in which all decisions
can be modeled as an ergodic finite Markov chaigyre taken at the base station. We have the following
X,(t) taking values in a seX; = (1,2,...,m;) definitions.
of m; states with transition probabilitieB;, . The « A Centralized policy, u(a|x), is the proba-
Markov chainsX;(t), i = 1...N, are assumed to bility that the base station assigns the trans-
be independent. Let; be the row vector of steady mission power levelsa = (ai,...,ay) 10
state probabilities of Markov chaifi;(t); let ; () the mobiles if the current channel’s states are
!oe its en_try corresponding to the statec X,. It given by the vectox = (z1,. .., ). This is
is the unique solution of equivalent to the situation where all system
information is available to all mobiles, and
moreover, all mobiles cartoordinate their
actions. This situation describes central deci-
We also denote byr(x) the probability of state sion making by the base station. The class of
x = (z1,...,2n). Since the Markov chains that centralized policies is denoted 1.
describe the channel states are independéri, = « A Decentralized policy, u;(a | x), is the prob-
vazl i (24). ability that playeri chooses the transmission
The power received at the base station from mo-  power levela € A; if its channel state is; €

B. Organization of the paper states arex = (x1, ..

Il. THE MODEL

B. Policy types
A mobile’s choice of successive transmission

Pl =, mi(x) >0, Vo € X;, mi(x) = 1.

reX;

bile i is given by g;(t)h;(A;(t)) whereh;(A;(t))
is the power emitted by mobilé and g;(t) =

gi(X;(t)) is the attenuation factor, which is a func-

tion of the channel stat&, (¢). We shall denote the
global state space of the system Xy— Hf;l X;.
Performance measuresThe signal to interfer-

ence plus noise rati®/NR; at the base station

X;. Thus, only local information is available
to each mobile, and there is no coordination
in the random actions. This situation describes
individual decision making by each mobile
without any involvement of the base station.
The class of decentralized policies for player
i is denoted byUi . DefineUy. = [, U¢,..

related to mobile when the power level choices of Along with policies we shall use also the occu-

the mobiles aren = (a4, . .

.,an) and the channel pation measures. For a givere X anda € A, the



global occupation measurg! (x, a), will be used whereas in the decentralized case the corresponding
in the context of acentralized policy, u € U, it constraint is

is defined as Z Z pYi (2, a)hi(a) < Vi 7)

N
zeX; acA;
p(x,a) = [ milwi)ulax). | .
i o Note that in the decentralized case the state-

action frequencies of a particular mobile are in-
dependent of decisions of the other mobiles (see
equation (4)). Consequently, in the decentralized
p"(x,a) @) case, the average power constraint of a mobile does
Z " (x,b) pot depend on the decision of the_thers. However,
in the centralized case, the decisions of all the
o R ) ] mobiles are interdependent.
(itis ch_osen arbitrarily if the denominator is zero). 1) Cooperative optimizationWe consider here
For a givenz € X; anda € A, the local occupa- the problem of maximizing @ommon objective

tion measurep;” (z,a), is defined with respect to subject to individual side constraints. Namely, we
a decentralizedpolicy, u; € Uy, and is given by  yefine for any policyu

Note that given a global occupation measuyse,
the corresponding can be obtained by

u(a|x) =

beA

pi'(z,a) = mi(z)ui(alz). N
_ _ | Ry(u) =Y 7iRi(u), 8)
For a given local occupation measurg,’, the =
corresponding:; can be obtained by .
where~; are some nonnegative constants. For an
pi(r,a arbitrary set of policie§7 we consider the problem:
wifa]z) = L0 ©) ysetofp P
2 @) COOP(U):  maxR, (u)
beA; : el Y ’
(it is chosen arbitrarily if the denominator is zero). subject to (6) or (7), fori=1,...,N. (9)

In case ofdecentralized decision making, we de-

fine p*(x, a) as 2) Non-cooperative optimization:Here each

mobile is considered as a selfish individual non-

N cooperative decision maker, which we then call
pt(x,a) = [ [ ot (@i, ai), (4)  “player”. It is interested in maximizing its own
=1 average throughput (5). In the non-cooperative it
for a given (uy, ua, ..., ux). is natural to consider only decentralized policies
Udc.
For a policyu = (u1,...,un) € Ug. we define

C. Problem formulation: objectives and constraints&_i to be the set of components of other than

For any given policy, u, and the correspondingthe ith component. For a policy; € U, we then
occupation measure(x, a)?, we now define the define the policy{v;, u~] as one in which player
utility function, the constraints, and the optimiza; # i uses the element; of u whereas playe#

tion problem. useswv;.
The utility functions: We define the utility for Definition 1: We say thatu* € U, is a con-
playeri as strained Nash equilibrium [21] if it satisfi€%) for
all players, and if
Rl(u) = Z Z ’f'i(X, a)pu(x’ a)' (5) )
xEX acA Ri(u") = Ri([vi, (u*)™*])

Power constraints: In the centralized case, playerfor any i and anyv; € Uy, such that (7) holds for
i is assumed to have the following average powghe policy [0, (u*) 7.

constraint

Z Z p"(x, a)hy(a;) < Vi, (6) IIl. CENTRALIZED COOPERATIVE
OPTIMIZATION

When the cooperative optimization is considered

. ) i . -
Wlth slight abuse c_)f notation, we shall denote b(_)th cengyer the set otentralized p0I|C|e,sthen the prob-
tralized and decentralized policies hy. In the centralized .. . .
case,u(alx) will denote a probability measure over for a Iem isin fact of a smgle contr_oller (the base station)
given x. In the decentralized case,u will denote the vector which has all the information. Let.,(x,a) :=
= , Whereu; is the decentralized polic N s
iz ) WherS Poliey SoN | ~iri(x,a), % >0, i = 1,2,..., N, denote
2For thedecentralized case, we note thai (x, a) is given (€ COmMmon instantaneous utility when power level

by (4). a is chosen in channel state The next Theorem

xeX acA



states the existence of an optimal strategy if thendomization at more thaiV points. However,

constraint set is not empty. The optimal strategy caane can always select an optimal solution of (10)

be obtained by means of provided Linear Programnhich corresponds to a policy with no more than
Theorem 1:Consider the cooperative optimiza-N randomizations. See also the discussion and

tion problemCOOP (U,.) over the set of central- numerical example in subsection VII-B.

ized policies. Assume that there exists a policy Note that in the centralized framework it does

under which the power constraints (7) hold for alhot make sense to speak about a non-cooperative

the mobiles. Then, game, since there is a single decision maker.
(i) there exists an optimal centralized policy
u* € Ug. The policy u* can be obtained IV. DECENTRALIZED INFORMATION

from the solution of the following Linear A, Non-cooperative equilibrium

Program by formula (2) Here we consider the case when the players

optimize their own objective (5) subject to the
max R, (u) := Z Z p(x,a)r,(x,a) constraints (7) given the local information only. For

p xeX acA (10) this case we show the existence of the constrained
. Nash equilibrium.
st x%:Xa;Ap(x’a)hi(ai) < Vi, Vi Theorem 2:Under the assumptions on the objec-
N tive functionsR;(u), constraints (7), and the set of
a%:AP(X’ a) =m(x) = il;ll mi(7i), VX decentralized policie&,;. made above, there exists
p(x,a) >0, Vx, Va a policy u™ € Uq, satisfying Definition 1.
S p(x,a) = 1. Proof: The set of policies for a player can
xEX a€A be identified by a set ofn; probability measures

. . o (11)  over theA,. The subset of policies of mobilethat
(i) An optimal policy u* can be chosen with o fyrthermore meet the power constraints can thus be

more thanV' randomizations. identified by the se{(u(als)), € X;, a € A,
Proof: The problem is a special case of con-

strained MDPs (Markov Decision Processes). lns_atlsfylng
deed, there is only one decision maker, the base > > mi(@)uilalr)hi(a) <V;
station, which assigns power levels € A to rEX; ach

mobiles. It has all the information about the state wilalz) >0, Yae A, VreX,
of the systemx € X, which is combined state 5 uf(am 1 VYre X, v
of all channels. Since the Markov chain;(t) weh, ’ v

are independent, the steady state probabilities %is is a closed convex set for each player. More-
Markov chain corresponding to a global system )

state are equal tor(x) — Hfiﬂi(%‘)- Thus, over, for each mobile, the utility R;(u) is concave

we have a constrained MDP with statese X, in u; and continuous iny;, j 7 i. We cpnclude
. from Theorem 1 of [21] that a constrained Nash
actionsa € A, steady state probabilities(x), equilibrium exists =
and constraints (7)—-(14). Now we can apply the ’
classical results on constrained Markov Decision )
Processes: statements (i) follow from Theorem B. The cooperative case
4.3 of [22]. Statementii) follows from the fact, Here we discuss the situation where, even though
that the Linear Program (10)—(11) hﬁ[sfil m; + there is a common goal that is optimized, the power
N + 1 constraints. At the same time the numbelevel choices are not done by the base station
of independent constraints is %per—bounded t by the mobiles themselves who have only
vazl m; + N, because the firs[,", m; equality their local information available to take decisions.
constraints of (11) are dependent. The latter mea@®ordination is thus not possible.
that the optimal solution can be chosen with no Considering the decentralized framework, we
more than]‘[f\;1 m; + N non-zero elements. Formake the following observation concerning the
each particularx there should be at least onerelation between the cooperative and the non-
nonzerop(x, a), if m(x) > 0. Consequently we are cooperative cases.
left only with other N possible nonzere(x,a), Theorem 3:Any policy u that maximizes the
which corresponds taV randomizations of the common objectiveR,, (u) while satisfying the con-
strategy. If7(x) = 0 for somex we can simply straints is necessarily a constrained Nash equilib-
reduce the state space. B rium in the game where each mobile maximizes the
Remark 1:We note that there could be severatommon objectiveR., (u).
optimal solutions to the Linear Program (10). Some  Proof: Let v be a globally-optimal policy
of these solutions could correspond to policies witamong the decentralized policies. Assume that it



is not an equilibrium. Then there is some mobile, Definition 2 (Increasing Differences).et

say i, that can deviate fromy; to somew; such X,T C R. A function f : X x T'— R has (strict)
that (7) holds and such that its utility, whichincreasing differences if,t) if for every 2’ > z,
coincides with the other mobile’s utility, satisfiest’ > ¢

R,((v™%,u;)) > R,(v). Moreover, for all other y , ,

players;j # i as well, the constraint (7) still holds f@t) = f(2,t) > f@',t) = f(a,t).  (12)
since it does not depend on mobife policy. But  This property implies that the maximizer with

this implies thatv is not a globally optimal policy respect to a variable is increasing in the other
which is a contradiction. So we conclude thats yariables. There has been much research on su-

indeed a constrained Nash equilibrium.  ®  permodular functions due to the above appealing
NOW we show |.n Theorgm 4 that there exists aaroperty (see [25] and references therein)_
optimal decentralized policy. Definition 3 (Single-randomization allocation):

Theorem 4:Let all the players have the commona single-randomization allocation is an allocation
objective functionR,(u) defined by (8). Under in which at most a single power level is used for

the assumptions on constraints (7) and the set @hch state, except for some statdor which two
decentralized policie§,. made above, there existspower levels are used, i.eg > 0,¢F > 0 for some
a solutionu* € Uq. to the problemCOOP (Us.)  adjacent power level§? and QF.
(9). Assumption 1:The rate function for théth mo-
Proof: Consider the non-cooperative settingjje, Ti((x—i7x)7(a—i7a) . has
but with the common objectivé?., (v) to all mo-
biles. There exists at least one such equilibrium due'‘’ .
to Theorem 2. If there is a dominating constrained .. n g(_x)’_ and . . .
equilibrium (which is the case when there are (i) astri(_:t Increasing dlffereni:es (@(@’h@))‘
finitely many constrained equilibria) then it is a Proposition 1: The rate function defined in (1)
globally optimal policy due to Theorem 3. Assume®beys Assumption 1. _
next that there is a set/* of infinitely many Proof: We first assume that the functiapn
constrained equilibria. LeR?, = sup,cy- Ry (u) (resp., f.“) has an increasing mterpolatlo_n in
and letu, € U* be a sequence of constrainedresp., ina). These assumptions non-restrictive as
equilibria such thatim,, . R, (u,) = R:. Then we can enu_merate the states so that the quality
it follows (from an adaptation of [23] and [24]) that_Of the assoc_lated c_hannel state (resp., power level)
there exists a constrained equilibrium such that increases with the index of the state. .
R,(u*) = R:. Itis thus a dominating equilibrium  Assumption 1z) is met by the concavity of
and hence a globally optimal policy. m the logarithm function and the fact that has an
increasing interpolation in:.
Now, Consider the continuous and twice differ-
entiable function7(z,a) = log (1 + g(i:)h(d)).
It is well known (e.g., from [25]) that a function
In this section we identify the structure of equi-f : R® — R in C? has strictly increasing dif-
libria policies for the decentralized non-cooperativerences ifg;fa(;‘)_ > 0, wherez; # x; are two
case. To that end we first study the structure @omponents of the vector € R™. We have
best response policies of any given user when the , 0o -
policies of the other users are fixed. Using the o°r(z,a) _ O0°r(E,a) 1 _
results on the structure of the best response we thetg(2)0h(a)  0h(a)dg(z) (1 + g(Z)h(a))?
establish the structure of the equilibrium policies.Hence 7 has increasing (strict) increasing differ-
We fix throughout the policy ~* of players other ences. Since the function in (1) is a restriction

(i) aconcave and strictly increasing interpolation

V. STRUCTURE OF NONCOOPERATIVE
EQUILIBRIUM

than playeri, where of 7 to the points(g(z), h(a)), this functions has
i I increasing differences as well and thus obeys As-
vl @™ x7) = [Tuita; 157 sumption 1(i). u
I Hence, the class of functions defined in Assump-

is the probability that each mobile+ i chooses:; tion 1 contains the specific rate function considered
when its local state is;. The product form here is in this paper. We now establish the following main
due to the decentralized nature of the problem ari@sult on the structure of any best response policy:
to the fact that there is no coordination between the Theorem 5:Consider the decentralized non-
mobiles is possible. cooperative case. Under Assumption 1, the follow-
Before we state our main result, we present twig holds:
definitions and state the assumption necessary tdi) For a given channel state, the best response
derive our main result. policy consists of either the choice of a single



action, or in a randomized choice between dtave an impact on the immediate payoff and
most two adjacent power levels. on h;). We know from [22] that a policyu] is
(i) There exists an optimal allocation with aoptimal for (13) only if it is optimal for the relaxed
single randomization. An optimal allocationproblem (15) for some finite;. By characterizing
with more than one randomization is nothe structure of the policies that are optimal for (15)

generic. we shall obtain the structure of optimal policies
(i) The optimal power levels are non-decreasindpr (13). In the sequel, we shall omit the constant
functions of the channel state. —A;V; from the objective function in (15) since it

(iv) If two power levels are jointly optimal for has no influence on the structure of the optimal
a given channel state then they cannot bgolicies.
jointly optimal for another channel state.  Observation.We now make the following key

The proof of this result follows the following Observation on (15). The relaxed problem can be
steps. We first formulate the problem of obtaining &0lved separately for each channel state X;.
best response as a linear program. Using LagranfePolicy u; = {u;(a|2)}aca,, zex, is optimal for
relaxation we are able tdecouplethe problem to (15) if and only if for each fixedr € X, u;(- | x)
several simpler ones: in each one of the latter, tHBaximizes
channel state is fixed. Then we prove the statement T2 (@ A ) =
(i) and(ii) by establishing the concavity of the best e e T
response value function corresponding to a fixed» {m(x) “ui(a|z)(r} (z,a) + )\ihi(a)}(]-G)
channel state. Statemer(is) and (iv) will follow  acA;
from the supermodularity of the value function. p e to linearity, for each: € X; there is a non-

First we formulate the problem of obtaining aandomized decision € A; such that
best response as a linear program. Witfx, a) as

defined in (1), denote JI(v,x,N) = max I (@, Ay ui) = max v(z,a),
ri(z,a) = Z Z |:H7Tj(xj_i) wherev(z, a) := m;(z)(r? (z,a) + Ahi(a)). [ |
xTteX~tatteATt g We now prove each of the four statements in
wa; Ix; i, @), (a7 a))| . Theorem 5.

. Proof of Theorem %i). From Assumption 1, for
For the fixedv™*, player: is faced with the problem a fixed z, r; has a concave interpolation in(a).
max  RY(u;) = Ri(v™, u) Thus, v(z,a) has a concave interpolation fna)

u; €U; for a fixed . This means that the maximum is
= Z}I{ % mi(z)ui(al2)ry (z, a) achieved at either
e ach (13) 1) a single action which has a non-zero proba-
st Di(u;) == Z Z mi(@)ui(a | x)hi(a) < Vi bility to be used by any optimal policy, or
2€X; aCA; 2) two adjacent actions, say and a + 1 for
(14) which v(z,a) = v(z,a + 1).

Consider the following relaxed problem param- The ahove structure holds not only for the re-
eterized by some finite red); < 0: laxed problem (15) but also for the original problem
max  JY (A, us) = RY(u;) + Mi(Di(u;) — Vi) (13). This follows since any optimal policy for (13)
wi€U; is necessarily optimal for the relaxed problem (15)

= > > {Wi(x)ui(a | ) for some);, and since we just saw that any optimal
oeX; a€Ai policy for the relaxed problem has this structure.
(rf (z,a) + )\ihi(a))} - A(zfg; The statementi) is proved. |
and Proof of Theorem %ii). \We prove this by con-
JF (N, v) = max J? (\i, u;). tradiction. Assume that} is an optimal allocation

that uses randomization for more than a single state.
Lemma 1:The best response policy of player Takingu} as a starting point, we next construct a
can be obtained by solving the relaxed problemsingle-randomization allocation which is no worse
corresponding to each channel state X;. thanu;. Moreover, we show that it is strictly better
Proof: thanu} w.p. 1. Letj andk be two states for which
Problem (13) faced by playercan be viewed two power levels are used undef (more than
as a special degenerate case of constrained Markexo power levels would not be used by Theorem
decision processes (it is degenerate since the trdn{)). Denote byh,(l;) and h;(m;) the power
sition probabilities of the radio channel of mobildevels used for statg (h;(l;) > h;(m;)) and by
¢ are not influenced by the actions. The latter only;(Ix) and h;(my) the power levels used for state



k (h;(lx) > h;(my)). For each state in which two exposition) is given by
power levels are used define an index ,
[ri(0:(3), B 1) = 74l (k) ha(0))]

— [ritgi()s hitm)) = rilgi(), i) |- @7)

The expression (17) is strictly positive by As-
We construct a no-worse allocation as follows. Isumption 1; hence, the allocation can be strictly
n; > m we augment; (I|7) (thus reduce:;(m|j) improved which is a contradiction to its optimality.

7i(9:(5), hi(ly)) — Ti(gi(j)ahi(mj))_

o Lj
= Ta(ly) — ha(my)

and reduce:? (I|k) (thus augment(m|k)). More ]
precisely, assume thap; > . Consider the ) _
modified allocation Now, using Theorem 5 we can establish the
structure of the constrained Nash equilibria.
allly) = wdl)+ € Corollary 1: Consider the decentralized non-
’ ! mi(7)(hi(l;) — hi(m;))’  cooperative case. For each mobileassume that
a(mlj) = wi(mlj) - € hi, g;, and m; satisfy Assumption 1. Then there
! ! mi(7)(hi(l;) — hi(m;)) exists at least one equilibrium. Moreover, at any
- I _ € equilibrium«} the following hold for each mobile
wlllk) = i) = O e =)
a;(mlk) = uw'(mlk € , () In each channel state € X;, uj(-|z) con-
(mlf) clmlk) + i (k) (i (lk) = hi(mx) sists of either a choice ofasingle( |:|)o3/ver level,
or in a randomized choice between at most
for some smalle > 0. Note that the modified two adjacent power levels.

allocation raises the power investment at state (jiy There exists a single-randomization alloca-
k by the same quantity, thus preserving the total  pojicy is a single randomization poliay.p.1.
power constraint. The rate at states consequently (i) The power levels used inu are non-

. . . 3

improved byer; while the rate at staté is re- decreasing functions of the channel state.
duced byen,. The ov_erall rate is obvpusly hlgher. (iv) If two power levels are used at a staie
We carry on with this procedure until reaching a by mobile i with positive probability (i.e.
probability of zero in one of the pairs (state,power) ut(a;]x) > 0 andu? (ax|z) > 0 for ax # a;)

. K2 3
above. Ifn, > n; we construct a better allocation then unden;, not more than one of them is

in an analogous way. Ify, = 7; the overall rate used with positive probability at any other
remains constant by the above procedure. Carrying  channel state.

the procedure for all states in which two power

are used would eventually leave us with a single- Proof: The structure of best response poli-
used would eventually leave us with & Sindl&sq5 characterizes in particular the structure of the
randomization allocation, proving part (i). As to

constrained Nash equilibria policies since at equi-
efltbrium, each mobile uses a best response policy.

essentiallyy; = 1 with zero p“’b‘?‘b"'ty assuming Therefore, the structure we derived for the best
that g; takes real values according to some con-

. . . . .~ response policies holds for any Nash equilibrium
tinuous density function. Hence, the rate is strictl P P y a

improved by transforming the policy to a single-){bi for any of the mobiles. "

randomization one. [ |
VI. POWER CONTROL IN THE PRESENCE OF A

Proof of Theorem %iii) and 5(iv). We prove MALICIOUS MOBILE

these statement by contradiction. Assume thereln recent years, there has been a growing interest
exists two channel stateg and k& with g¢;(j) > inidentifying and studying the behavior of potential
gi(k) and two power levels:;(I) > h;(m) such intruders to networks or of malicious users, and in
that u;(m|j) > 0 and uj(Im) > 0. To prove studying how to best detect these or to best protect
our claim, we next construct a modified allocathe network from their actions (see e.g. [26]-[28]
tion with the same energy investment which oband references therein).

tains a strictly higher rate. For > 0 small, let  We consider in this section a scenario where a
ai(mlj) = ui(mlj) — =55, @llj) = uwi(llj) + malicious player attempts to jam the communica-
gy Gi(m|k) = ui(m|k) + —&, anda,(I|k) = tions of a mobile to the base station. We consider

i (

ul (Jl|/~c) — ﬁ be the modified policy, where all the distributed case and restrict for simplicity to
other probabi?ities are left unchanged. Note that tH®vo mobiles and a base station.

modified policy uses the same total energy. The The first mobile (playerl) seeks to maximize

change in throughput (divided byfor the sake of the rate of information that it transmits to the base



station. In other words it wishes toaximizeR; (u) We now identify a structural property of the

defined in (5) where; is given in (1). optimal policy of player, i.e., of the jammer. Let
The second mobile (play@) has an antagonistic h, have a convex interpolation im, and go have

objective: to prevent or to jam the transmissionan increasing interpolation in. Therefore, for a

of the first mobile, with the objective of mini- givenz, the relaxed objective function would have

mizing the throughput of information that mobilea convex interpolation im. This means that

1 transmits to the base station. It thus seeks to(i) there is only one action, say, which has

minimize R, (u). We assume that the interference a non-zero probability to be used by any

of the second mobile is presented as a Gaussian optimal policy, or

white noise. (i) except for two adjacent actions, say and
Except for the objective of the jamming mobile, a + 1, all other actions are not used by any

the model, including the average power constraints,  policy which is optimal.

defined in Section I holds._ In particular, we CONysing arguments similar to those in Theorem 5

clude that Theorem 5 applies to playemt equi- proof, we can conclude that the above structure

librium. _ o holds not only for the relaxed problem but also for
We now specify the objective of the players anghe original problem.

some properties of the equilibrium. Dendf the  \we finally note that the monotonicity property
set of policies for playef, (wherez takes the vallues enjoyed by the saddle point policy of mobile 1,
1 and 2) that satisfy playe's power constraints, need not holdor mobile 2. This will be illustrated
i.e., u; € Ul if it satisfies D;(u;) < Vi. Player 4 section VII-C (see Figure 6).

1 seeks to obtain an optimal policy, i.e. a policy

ui € U; such that for any other, € U, VII. N UMERICAL EXAMPLES
inf Ry(uj,ue) > inf Ry(ui,us). In this section we provide examples of power
uz €UZ ug €U2

control problem for two mobiles that interact with
We call this the jamming problem. It consists othe same base station. The decentralized policies
identifying a policy for playen that guarantees theare provided both for the cooperative and non-
largest throughput under the worst possible strategpoperative cases. Moreover, the single controller
of player2. In fact, we shall be able not only to problem for centralized cooperative framework is
identify the optimal policy for playet but also the also solved. All three problems are considered in
“optimal” policy for player2 (which is the worst the same settings, so one has an opportunity to

for player1). compare the obtained strategies and the objective
A policy v* = (uj,u3) is said to be a saddle value functions for different approaches.
point if Let us discuss the numerical procedures
. for all the cases (decentralized coopera-
sup inf Ry(u1,us) ) ; . .
uy eUs u2€US tive/noncooperative,  centralized  cooperative
= inf_Ri(u,uz) = Ry (uf,u}) and jamming). _
uz2€US For the decentralized cooperative case we need

= sup Ri(ui,u3)= inf sup Rj(ui,uz), to solve the problem of maximization of the poly-
uely u2€U5 w ey nomial objective subject to linear constraints. There
andu} andu} are called saddle point policies orare special methods to solve this kind of problems
optimal policies. [30], [31], and in two player case this problem
Unlike all the decentralized problems we considreduces to a well known quadratic program.
ered previously, deriving both; as well asu; is For the decentralized non-cooperative equilib-
possible using a linear program. The computatiofium computation we propose to use the iterative
is not included here, but it can be found in [29]best response policy computation. We fix the policy
Below we derive the properties of the optimabf all mobiles except one given and compute its

policies. optimal response. Then we iterate according to a
Theorem 6: (i) There exists a saddle pointround robin order. Whenever this method converges
policy v* in the above game. to some v*, then u* is indeed an equilibrium

(i) Under Assumption 1, any optimal policy for strategy sinceu* is an equilibrium if and only if
player 1 (the transmitter) has the structuréor each mobile;, the policyu} is a best response

identified in Theorem 5. against the other policiesu*)~¢. Unfortunately,
For the proof of(i) we refer to [29]. Parfii) is we do not have any proof of the convergence
a direct result of Theorem 5. of this method. Nevertheless, for the case of two

For player 1, from Theorem 6 we can infer mobiles this algorithm worked extremely well in
that the relaxed objective function has a structumifferent parameter settings (convergence in about
similar to that of (15). three iterations). Furthermore, for the case of two
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mobiles we propose the adaptation of Lemkefading, interference from other cells etc. Further
method for Linear Complementarity Problem [32]research including these features is planned.

In Appendix A we show that this algorithm con-

verges for the considered class of problems. A. Decentralized policies

The centralized cooperative optimization is First we consider the decentralized problems that
equivalent to a classical MDP formulation whichgrise in cooperative and non-cooperative case. Both
leads to a Linear Programming formulation. Th@yroblems are formulated in terms of occupation
LP can be solved for example by efficient interiomeasureg;(x;, a;). In order to compute the strate-

point method in polynomial time. gies one can use (3).
The jamming case also leads to Linear Program- 1) Cooperative optimizationLet x = (x1,z3)
ming formulations, for details see [29]. anda = (ay,az). Here we consider the following

We assume, that the radio channel between meest function
bile 7+ = 1,2 and the base station is characterized
by a Markov chainX; with statesz; € X; =
{1,...,M}, M = 11, and a uniform vector of wherer;(x,a) are defined by (1).
steady state probabilities. One of the transition Consider the following bilinear problem
probability matrices which has a uniform steady

r(x,a) = r1(x,a) + ra(x,a), (18)

state probability vector is given bR, ﬁ prps x%:x pr(@1, ar)r(x, a)pa (@2, az),
The power attenuation for each state of the acA
Markov chainX; is defined by the following: : (19)
subject to
X5 1 2 3 ... 1 )
gi(z:) 00 01 02 ... 10. > pilwnahi(a) < Vi, i=12, (20)
Let mobile’'s action setA; be given byA; = 2: gi:
(0,...,11). The actual power corresponding to thg,,q
a;th power level, where,; € A;, is 5 pi
a; 0 1 2 ... 11 11'62)(1 pi(wi ai)(6(zi, yi) — 951%)
hi(a;) 0 0dB 1dB ... 10dB ai € A;
where the level of 0 dB corresponds to some base =0, VyieX;i=12,
value of poweW,. We assume that the background Z pi(zi,a;) =1,
noise power at the base statioNy, is equal to 2 € X,

0 dB. Since (1) depends only on the ratio between ai € A;
the power of signal received from a certain mobile p;(x;,a;) >0, Vz; € X;,a, € A;,i=1,2.
and the total power received from other mobiles (21)

and the t.hermal noise power at the receiver, we dQqare Pi is the transition matrix of the Markov
not specify the exact value of the base poMés.  cpain, which describes the radio channel between
We note that, with the above definitions, ki the mobilei and the base station, andz, y) is
and; satisfy the properties in Assumption 1. equal to one ifz = y and is zero otherwise.
The power consumption constraints for players The problem (19) could be solved using the
are the following: quadratic programming technique.
Di(u1) < 2.7TWo, ) Irr1] Fig. 1, the supports of the optimal policies for
Da(uz) < 5.1W,. oth players are shown as a function of the channel
? state.
where D;(u;) is defined by (14). Note, that both As one can see, the mobile 1 has a pure strategy
right and left hand sides of these constraints ha@ all the points but one, wheg (z;) = 0.8. The
the multiplier W, which can be cancelled. mobile 2 also has only one randomization point
The proposed model is quite simple, we chose2(z2) = 0.6. The exact values of the policies
it so as to avoid technical difficulties related tati(hi(a:) | gi(z:)) at those points are as follows:
Markov chains with infinite state space. Thus we u1(0]0.8) = 0.0293,
assume that a finite Markov chain can approxi-
mate well randomness due to fading, shadowing, u1(9 dB|0.8) = 0.0036,
mobility, as well as time correlation phenomena u1(10 dB[0.8) = 0.9671,
which are often ignored. Nevertheless, the maig, mobile 1, and
goal of the example is to validate the structure that
we obtain rather than to propose a reliable model u(8 dB[0.6) = 0.5596,
that could include mobility, handovers, shadowing, u2(9 dB|0.6) = 0.4404,
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10dBy 4 The values of the objective functions in this
L | problem areR; (u*) = 0.6484, Ra(u*) = 1.1584.
8dB| oo ] As it was expected, the total throughput value
. * 2-nd mobile constraint R(u*) = Rl(u*) —+ Rg(u*) = 1.8067 is smaller
e OB * ] than in cooperative case.
£ 4d8f” 777777777777 iistmobil constraint
= * B. Centralized optimization
2dBf ] Now let us consider the single controller prob-
o 1-st mobile policies lem, that arises in the case of centralized optimiza-
odBf % 2-nd mobile policies | tion. As in the decentralized framework, we operate
0 02 04 06 08 1 here in terms of occupation measures. Thus, the
bad Channel state good problem (10) for the case of two players can be
Fig. 1. Supports of the optimal policies in cooperative case rewritten as follows:

max » Y p(x,a)r(x,a), (22)
. ’ xeX acA
for mobile 2.

The value of the objective function in this prob-Wherer(x, a) is defined by (18). The maximization
lem is R(u*) = 1.9225. is performed subject to the following constraints:

2) Non-cooperative equilibrium:Now, in the Z Z p(x,a)hi(a;) < Vi, i=1,2; (23)
same setting as in the cooperative case, we con- ’ - o

N i 7 . xeX acA
sider an example of non-cooperative optimization.
Each mobile needs to maximize its own objective Z p(x,a) = m(x) = m(21)72(T2);
function: acA
max Y Y pi(1,a1)ri(x, a)pa(2, az), plx,a) 20, Vx X, VacA;
P1,P2
xeX acA Z Z p(x,a) = 1.
max Y Y pi(x1,a1)ra(x, a)pa(z2, az), x€Xach
PLP2 ceX acA Once the occupation measures are obtained, the

subject to the constraints (25)-(28) (in the ApStrategies can be computed by means of (2).
pendix).

By means of the linear complementarity problem g W
(33) one can obtain the optimal strategies depicte > T * * * * * * * * * ¥
on Fig. 2. The exact values of the policies at the § 08f * * x % * x & *x x g
randomization points are as follows: ~ F kK Kk x ok x x x x O
k)
o 0.6% * * * * * * * o o q
u1(7 dB|1.0) = 0.5803, (8 dB|1.0) =0.4197, ¢
5 * * * * * * * e} e} e}
uz(8 dB|0.6) = 0.1089, u2(9dB|0.6) =0.8911. &o4t * * x % * o o O O ¢
@
. . @ * O O O O O O
We note that the structure obtained in Theorem & £ T
[
holds for both the players. 50 * % °© ° ©° ©° ©° ©° 9
- O O O O O O O O
T g Fany Fany Fany Fany O
ook kX x % 02 04 06 08 1
8dBl * * q bad Channel state for mobile 1 (circles) good
2-nd mobile constraint
o O .
Fig. 3. The setsl; and Ws.
6 dB * (6] o
2 _ ___________ 1l-stmobileconstraint | Define the following sets:
@ 4dBf 1 . % %
3 e Uy: pairs(zy,x2): Jai such thathy(a}) >0
g o 1 1
- andu(aj,az | z1,22) > 0 for someas € Ay;
N o Uy pairs(zy,x2): Jab such thathy(al) > 0
*
vasl . o 1-stmobie pocies | andu(ay,a} |:c1,.x2) > ( for somea, .e Al..
L ‘ * 2-nd mohile policies Note, that the sef; is the set of states in which
0 02 0.4 0.6 0.8 1 ith player should transmit with nonzero probability
bad Channel state good

according to the optimal strategy.

Fig. 2. Supports of the optimal policies in non-cooperative "_1 Fig. 3_ these_ sets are provided for the_ cen-
case. tralized optimization problem (22). The s@&t; is
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depicted by circles, and the s&t, — by stars. As one can see, the number of randomizations
One can see, that the sets have no mutual poinits.the obtained policy exceeds the number of con-
It means, that the mobiles never transmit at thetraintsN = 2. Nevertheless, due to Theorem 1 the
same time. We note that the time-sharing propergyptimal policy can be chosen with no more then
of the optimal policy was also observed in [33] inN randomization points. It is easy to check, that
the context of continuous available power levels ithe policy with the same setg; and ¥, (Fig. 3),

wireless sensor networks. supports depicted on Fig. 5, and one randomization
point (see the following table) delivers the same
10dBf ‘ ‘ " % % * %  value to the cost function.
* * * * o (0]
8dB} ¥ o o o o o ] g1(x1), g2(x2) | u(0,8 dB) | w(0,9 dB)
* © 2-nd mobile constraint O& 0.6 1 0
g edsf 1 0.8,0.5 1 0
2 o 0.8,0.4 1 0
2 4dBy 7 7 7 7 'l-stmobile constraint] 0.8,0.3 0.1622 0.8378
: 0.8,0.2 0 1
2dBJ 1 0.8,0.1 0 1
odBl O 1-st mobil_e poli(_:i(_es | 0'8’ 0.0 0 1
* 2-nd mobile policies
00 012 014 0‘.6 018 1
bad Channel state good
10d8} ‘ ‘ T * o+ k
Fig. 4. Supports of the optimal policies in cooperative case * % % o o
8dB * O @] [©] O @]
In Fig. 4 one can see the supports of the optima *0 2-nd mobile constraint
strategies. g 6By 1
A circle on the place(g,(z?), hi(at)) means 3 Y o
that the first mobile should transmit with the poweré *“[ 1-st moblle constrain
level hy(a}) with nonzero probability in all states .|
(x’{, IQ) € ;.
A star on the placégs(x3), ha(a})) means that odal O 1-stmobile policies |
the second mobile should transmit with the power ‘ ‘ * 27nd mobile policies
level hy(a3) with nonzero probability in all states L O el sty Ot

(xl, SC;) € WU,
If there are two or more power levets(af) for Fig. 5.  Supports of the optimal policies in cooperative case
some particular statg (), then the player should (one randomization point).
randomize. In other case (single power lekgla’) )
for the stateg;(x})), the player should always Nc_)te, that the centrahzed.power me}nagem.ent
transmit with power leveh; (). provides b_etter throughput in comparison with
One can see that for both players there are staf@§€r considered controls, the value of the cost
of randomization. We provide here the strategidsnction is R(u”) = 2.5614.
w(hi(ar), hi(az) | g1(a1), g2(x2)) for these states: ~ Another interesting point that we want to discuss
is the attainability of the power constraints.

Consider the problem (22) without power con-

91(21), g2(w2) | (8 dB,0) | u(9 dB,0) straints. The optimal policies for this problem are
0.8,0.6 0.3694 0.6306 as follows:
0.8,0.5 0.6098 0.3902 .
0.8,0.4 0.4475 0.5525 . Player 1 should transmit at the top power level
0.8,0.3 0.4595 0.5405 if g1(z1) > ga(w2); _
0.8,0.2 0.4369 0.5631 . _Player 2 should transmit at the top power level
0.8,0.1 0.4312 0.5688 if g2(z2) > g1(x1).
0.8,0.0 0.4169 0.5831 The value of the objective function for this policy
is R(u*) = 2.8560. The experiments show, that at
g1(z1), g2(x2) | u(0,8 dB) | u(0,9 dB) the optimal point for problem with constraints (23),
0.3,0.3 0.9982 0.0018 where the boundg; are both greater then 7 dB, the
0.2,0.3 0.9946 0.0054 power constraints are not attained, and the optimal
0.1,0.3 0.9983 0.0017 strategy and the value of the objective function are
0.0,0.3 0.9984 0.0016 the same as in unconstrained case.
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C. Jamming temporal scheduling problem, where we can split

The average power bounds are the same as in tg;“a transmission power both in time and in space
previous examples: for the transmittef = 2.9, (different parallel channels)._ _ _
and for the jammet’, = 5.2. From both a game theoretic point of view as well
The supports of the optimal strategies in thi&S from the wireless engineering point of view, it
problem are depicted in Fig. 6. We note that this interesting to study possibilities for coordination
structure obtained in Theorem 5 holds for player between mobiles in the decentralized case (in both
whereas the structure obtained in Section VI hold&operative as well as non-cooperative contexts).

for player2. Both players have optimal strategied NiS can be done using the concepts froorre-
lated equilibria[34]-[37], which is known to allow

sl .+ . T . ¥ ] for bette.r performance even in the selfish non-
o e s cooperative cases. We note however, that existing
jammer constraint literature on correlated equilibria do not include
6B e ] side constraints, which makes the investigation
o * °© novel also in terms of fundamentals of game theory.
| _____________/
L 4dBf transmitter constraint
[
IS REFERENCES
2dBf o 1 [1] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless mi-
crosensor networks,” ifProc. of the 33rd Annual Hawaii
0dB| O transmitter policies - International Conference on System Scienegd 2, Jan.
* jammer policies 2000.
0 0.2 0.4 0.6 0.8 1 [2] C. R. Lin and M. Gerla, “Adaptive clustering for mo-
bad Channel state good bile wireless networks,IEEE J. Select. Areas Commun.

vol. 15, no. 7, pp. 1265-1275, Sept. 1997.

Fig. 6. Supports of the optimal policies in case of jamming. [3] T. J. Kwon and M. Gerla, “Clustering with power con-
trol,” in Proc. IEEE Military Communications Conference
(MILCOM’99), vol. 2, Atlantic City, NJ, USA, 1999, pp.

that are randomized only at one point: 1424-1428.
[4] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
U1(6 dB | 0-7) = 0.3623, U1(7 dB| 0-7) = 0.6377, “An application-specific protocol architecture for wirste
microsensor networks,Wireless Communications, IEEE
U2(7 dB | 0-8) =0.9656, u2 (8 dB| 0-8) = 0.0344. Transactions onvol. 1, no. 4, pp. 660-670, Oct 2002.
L o [5] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
The value of the objective function iB; (u*) = and J. Anderson, “Wireless sensor networks for habitat

0.6237 which is less then the same value for the  monitoring,” in WSNA '02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and

decentralized non-cooperative case. applications New York, NY, USA: ACM, 2002, pp. 88—
97.
VIIl. CONCLUSION AND FURTHER WORK [6] H. Ren and M. Meng, “A game theoretic model of dis-

) ) tributed power control for body sensor networks to reduce
We have studied power control in both coop-  bioeffects,” inMedical Devices and Biosensors, 2006. 3rd
erative and non-cooperative setting. Both central- 'EEE/EMBS International Summer School, &ept. 2006,

. . . : . 90-93.
ized and decentralized information patterns havey, ,ﬂ? Ji and C.-Y. Huang, “Non-cooperative uplink power

been considered. We have derived the structure of control in cellular radio systemsWireless Networks
optimal decentralized policies of selfish mobiles__ Vol 4 no. 4, pp. 233-240, June 1998.

. . . I8] R. D. Yates, “A framework for uplink power control in
havmg discrete power levels. We further stud|eoI cellular radio systems[JEEE J. Select. Areas Commun.

the structure of power control policies when a  vol. 13, pp. 1341-1347, Sept. 1995.
malicious mobiles tries to jam the communication[®] T- Alpcan, T. Basar, R. Srikant, and E. Altman, “CDMA

. . uplink power control as a noncooperative gam#iteless
of another mobile. We have illustrated these results  Neworks vol. 8, pp. 659-670, 2002.

via several numerical examples, which also allowedo] D. Falomari, N. Mandayam, and D. Goodman, “A new

us to get insight into the structure in the cooperative ~framework for power control in wireless data networks:
f K games utility and pricing,” inProc. Allerton Conference
ramework. ) . on Communication, Control and ComputjnGhampaign,
The modeling and results open many exciting Illinois, USA, Sept. 1998, pp. 546-555.

research problems. Our setting, which could béll M.Huang, R.P. Malhamé, and P. E. Caines, “On a class of

. d | scheduli bl . . large-scale cost-coupled Markov games with applications
viewed as a temporal scheduling problem, Is quite to decentralized power control,” iRroc. IEEE Conf. on

similar to the “space scheduling” (i.e. the water-  Decision and Control (CDC'04)Atlantis, Paradise Island,
filling) problems discussed in the introduction, for _ Bahamas, Dec. 2004. -
hich th text of discrete power levels alonélZ] L. Lai and H. El Gamal. (2005, Dec.) The water-filling
W. Ic € contex ) ! - pow Vi game in fading multiple access channels. [Online].
with the non-cooperative setting have not yet been  Available: arXiv:cs.IT/0512013 v1
explored. It is interesting not only to study thg13] F- Meshkati, M. Chiang, V. Poor, and S. C. Schwartz, A
ter-fillina oroblem in the discrete noncooperative game-theoretlc approach to energy-efficient power control
water-nifing p k p in multi-carrier CDMA systems,1EEE J. Select. Areas
context but also to study the combined space and Commun.vol. 24, no. 6, pp. 1115-1129, June 2006.



[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Uniform [35] —,

power allocation in MIMO channels: a game-theoretic
approach,”|IEEE Trans. Inform. Theoryvol. 49, no. 7,
pp. 1707-1727, July 2003.

C. U. Saraydar, N. B. Mandayam, and D. Goodman, “Effi-
cient power control via pricing in wireless data networks,”

[36]

14

“Correlated Equilibrium as an expression of
Bayesian rationality,”Econometrica vol. 55, pp. 1-18,
1987.

S. Hart and D. Schmeidler, “Existence of correlatediequ
libria,” Mathematics of Operations Researsiol. 14, pp.
18-25, 1989.

IEEE Trans. Communyvol. 50, no. 2, pp. 291-303, Feb. [37] A. Neyman, “Correlated equilibrium and potential gasyie

2002.

C. W. Sung and W. S. Wong, “Mathematical aspects of thE38]

power control problem in mobile communication systems,”
in Lectures at the Morningside Center of Mathematics
L. Guo and S. S.-T. Yau, Eds. ACM/International Press,
2000. [
C. Wu and D. P. Bertsekas, “Distributed power control
algorithms for wireless networkslEEE Trans. Veh. Tech-
nol., vol. 50, no. 2, pp. 504-514, Mar. 2001.

S.-L. Kim, Z. Rosberg, and J. Zander, “Combined power
control and transmission rate selection in cellular net-
works,” in Proc. Vehicular Technology Conference (IEEE
VTC'99) vol. 3, Fall, Sept. 1999, pp. 1653-1657.

S. G. Glisic,Advance Wireless Communications: 4G Tech-
nologies Wiley, 2004.

Int. J. of Game Theorwol. 26, pp. 223-227, 1997.

D. Koller, N. Megiddo, and B. von Stengel, “Efficient

computation of equilibria for extensive two-person gafhes,

Games and Economics Behaviaol. 14, pp. 247-259,

1996.

] C. E. Lemke, “Bimatrix Equilibrium points and Mathe-
matical Programming,Management Scivol. 11, no. 7,
pp. 681-689, May 1965.

APPENDIX

LINEAR COMPLEMENTARITY APPROACH FOR
THE DECENTRALIZED CASE

O. Popescu and C. Rose, “Water filing may not good thiS section we show how the non-cooperative
neighbors make,” ifProc. IEEE Global Telecommunica- equilibrium can be obtained in the case of two
tions Conference (GLOBECOM’ZOOWO' 3, San Fran- players by means Of ||near Complementarlty prob_

cisco, CA, Dec. 2003, pp. 1766-1770. . .
J. B. Rosen, “Existence and uniqueness of equilibl-em (LCP). Consider the following problem, where

rium points for concave N-person gameEgonometrica €ach player wants to maximize his own paygif
vol. 33, no. 3, pp. 520-534, July 1965.

E. Altman, Constrained Markov Decision Processes 11aX Rz(“) :

Chapman and Hall/CRC, 1999. pLL2

E. Altman, O. Pourtallier, A. Haurie, and F. Moresino, >, 2 piler,an)ri(@, ar, w2, a2)pa(w2, az),
“Approximating Nash equilibria in nonzero-sum games,” x€XacA (24)
International Game Theory Revigwol. 2, no. 2-3, pp.
155-172, 2000.

M. Tidball, A. Lombardi, O. Pourtallier, and E. Altman,
“Continuity of optimal values and solutions for control
of Markov chains with constraints SIAM J. Control and
Optimization vol. 38, no. 4, pp. 1204-1222, 2000.

D. M. Topkis, Supermodularity and Complementarity
Princeton, NJ: Princeton Univ. Press, 1998.

B. Bencsath, I. Vajda, and L. Buttyan, “A game based-ana
ysis of the client puzzle approach to defend against DoS
attacks,” inProc. IEEE Conference on Software, Telecom-
munications and Computer Networks (SoftCOM’2003) a,EA;
Split, Dubrovnik, Ancona, Venice, Oct. 2003.

P. Kyasanur and N. H. Vaidya, “Detection and handlin .

of M%\C layer misbehavior in )\;vireless networks,” Rroc. ? Z pi(eisai)hi(a;) < Vi, i=1,2. (28)
International Conference on Dependable Systems and Net- z=; € X;

works (DSN'2003) San Francisco, CA, June 2003, pp. @i € A:

173-182. . .
M. Kodialam and T. V. Lakshman, “Detecting network Here pi: X; x A; — [0,1] is the occupation
intrusions via sampling: a game theoretic approach,” itneasure for playeg": 1,2.

e s INFOCOM vol. 3, Mar. 30-Apr. 3 2003, pp.  First assume, that at the equilibrium point the

E. Altman, K. Avrachenkov, R. Marquez, and G. Miller, power consumption constraints (28) are active:
“Zero-sum constrained stochastic games with independent
state processesMathematical Methods of Operations Z pi(xi,a;)hi(a;) =V;
Research (ZOR)ol. 62, no. 3, pp. 375-386, 2005. 2 € X,

a; € A;

wherei = 1,2 and

pi(a:i,ai) > O, Vil?l S Xi,ai S Ai,

Z pi(Iz‘,ai) =1,

z; € X;
a; € A;

Z pZ(I’LaaZ) = Ty, vxz € Xi7

(25)

(26)

(27)

i=1,2. (29)

J. B. Lasserre, “Global optimization with polynomialad
the problem of momentsSIAM Journal of Optimizatian
vol. 11, no. 3, pp. 796-817, 2001. _ This assumption is not restrictive, because if one
——, "Semidefinite Programming vs. LP relaxations forgr hoth of these constraints are not active, they can
Polynomial Programming,"Mathematics of Operations b itted
Researchvol. 27, no. 2, pp. 347-360, May 2002. e omitted. R ) _
R. Cottle, J.-S. Pang, and R. E. Stofiée linear comple-  Indeed, letu; be the policy for player; that
mentarity Przolbéem Boston: Agademlc Pr;)ss,k1992. transmits at all states with maximum power. Then
I. C. Paschalidis, W. Lai, and D. Starobinski, “Asymp- ; ;
totically optimal transmission policies for large-scabevt the ,fOHOWIng_ statements ar_e easily seen to be
power wireless sensor network$EE/ACM Trans. Netw. €quivalent (since the constraints of a player do not
vol. 15, no. 1, pp. 105-118, 2007. depend of the strategies of the other players):
R. J. Aumann, “Subjective and correlation in randordize e .

1) at equilibrium, the power constraint of player

strategies, Journal of Mathematical Economicsol. 1, pp. - ) =k i
67-96, 1974. i is met with strict inequality;



15

Eitan Altman received the B.Sc. de-
gree in electrical engineering (1984),
the B.A. degree in physics (1984) and
the Ph.D. degree in electrical engi-
neering (1990), all from the Technion-
Israel Institute, Haifa. In (1990) he
further received his B.Mus. degree in
music composition in Tel-Aviv univer-

sity. Since 1990, he has been with

2) when usingi;, the power constraint of player
1 is met with strict inequality (independently
of the policy of other players).

Any of the statements imply that at equilibrium,
u; is the equilibrium policy of usei. So we can

a ‘ \
first check for which playet, the constraints are \/
violated when using policyz;. For these players, M
; ; ; /Z INRIA (National research institute in
the constraints can be replaced with equality con informatics and control) in Sophia-

straints and for the rest, the power constraints Caftipolis, France. His current research interests inclpegor-
be omitted. mance evaluation and control of telecommunication netaork

o and in particular congestion control, wireless commuidcst
Now let 3 be the vector, containing all theand networking games. He has been the (co)chairman of the

p1(z1,a1), Vo € Xq,a1 € Ay, and¢ — the same program committee of several international conferences an

vector forp2(x2,a2)_ workshops (on game theory, networking games and mobile
Indeed, the problem (24) with constraints (25)7€MWOrks)-

(26), (27) and (29) can be represented in the form

of the bimatrix game with linear constraints:

max §rACQ,

méx £*BC, (30) Konstantin Avrachenkov received
£¢ the master degree in Control Theory

(1996) from St. Petersburg State Poly-

S.t. : ! . p
technic University and Ph.D. degree in

§>0, ¢=0; (31) Mathe- matics (2000) from University

of South Australia. Currently he is a

and . researcher at INRIA Sophia Antipo-
C 5 = (32) lis, France. His main research interests

D*¢ =d. = are Markov chains, Markov decision

. . . g processes, singular perturbation the-
Following [38] we introduce the linear comple- ory, mathematical programming and

mentarity problem whose solution characterizes tte performance evaluation of data networks.
equilibrium point of (30), (31), (32):

= (57 C? 21,22, 23, 24)* Z 07
q+ Mz >0, (33)
* —
z (q + MZ) =0, Ishai Menachereceived his Ph.D. de-
gree in Electrical Engineering from
the Technion, Haifa, Israel, in 2008.
Between 1997 and 2000 he worked
at Intel as an engineer in the network
communications group. He is currently
M = , a postdoctoral associate in the Labora-
C tory for Information and Decision Sys-
—-D tems at MIT. His research interests in-
D clude Quality of Service (QoS) archi-
tectures in communication networks,
* and game theoretic analysis of networks, with emphasis on
¢=(0,0,¢", —¢",d", =d")" . Wirelegss systems. y P

Itis also shown in [38], that under the conditions
A < 0 and B < 0 Lemke’s algorithm [39]
computes a solution of the LCP (33).

It should be noted, that in order to satisfy the
conditionsA < 0, B < 0 we can always replace
cost matricesd and B with A — kF andB — kFE,
wherekFE is a matrix of unities, and is the maximal
positive entry ofA and B.

Once the solution of LCP (33Y,, {,) is found,
the equilibrium point(¢’, ¢') of the bimatrix game
(30) could be computed using the following formu
las:

where
-A C* -C*
—B* D* —D*
-C

Gregory Miller was born in Krasno-

gorsk, Moscow region, Russia on
November 23, 1980. He received M.S.
and Ph.D. degrees in physics and
mathematics from Moscow Aviation

Institute in 2003 and 2006 respec-
tively. He also received Ph.D. degree
in informatics from University of Nice

in 2006. From 2002 he is employed by
the Institute of Informatics Problems

, & , Co of the Russian Academy of Sciences
5 = % C = 5 (34) (IPI RAN) as a research fellow. His current research interes
e150 62C0 include minimax filtering and control, hidden Markov models

wheree; ande, are vectors of appropriate dimen-And applications in telecommunications.
sion, whose components are all ones.



Balakrishna Prabhu received M.Sc.
(2002) in Electrical Communications
Engineering from the Indian Insti- [
tute of Science, Bangalore, and Ph.D {2
(2005) from the University of Nice- [
Sophia Antipolis, France. He is cur-
rently a CNRS researcher at LAAS,
Toulouse, France. His research inter
ests include performance evaluation of
communication networks, in particular g
congestion control, peer-to-peer net-

16

Adam Shwartz received his B.Sc. in
Physics and B.Sc. in Electrical En-
gineering from Ben Gurion Univer-
sity, Israel in 1979, an M.A. in Ap-
plied Mathematics in 1982 and Ph.D.
in Engineering in 1983 from Brown
University. Since 1984 he is with the
Technion-Israel Institute of Technol-
ogy, where he is Professor of Electrical
Engineering and holds The Julius M.
and Bernice Naiman Chair in Engi-

works and wireless networks. neering. He held visiting positions at the ISR - University o
Maryland, Mathematical Research center - Bell Labs, Rstger
Business School, CNRS - Montreal, Free University Amsterda
and shorter visiting positions elsewhere. His researoérests
include probabilistic models - in particular the theory o&iov
decision processes, stochastic games, and asymptotiodseth
including diffusion limits and the theory of large deviatio -
and their applications to computer communications netaork
Adam Shwartz enjoys music, table tennis and mountain biking



