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Abstract— As a natural multi-class generalization of
the well-known (egalitarian) Processor Sharing (PS) ser-
vice discipline, Discriminatory Processor Sharing (DPS)
is of great interest in many application areas, including
telecommunications. Under DPS, the mean response time
conditional on the service requirement is only known in
closed form when all classes have exponential service re-
quirement distributions. For generally distributed service
requirements, Fayolle et al. [1] showed that the expected
conditional response times satisfy a system of integro-
differential equations. In this paper, we exploit that result
to prove that, provided the system is stable, for each
class the expected unconditional response time is finite
and that the expected conditional response time has an
asymptote. The asymptotic bias of each class is found in
closed form, involving the mean service requirements of all
classes and the second moments of all classes but the one
under consideration. In the course of the development we
prove two other results that are of independent interest:
we establish a conservation law for the time average
unfinished work of all classes and, using a stochastic
coupling argument, we show that the response times of
different classes are stochastically ordered according to the
DPS weights. Finally, we study DPS as a tool to achieve size
based scheduling and we provide guidelines as to how the
weights of DPS must be chosen such that DPS outperforms
PS.

I. INTRODUCTION

Kleinrock [2] introduced and first studied the so-
called Discriminatory Processor Sharing (DPS) disci-
pline1, where a single server is shared by M job classes.

1In the original paper, Kleinrock [2] used the term Priority
Processor-Sharing.
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All jobs present in the system are served simultaneously
with rates controlled by a vector of weights {gk > 0; k =
1, . . . ,M}. If there are Nj jobs of class j present in
the system, j = 1, . . . ,M , each class-k job is served
at rate gk/

∑M
j=1 gjNj . When all the weights are equal,

this is equivalent to the standard Processor Sharing (PS)
system.

By changing the DPS weights, one can effectively
control the instantaneous service rates of different job
classes. Thus, an appropriate choice of the DPS weights
may enable differentiated quality of service among dif-
ferent job classes. The range of applications for DPS is
broad. In the context of the Internet, one can think of a
situation where ADSL subscribers are offered different
payment rates and in return obtain corresponding shares
of the available bandwidth. The DPS system also ap-
pears as a natural candidate to model flow level sharing
of TCP flows with different flow characteristics such as
round trip times and packet loss probabilities [3], [4],
[5], [6]. DPS is also a convenient theoretical abstraction
of the weighted round-round robin discipline, which is
used in operating systems for task scheduling.

Fayolle et al. [1] proved that previously found expres-
sions for the expected conditional response time [2], [7]
were not correct and obtained the expected conditional
response times as the solution of a system of integro-
differential equations (see Section II for more details).
In the case of exponentially distributed service require-
ments, these lead to closed-form expressions for the ex-
pected conditional response times and the unconditional
mean response times can be found as the solution to a
system of linear equations. In particular, it is shown in
[1] that, independent of the weights, for each class the
slowdown under DPS tends to the (constant) slowdown
of the PS model as the service requirement increases
to infinity. Also for exponential service requirement
distributions, Rege and Sengupta [8] obtained higher
moments of the queue length distribution as the solutions



to linear equations and, under the same assumptions, they
also proved a heavy-traffic limit theorem. These results
were recently extended to phase type distributions by
Van Kessel et al. [6], [9]. For general service requirement
distributions, Rege and Sengupta [10] proved a decom-
position theorem for the response times conditional on
service requirements. Grishechkin [11] further explored
the relationship between Processor Sharing queues and
Crump-Mode-Jagers branching processes. More recently,
Bonald and Massoulie [4] discussed the applicability of
DPS in modeling user-level performance in the Internet.
Guo and Matta [12] have carried out an approximate
analysis of DPS for general distributions. More recently,
the asymptotic behavior of the delay distribution in a
DPS system has been studied by Borst et al. [5], Altman
et al. [3] study the behavior of DPS in overload and
Bonald&Proutière [13] obtain insensitive bounds for the
queue length distribution for certain parameter ranges.

This paper is organized as follows: in the next sec-
tion, we review the DPS model and integro-differential
equations that describe the expected conditional response
times. In Section III we prove that the mean uncondi-
tional response time of each class is finite, provided the
system is stable. In Section IV we obtain a conservation
law for the mean unfinished work. Then, in Section V
we show that the expected conditional response times for
different job classes are stochastically ordered according
to the DPS weights. Then, using the above mentioned
conservation law, we study in Section VI the asymptotic
behavior of the expected conditional response times. In
Section VII we compare the unconditional mean sojourn
time of a DPS discipline with the PS discipline in the
context of size based scheduling. In Section VIII we
investigate the behavior of DPS by means of numerical
examples. The paper ends with some concluding remarks
in the final section.

II. THE DPS MODEL

In the ensuing analysis, unless otherwise stated, we
assume that k ∈ N is a job class index, where
N = {1, . . . ,M} is the set of indexes. Except for
Proposition 1 below, we assume throughout the paper
that the arrival process of class k is a Poisson process
with rate λk and the service requirement distribution is
Fk(·). We shall use F k(x) = 1 − Fk(x) to denote the
complementary class-k service requirement distribution
and E[Xn

k ] to denote its n-th moment. For notational
ease we shall write E[Xk] = E[X1

k ]. The aggregated
job arrival process is Poisson with rate λ =

∑M
j=1 λj .

Conditioning on the class a job belongs to, the n-th

moment of the aggregated service requirement E[Xn]
is given by E[Xn] =

∑M
j=1

λj

λ E[Xn
j ]. Define

ψk(x) = λkgkF k(gkx),

Ψ(x) =
M∑

k=1

ψk(x).

Steady state exists in the non-saturated regime, i.e.,
when ρ =

∑M
k=1 ρk < 1, where ρk = λkE[Xk] for

k ∈ N . Let Tk(t) be the expected conditional response
time (time in the system) of a class-k job whose service
requirement is t and let T ′

k(t) be its derivative. It was
proven in [1] that Tk(t) can be expressed as

Tk(t) = gk

∫ t/gk

0
a(x)dx+

∫ t/gk

0
b(x)dx, (1)

where a(t) is the unique solution of

a(t) = 1 +
∫ t

0
a(u)Ψ(t− u)du, (2)

and b(t) is a function that satisfies

b(t) =
M∑

j=1

∫ ∞

0
gjT

′
j(gju)ψj(t+ u)du

+
∫ t

0
b(u)Ψ(t− u)du. (3)

For general service requirement distributions with
finite second moments, it is known that 1

tTk(t), i.e.,
the slowdown of class k, tends to 1

1−ρ as t → ∞,
for all classes [1] . In the case of exponential service
requirement distributions, a closed form expression for
the expected conditional response time was obtained

Tk(t) =
t

1 − ρ
+

m∑
j=1

Cj

(
1 − e−αjt/gk

)
, (4)

where m is equal to the number of different elements
in the vector v = (gkE[Xk])k=1,...,M . The coefficient
αj is a positive root of a rational function and Cj can
be expressed as a function of αi, i = 1, . . . ,m, and
the elements of v [1]. Thus, the bias of the asymptote
for t → ∞ is given by

∑m
j=1Cj and its value may be

positive, negative or zero. Unfortunately, the expression
for the coefficients Cj , i = 1, . . . ,m given in [1] is
not very insightful and it does not reveal how the bias
depends on the arrival rates and the required service time
distributions.



III. FINITENESS OF THE EXPECTED UNCONDITIONAL

RESPONSE TIME

In this section, we show that the expected
unconditional response times of all classes in a
DPS system is finite whenever ρ < 1. Let C[0,∞)
be the space of continuous, bounded non-negative
functions. In the next lemma we show that the functions
a(t), b(t) ∈ C[0,∞).

Lemma 1: Let the service time distributions of all
classes have a finite mean and assume ρ < 1. Then, the
solutions to the integral equations (2) and (3) exist and
are unique. Furthermore, the solutions are continuous,
bounded, and non-negative.

Proof: We first consider the solution for a(t). Equa-
tion (2) is a defective renewal equation (see for exam-
ple [14], [15]). Hence, a(t) counts the number of arrivals
in the interval [0, t) of the defective renewal process
with renewal density Ψ(·), starting with a renewal at
time 0. Note that, by definition, the probability that the
time between two consecutive renewals is smaller than
t equals

∫ t
0 Ψ(u)du. The renewal equation is defective

since ∫ ∞

0
Ψ(u)du =

M∑
j=1

λjgj

∫ ∞

0
F j(gju)du

= ρ < 1. (5)

As a consequence [14], a(t) is a continuous, non-
negative, non-decreasing, upper-bounded function and

lim
t→∞ a(t) =

1
1 − ∫∞

0 Ψ(u)du
=

1
1 − ρ

.

In particular, for all t ≥ 0, a(t) ≤ 1/(1 − ρ).
We now consider b(t). As shown in [1], equation (3) can
be expressed as

b(t) = c(t)+
∫ ∞

0
b(u)Ψ(t+u)du+

∫ t

0
b(u)Ψ(t−u)du,

(6)
where

c(t) =
M∑

j=1

gj

∫ ∞

0
a(u)ψj(t+ u)du. (7)

Since a(t) is a non-negative bounded function, so is c(t).
Furthermore, using that a(t) ≤ 1/(1 − ρ),

c(t) ≤
M∑

j=1

gj

1 − ρ

∫ ∞

0
ψj(t+ u)du ≤

∑M
j=1 gjρj

1 − ρ
.

Let us now consider the fixed point iterations

bn+1(x) = c(t) +
∫ ∞

0
bn(u)Ψ(t+ u)du+

+
∫ t

0
bn(u)Ψ(t− u)du, n = 0, 1, . . . ,

on the complete functional space C[0,∞) with the supre-
mum metric ||b|| = supt{b(t)} <∞. Define the integral
operator A[β(x)] as follows:

A[β(t)] = c(t) +
∫ ∞

0
β(u)Ψ(t+ u)du

+
∫ t

0
β(u)Ψ(t− u)du.

The operator A[β(t)] maps the space C[0,∞) onto itself.
If we show that the integral operator A[β(t)] is a

contraction, then the integral equation (6) has a unique
solution in C[0,∞) [16, Section 2.8]. Let d be the
distance in the metric space C[0,∞), that is, d(β1, β2) =
supt |β1(t) − β2(t)|. Note that

d(A[β1],A[β2]) = sup
t
{|A[β1(t)] −A[β2(t)]|}

≤ sup
t
{|β1(t) − β2(t)|} ×

× sup
t

(∫ ∞

0
Ψ(t+ y)dy +

∫ t

0
Ψ(t− y)dy

)

= d(β1, β2)
∫ ∞

0
Ψ(u)du = ρd(β1, β2).

Thus, if ρ < 1, the operator A[β(t)] is indeed a contrac-
tion mapping on C[0,∞). Thus its fixed point solution
b(t) is a continuous, non-negative bounded function.

Lemma 1 allows us to prove that in a stable DPS
system, the mean queue lengths are finite irrespective of
higher order characteristics of the service requirement
distributions (Theorem 1 below). This extends the well-
know property for ordinary multi-class PS with Poisson
arrivals, in which case the mean queue lengths only
depend on the arrival rates and the mean service require-
ments.

Remark. Note that, by Little’s formula, this result is
equivalent to the statement that the expected uncondi-
tional response time of class k is finite if its weight is
strictly positive. It shows the benefits of time-sharing
scheduling disciplines with respect to strict priority rules.
Under strict priority disciplines, if the second moment
of a class has an infinite second moment, the expected
unconditional response times of all the classes with lower
priority are infinite (see also Section VII).



The robustness of DPS comes from the fact that the
common resource is shared among the different classes.
For instance, the share of the server a given class gets
depends on its weight as well as on the number of
jobs present in the system. As a consequence, the share
obtained by a class will increase proportionally as the
number of jobs of this class in the system augments and
as a consequence the DPS discipline prevents classes
with small weights suffer from starvation.

Theorem 1: Let the service time distributions of all
the classes have a finite mean and ρ < 1. Then, if
the weight of class k is strictly positive, the expected
number of class-k jobs present in the system is finite.

Proof: Because of PASTA [17], the distribution at
arrival epochs is equal to the stationary distribution.
Hence, when a job arrives to the system, it finds on
average E[Nj ] class-j jobs, j = 1, . . . ,M , where Nj

has the time average distribution of the number of
class-j jobs in the system. For the moment we do not
exclude E[Nj ] = ∞. Let T ′

k(t) be the derivative of the
conditional response time. From [1, (2.1)] we have that

T ′
k(0) = 1 +

M∑
j=1

gj

gk
E[Nj ]. (8)

On the other hand, taking the derivative of equation (1),
we obtain T ′

k(t) = a(t/gk) + 1
gk
b(t/gk). Evaluating at

t = 0 and noting that a(0) = 1 we have

T ′
k(0) = 1 +

1
gk
b(0), (9)

so that

b(0) =
M∑

j=1

gjE[Nj ].

Since, b(t) is a non-negative bounded function, if follows
that if gj > 0, then E[Nj ] is finite.

Remark. Uniqueness, existence and boundedness of b(t)
was proven in [1] under the additional assumption that
the integral

∫∞
0 |b(u)|Ψ(u)du is bounded.

IV. CONSERVATION LAW FOR DPS

The so-called work conservation property is funda-
mental to single-server (multi-class) systems. For any
single server queue with M job classes, let Uk(t) be the
unfinished work at time t of class-k jobs, k ∈ N , and
let U(t) =

∑M
j=1 Uj(t) denote the total unfinished work

in the system. The unfinished work in the system U(t)

is a function that has vertical jumps at arrival epochs –
the sizes of which are equal to the corresponding service
requirements of customers – and remains constant when
it hits the horizontal axis. When U(t) > 0, the unfinished
work drains with a rate equal to the service rate. We say
that the scheduling discipline is work-conserving if U(t)
decreases at rate 1 whenever U(t) > 0.

Then, a sample path argument shows that for any
work-conserving discipline, the unfinished work in the
system is the same, regardless of the scheduling dis-
cipline deployed. In the particular case of DPS, this
implies that the total unfinished work in the system
(U(t) =

∑M
j=1 Uj(t)) is independent of the particular

values of the vectors {gk; k = 1, . . . ,M}.
This property has led to the development of so-

called work-conservation laws, see [18] for a survey and
[19], [20] and references therein for the application of
conservation laws to the design of optimal scheduling
disciplines.

In Proposition 1 below, we state a conservation law
for DPS. This result is key to the asymptotic analysis
in Section VI.

Proposition 1: Consider a DPS system with M
classes in which the superposed arrival process con-
stitutes a renewal sequence. As before, let λj be the
arrival rate of class-j jobs (not necessarily Poisson) and
let the second moments of the service time requirement
distributions be finite, i.e., E[X2

j ] < ∞, for all j. In
addition, assume ρ < 1. Then,

M∑
j=1

λj

∫ ∞

0
Tj(x)F j(x)dx = U, (10)

where U is the time average unfinished work in the
system.

Proof: We consider an arbitrary class j ∈ N . Let
W i

j , i = 1, 2, . . ., be the cumulative burden of the i-
th class-j job on the unfinished work in the system
during its complete response time. Formally, W i

j :=∫ T i
j

t=0R
i
j(t

i
j + t)dt where tij is the arrival time, T i

j the
response time and Ri

j(t) the unfinished work of the i-
th class-j customer at time t. In particular, Ri

j(t
i
j) is the

total service requirement of this job and Ri
j(t

i
j+T

i
j ) = 0.

Since ρ < 1, the busy period has a finite length with
probability 1. Furthermore, since the superposed arrival
process is a renewal process, the begin points of the
consecutive busy periods constitute regeneration points
and, as a consequence, the sequence {Wn

j }∞n=1 is a



regenerative process with finite cycle lengths. Hence, the
process {Wn

j }∞n=1 is stationary and ergodic. Let τ i
j(x)

be the response time of the i-th class-j job. If E[Wj ]
denotes the expected cumulative burden of an arbitrary
class-j job then

E[Wj ] = E[
∫ ∞

x=0

∫ τ i
j (x)

t=0
Ri

j(t
i
j + t)dtdFj(x)]

= E[
∫ ∞

x=0

∫ x

u=0
τ i
j(u)dudFj(x)]

=
∫ ∞

u=0

∫ ∞

x=u
Tj(u)dFj(x)du

=
∫ ∞

0
Tj(u)F j(u)du.

In the second equality we use that, at any time, the
share that each class-j job obtains is independent of the
remaining service requirement, provided it is positive,
cf. [21, page 164].

Applying the Palm inversion formula2[22], [21] to the
unfinished work of class j, we obtain Uj = λjE[Wj ],
where Uj is the time average unfinished class-j work in
the system. Summing over all the classes and noting that∑M

j=1 U j = U is equal to the time average of the total
unfinished work in the system, we obtain (10).

Corollary 1: If, in addition to the assumptions in
Proposition 1, we assume that class-j jobs arrive accord-
ing to a Poisson process, then

M∑
j=1

λj

∫ ∞

0
Tj(x)F j(x)dx =

∑M
j=1 λjE[X2

j ]
2(1 − ρ)

.

Proof: We are only left with the evaluation of
U . Note that U , the time average unfinished work in
the system, is independent of the scheduling discipline
being deployed. Hence we may determine U assuming
First-Come First-Served scheduling (or any other work-
conserving discipline). The compound job arrival process
is Poisson with rate λ =

∑∞
j=1 λj and the second

moment of the service time requirement distribution is
E[X2] =

∑∞
j=1

λj

λ E[X2
j ]. Then the time-average unfin-

ished work is simply given by the Pollaczek-Khinchin

2The Palm inversion formula is commonly denoted as H = λG
and, informally, states that the time average of a process (H), is equal
to the sample rate (λ) times the expected contribution of each sample
(G)

formula,

U =
λE[X2]
2(1 − ρ)

=

∑M
j=1 λjE[X2

j ]
2(1 − ρ)

,

and the result follows.

V. ORDERING CONDITIONAL RESPONSE TIMES

Using sample path arguments, we show that
conditional response times are stochastically ordered
according to the DPS weights.

Theorem 2: Let τk(x), k = 1, 2, . . . ,M , be the
response time in steady state of a class-k job
that requires x units of service. If gk ≥ gl, then
τk(x) ≤st τl(x), that is, P (τk(x) > y) ≤ P (τl(x) > y)
for all y ≥ 0. In particular, for all x ≥ 0, we have that
Tk(x) = E[τk(x)] ≤ E[τl(x)] = Tl(x).

Proof: Consider two identical copies of the system,
which we refer to as system I and system II. That is, each
arriving customer is duplicated and one copy is placed in
each of the two systems, the two copies having the same
service requirement and belong to the same class. Denote
the numbers of customers of class k, k = 1, 2, . . . ,M ,
in the two systems at time t by N I

k (t) and N II
k (t),

respectively, and their residual service requirements by
RI

k,i(t), for i = 1, 2, . . . , N I
k (t) and RII

k,i(t), for i =
1, 2, . . . , N II

k (t). Suppose the two systems are in steady
state at time 0. At this time we place a customer with
service requirement x in each system and we shall refer
to the two copies as customer I and customer II for short.
Customer I is assigned weight gI and customer II gets
weight gII . Consistent with our previous notation, we
denote the sojourn time of customer I by τI(x) and that
of customer II by τII(x).

Note that for t ≤ 0, N I
k (t) = N II

k (t) and RI
k,i(t) =

RII
k,i(t), i = 1, 2, . . . , N I

k (t), but that these quantities
will differ after time 0 if gI �= gII . Suppose that
gI ≤ gII . We now show that for all k = 1, 2, . . . ,M ,
and t ∈ (0,min{τI(x), τII(x)}): N I

k (t) ≤ N II
k (t)

and RI
k,i(t) ≤ RII

k,i(t), i = 1, 2, . . . , N I
k (t). Here, the

inequality RI
k,i(t) ≤ RII

k,i(t) refers to customers in the
two systems that were each others copies upon arrival,
which may require re-shuffling of the customers when
a customer leaves. For instance, if the copy in I leaves
before that in II, then the copy in II gets an index larger
than N I

k (t) (we will show that the copy in II can not
leave sooner).



Let the sequence 0 = t0 < t1 < t2 . . . <
min{τI(x), τII(x)} denote the time points at which
the number of customers of some class changes in
one of the two systems (or in both). Suppose that
N I

k (tn+) ≤ N II
k (tn+) and RI

k,i(tn+) ≤ RII
k,i(tn+),

i = 1, 2, . . . , N I
k (tn+). (This is trivially satisfied for

n = 0.) We will show that this inequality is also valid
if we replace n by n + 1. Note that, for t ∈ (tn, tn+1)
(in this period the numbers of customers do not change
in either system), the service rates of customers of any
class k in the two systems satisfy

gk

gI +
∑

k gkN
I
k (t)

≥ gk

gII +
∑

k gkN
II
k (t)

. (11)

Thus, all customers in system I receive more service than
their copies in system II, except (possibly) for customers
I and II (below we will indeed show that the opposite
is true for these customers). Thus, for t ∈ (tn, tn+1)
we have N I

k (t) ≤ N II
k (t) and RI

k,i(t) ≤ RII
k,i(t), i =

1, 2, . . . , N I
k (t).

Now, at time t = tn+1 these relations are preserved, as
we may argue by considering the different possibilities:
(i) At time tn+1 a new customer arrives. Then a copy
is placed in both systems, which does not violate the
inequalities. (ii) At time tn+1 a customer in system I
completes service and leaves while his copy still has
residual service time left in system II. Then the numbers
of customers in system I is further reduced, while the
inequality regarding the residual services of the leaving
customer and his copy is trivially satisfied. (iii) At time
tn+1 a customer in system II completes service and
leaves. If his copy in system I was also present, then
necessarily it also completes service at time tn+1 (it must
have zero service time left) and thus, the inequalities
are preserved (the numbers of customers are reduced in
both systems simultaneously). If there is no departure
from system I, then that copy must have left before and
thus, there is at least one more customer of that class
in system II than in system I and, thus, the departing
customer does not violate the inequalities.

Thus the ordering of the two systems is preserved
while customers I and II are both present. It remains
to show that customer II leaves before customer I, i.e.,
τI(x) ≥ τII(x). Let the total amounts of work at time t
due to other customers than I and II in both systems be
represented by

W I(t) =
M∑

k=1

NI
k (t)∑

i=1

RI
k,i(t)

and

W II(t) =
M∑

k=1

NII
k (t)∑
i=1

RII
k,i(t).

In the remainder let 0 < t < min{τI(x), τII(x)}. From
the construction it follows that W I(0) = W II(0) and
W I(t) ≤ W II(t). Let A(t) be the total amount of
work that arrived during (0, t). Since the systems are
work conserving, the amounts of service received by
customers I and II over the period (0, t) are BI(t) =
t−(W I(0)+A(t)−W I(t)) and BII(t) = t−(W II(0)+
A(t)−W II(t)), so that BI(t) ≤ BII(t). This is true for
any 0 < t < min{τI(x), τII(x)}. Since customers I and
II have the same service requirement x, customer I can
not leave before customer II does. Finally set gI = gl

and gII = gk.

The next proposition provides several other relations
among the expected conditional response times of
different classes.

Proposition 2: If gk ≥ gl, then for all t ≥ 0:

(P1) Tk(gkt) ≥ Tl(glt),
(P2) Tk(gkt)

gkt ≤ Tk(glt)
glt

Proof: We first show Property (P1). From equa-
tion (1) we have

Tk(gkt) − Tl(glt) = (gk − gl)
∫ t

0
a(u)du,

and Property (P1) follows as a consequence of a(t) being
a non-negative function (see Lemma 1).

Property (P2) follows similarly since

1
gk
Tk(gkt) − 1

gl
Tl(glt) = (

1
gk

− 1
gl

)
∫ t

0
b(u)du,

and the fact that b(u) is a non-negative function (see
Lemma 1).

We provide an interpretation of Properties (P1) and (P2)
of Proposition 2 with a particular example. Consider two
classes , k, l ∈ N , such that the respective weights satisfy
gk = 2gl, that is, class-k jobs are served twice as fast as
class-l jobs. Then, Property (P1) states that the expected
conditional response time of a class-k job of size t, will
be larger than that of a class-l job of size t/2. On the
other hand, Property (P2) shows that the expected slow
down of the class-k job with size t will be smaller than
that of a class-l job of size t/2, and thus Property (P2)



provides an upper bound on the degradation with respect
to the response time predicted by Property (P1).

VI. ASYMPTOTIC ANALYSIS OF THE EXPECTED

CONDITIONAL RESPONSE TIME

In this section we study the asymptotic behavior of
the conditional expected response time, as the service
requirement tends to infinity. It was proven in [1] that
when E[X2

j ] < ∞, for all j ∈ N , the slowdown in the
DPS system approaches the slowdown of the PS system
as the service requirement increases, that is Tk(t)/t →

1
1−ρ . Let Sk ⊆ N denote the set of classes whose weights
are equal to the weight of class k, that is, Sk = {i ∈
N|gi = gk}. Denote as Sc

k the complement set of Sk,
that is, Sc

k = {i ∈ N|gi �= gk}.
We prove, under the same conditions as in [1] that

the expected conditional response time of class k has
an asymptote. Furthermore, we provide a simple closed
form expression for the asymptotic bias and we show
that the value of the bias for class k depends only
on the second moments of the service requirement
distributions of classes Sc

j .

Theorem 3: Let E[X2
j ] be finite for all j ∈ N . Then,

the expected conditional response time of class k has an
asymptote with slope 1/(1 − ρ) and the following bias

lim
t→∞

(
Tk(t) − t

1 − ρ

)
=

∑
j:j∈Sc

k
λj(1 − gk

gj
)E[X2

j ]

2(1 − ρ)2
.

(12)

Proof: In [1] it was shown that Tk(t) ∼ t
1−ρ , as

t → ∞. To show existence of an asymptote for Tk(t)
with slope 1/(1 − ρ), we need to show existence of
limt→∞

(
Tk(t) − t

1−ρ

)
. From equation (1) we observe

that if the above limit exists, it can be calculated as
follows:

lim
t→∞

(
Tk(t) − t

1 − ρ

)

= lim
t→∞

(
gk

∫ t/gk

0

(
a(x) − 1

1 − ρ

)
dx

+
∫ t/gk

0
b(x)dx

)
.

We first show that
∫∞
0 (a(x)− 1/(1− ρ))dx exists as

well and we derive simple expressions for these integrals.

From equation (2) it follows that

a(t) − 1
1 − ρ

= 1 +
∫ t

0
a(u)Ψ(t− u)du− 1

1 − ρ

=
∫ t

0

(
a(u) − 1

1 − ρ

)
Ψ(t− u)du

+
1

1 − ρ

∫ t

0
Ψ(u)du− ρ

1 − ρ
. (13)

Using equation (5) we can rewrite equation (13) as

a(t) − 1
1 − ρ

=
∫ t

0

(
a(u) − 1

1 − ρ

)
Ψ(t− u)du

− 1
1 − ρ

∫ ∞

t
Ψ(u)du.

Integrating with respect to t we have∫ ∞

0

(
a(t) − 1

1 − ρ

)
dt

=
∫ ∞

0

∫ t

0

(
a(u) − 1

1 − ρ

)
Ψ(t− u)dudt

− 1
1 − ρ

∫ ∞

0

∫ ∞

t
Ψ(u)dudt

=
∫ ∞

0

(
a(u) − 1

1 − ρ

)
du

∫ ∞

0
Ψ(t)dt

− 1
1 − ρ

∫ ∞

0
Ψ(u)udu,

and thus

(1−ρ)
∫ ∞

0

(
a(t) − 1

1 − ρ

)
dt = − 1

1 − ρ

∫ ∞

0
Ψ(u)udu.

Proceeding similarly as in equation (5), it follows that∫∞
0 Ψ(u)udu =

∑M
j=1

λjE[X2
j ]

2gj
. In particular, the latter

justifies the above calculations if the service requirement
distributions have finite second moments. Thus, we have∫ ∞

0

(
a(t) − 1

1 − ρ

)
dt =

−1
2(1 − ρ)2

M∑
j=1

λjE[X2
j ]

gj
.

(14)
Let us now determine

∫∞
0 b(t)dt. Existence of∫∞

0 b(x)dx was proven in [1] provided that the service
requirement distributions have a finite second moment.
We first analyze the first term on the right hand side of
equation (3). Integrating by parts we obtain∫ ∞

0
gjT

′
j(gju)ψj(t+ u)du

=
∫ ∞

0
λjg

2
jT

′
j(gju)F j(gj(t+ u))du

= λjgjTj(gju)F j(gj(t+ u)) |u=∞
u=0

−
∫ ∞

0
λjgjTj(gju)dF j(gj(t+ u)). (15)



We evaluate the first term on the right hand side of the
above equation. Integrating by parts we get∫ ∞

0
xdFk(x) =

∫ ∞

0
F k(x)dx+ lim

x→∞xF k(x),

thus, if the service time requirement has a finite mean,
limx→∞ xF k(x) = 0. Now, since Tk(x) ∼ x/(1 − ρ)
as x → ∞, there exists some L < ∞ such that for all
x ≥ 0, Tk(x) ≤ Lx. Consequently,

lim
x→∞Tk(x)F k(x) ≤ lim

x→∞LxF k(x) = 0.

On the other hand, it holds that limt→0 Tj(gjt) = 0.
Therefore equation (15) becomes∫ ∞

0
gjT

′
j(gju)ψj(t+ u)du =

−
∫ ∞

0
λjgjTj(gju)dF j(gj(t+ u)).

We now calculate the contribution of b(t) to the bias of
the asymptote. From equation (3) we have∫ ∞

0
b(t)dt =

−
M∑

j=1

λjg
2
j

∫ ∞

u=0
Tj(gju)

∫ ∞

t=0
dF j(gj(t+ u))du

+
∫ ∞

0

∫ t

0
b(u)Ψ(t− u)dudt

=
M∑

j=1

λjgj

∫ ∞

0
Tj(gju)F j(gju)du

+
∫ ∞

0
b(u)

∫ ∞

t
Ψ(t− u)dtdu

and hence

(1 − ρ)
∫ ∞

0
b(t)dt =

M∑
j=1

λj

∫ ∞

0
Tj(u)F j(u)du.

Recalling the work-conservation law of Proposition 1 we
get ∫ ∞

0
b(t)dt =

∑M
j=1 λjE[X2

j ]
2(1 − ρ)2

. (16)

Finally, combining equations (14) and (16) we obtain the
desired expression for the asymptotic bias.

From Theorem 3 it is clear that depending on the weights
gk, k ∈ N , the bias can be either positive or negative. It
is easy to see that

lim
t→∞ (Tk(t) − Ti(t)) =

gi − gk

2(1 − ρ)2

M∑
j=1

λj

gj
E[X2

j ]. (17)

From equation (17) we observe that the bias for the class
with the maximum weight is negative and that of the
class with the minimum weight is positive. The vector
of weights {gj > 0; j = 1, . . . ,M}, may be chosen so
that all but one class with the smallest (largest) weight
have positive (negative) biases.

The PS model provides a reference model for com-
parisons with DPS, since the PS system reflects the
system in the absence of priorities. Hence, the value
of the bias can be considered as a measure of the
improvement/degradation that large jobs experience with
respect to egalitarian PS. For example, let us consider
the case of only two job classes and. Let us assume
that class 1 has an extremely large second moment (in
comparison to class 2). Then, it is easy to see that if
we give priority to class 1 (g1 > g2), the large jobs of
class 2 will suffer a lot. On the other hand, if we give
priority to class 2 (g1 < g2), large jobs of class 2 will
gain substantially. This further reinforces the arguments
in [9] that classes with typically short jobs should be
assigned larger weights. See Sections VII and VIII for
further discussion on the comparison of DPS and PS.

We note that when all the second moments of the
service requirement distributions are finite, the value of
the bias of class k does not depend on the value of
the second moments of classes in Sk. This suggests that
Theorem 3 may still hold even when the second moment
of some class belonging to Sk is infinite.

VII. COMPARISON OF DPS AND PS

As noted earlier, DPS is a generalization of egalitarian
PS. Hence, a natural question is how the weights of the
DPS system must be chosen so that DPS outperforms PS.
Thus, in this section we compare the overall performance
of DPS with respect to PS (E[TPS ]) and we provide
guidelines as to how the weights should be chosen

In the context of single-class queues, it is well known
that giving preferential treatment to short jobs reduces
the overall expected unconditional response time of the
system [23], [24], [25], [26], [27]. Hence, one would
expect that in order for DPS to outperform PS, the DPS
should give preferential treatment to the classes with
smaller mean. We will show that this is indeed the case.

We take the expected unconditional response time as
the metric of choice for the overall system performance.
Let E[TDPS ] and E[TPS ] be the expected unconditional
response time in the DPS and PS systems respectively.
Then

E[TDPS ] =
M∑

k=1

λk

λ
E[TDPS

k ],



and

E[TPS ] =
M∑

k=1

λk

λ
E[TPS

k ] =
E[X]
1 − ρ

,

where E[TDPS
k ] and E[TPS

k ] denote the expected uncon-
ditional response times of class-k jobs in the DPS and PS
system respectively, for all k ∈ N . Note that by Little’s
law, reducing the expected unconditional response time
is equivalent to reducing the mean total number of jobs
in the system.

We assume that all the service requirement distribu-
tions are exponential with means µ−1

k , for k ∈ N . We
re-index the classes such that µ−1

1 ≤ . . . ≤ µ−1
M . In this

section we show that if the weights of DPS are chosen
as g1 ≥ g2 ≥ . . . ≥ gM , then E[TDPS ] ≤ E[TPS ]. Note
that this result can be seen as a multi-class counterpart of
the classical single-class results on age-based scheduling.

The next lemma will be useful for the proof of the
main result in this section. We first introduce some
further notation. Let U

DPS
k and U

PS
k be the expected

unfinished work of class k ∈ N in the DPS and
PS systems respectively. Note, that by the memoryless
property of exponential distributions and Little’s law the
following relations hold

U
π
j = E[Nπ

j ]µ−1
j = ρjE[T π

j ],

where E[Nπ
j ] denotes the average number of class-j jobs

in the system and π ∈ {PS, DPS}.
In the ensuing analysis, we require the expected un-

conditional response times of the various classes in the
DPS system satisfy the following condition.

Condition 1. There exists a j∗ ∈ N such that for all
x ≥ 0,{

TDPS
k (x) ≤ TPS

k (x) for all k < j∗,
TDPS

k (x) ≥ TPS
k (x) for all k ≥ j∗.

We note that the mean conditional response
time under PS is equal for all classes, that is,
TPS

i (x) = TPS
l (x) = x/(1 − ρ). Thus, Condition 1

states that the curve x/(1 − ρ) splits the set of classes
into two groups, those that under DPS obtain a better
service than under PS and viceversa. Through numerical
analysis, we have verified that Condition 1 does not
hold in general. Nevertheless, Condition 1 does not
seem very restrictive under the regularity condition
of Theorem 4, that is when µ−1

1 ≤ . . . ≤ µ−1
M and

g1 ≥ g2 ≥ . . . ≥ gM . Under this additional assumption,
we have not found any counterexample. See for example
Figures 2 and 3.

Lemma 2: Assume Condition 1 is satisfied for an
index j∗ ∈ N . Let ∆k = U

DPS
k − U

PS
k . Then,{

∆k ≤ 0 for all k < j∗,
∆k ≥ 0 for all k ≥ j∗.

Proof: The proof is straightforward after noting
that ∆i = λi

∫∞
0

(
TDPS

i (x) − TPS
i (x)

)
F i(x)dx, for all

i = 1, . . . ,M .

Now we show the main result of this section.

Theorem 4: Let the weights in DPS be chosen in
decreasing order with respect to the mean job size, that
is, g1 ≥ g2 ≥ . . . ≥ gM and µ−1

1 ≤ . . . ≤ µ−1
M . In

addition let Condition 1 hold. Then

E[TDPS ] ≤ E[TPS ].

Proof: We write the difference mean delay in
terms of the difference in unfinished work, using the
memoryless property of the exponential distribution and
Little’s law,

E[TDPS ] − E[TPS ]

=
M∑

k=1

λk

λ
E[TDPS

k ] −
M∑

k=1

λk

λ
E[TDPS

k ]

=
1
λ

M∑
k=1

µk(U
DPS
k − U

PS
k ) =

1
λ

M∑
k=1

µk∆k.(18)

Hence, it suffices to show that
∑M

k=1 µk∆k ≤ 0. From
Lemma 2, let j∗ ∈ N be such that ∆i ≤ 0 for all i < j∗

and ∆i ≥ 0 for all i ≥ j∗.
We note that by the work-conservation law (see Sec-

tion IV),
∑M

k=1 U
PS
k =

∑M
k=1 U

DPS
k , and therefore

M∑
k=1

∆k = 0. (19)

Note further that by the conservation law necessarily
j∗ > 1. Then we have

M∑
k=1

µk∆k =
j∗−1∑
k=1

µk∆k +
M∑

k=j∗

µk∆k

≤ µj∗−1

j∗−1∑
k=1

∆k + µj∗

M∑
k=j∗

∆k.



By equation (19)

j∗−1∑
k=1

∆k = −
M∑

k=j∗

∆k,

and hence
M∑

k=1

µk∆k ≤ (µj∗ − µj∗−1)
M∑

k=j∗

∆k ≤ 0,

which completes the proof of the theorem.

From equations (18) and (19), we note that, as
expected, if µ−1

i = µ−1
j for all i, j ∈ N , then

E[TDPS ] = E[TPS ] independent of the weights. The
counterpart of Theorem 4 can be proved along the same
lines, here we only state the result for completeness.

Theorem 5: Let the weights in DPS be chosen in
increasing order with respect to the mean job size, that
is, g1 ≥ g2 ≥ . . . ≥ gM and µ−1

1 ≥ . . . ≥ µ−1
M . In

addition let Condition 1 hold. Then

E[TDPS ] ≥ E[TPS ].

In the particular case of two classes Condition 1 is not
necessary. It was shown in [1] that

E[TDPS
1 ] =

µ−1
1

1 − ρ

(
1 +

ρ2(g2 − g1)
µ−1

1 D

)

E[TDPS
2 ] =

µ−1
2

1 − ρ

(
1 +

ρ1(g1 − g2)
µ−1

2 D

)
,

where D = g1(1−ρ1)

µ−1
1

+ g2(1−ρ2)

µ−1
2

, and where ρi = λiµ
−1
i ,

i = 1, 2. Next, we determine the difference

E[TDPS ] − E[TPS ]

= −λ1µ
−1
1 + λ2µ

−1
2

λ(1 − ρ)
+

ρ1

λ(1 − ρ)

(
1 +

ρ2(g2 − g1)
µ−1

1 D

)

+
ρ2

λ(1 − ρ)

(
1 +

ρ1(g1 − g2)
µ−1

2 D

)

=
−ρ1ρ2

λ(1 − ρ)D
(g1 − g2)(µ1 − µ2).

Hence, we note that if µ1 ≥ µ2 and g1 ≥ g2, then
E[TDPS ] ≤ E[TPS ].

VIII. NUMERICAL EXAMPLES

In this section, we further support our discussion of
appropriate weight setting by numerical experiments.
Our main tool is equation (4). Let us consider a DPS
system with three classes. The mean service times are

given by µ−1
1 = 5000, µ−1

2 = 20 and µ−1
3 = 2; the

arrival rates are λ1 = 0.0001, λ2 = 0.008 and λ3 = 0.1.
Hence the partial loads are ρ1 = 0.5, ρ2 = 0.16 ρ1 =
0.1. Recall that the second moment of an exponentially
distributed random variable equals twice the square of
the mean. Thus, the second moment of class 1 is much
larger than that of classes 2 and 3. In Figure 1 we plot
the respective complementary distributions.
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Fig. 1. Complementary distributions of the three classes.

In Figures 2 and 3 we plot the mean conditional
response time for all three classes for different choices
of the weights. In Figure 2 we choose the weights such
that (g1 << g2 << g3) and in Figure 3 we choose the
weights such that (g1 >> g2 >> g3).
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Fig. 2. Comparison of the expected conditional response times under
DPS and PS.
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Fig. 3. Comparison of the expected conditional response times under
DPS and PS.

As Theorem 3 predicts, the bias of class 1 in Figure 2
is very small and positive, whereas the bias for classes 2
and 3 is negative and large in absolute value. Thus, the
performance class-1 jobs perceive is similar to that in ab-
sence of discrimination, whereas for classes 2 and 3 the
performance is significantly improved. From Theorem 4
we know that the set of parameters of Figure 2 will lead
to a decrease of the expected unconditional response time
of the DPS system (with respect to PS). In this particular
example the expected unconditional response times are
E[TDPS ] = 38.3 and E[TPS ] = 56.8, that is, with DPS
the expected unconditional response time is reduced by
33%.

On the other hand, as we see from Figure 3, the bias
for class 1 is negative and small (in absolute value).
Hence, class-1 jobs will hardly notice any reduction in
the expected response time (note further that mean of
class 1 is 5000). On the other hand, by giving preference
to class 1 we inflict an important degradation to classes
2 and 3. It is interesting to see that with this choice
of weights not only classes 2 and 3 suffer, but the
overall system performance is severely degraded. For this
particular set of parameters, the expected unconditional
response time in DPS is E[TDPS ] = 2085.

In view of Theorem 3, we conjecture that the phe-
nomena pointed out here will be even more dramatic in
the case of classes with infinite second moment.

IX. CONCLUSION

In this paper we have analyzed a DPS system. The
DPS model provides a natural framework for the charac-

terization of multi-class time-sharing systems. We have
demonstrated several important properties of DPS.

We have shown that in a stable DPS system it is
sufficient that a class’ weight is positive to ensure a
finite mean number of jobs of that class. This property
holds regardless of the characteristics of the required
service time distributions. It implies that a DPS system
will outperform any strict priority policy if the second
moment of one class’ service requirement is infinite.

We have proved a new work-conservation law
for single server multi-class systems. Existing work-
conservation laws have proven to be highly valuable
for performance analysis and system optimization. The
new conservation law opens up new research lines to
further understand these issues in DPS systems, as well
as in similar multi-class single server queues, such as
Generalized Processor Sharing.

Our closed-form expression for the asymptote points
out an insightful dependence of the DPS model with
respect to the second moment of the distribution of the
required service times. This plays an important role in
optimization of weight setting. dependence might be
useful for example in determining optimal choice of
weights.

Finally, we have studied the impact of the weights
on overall system performance, in the context of size
based scheduling disciplines. In the case of exponential
service requirement distributions, we provide guidelines
as to how the weights should be chosen such that DPS
outperforms PS.
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