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Abstract

We investigate the analytic perturbation of generalized inverses. Firstly we analyze the
analytic perturbation of the Drazin generalized inverse (also known as reduced resolvent
in operator theory). Our approach is based on spectral theory of linear operators as
well as on a new notion of group reduced resolvent. It allows us to treat regular and
singular perturbations in a unified framework. We provide an algorithm for computing
the coefficients of the Laurent series of the perturbed Drazin generalized inverse. In
particular, the regular part coefficients can be efficiently calculated by recursive formulae.
Finally we apply the obtained results to the perturbation analysis of the Moore-Penrose
generalized inverse in the real domain.

1 Introduction

We study generalized inverses of analytically perturbed matrices:

A(z) = A0 + zA1 + z2A2 + ... . (1)

First, we provide the perturbation analysis for the Drazin generalized inverse. In such a case
we assume that the matrices Ak, k = 0, 1, ..., are square of dimension n with complex entries.
Furthermore, since we are interested in the perturbation analysis of the generalized inverse,
we assume that the null space of the perturbed matrix A(z) is non-trivial.

Here we distinguish between regular and singular perturbations. The perturbation is said
to be regular if it does not change the dimension of null space. Otherwise, the perturbation
is said to be singular. The regular perturbation is also called rank-preserving perturbation.
One of the main advantages of the complex analytic approach employed in the present work
is that it allows us to treat both regular and singular perturbations in a unified framework.

If the coefficient matrices Ak, k = 0, 1, ..., are real and we restrict ourselves to real z, the
perturbation analysis of the Drazin generalized inverse can be applied to the perturbation
analysis of the Moore-Penrose generalized inverse.

The main goals of the present work is to prove the existence of the Laurent series expansion
for the perturbed Drazin generalized inverse

A#(z) =

+∞
∑

j=−s

zjHj, (2)

and to provide a method for efficient computation of coefficients Hj, j = −s,−s+ 1, ... .
We derive recursive formulae for the (matrix) coefficients of the regular part of the Laurent

series expansion (2). Besides their theoretical interest, the recursive formulae are particularly
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useful when one needs to compute a significant number of terms in the Laurent series expan-
sion. These formulae require knowledge of the singular part coefficients and the latter are
obtained via a reduction technique based on the complex analytic approach. In particular,
this reduction technique uses a new notion of group reduced resolvent. The order of the pole
of (2) is obtained as a by-product.

Last but not least, the limit matrix in the Taylor series expansion of the 0-eigenprojection
matrix, has a simple exression in terms of (a) the original unperturbed 0-eigenprojection, (b)
the perturbation matrices and (c), the singular part of the Laurent series (2). This provides
some insight on how the perturbed 0-eigenvectors relate to the original 0-eigenvectors.

Let us also mention an important issue. In the course of the procedure that we propose,
one has to determine the multiplicity of zero eigenvalues and verify whether they are semi-
simple. Of course, in the general situation neither task is easy in the presence of rounding
errors. Nevertheless, we note that in many particular applications this issue can be effectively
resolved. For instance, for the perturbation of the Moore-Penrose generalized inverse the
semi-simplicity assumption is satisfied automatically, as we transform the problem into an
equivalent problem with symmetric matrices.

To our best knowledge, Stewart [27] was the first to carry out the perturbation analysis
of the Moore-Penrose generalized inverse. Even though he has mostly dealt with the regular
perturbation case, he has pointed out that the error bounds grow infinitely as the perturbation
vanishes in the singular case. He has provided error bounds and a first order approximation for
the general componentwise perturbation of the Moore-Penrose generalized inverse. In fact, up
to the present most of the work on perturbation analysis of generalized inverses is concentrated
on regular componentwise perturbation. An interested reader can find results on regular
componentwise perturbation of generalized inverses in [10, 11, 30] and references therein.
The analytic perturbation is more restrictive than the general componentwise perturbation.
However, it allows us to perform a deeper analysis of the singular case. The case of singular
perturbations is interesting for it provides information on the lack of continuity of solutions to
perturbed linear systems. The work on singular perturbation of the generalized inverse is very
limited. Deif [13] proposed an algorithm for computing the Laurent series for the generalized
inverse of an analytically perturbed matrix. However, to implement his algorithm one has
to obtain power series expansions for all the quantities in the singular value decomposition,
namely for all the singular eigenvectors and eigenvalues. This can be very costly, especially
for matrices of high dimension. In contrast, we propose an algorithm, which works in some
reduced subspaces of small dimension.

We note that if matrix valued function A(z) is invertible in some punctured neibourhood
around z = 0, then its generalized Drazin inverse is just the ordinary inverse. Therefore, our
results are applicable to the classical problem of the inversion of nearly singular operators
[2, 6, 15, 20, 21, 22, 24, 26, 28, 29], a problem with many important practical applications. In
[3] the perturbation analysis of the group inverse has been provided. Since the group inverse
is a particular case of the Drazin inverse when the space can be decomposed into a direct
sum of the null space and the range space, the results of the present work can be applied to
the perturbation analysis of the group inverses. However, since the Drazin inverse is a more
general notion than the group inverse, the results of [3] cannot be applied to the perturbation
analysis of the Drazin inverse.

The results of the present paper can be immediately applied to singular perturbations of
Markov chains [5, 14, 17, 25]. For example, the deviation matrix of a Markov chain is just
(with minus sign) the reduced resolvent of the Markov chain generator. To demonstrate this
application and verify the validity of our theoretical results, a simple illustrative example
is provided at the end of the paper. Another application is concerned with perturbations
of spectral inverses arising in the chemical networks, as treated in the work of Bohl and
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Lancaster [8]. Yet another interesting potential application of our results is the perturbation
analysis of least square problems [13, 27].

Some preliminary results of the present work have appeared in the research report [4].
However, there are very important differences between the contents of the research report
[4] and the present article. In the research report the proofs were carried out under the
assumption that coefficient matrices of the analytic perturbation are real (even though the
perturbation parameter z is complex). Here we have extended the results, whenever possible,
to the case of complex coefficient matrices. Also the presentation of the proofs has been
significantly improved. There is a new, very important, observation, that in general the
Moore-Penrose generalized matrix of the complex perturbation is not analytic. This was
absent in the research report.

The paper is organized as follows. In the next Section 2, we provide preliminaries on
the complex analytic approach and spectral theory. In Section 3, we prove the existence
of a Laurent series expansion for the Drazin generalized inverse of a perturbed matrix. In
Section 4, we derive a recursive formula for the coefficients of the regular part of the Laurent
series. For clarity of exposition, the proof of the main result is postponed to the Appendix.
In Section 5, we propose a reduction process that permits to compute the coefficients of the
singular part. In Section 6 we apply the obtained results to the perturbation analysis of
the Moore-Penrose and group generalized inverses. Finally, in Section 7, we derive a simple
expression for the limiting 0-eigenprojection matrix as the perturbation vanishes.

2 Preliminaries on complex analytic approach and spectral

theory

Let us recall some facts from complex analysis and spectral theory. The book of Kato [19] is
an excellent source of the material on the subject.

Any matrix A ∈ C
n×n possesses the following spectral representation

A =

p
∑

i=0

(λiPi +Di), (3)

where p + 1 is the number of distinct eigenvalues of A, Pi is the eigenprojection and Di is
the nilpotent operator corresponding to the eigenvalue λi. By convention, λ0 is the zero
eigenvalue of A, that is, λ0 = 0. In the case when there is no zero eigenvalue, the eigenvalues
are enumerated from i = 1. The resolvent is another very important object in spectral theory.

Definition 1 The following operator-valued function of the complex parameter ζ is called the
resolvent of the operator A ∈ C

n×n

R(ζ) = (A− ζI)−1.

The resolvent satisfies the resolvent identity:

R(ζ1)−R(ζ2) = (ζ1 − ζ2)R(ζ1)R(ζ2), (4)

for all ζ1, ζ2 ∈ C. The resolvent has singularities at the points ζ = λk, where λk are the
eigenvalues of A. In a neighbourhood of each singular point λk the resolvent can be expanded
as a Laurent series

R(ζ) = −

mk−1
∑

n=1

1

(ζ − λk)n+1
Dn

k −
1

ζ − λk

Pk +

∞
∑

n=0

(ζ − λk)
nSn+1

k , (5)
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where Sk is the reduced resolvent corresponding to the eigenvalue λk with geometric multi-
plicity mk. In fact, Sk is the Drazin generalized inverse of (A− λkI). And, in particular, we
have S0 = A#.

The Drazin generalized inverse has the following basic properties

AA# = I − P0, (6)

P0A
# = 0. (7)

The above equations show that A# is the “inverse” of A in the complementary subspace to
the generalized null space of A. Here by generalized null space we mean a subspace which is
spanned by all eigenvectors and generalized (Jordan) eigenvectors corresponding to the zero
eigenvalue. Note that P0 is a projection onto this generalized null space.

Moreover, if the underlying space admits a decomposition into the direct sum of the null
space and the range of the operator A (recall from [9] that this is a necessary and sufficient
condition for the existence of the group inverse), then the Drazin inverse and the group
inverse coincide, and the following Laurent expansion holds

R(ζ) = −
1

ζ
P0 +

∞
∑

n=0

ζn(A#)n+1. (8)

Since the Drazin generalized inverse is the constant term in the Laurent series (5) at z = λ0,
it can be calculated via the following Cauchy integral formula

A# =
1

2πi

∫

Γ0

1

ζ
R(ζ) dζ, (9)

where Γ0 is a closed positively-oriented contour in the complex plane, enclosing 0 but no
other eigenvalue of A [1]. The above formula will play a crucial role in the sequel.

The Drazin inverse also has a simple expression in terms of eigenprojections, eigenvalues
and nilpotent operators of the original operator A. Namely,

A# =

p
∑

i=1







1

λi
Pi +

mi−1
∑

j=1

(−1)j
1

λj+1
i

Dj
i







. (10)

We emphasize that the above sum is taken over all indecies corresponding to non-zero eigen-
values. This expression again demonstrates that the Drazin generalized inverse is the inverse
operator in the complementary subspace to the generalized null space. Moreover, this ex-
pression exactly represents the inverse operator A−1 whenever A has no zero eigenvalue.

3 Existence of the Laurent series expansion

In this section we prove the existence of a Laurent series expansion (2) for the Drazin gener-
alized inverse A#(z) of the analytically perturbed matrix A(z).

First let us consider the resolvent R(ζ, z) := (A(z) − ζI)−1 of the perturbed A(z). One
can expand R(ζ, z) in a power series with respect to the complex variable z near z = z0, as
follows (see e.g. [19])

R(ζ, z) = R(ζ, z0) +

∞
∑

n=1

(z − z0)
nR(n)(ζ, z0), (11)
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where

R(n)(ζ, z0) :=
∑

ν1+...+νp=n

(−1)pR(ζ, z0)Aν1R(ζ, z0)Aν2 · · ·R(ζ, z0)AνpR(ζ, z0),

where Aνk are the coefficients of A(z) and νk ≥ 1. The above expansion is called the second
Neumann series for the resolvent. It is uniformly convergent for z sufficiently close to z0
and ζ ∈ D, where D is a compact subset of the complex plane which does not contain the
eigenvalues of A(z0) [19].

Theorem 1 Let A(z) be the analytic perturbation of the matrix A0 given by (1). Then, the
Drazin genralized inverse A#(z) of the perturbed operator A(z) can be expanded as a Laurent
series (2).

Proof: We first show that there exists a domain 0 < |z| < zmax such that A#(z) can be
expanded in Taylor series at any point z0 in this domain. For a fixed, arbitrary z > 0, (9)
becomes

A#(z) =
1

2πi

∫

Γ0(z)

1

ζ
R(ζ, z)dζ, (12)

where Γ0(z) is a closed positively-oriented curve enclosing the origin but no other eigenvalue
of A(z).

With zmax less than the modulus of any non-zero eigenvalue of A0, expand the perturbed
resolvent in the power series (11), around the point z0 (with 0 < |z0| < zmax). Then, the
substitution of that series in the integral formula (12), yields

A#(z) =
1

2πi

∫

Γ0(z0)

1

ζ

[

R(ζ, z0) +

∞
∑

n=1

(z − z0)
nR(n)(ζ, z0)

]

dζ.

Since the power series for R(ζ, z) is uniformly convergent for z sufficiently close to z0, we can
integrate the above series term by term,

A#(z) =
1

2πi

∫

Γ0(z0)

1

ζ
R(ζ, z0) dζ +

∞
∑

n=1

(z − z0)
n 1

2πi

∫

Γ0(z0)

1

ζ
[R(n)(ζ, z0)] dζ

= A#(z0) +

∞
∑

n=1

(z − z0)
nHn(z0), (13)

where the coefficients are defined by

Hn(z0) :=
1

2πi

∫

Γ0(z0)

1

ζ
[R(n)(ζ, z0)] dζ.

The convergence of power series (13) in some non-empty domain 0 < |z| < zmax can be
shown by using the bounds for the contour integrals (for very similar development see for
example [19, Ch.2, Sec.3]). From the power series (13), we can see that A#(z) is holomorphic
in the domain 0 < |z| < zmax. Consequently, by Laurent’s theorem (see, e.g., [23, v. II, p.
7]), we conclude that A#(z) possesses a Laurent series expansion at z = 0 (with radius of
convergence zmax), i.e.,

A#(z) =

+∞
∑

n=−∞

znHn. (14)
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We next show that the pole at z = 0 can be at most of finite order. Consider the spectral
representation (10) for the reduced resolvent of the perturbed operator A(z)

A#(z) =

p
∑

i=1







1

λi(z)
Pi(z) +

mi−1
∑

j=1

(−1)j
1

λj+1
i (z)

Dj
i (z)







.

From Kato [19], we know that the perturbed eigenvalues λi(z) are bounded in |z| ≤ zmax

and they have at most algebraic singularities. Furthermore, the eigenprojections Pi(z) and
nilpotents Di(z) can also have only algebraic singularities and poles of finite order. Therefore,
none of the functions λi(z), Pi(z) and Di(z) can have an essential singularity. This latter
fact implies that their finite sums, products or divisions as in A#(z), do not have an essential
singularity as well and, consequently, the order of pole in (14) is finite. This completes the
proof.

2

4 Recursive formula for the regular part coefficients

Here we derive recursive formulae for the coefficients of the regular part of the Laurent series
(2). We use an analytic technique based on Cauchy contour integrals and resolvent-like
identities.

First, observe that the structure of the perturbed Drazin inverse (A0+ zA1+ z2A2+ ...)#

is similar to the structure of the classical resolvent (A0 − zI)−1. Moreover, A#(z) becomes
precisely the resolvent if A1 = −I and Ak = 0 for k ≥ 2. Therefore, one can expect that these
two mathematical objects have some similar features. It turns out that the Drazin inverse of
an analytically perturbed matrix A(z) satisfies an identity similar to the resolvent identity
(4).

Lemma 1 The reduced resolvent A#(z) of the analytically perturbed operator A(z) =
∑∞

k=0 z
kAk

satisfies the resolvent-like identity:

A#(z1)−A#(z2) =

∞
∑

k=1

(zk2 − zk1 )A
#(z1)AkA

#(z2) +A#(z1)P0(z2)− P0(z1)A
#(z2), (15)

where P0(z) is the eigenprojection matrix corresponding to the zero eigenvalue.

Proof: Consider the following expression

A(z2)−A(z1) =

∞
∑

k=1

(zk2 − zk1 )Ak.

Premultiplying by A#(z1) and postmultiplying by A#(z2), yields

A#(z1)A(z2)A
#(z2)−A#(z1)A(z1)A

#(z2) =

∞
∑

k=1

(zk2 − zk1 )A
#(z1)AkA

#(z2).

Then, using (6), we get

A#(z1)[I − P0(z2)]− [I − P0(z1)]A
#(z2) =

∞
∑

k=1

(zk2 − zk1 )A
#(z1)AkA

#(z2).
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Equivalently,

A#(z1)−A#(z2) =
∞
∑

k=1

(zk2 − zk1 )A
#(z1)AkA

#(z2) +A#(z1)P0(z2)− P0(z1)A
#(z2),

which is the desired identity (15).
2

In the next theorem, we obtain a general relation between the coefficients of the Laurent
series (2).

Theorem 2 Let Hk, k = −s,−s + 1, ... be the coefficients of the Laurent series (2) and
P0(z) =

∑∞
k=0 z

kP0k be a power series for the eigenprojection corresponding to the zero
eigenvalue of the perturbed operator. Then the coefficients Hk, k = −s,−s+ 1, ... satisfy the
following relation

∞
∑

k=1

k−1
∑

i=0

Hn−iAkHm+i−k+1 = −(ηn + ηm − 1)Hn+m+1

−

{

0, m < 0,
1
2πi

∫

Γ1

z−n−1
1 A#(z1)[P0m+1 + z1P0m+2 + ...]dz1, m ≥ 0

−

{

0, n < 0
1

2πi

∫

Γ2

z−m−1
2 [P0n+1 + z2P0n+2 + ...]A#(z2)dz2, n ≥ 0, (16)

where

ηm :=

{

1, m ≥ 0,
0, m < 0.

For the sake of clarity of presentation, the detailed proof is postponed to the Appendix. Now
the recursive formula for the coefficients of the regular part of the Laurent series (2) becomes
a corollary of the above general result.

Corollary 1 Suppose that the coefficients Hk, k = −s, ...,−1, 0 and P0k, k = 0, 1, ... are
given. Then, the coefficients of the regular part of the Laurent expansion (2) can be computed
by the following recursive formula:

Hm+1 = −

m+s
∑

i=0





s
∑

j=0

H−jAi+j+1



Hm−i −

m
∑

i=1

P0m+1−iHi (17)

−(P0m+1H0 + ...+ P0m+1+sH−s)− (H−sP0m+1+s + ...+H0P0m+1)

for m = 0, 1, ... .

Proof: Let us take n = 0, m > 0 and then simplify the last two terms in (16), so that

1

2πi

∫

Γ1

z−n−1
1 A#(z1)[P0m+1 + z1P0m+2 + ...]dz1

=
1

2πi

∫

Γ1

1

z1
[
1

zs1
H−s + ...+

1

z1
H−1 +H0 + ...][P0m+1 + z1P0m+2 + ...]dz1

=
1

2πi

∫

Γ1

1

z1

1

zm+1
1

1

zs1
[H−sP0m+1+s + ...+H0P0m+1]dz1

= H−sP0m+1+s + ...+H0P0m+1 (18)
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The last term can be dealt with in a similar fashion.

1

2πi

∫

Γ2

z−m−1
2 [P0n+1 + z2P0n+2 + ...]A#(z2)dz2

=
1

2πi

∫

Γ2

z−m−1
2 [P01 + z2P02 + ...]A#(z2)dz2

=
1

2πi

∫

Γ2

1

z2

1

Zm
2

[P01 + z2P02 + ...][
1

zs1
H−s + ...+

1

z1
H−1 +H0 + ...]dz2

=
1

2πi

∫

Γ2

1

z2
[P01Hm + P02Hm−1 + ...+ P0mH1 + P0m+1H0 + ...+ P0m+1+sH−s]dz2

=

m
∑

i=1

P0m+1−iHi + (H−sP0m+1+s + ...+H0P0m+1) (19)

Substituting (18) and (19) into (16) with n = 0 and m > 0, we obtain

∞
∑

k=1

k−1
∑

i=0

Hn−iAkHm+i−k+1 = −Hm+1 − (H−sP0m+1+s + ...+H0P0m+1)

−(P0m+1H0 + ...+ P0m+1+sH−s)−

m
∑

i=1

P0m+1−iHi.

Rearranging terms in the above expression, we get

Hm+1 = −
m+s
∑

i=0





s
∑

j=0

H−jAi+j+1



Hm−i −
m
∑

i=1

P0m+1−iHi

−(P0m+1H0 + ...+ P0m+1+sH−s)− (H−sP0m+1+s + ...+H0P0m+1)

which is the recursive formula (17).
2

If the perturbed operator A(z) is invertible for 0 < |z| < zmax, then the inverse A−1(z)
can be expanded as a Laurent series

A−1(z) =
1

z−s
H−s + ...+

1

z
H−1 +H0 + zH1 + ... (20)

and the formula (17) becomes

Hm+1 = −

m+s
∑

i=0





s
∑

j=0

H−jAi+j+1



Hm−i, m = 0, 1, ...

Furthermore, if the perturbed operator is invertible and the perturbation is linear A(z) =
A0 + zA1 we retrieve the recursive formula from [22]

Hm+1 = (−H0A1)Hm, m = 0, 1, ... .
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5 Reduction process

We have seen that the regular terms in the Laurent series expansion (2) of A#(z) can be
computed recursively by (17). However, to apply (17), one first needs to compute the terms
H−s, . . . ,H−1,H0, that is, the terms of the singular part.

The complex analytic approach allows us to treat the cases regular and singular per-
turbations in a unified framework. In fact, let us first obtain some results on the regular
perturbation which will be useful in the reduction process for the singular perturbation.

Regular case. Let us apply analytic function techniques to express the power series for
the Drazin generalized inverse of the perturbed operator in the case of regular perturbation,
that is, when the dimension of the null space of the matrix does not change if the perturbation
parameter deviates from zero. In other words, there is no splitting of the zero eigenvalue of
the perturbed matrix at z = 0. The latter implies that the expansion (13) is valid in some
neighbourhood of z0 = 0, and any contour Γ0 := Γ0(0) chosen so that it does not enclose
eigenvalues other than zero. Namely, the expansion (13) takes the form

A#(z) = A#
0 +

∞
∑

n=1

znA#
n , (21)

where

A#
0 = A#(0), A#

n =
1

2πi

∫

Γ0

1

ζ
[R(n)(ζ)] dζ

and
R(n)(ζ) =

∑

ν1+...+νp=n

(−1)pR(ζ)Aν1R(ζ)Aν2 · · ·R(ζ)AνpR(ζ).

It turns out that it is possible to express the coefficients A#
n in terms of

• the unperturbed Drazin generalized inverse A#(0),

• the eigenprojection P0 corresponding to the zero eigenvalue of A0,

• the perturbation matrices An, n = 1, 2, . . ..

The next theorem gives the precise statement.

Theorem 3 Suppose that the operator A0 is perturbed analytically as in (1) and assume that
the zero eigenvalue of A0 is semi-simple and the perturbation is regular. Then, the matrices
A#

n , n = 1, 2, . . . in the expansion (21) are given by the following formula

A#
n =

n
∑

p=1

(−1)p
∑

ν1 + ...+ νp = n
µ1 + ...+ µp+1 = p+ 1

νj ≥ 1, µj ≥ 0

Sµ1
Aν1Sµ2

...AνpSµp+1
, (22)

where S0 := −P0 and Sk := (A#
0 )

k, k = 1, 2, ....

Proof: Since Γ0 encloses only the zero eigenvalue, we have by (21)

A#
n =

1

2πi

∫

Γ0

1

ζ
R(n)(ζ)dζ =

∑

ν1+...νp=n

(−1)p
1

2πi

∫

Γ0

1

ζ
R(ζ)Aν1R(ζ)...AνpR(ζ)dζ.

9



=
∑

ν1+...νp=n

(−1)pResζ=0{
1

ζ
R(ζ)Aν1R(ζ)...AνpR(ζ)}

In order to compute the above residue, we replace R(ζ) by its Laurent series (8) in the
expression

1

ζ
R(ζ)Aν1R(ζ)...AνpR(ζ),

and collect the terms with 1/ζ, that is, the terms

∑

σ1+...+σp+1=0

Sσ1+1Aν1Sσ2+1...AνpSσp+1.

Next, we change indicies µk := σk + 1, k = 1, ..., p + 1, and rewrite the above sum as:
∑

µ1+...+µp+1=p+1

Sµ1
Aν1Sµ2

...AνpSµp ,

which yields (22).
2

Remark 1 Of course, formula (22) is computationally demanding due to the combinatorial
explosion. However, only few terms will be computed by this formula (see the arguments
developed below).

Singular case. We now show that by using a reduction process, we can transform
the original singular problem into a regular one. Our reduction process can be viewed as
complimentary to the existing reduction process based on spectral theory (see, e.g., the book
of Kato [19]) which is applied to the eigenvalue problem. To the best of our knowledge,
applying the reduction technique to analytical perturbations of generalized inverses is new.

To develop the reduction technique in the context of the generalized inverses, we need to
introduce a new notion of group reduced resolvent. A definition based on spectral represen-
tation is as follows:

Definition 2 Let A : Cn → C
n be a linear operator with the spectral representation (3).

Then, the group reduced resolvent A#Λ relative to the group of eigenvalues Λ := {λi}
k
i=0 is

defined as follows:

A#Λ def
=

p
∑

i=k+1







1

λi

Pi +

mi−1
∑

j=1

(−1)j
1

λj+1
i

Dj
i







.

We note that the Drazin generalized inverse (see formula (10)) is a particular case of
the group reduced resolvent. In this case, the group of eigenvalues consists only of the zero
eigenvalue.

From our definition, the properties of a group reduced resolvent follow easily. In particular,
in the next theorem, we will obtain an alternative analytic expression of the group reduced
resolvent that will play a crucial role in perturbation analysis.

Theorem 4 Let A be a linear operator with representation (3). Then, the group reduced
resolvent relative to the eigenvalues Λ = {λi}

k
i=0 is given by

A#Λ =
1

2πi

∫

Γ

1

ζ
(A− ζI)−1dζ, (23)

where Γ is a contour in the complex plane which encloses the set of eigenvalues {λi}
k
i=0, but

none of the other eigenvalues {λi}
p
i=k+1.

10



Proof: It is a well known fact [19] that the resolvent can be represented by

−

p
∑

i=0





1

ζ − λi

Pi +

mi
∑

j=1

1

(ζ − λi)j+1
Dj

i



 .

Substituting the above expression into the integral of (23) yields

1

2πi

∫

Γ

1

ζ
(A− ζI)−1dζ = −

1

2πi

∫

Γ

p
∑

i=0





1

ζ(ζ − λi)
Pi +

mi
∑

j=1

1

ζ(ζ − λi)j+1
Dj

i



 dζ.

Using the fact that for every positive integer l

Resζ=0
1

ζ(ζ − λ)l
=

1

(−λ)l
and Resζ=λ

1

ζ(ζ − λ)l
= −

1

(−λ)l
,

we obtain

1

2πi

∫

Γ

1

ζ
(A− ζI)−1dζ =

k
∑

i=0

Resζ=λi







−

p
∑

i=0





1

ζ(ζ − λi)
Pi +

mi
∑

j=1

1

ζ(ζ − λi)j+1
Dj

i











=

p
∑

i=k+1







1

λi
Pi +

mi−1
∑

j=1

(−1)j
1

λj+1
i

Dj
i







.

According to Definition 2, the latter expression is equal to the group reduced resolvent, so
that the proof is complete.

2

Lemma 2 Let P =
∑k

i=0 Pi be the projection corresponding to the group of eigenvalues
Λ = {λi}

k
i=0, then

A#Λ = (A[I − P ])#.

Proof: Since PiPj = δijPi and DiPj = δijDi, we have Pi[I − P ] = 0, Di[I − P ] = 0 for
i = 0, ..., k and Pi[I −P ] = Pi, Di[I −P ] = Di for i = k+1, ..., p. Then, (3) and above yields

(A[I − P ])# =

(

p
∑

i=0

(λiPi +Di)[I − P ]

)#

=

(

p
∑

i=k+1

(λiPi +Di)

)#

.

Using formula (10), we obtain

(A[I − P ])# =

p
∑

i=k+1







1

λi

Pi +

mi−1
∑

j=1

(−1)j
1

λj+1
i

Dj
i







.

The latter is equal to the group reduced resolvent A#Λ by Definition 2.
2

Now equipped with this new notion of group reduced resolvent, we go back to perturbation
analysis. The group of the perturbed eigenvalues λi(z) such that λi(z) → 0 as z → 0 is called
the 0-group. We denote the 0-group of eigenvalues by Ω. The eigenvalues of the 0-group
split from zero when the perturbation parameter differs from zero. Since the eigenvalues
of the perturbed operator are algebraic functions of the perturbation parameter [19], each
eigenvalue of the 0-group (other than 0) can be written as

λi(z) = zνλiν + o(zν), (24)
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with λiν 6= 0 and ν is a positive rational number. The reduction technique is essentially
based on the semi-simplicity assumption of reduced operators [19], which will be introduced
below. Under that assumption, the power ν in (24) must be an integer. The latter implies
that we can partition the 0-group into subsets that we call zl-groups. Namely, we say that
the eigenvalue λi(z) belongs to the zl-group if λi(z) = zlλil + o(zl), with λil 6= 0. We denote
zl-group by Λl.

Consider now the spectral representation of the perturbed reduced resolvent.

A#(z) =

p
∑

i=1







1

λi(z)
Pi(z) +

mi−1
∑

j=1

(−1)j
1

λj+1
i (z)

Dj
i (z)







,

where {λi(z)}
k
i=1 is the 0-group. From the above formula one can see that in this case, the

Laurent expansion for the reduced resolvent A#(z) will possess terms with negative powers
of z. Moreover, it turns out that under our assumptions, the zk-group eigenvalues contribute
to the terms of the Laurent expansion for A#(z) with negative powers −k,−k + 1, ...,−1 as
well as to the regular part of the Laurent expansion.

The basic idea is to first treat the part of the perturbed operator corresponding to the
eigenvalues which do not tend to zero as z → 0. Then we treat subsequently the parts of the
perturbed operator corresponding to the eigenvalues which belong to the z-group, z2-group
and so on.

What is helpful is that to treat the part of A(z) corresponding to zk+1-group we have to
perform the same algorithm as for the part of the perturbed operator corresponding to the
zk-group. These steps constitute the (finite) reduction process.

Now we implement the general idea we have just briefly outlined above. Consider a fixed
contour Γ0 that encloses only the zero eigenvalue of the unperturbed operator A0. Note
that by continuity of eigenvalues the 0-group of eigenvalues of the perturbed operator A(z)
lies inside Γ0 for z sufficiently small. Therefore, we may define the group reduced resolvent
relative to the 0-group of eigenvalues as follows:

A#Ω(z) =
1

2πi

∫

Γ0

1

ζ
R(ζ, z)dζ =

1

2πi

∫

Γ0

1

ζ
(A(z) − ζI)−1dζ.

Since A#Ω(z) is an analytic function in some neighbourhood of the origin, it can be expanded
as a power series

A#Ω(z) = A#Ω
0 +

∞
∑

i=1

ziA#Ω
i . (25)

Note that A#Ω
0 = (A0)

# and from Theorem 3 it follows that the other coefficients A#Ω
i , i =

1, 2, ... can be calculated by the formula (22). We would like to emphasize that in general the
group reduced resolvent A#Ω(z) is different from the reduced resolvent A#(z). However, we
note that A#Ω(z) does coincide with A#(z) in the case of regular perturbations.

Another operator that is used extensively in the reduction process is the group projection

P (z) =
1

2πi

∫

Γ0

R(ζ, z) dζ,

which describes the subspace corresponding to the eigenvalues which split from zero. The
group projection is an analytic function in some small neighbourhood of the origin (see e.g.
[19]).

Next, as in the classical reduction process [7, 19], we define the restriction B(z) of the
operator A(z) to the subspace determined by the group projection P (z), that is,

B(z) :=
1

z
A(z)P (z) =

1

2πiz

∫

Γ0

ζR(ζ, z) dζ,
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where Γ0 is some fixed contour enclosing only the zero eigenvalue of the unperturbed operator
A0. For the operator B(z) to be analytic at zero, we need the following assumption.

Assumption S1 The zero eigenvalue of the operator A0 is semi-simple, that is the nilpotent
operator D0 corresponding to λ0 = 0 is equal to zero.

Note that this assumption is not too restrictive. For example, in the case of a self-adjoint
perturbation operator, the zero eigenvalue of A0 is semi-simple. This is in particular the case
when one studies the Moore-Penrose generalized inverse of an analytically perturbed matrix
since it reduces to study a symmetric perturbation of the Drazin inverse (see Section 6).
Whenever Assumption S1 is satisfied, the operator B(z) can be expressed as a power series
[19]

B(z) = B0 +
∞
∑

i=1

ziBi,

with B0 = P (0)A1P (0), and

Bn = −

n+1
∑

p=1

(−1)p
∑

ν1 + ...+ νp = n+ 1
µ1 + ...+ µp+1 = p− 1

νj ≥ 1, µj ≥ 0

Sµ1
Aν1Sµ2

...AνpSµp+1
, (26)

where S0 := −P (0) and Sk := ((A0)
#)k.

Since the operator B(z) is analytic in some neighbourhood of the origin, we can again
construct the expansion for its group reduced resolvent

B#Ω(z) = (B0)
# +

∞
∑

i=1

ziB#Ω
i . (27)

The coefficients B#Ω
i , i = 1, 2, ... are calculated by the formula given in Theorem 3. This is

the first reduction step. To continue, we must distinguish between two cases:
(i) If the splitting of the zero eigenvalue terminates, and consequently B(z) is a regular

perturbation of B0, then B#Ω(z) = B#(z) and the Drazin inverse of the perturbed operator
A(z) is given by

A#(z) = A#Ω(z) +
1

z
B#(z). (28)

By substituting the series expansions (25) and (27) for A#Ω(z) and B#(z) into (28), we
obtain the Laurent series expansion for A#(z), which has a simple pole at zero.

(ii) If the zero eigenvalue splits further, the expression

A#Ω\Λ1(z) = A#Ω(z) +
1

z
B#Ω(z)

represents only the group reduced resolvent relative to the eigenvalues constituting the 0-group
but not the z-group, and we have to continue the reduction process. In fact, we now consider
B(z) as a singular perturbation of B0, and repeat the procedure with B(z). The 0-group
of eigenvalues of B0 contains all the zk-groups of A(0) (with k ≥ 2), but not the z-group.
Specifically, we construct the next-step reduced operator

C(z) = z−1B(z)Q(z),

where Q(z) is the eigenprojection corresponding to the 0-group of the eigenvalues of B(z).
Again, to ensure that C(z) is an analytic function of z, we assume

13



Assumption S2 The zero eigenvalue of B0 is semi-simple.

We would like to emphasize that the subsequent reduction steps are totally identical with
the first one. At each reduction step, we make the assumption Sk that the analogue of B0

at step k has a semi-simple 0-eigenvalue. The final result is stated in the next theorem.

Theorem 5 Let Assumptions Sk hold. Then, the reduction process terminates after a finite
number of steps, say s, and the perturbed Drazin inverse A#(z) has the following expression:

A#(z) = A#Ω(z) +
1

z
B#Ω(z) +

1

z2
C#Ω(z) + ...+

1

zs
Z#(z). (29)

Proof: Consider the first reduction step. Since R(P (z)) and R(I − P (z)) represent a direct
decomposition of Cn and the subspace R(P (z)) is invariant under the operator A(z), we can
write

A#(z) = (A(z)[I − P (z)] +A(z)P (z))# = (A(z)[I − P (z)])# + (A(z)P (z))#

= A#Ω(z) + z−1(z−1A(z)P (z))#,

where Lemma 2 was used to get the first term of the right-hand-side. In view of Assumption
S1, the operator B(z) = z−1A(z)P (z) is analytic in z and hence, one can apply the next
reduction step. Similarly, Assumptions Sk, k = 1, 2, . . . guarantee that the reduction process
can be carried out. Since the splitting of the zero eigenvalue has to terminate after a finite
number of steps [19], we conclude that the reduction process has to terminate after a finite
number of steps as well. Indeed, we successively eliminate the eigenvalues of the z-group, the
z2-group, etc ... Let λi(z) = zsλis + ... be the last eigenvalue which splits from zero. Then
the corresponding reduced operator Z(z) is regularly perturbed and the associated reduced
resolvent Z#(z) has the power series defined by Theorem 3. This completes the proof.

2

Summarizing, to obtain the Laurent series for A#(z), there are two cases to distin-
guish. First, if one needs only few regular terms of A#(z), then it suffices to replace
A#Ω(z), B#Ω(z), ... in (29) by their respective power series (25) computed during the re-
duction process. Note that only few terms of the power series A#Ω(z), B#Ω(z), ... are needed.
Otherwise, if one wishes to compute a significant number of regular terms, then compute only
H−s, . . . ,H−1,H0 as above (in which case, again, only a few terms of A#Ω(z), B#Ω(z), ... are
needed) and then use the recursive formula (17). Of course, one needs first to compute the
power series expansion of the eigenprojection P0(z), which can be obtained by a number of
methods [1, 7, 19].

Remark 2 If the operator A(z) has an inverse for z 6= 0, then the above algorithm can be
used to calculate its Laurent expansion. Hence, the inversion problem A−1(z) is a particlular
case of the presented above complex analytic approach.

Example 1 As was mentioned in the introduction, the perturbation analysis of the reduced
resolvent can be applied directly to the theory of singularly perturbed Markov chains [5, 14, 17,
25]. Namely, the reduced resolvent of the generator of a Markov chain is just with minus sign
the deviation matrix of this chain. The deviation matrix plays a crucial role in the Markov
chain theory. For example, it is used to obtain mean first-passage times. Taking into account
the above remark, we consider an example of a perturbed Markov chain. Let us consider the
following perturbed operator.

A(z) = A0 + zA1 =





0 0 0
0 0.5 −0.5
0 −0.5 0.5



+ z





2 −1 −1
−3 1 2
−4 3 1
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Note that −A(z) is the generator of a Markov chain. The zero eigenprojection and the reduced
resolvent of the unperturbed matrix A0 is given by

P (0) =





1 0 0
0 0.5 0.5
0 0.5 0.5



 A#
0 =





0 0 0
0 0.5 −0.5
0 −0.5 0.5





In this instance, the Laurent expansion for A#(z) has a simple pole. Using the method of
[16] for the determination of the singularity order of the perturbed Markov chains, one can
check that

A#(z) =
1

z
H−1 +H0 + zH1 + ...

By applying the reduction process, we compute the singular coefficient H−1 and the first regular
coefficient H0. Since the zero eigenvalues of the reduced operators are always semi-simple in
the case of perturbed Markov chains [14], we conclude from Theorem 5 that

H−1 = B#
0 , and H0 = A#

0 +B#Ω
1 .

To compute B#
0 and B#Ω

1 , we need to calculate the first two terms of the expansion for the
reduced operator B(z). In particular,

B0 = P (0)A1P (0) =





2 −1 −1
−3.5 1.75 1.75
−3.5 1.75 1.75





B1 = −(A#
0 A1P (0)A1P (0) + P (0)A1A

#
0 A1P (0) + P (0)A1P (0)A1A

#
0 )

=
1

8





0 4 −4
−24 5 19
20 −17 −3





calculated with the help of (26). Next, we calculate the eigenprojection corresponding to the
zero eigenvalue of the operator B0, that is,

Q(0) =
1

22





14 4 4
14 15 −7
14 −7 15



 .

Now using formula (22) from Theorem 3, we obtain

B#Ω
1 = Q(0)B1(B

#
0 )2 −B#

0 B1B
#
0 + (B#

0 )2B1Q(0) =
1

2662





−16 52 −36
−236 41 195
248 −201 −47



 .

Thus, we finally obtain

H−1 = B#
0 =

1

5.52





1
−1.75
−1.75





[

2 −1 −1
]

=
1

121





8 −4 −4
−14 7 7
−14 7 7





and

H0 = B#Ω
1 +A#

0 =
1

1331





−8 26 −18
−118 686 −568
124 −766 642



 .

Note that the above H−1 coincides with the one given in [25].
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If we have in hand the expansion for the ergodic projection, we can use the recursive
formula (17) to compute the regular coefficients. Let us compute by the recursive formula the
coefficient H1 for our example. First, applying the reduction process for the eigenproblem [1,
7, 19], one can compute the coefficients for the expansion of the ergodic projection associated
with z and z2.

P01 =
1

121





2 −12 10
2 −12 10
2 −12 10



 P02 =
1

1331





32 −192 160
32 −192 160
32 −192 160





Then, according to formula (17), we have

H1 = −(H0A1)H0 − (P01H0 + P02H−1)− (H−1P02 +H0P01)

=
1

14641





−368 1856 −1488
−2128 12416 −10288
1744 −10816 9072



 .

6 Perturbation of the Moore-Penrose generalized inverse and

the group inverse

Note that the Laurent series for the perturbed group inverse does not always exist. Indeed,
the existence of the group inverse of the unperturbed operator does not imply the existence
of the group inverse of the perturbed operator.

Example 2 Consider

A(z) =





0 z 0
0 0 0
0 0 1



 .

The space C
n can be decomposed in a direct sum of the null space and range of A(0) but no

such decomposition exists if z 6= 0. Thus, the unperturbed operator A(0) has a group inverse
and the perturbed operator does not.

The following is a general sufficient condition for the existence of the Laurent series for the
perturbed group inverse.

Theorem 6 Let the group inverse Ag(z) of the analytically perturbed matrix A(z) exist in
some non-empty (possibly punctured) neighbourhood of z = 0. Then the group inverse Ag(z)
can be expanded as a Laurent series around z = 0 with a non-zero radius of convergence.

Proof: Whenever the group inverse exists, it coincides with the Drazin generalized inverse.
Therefore, the existence of a Laurent series follows from Theorem 1.

2

As one can see from the following example, even though the Moore-Penrose generalized
inverse always exists, it might be not analytic function of the perturbation parameter.

Example 3 Let

A(z) =

[

0 z
0 1

]

.

Its Moore-Penrose generalized inverse is given by

A†(z) =
1

1 + zz̄

[

0 0
z̄ 1

]

,

which is not analytic since it depends on z̄.
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However, if we restrict Ak, k = 0, 1, ... to the matrices with real entries and if z belongs to
some interval of the real line, we can state the following existence result.

Theorem 7 Let A†(ε) be the Moore-Penrose generalized inverse of the analytically perturbed
matrix

A(ε) = A0 + εA1 + ε2A2 + ... ,

where Ak ∈ IRn×m, ε ∈ IR and the series converges for 0 < |ε| < εmax. Then, A†(ε) possesses
a Laurent series expansion

A†(ε) =
1

εs
B−s + ...+

1

ε
B−1 +B0 + εB1 + ... (30)

in some non-empty punctured vicinity around ε = 0.

Proof: Applying the formula A† = (ATA)gAT [1] for the perturbed operator A(ε) yields

A†(ε) = (AT (ε)A(ε))gAT (ε). (31)

Note that the group inverse of a symmetric matrix always exists. Hence, by Theorem 6,
(AT (ε)A(ε))g has a Laurent series expansion and so the Moore-Penrose generalized inverse
A†(ε) does.

2

We would like to emphasize that according to (31), computing the Laurent series of the
perturbed Moore-Penrose generalized inverse A†(ε) reduces to computing the Laurent series
of a group inverse. Moreover, AT (ε)A(ε) is a symmetric perturbation, that is each term of its
power series has a symmetric matrix coefficient. This guarantees that the reduction process
defined in the previous section and restricted to the real line is indeed applicable in this case.

7 Asymptotics for P0(z)

We know that the eigenprojection P0(z) of the perturbed operator corresponding to the
identically zero eigenvalue is analytic in some (punctured) neighbourhood of z = 0 (see [1]
and [19]), that is,

P0(z) = P00 +

∞
∑

k=1

zkP0k, (32)

for z sufficiently small but different from zero. For regular perturbations, P00 is just P0(0),
and the group projection coincides with the eigenprojection. This is not the case for singular
perturbations.

Therefore, an interesting question is how P00 in (32) relates to the original matrix P0(0)
in the general case and how the power series (32) can be computed. The answers to these
questions are provided below.

Proposition 1 The coefficients of the power series (32) for the perturbed eigenprojection are
given by

P0k = −
s+k
∑

i=0

AiHk−i, k = 1, 2, ... .

Proof: The above formula is obtained by equating the terms with the same power of z in
the identity (6) for the perturbed operators.

2
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Corollary 2 As z → 0, the limit eigenprojection matrix P00 satisfies

P00 = P0(0) [I −

s
∑

i=1

AiH−i]. (33)

where P0(0) is the 0-eigenprojection of the unperturbed matrix A0.

Proof: When substituting the Laurent series expansion (14) into (6)-(7), and equating the
terms of same power, one obtains in particular,

I − P00 = A0H0 +A1H−1 + ...+AsH−s . (34)

In addition, from A(z)P0(z) = 0, we immediately obtain:

A0P00 = 0 so that P00 = P0(0)V, (35)

for some matrix V . Moreover, as P0(0)
2 = P0(0), we also have P0(0)P00 = P0(0)

2V =
P0(0)V = P00. Therefore, pre-multiplying both sides of (34) by P0(0), and using P0(0)A0 = 0,
one obtains (33), the desired result.

2

Hence, (33) relates in a simple manner, the limit matrix P00 to the original 0-group
P0(0), in terms of the perturbation matrices Ak, k = 1, ..., s, the original matrix P0(0), and
the coefficients H−k, k = 1, ..., s of the singular part of A(z)#. This shows how the perturbed
0-eigenvectors compare to the unperturbed ones, for small z. Observe that in the case of
a linear (or first-order) perturbation, only the singular term H−1 is involved. Finally, the
regular case is obtained as a particular case, since then, H−k, k = 1, . . . , s vanish so that
P00 = P0(0).

Appendix: The proof of Theorem 2

To prove Theorem 2 we use the Cauchy contour integration and the residue technique. First
we present some auxiliary results.

Lemma 3 Let Γ1 and Γ2 be two closed positively-oriented contours in the complex plane
around zero and let z1 ∈ Γ1, z2 ∈ Γ2. Furthermore, assume that the contour Γ2 lies inside the
contour Γ1. Then the following formulae hold:

1

2πi

∫

Γ2

z−m−1
2

z2 − z1
dz2 = −ηmz−m−1

1 , (36)

1

2πi

∫

Γ1

z−m−1
1

z2 − z1
dz1 = −(1− ηn)z

−m−1
2 , (37)

with

ηm :=

{

0, m < 0,
1, m ≥ 0.

and

1

2πi

∫

Γ2

z−m−1
2 P0(z2)

z2 − z1
dz2 =

{

0, m < 0,

−z−m−1
1 [P00 + z1P01 + ...+ zm1 P0m], m ≥ 0.

(38)

1

2πi

∫

Γ1

z−n−1
1 P0(z1)

z2 − z1
dz1 =

{

−z−n−1
2 P0(z2), n < 0,

−[P0n+1 + z2P0n+2 + z22P0n+3 + ...], n ≥ 0.
(39)
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Proof: The proof of formulae (36),(37) is given in the book of Kato [19] and in the book of
Korolyuk and Turbin [20].

Let us establish the auxiliary integral (38). If m < 0, then the function
z−m−1

2
P0(z2)

z2−z1
is

analytic inside the area enclosed by the contour Γ2 and hence the auxiliary integral (38) is
equal to zero by the Cauchy Integral Theorem. To deal with the case m ≥ 0, we first expand

the function
z−m−1

2
P0(z2)

z2−z1
as a Laurent series.

z−m−1
2 P0(z2)

z2 − z1
= −

z−m−1
2 P0(z2)

z1(1− z2/z1)
= −z−1

1 z−m−1
2 [P00 + z2P01 + z22P02 + ...][1 +

z2
z1

+
z22
z21

+ ...] =

= z−m−1
2 (−z−1

1 )P00 + ...+ z−1
2 (−z−1

1 )[
1

zm1
P00 +

1

zm−1
1

P01 + ...+ P0m] + ...

Then, according to the Residue Theorem, we have

1

2πi

∫

Γ2

z−m−1
2 P0(z2)

z2 − z1
dz2 = (−z−1

1 )[
1

zm1
P00 +

1

zm−1
1

P01 + ...+ P0m]

= −z−m−1
1 [P00 + z1P01 + ...+ zm1 P0m].

Thus, we have calculated the integral (38). The same method is applied to calculate the
auxiliary integral (39).

2

The proof of Theorem 2: Each coefficient of the Laurent series (2) can be represented
by the contour integral formula

Hn =
1

2πi

∫

Γ
z−n−1A#(z)dz, Γ ∈ D, (40)

where Γ is a closed positively-oriented contour in the complex plane, which encloses zero but
no other eigenvalues of A0. Let us substitute (40) into the following expression

∞
∑

k=1

k−1
∑

i=0

Hn−iAkHm+i−k+1 =
∞
∑

k=1

k−1
∑

i=0

1

2πi

∫

Γ1

z−n+i−1
1 A#(z1)dz1Ak

1

2πi

∫

Γ2

z−m−i+k−2
2 A#(z2)dz2.

As in Lemma 3, we assume without loss of generality that the contour Γ2 lies inside the
contour Γ1. Then, we can rewrite the above expressions as double integrals

∞
∑

k=1

k−1
∑

i=0

Hn−iAkHm+i−k+1 =

∞
∑

k=1

k−1
∑

i=0

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n+i−1
1 z−m−i+k−2

2 A#(z1)AkA
#(z2)dz2dz1

=

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

∞
∑

k=1

k−1
∑

i=0

zi1z
k−i−1
2 A#(z1)AkA

#(z2)dz2dz1

=

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

z2 − z1

∞
∑

k=1

(zk2 − zk1 )A
#(z1)AkA

#(z2)dz2dz1.

Using the resolvent-like identity (15), we obtain

∞
∑

k=1

k−1
∑

i=0

Hn−iAkHm+i−k+1 =
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=

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

[

A#(z1)−A#(z2)

z2 − z1
−

A#(z1)P0(z2)

z2 − z1
+

P0(z1)A
#(z2)

z2 − z1

]

dz2dz1.

Thus, we obtain
∞
∑

k=1

k−1
∑

i=0

Hn−iAkHm+i−k+1 = I1 − I2 + I3,

with:

I1 :=

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

A#(z1)−A#(z2)

z2 − z1
dz2dz1,

I2 :=

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

A#(z1)P0(z2)

z2 − z1
dz2dz1,

I3 :=

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

P0(z1)A
#(z2)

z2 − z1
dz2dz1.

Let us separately calculate the integrals I1, I2 and I3. The integral I1 can be written as

I1 =

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

z2 − z1
A#(z1)dz2dz1 −

(

1

2πi

)2 ∫

Γ1

∫

Γ2

z−n−1
1 z−m−1

2

z2 − z1
A#(z2)dz2dz1

=

(

1

2πi

)2 ∫

Γ1





∫

Γ2

z−m−1
2

z2 − z1
dz2



 z−n−1
1 A#(z1)dz1

−

(

1

2πi

)2 ∫

Γ2





∫

Γ1

z−n−1
1

z2 − z1
dz1



 z−m−1
2 A#(z2)dz2

In the last equality we used Fubini Theorem to change the order of integration. Using the
auxiliary integrals (36) and (37), we obtain

I1 =
1

2πi

∫

Γ1

(−ηmz−m−1
1 )z−n−1

1 A#(z1)dz1 −
1

2πi

∫

Γ2

(−(1 − ηn)z
−n−1
2 )z−m−1

2 A#(z2)dz2

= −
ηn + ηm − 1

2πi

∫

Γ1

z−n−m−2
1 A#(z1)dz1 = −(ηn + ηm − 1)Hn+m+1,

where the second integral can be taken over Γ1 by the principle of deformation of contours.
We calculate the second integral I2 as follows:

I2 =
1

2πi

∫

Γ1

z−n−1
1 A#(z1)

1

2πi

∫

Γ2

z−m−1
2 P0(z2)

z2 − z1
dz2dz1

=











1
2πi

∫

Γ1

0z−n−1
1 dz1, m < 0,

− 1
2πi

∫

Γ1

z−n−1
1 A#(z1)z

−m−1
1 [P00 + z1P01 + ...+ zm1 P0m]dz1, m ≥ 0

=

{

0, m < 0,

− 1
2πi

∫

Γ1

z−n−m−2
1 A#(z1)[P00 + z1P01 + ...+ zm1 P0m]dz1, m ≥ 0
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=

{

0, m < 0,

− 1
2πi

∫

Γ1

z−n−m−2
1 A#(z1)[P0(z1)− zm+1

1 P0m+1 − zm+2
1 P0m+2 − ...]dz1, m ≥ 0

=

{

0, m < 0,
1
2πi

∫

Γ1

z−n−m−2
1 A#(z1)[z

m+1
1 P0m+1 + zm+2

1 P0m+2 + ...]dz1, m ≥ 0

=

{

0, m < 0,
1
2πi

∫

Γ1

z−n−1
1 A#(z1)[P0m+1 + z1P0m+2 + ...]dz1, m ≥ 0

where, in the above expressions, the auxiliary integral (38) and the property A#(z)P0(z) = 0
has been used. Now, we calculate the last integral I3 with the help of the auxiliary integral
(39).

I3 =
1

2πi

∫

Γ2

1

2πi

∫

Γ1

z−n−1
1 P0(z1)

z2 − z1
dz1z

−m−1
2 A#(z2)dz2

=











− 1
2πi

∫

Γ2

z−n−m−2
2 P0(z2)A

#(z2)dz2, n < 0,

− 1
2πi

∫

Γ2

z−m−1
2 [P0n+1 + z2P0n+2 + z22P0n+3 + ...]A#(z2)dz2, n ≥ 0,

=

{

0, n < 0,

− 1
2πi

∫

Γ2

z−m−1
2 [P0n+1 + z2P0n+2 + z22P0n+3 + ...]A#(z2)dz2, n ≥ 0.

Finally, summing up the three integrals I1, I2 and I3, we obtain the relation (16).
2
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