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Eitan Altman, Konstantin Avrachenkov, Ishai Menache, Gregory Miller,
Balakrishna J. Prabhu, and Adam Shwartz

Abstract—We consider an uplink power control
problem where each mobile wishes to maximize its
throughput (which depends on the transmission pow-
ers of all mobiles) but has a constraint on the average
power consumption. A finite number of power levels
are available to each mobile. The decision of a
mobile to select a particular power level may depend
on its channel state. We consider two frameworks
concerning the state information of the channels of
other mobiles: (i) the case of full state information
and (ii) the case of local state information. In each of
the two frameworks, we consider both cooperative as
well as non-cooperative power control. We manage to
characterize the structure of equilibria policies and,
more generally, of best-response policies in the non-
cooperative case. We present an algorithm to compute
equilibria policies in the case of two non-cooperative
players. Finally, we study the case where a malicious
mobile, which also has average power constraints,
tries to jam the communication of another mobile.
Our results are illustrated and validated through
various numerical examples.

Index Terms—Cooperative/non-cooperative opti-
mization

I. I NTRODUCTION

The multiple access nature of wireless networks
represents a fundamentally different resource al-
location problem as compared to wired networks

The work of E. Altman was supported by the EuroNF Euro-
pean Network of Excellence and by the POPEYE collaborative
INRIA program. The work of I. Menache was supported by a
Marie Curie International Fellowship within the 7th European
Community Framework Programme. The work of G. Miller has
been supported in part by Russian Basic Research Foundation
Grant 05-01-00508 and by Australian Research Council Grant
DP0988685. The work of B.J. Prabhu was supported by the
Indo-French Centre for Promotion of Advanced Research (IFC-
PAR) under research contract No. 2900-IT. The work of A.
Shwartz was partially supported by the Technion VPR fund.

E. Altman and K.Avrachenkov are with INRIA, 2004 route
des Lucioles BP 93, 06902 Sophia Antipolis, France (email:
altman@sophia.inria.fr; k.avrachenkov@sophia.inria.fr).

I. Menache is with the Laboratory for Information and De-
cision Systems, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, US (email: ishai@mit.edu).

G. Miller is with the Institute of Informatics Problems of the
Russian Academy of Sciences (IPI RAN), 44/2 Vavilova Street,
Moscow, 119333, Russia (email: gmiller@ipiran.ru).

B.J. Prabhu is with LAAS-CNRS, Université de Toulouse,
7 Avenue du Colonel Roche, Toulouse, 31077, France (email:
Balakrishna.Prabhu@laas.fr).

A. Shwartz holds the Juluis M. and Bernice Neiman Chair
in Engineering, Faculty of of Electrical Engineering, Technion,
Haifa, 32000, Israel (email: adam@ee.technion.ac.il).

which provide a dedicated channel for each user.
The shared nature of the wireless channel implies
that the rate obtained by a user depends not only
on its own transmit power level but also on the
transmit power levels of the other users. A user
who transmits at a relatively high power level,
though may increase its own rate, will interfere with
the transmissions of the other users and prompt
them to increase their own transmission power.
Such a situation is undesirable in wireless networks
where mobile devices are usually equipped with
limited-lifetime batteries which require judicious
utilization. It is, therefore, in the interests of the
users to control their transmit powers levels so as
to increase the information transfer rate and the
lifetime of the devices. Power control also has
the added benefit of allowing the spatial reuse of
channels, i.e., the same channel can be concurrently
used by mobiles at locations where interference is
sufficiently low.

In this paper, we considerdynamicuplink power
control in cellular networks: mobiles choose their
transmission power level from a discrete set in a
dynamic way, i.e., the transmission power level
is chosen based on the available channel state
information. By controlling the power one can
improve connectivity and coverage, spend less bat-
tery energy of terminals, increase device lifetime,
and maximize the throughput. In terms of decision
making, we consider two cases:

• Decentralized case:Each mobile chooses its
own power level based on the condition of its
own radio channel to the base station.

• Centralized case: The transmission power
levels for all the mobiles are chosen by the
base station that has full information on all
channel states.

We assume that there are upper bound constraints
on the average power that a mobile can use. Thus
in very bad channel conditions, one can expect a
mobile to avoid transmission and save its power for
more favorable channel conditions.

Applications that can mostly benefit from our
proposeddecentralizedpower control are ad-hoc
and sensor networks with no predefined base sta-
tions. In such networks, mobiles may have to act
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temporarily as base stations [1]–[3], which can
involve a heavy burden in terms of energy. The
limited processing capacity and battery lifetime of
devices precludes the use of centralized schemes,
thereby making decentralized approaches for power
control more appropriate in such networks. The
wireless sensor networks greatly benefit from the
decentralized power control since the wireless sen-
sor networks have very limited energy budget.
Examples of the application of the decentralized
power control schemes to wireless sensor networks
are given in [4]–[6]. In [4]–[6] one can also find
diverse use cases for wireless sensor networks such
as body sensor networks and habitat monitoring.
Furthermore, we note that the design of decen-
tralized power control has for long interested the
networking community even before ad-hoc and
sensors networks have been introduced (see [7], [8]
and references therein).

We obtain results for both the cooperative setting
in which the mobiles’ objective is to maximize the
global throughput, as well as the non-cooperative
case in which the objective of each mobile is to
maximize its own transmission rate.

We identify the structure of equilibria policies for
the decentralized non-cooperative case. We show
that the following structure holds for any mobilei,
given any set of policiesu−i chosen by mobiles
other than i. Any best response policy (i.e. an
optimal policy for playeri for a given policyu−i

of other mobiles) has the following properties:

(i) It needs randomization between at most two
adjacent power levels,

(ii) the optimal power levels are non-decreasing
functions of the channel state, and

(iii) if two power levels are both optimal at
a given channel state then they cannot be
jointly optimal for another channel state.

We present an algorithm to compute equilibria
policies in the case of two non-cooperative players.

For the cooperative centralized problem with
two mobiles, we obtain insight on the structure
of optimal policies through a numerical study. An
interesting property that we obtain is the fact that
the optimal policy has a TDMA structure: in each
combined state(x1, x2) there is only one mobile
that will transmit information. This will of course
eliminate the interference. We also show that unlike
the decentralized case, the average power level
constraints may hold with strict inequality when
using the optimal policy.

We finally study the case where a malicious
mobile, which also has average power constraints,
tries to jam the communications of another mobile.
Our results are illustrated and validated through
various numerical examples.

A. Related work

There has been an intensive research effort on
non-cooperative power control in cellular networks
[7], [9]–[16]. In all these work, however, the set of
available transmission powers has been assumed to
be a whole interval or the whole set of nonnegative
real numbers. In this paper we consider the case
of a discrete set of available power levels, which
is in line with standardized cellular technologies.
Very little work on power control has been done
on discrete power control. Some examples are [17]
who considered the problem of minimizing the sum
of powers subject to constraints on the signal to
noise ratio, [18] who studied joint power and rate
control, and [11] (which we describe in more detail
below).

The mathematical formulation of the power con-
trol problem shows much similarity with a well
studied problem of assigning transmission powers
to parallel channels between a mobile and a base
station with a constraint on the sum of assigned
powers, see e.g. [19, p. 161]. This problem is often
known as the “water filling” (which is in fact the
structure of the optimal policy). The difference
between the models is that in our case we split
powers over time, whereas in the water filling
problem the powers are split over space. Our results
are therefore quite relevant to the water filling
problem as well. Some work on water filling games
can be found in [12] where not only mobiles take
decisions, but also the base station does, with the
goal of maximizing a weighted sum of the individ-
ual rates. In [20], the non-cooperative water filling
game is studied in the context of the interference
channel; two mobiles and two corresponding base
stations.

Game theoretic formulations for non cooperative
power control with finite actions (power levels) and
states (channel attenuations) have been proposed
in [11]. An ǫ equilibrium is obtained there for
the case of a large number of players. The cost
to be minimized by a playeri is the quadratic
difference between the desired and the actual SINR
(Signal to Interference plus Noise Ratio) of that
player. In contrast, in the model we introduce in
this paper, the choice of the transmission power is
done in the purpose of maximizing the mobile’s
own throughput subject to a limit on the average
power. Our setting is different also in the following.
In our model, in a given channel state, each mobile
can either choose a fixed power level or can make
randomized decisions, i.e. it can make the choice
of power levels in a state based on some (state
dependent) randomization.
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B. Organization of the paper

The structure of the paper is as follows. We
first present the model (Section II) as well as
the mathematical formulation of both the case of
centralized information (Section III) as well as
the one of decentralized information (Section IV).
In Section V we identify the structure of best-
response policies and thus of equilibria for the
decentralized case. Power control in the presence
of a malicious mobile is studied in Section VI. In
Section VII we present numerical examples. The
examples illustrate the theoretical results that we
had obtained and provide some additional insights.
After a concluding section we present a computa-
tion methodology for computing equilibria in the
game of two players.

II. T HE MODEL

A. Preliminaries

Consider a set ofN mobiles and a single base
station. As in several standard wireless networks
(e.g., UMTS and IEEE 802.11), we assume that
time is slotted. In each time slott, each mobilei
transmits data with power levelAi(t) chosen from
a finite setAi = (1, 2, 3, . . . , αi) containingαi

power levels. Denote byhi(a) the actual power
corresponding to theath power level wherea ∈ Ai.
DenoteA =

∏N
i=1 Ai.

The channel state model:We assume that the
channel between mobilei and the base station
can be modeled as an ergodic finite Markov chain
Xi(t) taking values in a setXi = (1, 2, . . . , mi)
of mi states with transition probabilitiesPi

xy. The
Markov chainsXi(t), i = 1 . . .N , are assumed to
be independent. Letπi be the row vector of steady
state probabilities of Markov chainXi(t); let πi(x)
be its entry corresponding to the statex ∈ Xi. It
is the unique solution of

πiP
i = πi, πi(x) ≥ 0, ∀x ∈ Xi,

∑

x∈Xi

πi(x) = 1.

We also denote byπ(x) the probability of state
x = (x1, . . . , xN ). Since the Markov chains that
describe the channel states are independent,π(x) =∏N

i=1 πi(xi).
The power received at the base station from mo-

bile i is given bygi(t)hi(Ai(t)) wherehi(Ai(t))
is the power emitted by mobilei and gi(t) =
gi(Xi(t)) is the attenuation factor, which is a func-
tion of the channel stateXi(t). We shall denote the
global state space of the system byX =

∏N
i=1 Xi.

Performance measures:The signal to interfer-
ence plus noise ratioSINRi at the base station
related to mobilei when the power level choices of
the mobiles area = (a1, . . . , aN) and the channel

states arex = (x1, . . . , xN ) is given by

SINRi(x,a) =
gi(xi)hi(ai)

No +
∑
j 6=i

gj(xj)hj(aj)
.

We consider the following instantaneous utility
of mobile i:

ri(x,a) = log2 (1 + SINRi(x,a)) . (1)

ri(x,a) is known as the Shannon capacity and can
thus be interpreted as the throughput that mobile
i can achieve at the uplink when the channel
conditions are given byx and the power levels used
by all mobiles area.

Notation: In the rest of the paper, we shall use
the following notation. We shall denote an element
of the setX by x. The ith component ofx will be
denoted byxi, i.e., x = (x1, x2, . . . , xN ), where
xi ∈ Xi for i = 1, 2, . . . , N . We definea andai in
a similar manner. LetX−i andA

−i denote the set
of channel states and the set of actions, respectively,
corresponding to all the players other than player
i. For an elementx−i ∈ X

−i, let x−i
j denote the

jth component ofx−i. We definea−i and a−i
j in

a similar way.

B. Policy types

A mobile’s choice of successive transmission
power levels is made based on the information
it has. The latter could be local, in which case
the policy is said to be distributed. We shall also
consider centralized policies in which all decisions
are taken at the base station. We have the following
definitions.

• A Centralized policy, u(a |x), is the proba-
bility that the base station assigns the trans-
mission power levelsa = (a1, . . . , aN ) to
the mobiles if the current channel’s states are
given by the vectorx = (x1, . . . , xN ). This is
equivalent to the situation where all system
information is available to all mobiles, and
moreover, all mobiles cancoordinate their
actions. This situation describes central deci-
sion making by the base station. The class of
centralized policies is denoted byUce.

• A Decentralized policy, ui(a |x), is the prob-
ability that playeri chooses the transmission
power levela ∈ Ai if its channel state isx ∈
Xi. Thus, only local information is available
to each mobile, and there is no coordination
in the random actions. This situation describes
individual decision making by each mobile
without any involvement of the base station.
The class of decentralized policies for player
i is denoted byU i

dc. DefineUdc =
∏N

i=1 U i
dc.

Along with policies we shall use also the occu-
pation measures. For a givenx ∈ X anda ∈ A, the
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global occupation measure,ρu(x,a), will be used
in the context of acentralized policy, u ∈ Uce, it
is defined as

ρu(x,a) =
N∏

i=1

πi(xi)u(a |x).

Note that given a global occupation measure,ρu,
the correspondingu can be obtained by

u(a |x) =
ρu(x,a)∑

b∈A

ρu(x,b)
(2)

(it is chosen arbitrarily if the denominator is zero).
For a givenx ∈ Xi anda ∈ Ai, the local occupa-
tion measure,ρui

i (x, a), is defined with respect to
a decentralizedpolicy, ui ∈ U i

dc, and is given by

ρui

i (x, a) = πi(x)ui(a|x).

For a given local occupation measure,ρui

i , the
correspondingui can be obtained by

ui(a |x) =
ρui

i (x, a)∑

b∈Ai

ρui

i (x, b)
(3)

(it is chosen arbitrarily if the denominator is zero).
In case ofdecentralizeddecision making, we de-
fine ρu(x,a) as

ρu(x,a) =

N∏

i=1

ρui

i (xi, ai), (4)

for a given(u1, u2, . . . , uN ).

C. Problem formulation: objectives and constraints

For any given policy1, u, and the corresponding
occupation measure,ρu(x,a)2, we now define the
utility function, the constraints, and the optimiza-
tion problem.
The utility functions: We define the utility for
player i as

Ri(u) :=
∑

x∈X

∑

a∈A

ri(x,a)ρu(x,a). (5)

Power constraints: In the centralized case, player
i is assumed to have the following average power
constraint

∑

x∈X

∑

a∈A

ρu(x,a)hi(ai) ≤ Vi, (6)

1With slight abuse of notation, we shall denote both cen-
tralized and decentralized policies byu. In the centralized
case,u(a|x) will denote a probability measure overa for a
given x. In the decentralized case,u will denote the vector
u = (u1, u2, . . . , uN ), whereui is the decentralized policy
for player i, for i = 1, 2, . . . , N .

2For thedecentralized case, we note thatρu(x, a) is given
by (4).

whereas in the decentralized case the corresponding
constraint is

∑

x∈Xi

∑

a∈Ai

ρui

i (x, a)hi(a) ≤ Vi. (7)

Note that in the decentralized case the state-
action frequencies of a particular mobile are in-
dependent of decisions of the other mobiles (see
equation (4)). Consequently, in the decentralized
case, the average power constraint of a mobile does
not depend on the decision of the others. However,
in the centralized case, the decisions of all the
mobiles are interdependent.

1) Cooperative optimization:We consider here
the problem of maximizing acommon objective
subject to individual side constraints. Namely, we
define for any policyu

Rγ(u) :=

N∑

i=1

γiRi(u), (8)

whereγi are some nonnegative constants. For an
arbitrary set of policiesU we consider the problem:

COOP(U) : max
u∈U

Rγ(u),

subject to (6) or (7), fori = 1, . . . , N. (9)

2) Non-cooperative optimization:Here each
mobile is considered as a selfish individual non-
cooperative decision maker, which we then call
“player”. It is interested in maximizing its own
average throughput (5). In the non-cooperative it
is natural to consider only decentralized policies
Udc.

For a policyu = (u1, . . . , uN) ∈ Udc we define
u−i to be the set of components ofu other than
the ith component. For a policyvi ∈ U i

dc we then
define the policy[vi, u

−i] as one in which player
j 6= i uses the elementuj of u whereas playeri
usesvi.

Definition 1: We say thatu∗ ∈ Udc is a con-
strained Nash equilibrium [21] if it satisfies(7) for
all players, and if

Ri(u
∗) ≥ Ri([vi, (u

∗)−i])

for any i and anyvi ∈ Udc such that (7) holds for
the policy [vi, (u

∗)−i].

III. C ENTRALIZED COOPERATIVE

OPTIMIZATION

When the cooperative optimization is considered
over the set ofcentralized policies, then the prob-
lem is in fact of a single controller (the base station)
which has all the information. Letrγ(x,a) :=∑N

i=1 γiri(x,a), γi ≥ 0, i = 1, 2, . . . , N , denote
the common instantaneous utility when power level
a is chosen in channel statex. The next Theorem
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states the existence of an optimal strategy if the
constraint set is not empty. The optimal strategy can
be obtained by means of provided Linear Program.

Theorem 1:Consider the cooperative optimiza-
tion problemCOOP(Uce) over the set of central-
ized policies. Assume that there exists a policyu

under which the power constraints (7) hold for all
the mobiles. Then,

(i) there exists an optimal centralized policy
u∗ ∈ Uce. The policy u∗ can be obtained
from the solution of the following Linear
Program by formula (2)

max
ρ

Rγ(u) :=
∑

x∈X

∑

a∈A

ρ(x,a)rγ(x,a)

(10)
s.t.

∑
x∈X

∑
a∈A

ρ(x,a)hi(ai) ≤ Vi, ∀i

∑
a∈A

ρ(x,a) = π(x) =
N∏

i=1

πi(xi), ∀x;

ρ(x,a) ≥ 0, ∀x, ∀a;∑
x∈X

∑
a∈A

ρ(x,a) = 1.

(11)
(ii) An optimal policy u∗ can be chosen with no

more thanN randomizations.
Proof: The problem is a special case of con-

strained MDPs (Markov Decision Processes). In-
deed, there is only one decision maker, the base
station, which assigns power levelsa ∈ A to
mobiles. It has all the information about the state
of the systemx ∈ X, which is combined state
of all channels. Since the Markov chainsXi(t)
are independent, the steady state probabilities of
Markov chain corresponding to a global system
state are equal toπ(x) =

∏N
i=1 πi(xi). Thus,

we have a constrained MDP with statesx ∈ X,
actions a ∈ A, steady state probabilitiesπ(x),
and constraints (7)–(14). Now we can apply the
classical results on constrained Markov Decision
Processes: statements in(i) follow from Theorem
4.3 of [22]. Statement(ii) follows from the fact,
that the Linear Program (10)–(11) has

∏N
i=1 mi +

N + 1 constraints. At the same time the number
of independent constraints is upper-bounded by∏N

i=1 mi + N , because the first
∏N

i=1 mi equality
constraints of (11) are dependent. The latter means
that the optimal solution can be chosen with no
more than

∏N
i=1 mi + N non-zero elements. For

each particularx there should be at least one
nonzeroρ(x,a), if π(x) > 0. Consequently we are
left only with other N possible nonzeroρ(x,a),
which corresponds toN randomizations of the
strategy. Ifπ(x) = 0 for somex we can simply
reduce the state space.

Remark 1:We note that there could be several
optimal solutions to the Linear Program (10). Some
of these solutions could correspond to policies with

randomization at more thanN points. However,
one can always select an optimal solution of (10)
which corresponds to a policy with no more than
N randomizations. See also the discussion and
numerical example in subsection VII-B.

Note that in the centralized framework it does
not make sense to speak about a non-cooperative
game, since there is a single decision maker.

IV. D ECENTRALIZED INFORMATION

A. Non-cooperative equilibrium

Here we consider the case when the players
optimize their own objective (5) subject to the
constraints (7) given the local information only. For
this case we show the existence of the constrained
Nash equilibrium.

Theorem 2:Under the assumptions on the objec-
tive functionsRi(u), constraints (7), and the set of
decentralized policiesUdc made above, there exists
a policy u∗ ∈ Udc satisfying Definition 1.

Proof: The set of policies for a playeri can
be identified by a set ofmi probability measures
over theAi. The subset of policies of mobilei that
furthermore meet the power constraints can thus be
identified by the set

(
ui(a|x)

)
, x ∈ Xi, a ∈ Ai,

satisfying
∑

x∈Xi

∑
a∈Ai

πi(x)ui(a|x)hi(a) ≤ Vi,

ui(a|x) ≥ 0, ∀a ∈ Ai, ∀x ∈ Xi,∑
a∈Ai

ui(a|x) = 1, ∀x ∈ Xi.

This is a closed convex set for each player. More-
over, for each mobilei, the utility Ri(u) is concave
in ui and continuous inuj , j 6= i. We conclude
from Theorem 1 of [21] that a constrained Nash
equilibrium exists.

B. The cooperative case

Here we discuss the situation where, even though
there is a common goal that is optimized, the power
level choices are not done by the base station
but by the mobiles themselves who have only
their local information available to take decisions.
Coordination is thus not possible.

Considering the decentralized framework, we
make the following observation concerning the
relation between the cooperative and the non-
cooperative cases.

Theorem 3:Any policy u that maximizes the
common objectiveRγ(u) while satisfying the con-
straints is necessarily a constrained Nash equilib-
rium in the game where each mobile maximizes the
common objectiveRγ(u).

Proof: Let v be a globally-optimal policy
among the decentralized policies. Assume that it
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is not an equilibrium. Then there is some mobile,
say i, that can deviate fromvi to someui such
that (7) holds and such that its utility, which
coincides with the other mobile’s utility, satisfies
Rγ((v−i, ui)) > Rγ(v). Moreover, for all other
playersj 6= i as well, the constraint (7) still holds
since it does not depend on mobilei’s policy. But
this implies thatv is not a globally optimal policy
which is a contradiction. So we conclude thatv is
indeed a constrained Nash equilibrium.

Now we show in Theorem 4 that there exists an
optimal decentralized policy.

Theorem 4:Let all the players have the common
objective functionRγ(u) defined by (8). Under
the assumptions on constraints (7) and the set of
decentralized policiesUdc made above, there exists
a solutionu∗ ∈ Udc to the problemCOOP(Udc)
(9).

Proof: Consider the non-cooperative setting
but with the common objectiveRγ(u) to all mo-
biles. There exists at least one such equilibrium due
to Theorem 2. If there is a dominating constrained
equilibrium (which is the case when there are
finitely many constrained equilibria) then it is a
globally optimal policy due to Theorem 3. Assume
next that there is a setU∗ of infinitely many
constrained equilibria. LetR∗

γ = supu∈U∗ Rγ(u)
and let un ∈ U

∗ be a sequence of constrained
equilibria such thatlimn→∞ Rγ(un) = R∗

γ . Then
it follows (from an adaptation of [23] and [24]) that
there exists a constrained equilibriumu∗ such that
Rγ(u∗) = R∗

γ . It is thus a dominating equilibrium
and hence a globally optimal policy.

V. STRUCTURE OF NON-COOPERATIVE

EQUILIBRIUM

In this section we identify the structure of equi-
libria policies for the decentralized non-cooperative
case. To that end we first study the structure of
best response policies of any given user when the
policies of the other users are fixed. Using the
results on the structure of the best response we then
establish the structure of the equilibrium policies.

We fix throughout the policyv−i of players other
than playeri, where

v−i(a−i |x−i) =
∏

j 6=i

vj(a
−i
j |x−i

j )

is the probability that each mobilej 6= i choosesaj

when its local state isxj . The product form here is
due to the decentralized nature of the problem and
to the fact that there is no coordination between the
mobiles is possible.

Before we state our main result, we present two
definitions and state the assumption necessary to
derive our main result.

Definition 2 (Increasing Differences):Let
X, T ⊂ R. A function f : X × T → R has (strict)
increasing differences in(x, t) if for every x′ > x,
t′ > t

f(x′, t′) − f(x, t′) > f(x′, t) − f(x, t). (12)

This property implies that the maximizer with
respect to a variable is increasing in the other
variables. There has been much research on su-
permodular functions due to the above appealing
property (see [25] and references therein).

Definition 3 (Single-randomization allocation):
A single-randomization allocation is an allocation
in which at most a single power level is used for
each state, except for some statei, for which two
power levels are used, i.e.,q

j
i > 0,qk

i > 0 for some
adjacent power levelsQj andQk.

Assumption 1:The rate function for theith mo-
bile, ri

(
(x−i, x), (a−i, a)

)
, has

(i) a concave and strictly increasing interpolation
in g(x), and

(ii) a strict increasing differences in(g(x), h(a)).

Proposition 1: The rate function defined in (1)
obeys Assumption 1.

Proof: We first assume that the functiongi

(resp., hi) has an increasing interpolation inx
(resp., ina). These assumptions non-restrictive as
we can enumerate the states so that the quality
of the associated channel state (resp., power level)
increases with the index of the state.

Assumption 1.(i) is met by the concavity of
the logarithm function and the fact thatgi has an
increasing interpolation inx.

Now, Consider the continuous and twice differ-
entiable functionr̃(x̃, ã) = log

(
1 + g(x̃)h(ã)

)
.

It is well known (e.g., from [25]) that a function
f : Rn → R in C2 has strictly increasing dif-
ferences if ∂2f(x)

∂xi∂xj
> 0, wherexi 6= xj are two

components of the vectorx ∈ Rn. We have

∂2r̃(x̃, ã)

∂g(x̃)∂h(ã)
=

∂2r̃(x̃, ã)

∂h(ã)∂g(x̃)
=

1

(1 + g(x̃)h(ã))2
.

Hence r̃ has increasing (strict) increasing differ-
ences. Since the function in (1) is a restriction
of r̃ to the points(g(x), h(a)), this functions has
increasing differences as well and thus obeys As-
sumption 1.(ii).

Hence, the class of functions defined in Assump-
tion 1 contains the specific rate function considered
in this paper. We now establish the following main
result on the structure of any best response policy:

Theorem 5:Consider the decentralized non-
cooperative case. Under Assumption 1, the follow-
ing holds:

(i) For a given channel state, the best response
policy consists of either the choice of a single
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action, or in a randomized choice between at
most two adjacent power levels.

(ii) There exists an optimal allocation with a
single randomization. An optimal allocation
with more than one randomization is not
generic.

(iii) The optimal power levels are non-decreasing
functions of the channel state.

(iv) If two power levels are jointly optimal for
a given channel state then they cannot be
jointly optimal for another channel state.

The proof of this result follows the following
steps. We first formulate the problem of obtaining a
best response as a linear program. Using Lagrange
relaxation we are able todecouplethe problem to
several simpler ones: in each one of the latter, the
channel state is fixed. Then we prove the statement
(i) and(ii) by establishing the concavity of the best
response value function corresponding to a fixed
channel state. Statements(iii) and (iv) will follow
from the supermodularity of the value function.

First we formulate the problem of obtaining a
best response as a linear program. Withri(x,a) as
defined in (1), denote

rv
i (x, a) =

∑

x−i∈X−i

∑

a−i∈A−i

[∏

j 6=i

πj(x
−i
j )

·v(a−i
j |x−i

j )ri

(
(x−i, x), (a−i, a)

)]
.

For the fixedv−i, playeri is faced with the problem

max
ui∈Ui

Rv
i (ui) := Ri(v

−i, ui)

=
∑

x∈Xi

∑
a∈Ai

πi(x)ui(a |x)rv
i (x, a)

(13)
s.t. Di(ui) :=

∑

x∈Xi

∑

a∈Ai

πi(x)ui(a |x)hi(a) ≤ Vi.

(14)
Consider the following relaxed problem param-

eterized by some finite realλi ≤ 0:

max
ui∈Ui

Jv
i (λi, ui) = Rv

i (ui) + λi(Di(ui) − Vi)

=
∑

x∈Xi

∑
a∈Ai

{
πi(x)ui(a |x)

·(rv
i (x, a) + λihi(a))

}
− λiVi,

(15)
and

J∗
i (λi, v) = max

ui

Jv
i (λi, ui).

Lemma 1:The best response policy of playeri

can be obtained by solving the relaxed problem
corresponding to each channel statex ∈ Xi.

Proof:
Problem (13) faced by playeri can be viewed

as a special degenerate case of constrained Markov
decision processes (it is degenerate since the tran-
sition probabilities of the radio channel of mobile
i are not influenced by the actions. The latter only

have an impact on the immediate payoffrv
i and

on hi). We know from [22] that a policyu∗
i is

optimal for (13) only if it is optimal for the relaxed
problem (15) for some finiteλi. By characterizing
the structure of the policies that are optimal for (15)
we shall obtain the structure of optimal policies
for (13). In the sequel, we shall omit the constant
−λiVi from the objective function in (15) since it
has no influence on the structure of the optimal
policies.
Observation. We now make the following key
observation on (15). The relaxed problem can be
solved separately for each channel statex ∈ Xi.
A policy ui = {ui(a |x)}a∈Ai, x∈Xi

is optimal for
(15) if and only if for each fixedx ∈ Xi, ui(· |x)
maximizes

Jv
i (x, λi, ui) :=

∑

a∈Ai

{
πi(x) · ui(a |x)(rv

i (x, a) + λihi(a)
}

.(16)

Due to linearity, for eachx ∈ Xi there is a non-
randomized decisiona ∈ Ai such that

J∗
i (v, x, λi) = max

ui

Jv
i (x, λi, ui) = max

a∈Ai

ν(x, a),

whereν(x, a) := πi(x)(rv
i (x, a) + λihi(a)).

We now prove each of the four statements in
Theorem 5.

Proof of Theorem 5.(i). From Assumption 1, for
a fixed x, ri has a concave interpolation inh(a).
Thus,ν(x, a) has a concave interpolation inh(a)
for a fixed x. This means that the maximum is
achieved at either

1) a single action which has a non-zero proba-
bility to be used by any optimal policy, or

2) two adjacent actions, saya and a + 1 for
which ν(x, a) = ν(x, a + 1).

The above structure holds not only for the re-
laxed problem (15) but also for the original problem
(13). This follows since any optimal policy for (13)
is necessarily optimal for the relaxed problem (15)
for someλi, and since we just saw that any optimal
policy for the relaxed problem has this structure.
The statement(i) is proved.

Proof of Theorem 5.(ii). We prove this by con-
tradiction. Assume thatu∗

i is an optimal allocation
that uses randomization for more than a single state.
Taking u∗

i as a starting point, we next construct a
single-randomization allocation which is no worse
thanu∗

i . Moreover, we show that it is strictly better
thanu∗

i w.p. 1. Letj andk be two states for which
two power levels are used underu∗

i (more than
two power levels would not be used by Theorem
5.(i)). Denote byhi(lj) and hi(mj) the power
levels used for statej (hi(lj) > hi(mj)) and by
hi(lk) andhi(mk) the power levels used for state
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k (hi(lk) > hi(mk)). For each state in which two
power levels are used define an index

ηj =
ri(gi(j), hi(lj)) − ri(gi(j), hi(mj))

hi(lj) − hi(mj)
.

We construct a no-worse allocation as follows. If
ηj > ηk we augmentu∗

i (l|j) (thus reduceu∗
i (m|j)

and reduceu∗
i (l|k) (thus augmentu∗

i (m|k)). More
precisely, assume thatηj > ηk. Consider the
modified allocation

ũi(l|j) = u∗
i (l|j) +

ǫ

πi(j)(hi(lj) − hi(mj))
,

ũi(m|j) = u∗
i (m|j) −

ǫ

πi(j)(hi(lj) − hi(mj))
,

ũi(l|k) = u∗
i (l|k) −

ǫ

πi(k)(hi(lk) − hi(mk))
,

ũi(m|k) = u∗
i (m|k) +

ǫ

πi(k)(hi(lk) − hi(mk))
,

for some smallǫ > 0. Note that the modified
allocation raises the power investment at statej

by ǫ while reducing the power investment at state
k by the same quantity, thus preserving the total
power constraint. The rate at statej is consequently
improved by ǫηj while the rate at statek is re-
duced byǫηk. The overall rate is obviously higher.
We carry on with this procedure until reaching a
probability of zero in one of the pairs (state,power)
above. Ifηk > ηj we construct a better allocation
in an analogous way. Ifηk = ηj the overall rate
remains constant by the above procedure. Carrying
the procedure for all states in which two power
are used would eventually leave us with a single-
randomization allocation, proving part (i). As to
the second statement of part (ii), we note that
essentiallyηj = ηk with zero probability assuming
that gi takes real values according to some con-
tinuous density function. Hence, the rate is strictly
improved by transforming the policy to a single-
randomization one.

Proof of Theorem 5.(iii) and 5.(iv). We prove
these statement by contradiction. Assume there
exists two channel statesj and k with gi(j) >

gi(k) and two power levelshi(l) > hi(m) such
that u∗

i (m|j) > 0 and u∗
i (l|m) > 0. To prove

our claim, we next construct a modified alloca-
tion with the same energy investment which ob-
tains a strictly higher rate. Forǫ > 0 small, let
ũi(m|j) = u∗

i (m|j) − ǫ
πi(j)

, ũi(l|j) = u∗
i (l|j) +

ǫ
πi(j)

, ũi(m|k) = u∗
i (m|k) + ǫ

πi(k) , and ũi(l|k) =

u∗
i (l|k) − ǫ

πi(k) , be the modified policy, where all
other probabilities are left unchanged. Note that the
modified policy uses the same total energy. The
change in throughput (divided byǫ for the sake of

exposition) is given by
[
ri(gi(j), hi(l)) − ri(gi(k), hi(l))

]

−
[
ri(gi(j), hi(m)) − ri(gi(k), hi(m))

]
. (17)

The expression (17) is strictly positive by As-
sumption 1; hence, the allocation can be strictly
improved which is a contradiction to its optimality.

Now, using Theorem 5 we can establish the
structure of the constrained Nash equilibria.

Corollary 1: Consider the decentralized non-
cooperative case. For each mobilei, assume that
hi, gi, and πi satisfy Assumption 1. Then there
exists at least one equilibrium. Moreover, at any
equilibriumu∗

i the following hold for each mobile
i:

(i) In each channel statex ∈ Xi, u∗
i (·|x) con-

sists of either a choice of a single power level,
or in a randomized choice between at most
two adjacent power levels.

(ii) There exists a single-randomization alloca-
tion that is optimal. Moreover, any optimal
policy is a single randomization policyw.p.1.

(iii) The power levels used inu∗
i are non-

decreasing functions of the channel state.
(iv) If two power levels are used at a statex

by mobile i with positive probability (i.e.
u∗

i (aj |x) > 0 andu∗
i (ak|x) > 0 for ak 6= aj)

then underu∗
i , not more than one of them is

used with positive probability at any other
channel state.

Proof: The structure of best response poli-
cies characterizes in particular the structure of the
constrained Nash equilibria policies since at equi-
librium, each mobile uses a best response policy.
Therefore, the structure we derived for the best
response policies holds for any Nash equilibrium
u∗

i for any of the mobiles.

VI. POWER CONTROL IN THE PRESENCE OF A

MALICIOUS MOBILE

In recent years, there has been a growing interest
in identifying and studying the behavior of potential
intruders to networks or of malicious users, and in
studying how to best detect these or to best protect
the network from their actions (see e.g. [26]–[28]
and references therein).

We consider in this section a scenario where a
malicious player attempts to jam the communica-
tions of a mobile to the base station. We consider
the distributed case and restrict for simplicity to
two mobiles and a base station.

The first mobile (player1) seeks to maximize
the rate of information that it transmits to the base
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station. In other words it wishes tomaximizeR1(u)
defined in (5) wherer1 is given in (1).

The second mobile (player2) has an antagonistic
objective: to prevent or to jam the transmissions
of the first mobile, with the objective of mini-
mizing the throughput of information that mobile
1 transmits to the base station. It thus seeks to
minimizeR1(u). We assume that the interference
of the second mobile is presented as a Gaussian
white noise.

Except for the objective of the jamming mobile,
the model, including the average power constraints,
defined in Section II holds. In particular, we con-
clude that Theorem 5 applies to player1 at equi-
librium.

We now specify the objective of the players and
some properties of the equilibrium. DenoteU i

c the
set of policies for playeri, (wherei takes the values
1 and 2) that satisfy playeri’s power constraints,
i.e., ui ∈ U i

c if it satisfies Di(ui) ≤ Vi. Player
1 seeks to obtain an optimal policy, i.e. a policy
u∗

1 ∈ U1
c such that for any otheru1 ∈ U1

c ,

inf
u2∈U2

c

R1(u
∗
1, u2) ≥ inf

u2∈U2
c

R1(u1, u2).

We call this the jamming problem. It consists of
identifying a policy for player1 that guarantees the
largest throughput under the worst possible strategy
of player 2. In fact, we shall be able not only to
identify the optimal policy for player1 but also the
“optimal” policy for player 2 (which is the worst
for player1).

A policy u∗ = (u∗
1, u

∗
2) is said to be a saddle

point if

sup
u1∈Uc

1

inf
u2∈Uc

2

R1(u1, u2)

= inf
u2∈Uc

2

R1(u
∗
1, u2) = R1(u

∗
1, u

∗
2)

= sup
u1∈Uc

1

R1(u1, u
∗
2) = inf

u2∈Uc
2

sup
u1∈Uc

1

R1(u1, u2),

and u∗
1 and u∗

2 are called saddle point policies or
optimal policies.

Unlike all the decentralized problems we consid-
ered previously, deriving bothu∗

1 as well asu∗
2 is

possible using a linear program. The computation
is not included here, but it can be found in [29].
Below we derive the properties of the optimal
policies.

Theorem 6: (i) There exists a saddle point
policy u∗ in the above game.

(ii) Under Assumption 1, any optimal policy for
player 1 (the transmitter) has the structure
identified in Theorem 5.

For the proof of(i) we refer to [29]. Part(ii) is
a direct result of Theorem 5.

For player 1, from Theorem 6 we can infer
that the relaxed objective function has a structure
similar to that of (15).

We now identify a structural property of the
optimal policy of player2, i.e., of the jammer. Let
h2 have a convex interpolation ina, and g2 have
an increasing interpolation inx. Therefore, for a
givenx, the relaxed objective function would have
a convex interpolation ina. This means that

(i) there is only one action, saya, which has
a non-zero probability to be used by any
optimal policy, or

(ii) except for two adjacent actions, saya and
a + 1, all other actions are not used by any
policy which is optimal.

Using arguments similar to those in Theorem 5
proof, we can conclude that the above structure
holds not only for the relaxed problem but also for
the original problem.

We finally note that the monotonicity property
enjoyed by the saddle point policy of mobile 1,
need not holdfor mobile 2. This will be illustrated
in Section VII-C (see Figure 6).

VII. N UMERICAL EXAMPLES

In this section we provide examples of power
control problem for two mobiles that interact with
the same base station. The decentralized policies
are provided both for the cooperative and non-
cooperative cases. Moreover, the single controller
problem for centralized cooperative framework is
also solved. All three problems are considered in
the same settings, so one has an opportunity to
compare the obtained strategies and the objective
value functions for different approaches.

Let us discuss the numerical procedures
for all the cases (decentralized coopera-
tive/noncooperative, centralized cooperative
and jamming).

For the decentralized cooperative case we need
to solve the problem of maximization of the poly-
nomial objective subject to linear constraints. There
are special methods to solve this kind of problems
[30], [31], and in two player case this problem
reduces to a well known quadratic program.

For the decentralized non-cooperative equilib-
rium computation we propose to use the iterative
best response policy computation. We fix the policy
of all mobiles except one given and compute its
optimal response. Then we iterate according to a
round robin order. Whenever this method converges
to some u∗, then u∗ is indeed an equilibrium
strategy sinceu∗ is an equilibrium if and only if
for each mobilei, the policyu∗

i is a best response
against the other policies(u∗)−i. Unfortunately,
we do not have any proof of the convergence
of this method. Nevertheless, for the case of two
mobiles this algorithm worked extremely well in
different parameter settings (convergence in about
three iterations). Furthermore, for the case of two
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mobiles we propose the adaptation of Lemke’s
method for Linear Complementarity Problem [32].
In Appendix A we show that this algorithm con-
verges for the considered class of problems.

The centralized cooperative optimization is
equivalent to a classical MDP formulation which
leads to a Linear Programming formulation. The
LP can be solved for example by efficient interior
point method in polynomial time.

The jamming case also leads to Linear Program-
ming formulations, for details see [29].

We assume, that the radio channel between mo-
bile i = 1, 2 and the base station is characterized
by a Markov chainXi with statesxi ∈ Xi =
{1, . . . , M}, M = 11, and a uniform vector of
steady state probabilities. One of the transition
probability matrices which has a uniform steady
state probability vector is given byPi

xy = 1
M

.
The power attenuation for each state of the

Markov chainXi is defined by the following:

xi 1 2 3 . . . 11
gi(xi) 0.0 0.1 0.2 . . . 1.0.

Let mobile i’s action setAi be given byAi =
(0, . . . , 11). The actual power corresponding to the
aith power level, whereai ∈ Ai, is

ai 0 1 2 . . . 11
hi(ai) 0 0 dB 1 dB . . . 10 dB

where the level of 0 dB corresponds to some base
value of powerW0. We assume that the background
noise power at the base station,N0, is equal to
0 dB. Since (1) depends only on the ratio between
the power of signal received from a certain mobile
and the total power received from other mobiles
and the thermal noise power at the receiver, we do
not specify the exact value of the base powerW0.

We note that, with the above definitions,gi, hi

andπi satisfy the properties in Assumption 1.
The power consumption constraints for players

are the following:

D1(u1) ≤ 2.7W0,

D2(u2) ≤ 5.1W0.

whereDi(ui) is defined by (14). Note, that both
right and left hand sides of these constraints have
the multiplierW0, which can be cancelled.

The proposed model is quite simple, we chose
it so as to avoid technical difficulties related to
Markov chains with infinite state space. Thus we
assume that a finite Markov chain can approxi-
mate well randomness due to fading, shadowing,
mobility, as well as time correlation phenomena
which are often ignored. Nevertheless, the main
goal of the example is to validate the structure that
we obtain rather than to propose a reliable model
that could include mobility, handovers, shadowing,

fading, interference from other cells etc. Further
research including these features is planned.

A. Decentralized policies

First we consider the decentralized problems that
arise in cooperative and non-cooperative case. Both
problems are formulated in terms of occupation
measuresρi(xi, ai). In order to compute the strate-
gies one can use (3).

1) Cooperative optimization:Let x = (x1, x2)
anda = (a1, a2). Here we consider the following
cost function

r(x,a) = r1(x,a) + r2(x,a), (18)

whereri(x,a) are defined by (1).
Consider the following bilinear problem

max
ρ1,ρ2

∑

x ∈ X

a ∈ A

ρ1(x1, a1)r(x,a)ρ2(x2, a2),

(19)
subject to

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi, i = 1, 2, (20)

and
∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)(δ(xi, yi) − P
i
xiyi

)

= 0, ∀yi ∈ Xi, i = 1, 2,∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1,

ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai, i = 1, 2.

(21)

Here P
i is the transition matrix of the Markov

chain, which describes the radio channel between
the mobile i and the base station, andδ(x, y) is
equal to one ifx = y and is zero otherwise.

The problem (19) could be solved using the
quadratic programming technique.

In Fig. 1, the supports of the optimal policies for
both players are shown as a function of the channel
state.

As one can see, the mobile 1 has a pure strategy
at all the points but one, whereg1(x1) = 0.8. The
mobile 2 also has only one randomization point
g2(x2) = 0.6. The exact values of the policies
ui(hi(ai) | gi(xi)) at those points are as follows:

u1(0 | 0.8) = 0.0293,

u1(9 dB | 0.8) = 0.0036,

u1(10 dB | 0.8) = 0.9671,

for mobile 1, and

u2(8 dB | 0.6) = 0.5596,

u2(9 dB | 0.6) = 0.4404,
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Fig. 1. Supports of the optimal policies in cooperative case.

for mobile 2.
The value of the objective function in this prob-

lem is R(u∗) = 1.9225.
2) Non-cooperative equilibrium:Now, in the

same setting as in the cooperative case, we con-
sider an example of non-cooperative optimization.
Each mobile needs to maximize its own objective
function:

max
ρ1,ρ2

∑

x∈X

∑

a∈A

ρ1(x1, a1)r1(x,a)ρ2(x2, a2),

max
ρ1,ρ2

∑

x∈X

∑

a∈A

ρ1(x1, a1)r2(x,a)ρ2(x2, a2),

subject to the constraints (25)-(28) (in the Ap-
pendix).

By means of the linear complementarity problem
(33) one can obtain the optimal strategies depicted
on Fig. 2. The exact values of the policies at the
randomization points are as follows:

u1(7 dB | 1.0) = 0.5803, u1(8 dB | 1.0) = 0.4197,

u2(8 dB | 0.6) = 0.1089, u2(9 dB | 0.6) = 0.8911.

We note that the structure obtained in Theorem 5
holds for both the players.
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Fig. 2. Supports of the optimal policies in non-cooperative
case.

The values of the objective functions in this
problem areR1(u

∗) = 0.6484, R2(u
∗) = 1.1584.

As it was expected, the total throughput value
R(u∗) = R1(u

∗) + R2(u
∗) = 1.8067 is smaller

than in cooperative case.

B. Centralized optimization

Now let us consider the single controller prob-
lem, that arises in the case of centralized optimiza-
tion. As in the decentralized framework, we operate
here in terms of occupation measures. Thus, the
problem (10) for the case of two players can be
rewritten as follows:

max
ρ

∑

x∈X

∑

a∈A

ρ(x,a)r(x,a), (22)

wherer(x,a) is defined by (18). The maximization
is performed subject to the following constraints:

∑

x∈X

∑

a∈A

ρ(x,a)hi(ai) ≤ Vi, i = 1, 2; (23)

∑

a∈A

ρ(x,a) = π(x) = π1(x1)π2(x2);

ρ(x,a) ≥ 0, ∀x ∈ X, ∀a ∈ A;
∑

x∈X

∑

a∈A

ρ(x,a) = 1.

Once the occupation measures are obtained, the
strategies can be computed by means of (2).
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Fig. 3. The setsΨ1 andΨ2.

Define the following sets:

• Ψ1: pairs (x1, x2): ∃a∗
1 such thath1(a

∗
1) > 0

andu(a∗
1, a2 |x1, x2) > 0 for somea2 ∈ A2;

• Ψ2: pairs (x1, x2): ∃a∗
2 such thath2(a

∗
2) > 0

andu(a1, a
∗
2 |x1, x2) > 0 for somea1 ∈ A1.

Note, that the setΨi is the set of states in which
ith player should transmit with nonzero probability
according to the optimal strategy.

In Fig. 3 these sets are provided for the cen-
tralized optimization problem (22). The setΨ1 is
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depicted by circles, and the setΨ2 — by stars.
One can see, that the sets have no mutual points.
It means, that the mobiles never transmit at the
same time. We note that the time-sharing property
of the optimal policy was also observed in [33] in
the context of continuous available power levels in
wireless sensor networks.
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Fig. 4. Supports of the optimal policies in cooperative case.

In Fig. 4 one can see the supports of the optimal
strategies.

A circle on the place(g1(x
∗
1), h1(a

∗
1)) means

that the first mobile should transmit with the power
level h1(a

∗
1) with nonzero probability in all states

(x∗
1, x2) ∈ Ψ1.
A star on the place(g2(x

∗
2), h2(a

∗
2)) means that

the second mobile should transmit with the power
level h2(a

∗
2) with nonzero probability in all states

(x1, x
∗
2) ∈ Ψ2.

If there are two or more power levelshi(a
∗
i ) for

some particular stategi(x
∗
i ), then the player should

randomize. In other case (single power levelhi(a
∗
i )

for the stategi(x
∗
i )), the player should always

transmit with power levelhi(a
∗
i ).

One can see that for both players there are states
of randomization. We provide here the strategies
u(h1(a1), h1(a2) | g1(x1), g2(x2)) for these states:

g1(x1), g2(x2) u(8 dB, 0) u(9 dB, 0)
0.8, 0.6 0.3694 0.6306
0.8, 0.5 0.6098 0.3902
0.8, 0.4 0.4475 0.5525
0.8, 0.3 0.4595 0.5405
0.8, 0.2 0.4369 0.5631
0.8, 0.1 0.4312 0.5688
0.8, 0.0 0.4169 0.5831

g1(x1), g2(x2) u(0, 8 dB) u(0, 9 dB)
0.3, 0.3 0.9982 0.0018
0.2, 0.3 0.9946 0.0054
0.1, 0.3 0.9983 0.0017
0.0, 0.3 0.9984 0.0016

As one can see, the number of randomizations
in the obtained policy exceeds the number of con-
straintsN = 2. Nevertheless, due to Theorem 1 the
optimal policy can be chosen with no more then
N randomization points. It is easy to check, that
the policy with the same setsΨ1 andΨ2 (Fig. 3),
supports depicted on Fig. 5, and one randomization
point (see the following table) delivers the same
value to the cost function.

g1(x1), g2(x2) u(0, 8 dB) u(0, 9 dB)
0.8, 0.6 1 0
0.8, 0.5 1 0
0.8, 0.4 1 0
0.8, 0.3 0.1622 0.8378
0.8, 0.2 0 1
0.8, 0.1 0 1
0.8, 0.0 0 1
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10 dB

bad                     Channel state                    good

P
ow

er
 le

ve
ls
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2−nd mobile constraint 

1−st mobile policies
2−nd mobile policies

Fig. 5. Supports of the optimal policies in cooperative case
(one randomization point).

Note, that the centralized power management
provides better throughput in comparison with
other considered controls, the value of the cost
function isR(u∗) = 2.5614.

Another interesting point that we want to discuss
is the attainability of the power constraints.

Consider the problem (22) without power con-
straints. The optimal policies for this problem are
as follows:

• Player 1 should transmit at the top power level
if g1(x1) ≥ g2(x2);

• Player 2 should transmit at the top power level
if g2(x2) ≥ g1(x1).

The value of the objective function for this policy
is R(u∗) = 2.8560. The experiments show, that at
the optimal point for problem with constraints (23),
where the boundsVi are both greater then 7 dB, the
power constraints are not attained, and the optimal
strategy and the value of the objective function are
the same as in unconstrained case.
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C. Jamming

The average power bounds are the same as in all
previous examples: for the transmitterV1 = 2.9,
and for the jammerV2 = 5.2.

The supports of the optimal strategies in this
problem are depicted in Fig. 6. We note that the
structure obtained in Theorem 5 holds for player1,
whereas the structure obtained in Section VI holds
for player 2. Both players have optimal strategies

0 0.2 0.4 0.6 0.8 1
0

0 dB

2 dB

4 dB

6 dB

8 dB

bad                     Channel state                    good

P
ow

er
 le

ve
ls

transmitter constraint 

jammer constraint 

transmitter policies
jammer policies

Fig. 6. Supports of the optimal policies in case of jamming.

that are randomized only at one point:

u1(6 dB | 0.7) = 0.3623, u1(7 dB | 0.7) = 0.6377,

u2(7 dB | 0.8) = 0.9656, u2(8 dB | 0.8) = 0.0344.

The value of the objective function isR1(u
∗) =

0.6237 which is less then the same value for the
decentralized non-cooperative case.

VIII. C ONCLUSION AND FURTHER WORK

We have studied power control in both coop-
erative and non-cooperative setting. Both central-
ized and decentralized information patterns have
been considered. We have derived the structure of
optimal decentralized policies of selfish mobiles
having discrete power levels. We further studied
the structure of power control policies when a
malicious mobiles tries to jam the communication
of another mobile. We have illustrated these results
via several numerical examples, which also allowed
us to get insight into the structure in the cooperative
framework.

The modeling and results open many exciting
research problems. Our setting, which could be
viewed as a temporal scheduling problem, is quite
similar to the “space scheduling” (i.e. the water-
filling) problems discussed in the introduction, for
which the context of discrete power levels along
with the non-cooperative setting have not yet been
explored. It is interesting not only to study the
water-filling problem in the discrete noncooperative
context but also to study the combined space and

temporal scheduling problem, where we can split
the transmission power both in time and in space
(different parallel channels).

From both a game theoretic point of view as well
as from the wireless engineering point of view, it
is interesting to study possibilities for coordination
between mobiles in the decentralized case (in both
cooperative as well as non-cooperative contexts).
This can be done using the concepts fromcorre-
lated equilibria[34]–[37], which is known to allow
for better performance even in the selfish non-
cooperative cases. We note however, that existing
literature on correlated equilibria do not include
side constraints, which makes the investigation
novel also in terms of fundamentals of game theory.
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APPENDIX

L INEAR COMPLEMENTARITY APPROACH FOR

THE DECENTRALIZED CASE

In this section we show how the non-cooperative
equilibrium can be obtained in the case of two
players by means of linear complementarity prob-
lem (LCP). Consider the following problem, where
each player wants to maximize his own payoffRi:

max
ρ1,ρ2

Ri(u) :=
∑

x∈X

∑
a∈A

ρ1(x1, a1)ri(x1, a1, x2, a2)ρ2(x2, a2),

(24)
wherei = 1, 2 and

ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai, (25)
∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1, (26)

∑

ai∈Ai

ρi(xi, ai) = πi, ∀xi ∈ Xi, (27)

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi, i = 1, 2. (28)

Here ρi: Xi × Ai −→ [0, 1] is the occupation
measure for playeri = 1, 2.

First, assume, that at the equilibrium point the
power consumption constraints (28) are active:

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) = Vi, i = 1, 2. (29)

This assumption is not restrictive, because if one
or both of these constraints are not active, they can
be omitted.

Indeed, let ûi be the policy for playeri that
transmits at all states with maximum power. Then
the following statements are easily seen to be
equivalent (since the constraints of a player do not
depend of the strategies of the other players):

1) at equilibrium, the power constraint of player
i is met with strict inequality;



15

2) when usinĝui, the power constraint of player
i is met with strict inequality (independently
of the policy of other players).

Any of the statements imply that at equilibrium,
ûi is the equilibrium policy of useri. So we can
first check for which playeri, the constraints are
violated when using policŷui. For these players,
the constraints can be replaced with equality con-
straints and for the rest, the power constraints can
be omitted.

Now let ξ be the vector, containing all the
ρ1(x1, a1), ∀x1 ∈ X1, a1 ∈ A1, andζ — the same
vector forρ2(x2, a2).

Indeed, the problem (24) with constraints (25),
(26), (27) and (29) can be represented in the form
of the bimatrix game with linear constraints:

max
ξ,ζ

ξ∗Aζ,

max
ξ,ζ

ξ∗Bζ,
(30)

s.t.
ξ ≥ 0, ζ ≥ 0; (31)

and
C∗ξ = c,

D∗ζ = d.
(32)

Following [38] we introduce the linear comple-
mentarity problem whose solution characterizes the
equilibrium point of (30), (31), (32):

z = (ξ, ζ, z1, z2, z3, z4)
∗ ≥ 0,

q + Mz ≥ 0,

z∗(q + Mz) = 0,

(33)

where

M =





−A C∗ −C∗

−B∗ D∗ −D∗

−C

C

−D

D




,

q = (0, 0, c∗,−c∗, d∗,−d∗)
∗
.

It is also shown in [38], that under the conditions
A ≤ 0 and B ≤ 0 Lemke’s algorithm [39]
computes a solution of the LCP (33).

It should be noted, that in order to satisfy the
conditionsA ≤ 0, B ≤ 0 we can always replace
cost matricesA andB with A− kE andB − kE,
whereE is a matrix of unities, andk is the maximal
positive entry ofA andB.

Once the solution of LCP (33)(ξo, ζo) is found,
the equilibrium point(ξ′, ζ′) of the bimatrix game
(30) could be computed using the following formu-
las:

ξ′ =
ξo

e∗1ξo

, ζ′ =
ζo

e∗2ζo

, (34)

wheree1 ande2 are vectors of appropriate dimen-
sion, whose components are all ones.
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