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Abstract— We study an optimal choice of the buffer size in
the Internet routers. The objective is to determine the minimum
value of the buffer size required in order to fully utilize the
link capacity. There are some empirical rules for the choice of
the buffer size. The most known rule of thumb states that the
buffer length should be set to the bandwidth delay product of
the network, i.e., the product between the average round trip
time in the network and the capacity of the bottleneck link.
Several recent works have suggested that as a consequence of
the traffic aggregation, the buffer size should be set to smaller
values.

In this paper we propose an analytical framework for the
optimal choice of the router buffer size. We formulate this
problem as a multi-criteria optimization problem, in which
the Lagrange function corresponds to a linear combination of
the average sending rate and average delay in the queue. The
solution to this optimization problem provides further evidence
that indeed the buffer size should be reduced in the presence
of traffic aggregation. Furthermore, our result states that the
minimum required buffer is smaller than what previous studies
suggested. Our analytical results are confirmed by simulations
performed with the NS simulator.

I. INTRODUCTION

Most traffic in the Internet is governed by TCP/IP protocol
[1], [9]. Data packets of an Internet connection travel from
a source node to a destination node via a series of routers.
Some routers, particularly edge routers, experience periods of
congestion when packets spend a non-negligible time waiting
in the router buffers to be transmitted over the next hop.
TCP protocol tries to adjust the sending rate of a source to
match the available bandwidth along the path. During the
principle Congestion Avoidance phase TCP uses Additive
Increase Multiplicative Decrease (AIMD) control scheme.
In the absence of congestion signals from the network
TCP increases sending rate linearly in time, and upon the
reception of a congestion signal TCP reduces the sending
rate by a multiplicative factor. Congestion signals can be
either packet losses or Explicit Congestion Notifications
(ECN) [15]. At the present state of the Internet, nearly all
congestion signals are generated by packet losses. Packets
can be dropped either when the router buffer is full or when
Active Queue Management (AQM) scheme is employed [7].
Given an ambiguity in the choice of the AQM parameters
[5], [10], so far AQM is rarely used in practice. On the other
hand, in the basic Drop Tail routers, the buffer size is the
only one parameter to tune apart of the router capacity. In
fact, the buffer size is one of few parameters of the TCP/IP
network that can be managed by network operators. This
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makes the choice of the router buffer size a very important
problem in the TCP/IP network design.

The first proposed rule of thumb for the choice of the
router buffer size was to choose the buffer size equal to
the Bandwidth-Delay Product (BDP) of the outgoing link
[17]. This recommendation is based on very approximative
considerations and it can be justified only when a router is
saturated with a single long-lived TCP connection. The next
apparent question to ask was how one should set the buffer
size in the case of several competing TCP connections. In
[4] it was observed that the utilization of a link improves
very fast with the increase of the buffer size until a certain
threshold value. After that threshold value the further in-
crease of the buffer size does not improve the link utilization
but increases the queueing delay. It was also observed in [4]
that one must ensure a certain minimum of space in the
buffer for short connections and any further increase in the
buffer capacity does not really improve the performance of
short connections. Furthermore, two contradictory guidelines
for the choice of the buffer size have been proposed. In [11]
a connection-proportional buffer size allocation is proposed,
whereas in [3] it was suggested that the buffer size should be
set to the BDP of the outgoing link divided by the square root
of the number of TCP connections. A rationale for the former
recommendation is that in order to avoid a high loss rate the
buffer must accommodate at least few packets from each
connection. And a rationale for the latter recommendation
is based on the reduction of the synchronization of TCP
connections when the number of connections increases.
Then, [11], [3] were followed by two works [6], [8] which try
to reconcile these two contradictory approaches. In particular,
the authors of [6] recommend to follow the rule of [3] for a
relatively small number of long-lived connections and when
a number of long-lived bottlenecked connections is large, to
switch to the connection-proportional allocation. One of the
main conclusions of [8] is that there are no clear criteria for
the optimization of the buffer size. Then, the author of [8]
proposed a general avenue for research on the router buffer
sizing: “Find the link buffer size that accommodates both
TCP and UDP traffic.” We note that UDP (User Datagram
Protocol) [14] does not use any congestion control and
reliable retransmission and it is mostly employed for delay
sensitive applications such as Internet Telephony.

All the above mentioned works on the router buffer sizing
are based on quite rough approximations and do not strictly
speaking take into account the feedback nature of TCP pro-



tocol. Here we propose a mathematically solid framework to
analyze the interaction of TCP with the finite buffer of an IP
router. In particular, we state a criterion for the choice of the
optimal buffer size in a mathematical form. Our optimization
criterion can be considered as a mathematical formalization
of the lingual criterion proposed in [8]. Furthermore, the
Pareto set obtained for our model allows us to dimension
the IP router buffer size to accommodate both data traffic
and real time traffic.

The rest of the paper is organized as follows: In Section I,
we state and solve a mathematical model of the interaction
between TCP and the router buffer with a finite size. In par-
ticular, we show how an optimal buffer size can be chosen.
Section Il confirms the theoretical results of Section Il with
numerical examples and NS simulations. We conclude the
paper with Section IV.

1. MATHEMATICAL MODEL

Let n long-lived TCP connections share a bottlenecked
Internet router with the buffer size B and the transmission
capacity p. Denote by A;(t) the instantaneous sending rate
of connection ¢ = 1,...,n at time ¢ € [0,00). We consider
a fluid model. Namely, data is represented by a fluid that
flows into the buffer with the rate A(¢) = Y"1, Ai(¢), and
it leaves the buffer with the constant rate u, if there is a
backlog in the buffer. It is shown in [2] that the fluid model
adequately describes the evolution of the TCP sending rate
if the average sending rate is large enough. Denote by z(%)
the amount of data in the buffer at time ¢ € [0, c0). Then,
the evolution of z is described by the following differential

equation
. A—p, ifz>0,0rifz=0and X >y, 1)
=1 o, if z=0and A < p.

If z < B, the sending rate of connection ¢ increases linearly
in time with rate «;. The constant «; can be expressed in
terms of the Round Trip Time (RTT) of the corresponding
TCP connection [2]. Namely, o;; = 1/(RTT;)?, where RTT;
is the Round Trip Time of connection 4. Thus, if z < B,

A=aq, )

where @ = Y7 ;| ;. When z reaches B, a congestion signal
is sent to one or several TCP connection. Upon the reception
of the congestion signal at time ¢, TCP connection reduces
its sending rate by a multiplicative factor 3, € (0,1), that is,
Ai(t+0) = BoA;(t —0). In the current TCP implementation
Bo = 0.5 [1]. Dynamical systems that combine both discrete
and continuous behavior are known as Hybrid Systems [16].
Let us assume that when z = B congestion signals are
sent to 7 € {1,...,n} connections and the sending rates
of connections are distributed uniformly at the congestion
moment. Then, the total sending rate is reduced on average
by the factor

s=1a-so

And since in the fluid model all variables stand for average
values, we can write that A(¢ +0) = SA(t — 0), when ¢ is a
moment of congestion.

Let us now formulate a performance criterion. On one
hand, we are interested to obtain as large throughput as
possible. That is, we are interested to maximize the average
sending rate

On the other hand, we are interested to make the delay of
data in the buffer as small as possible. That is, we are also
interested to minimize the average amount of data in the
buffer
t
T = lim 1
t—oo t 0

z(s)ds.

Clearly, these two goals are contradictory. In fact, here
we face a typical example of multicriteria optimization. A
standard approach to multicriteria optimization is to consider
the optimization of one criterion under constraints for the
other criteria (see e.g., [13]). Namely, we would like to
maximize the throughput given that the average amount of
data in the buffer does not exceed a certain value

max{\ : 7 < Z,}. 3)

Or we would like to minimize the average delay given that
the average throughput is not less than a certain value

min{Z : A > A\, }. (4)

The solution to the above constrained optimization problems
can be obtained from the Pareto set of the following uncon-
strained optimization problem

t
max {tlggo % /0 c1A(s) — CQm(s)ds} . (5)
All three optimization problems (3), (4) and (5) can be
regarded as mathematical formulation of the lingual criterion
“find the link buffer size that accommodates both TCP
and UDP traffic” given in [8]. Since UDP traffic does not
contribute much in terms of the load, for the design of IP
routers one can use for instance optimization problem (3)
where the delay constraint is imposed by the UDP traffic.

We note that here we deal with the optimal impulse control
problem of a deterministic system with long-run average
optimality criterion. To the best of our knowledge there are
no available results on such type of problems in the literature.
In principle, the control policy in our model can depend on z
and A. In practice, however, all currently implemented buffer
management schemes (e.g., AQM, DropTail) send congestion
signals based only on the state of the buffer. Thus, we also
limit ourselves to the case when the control depends only on
the amount of data in the buffer.

In the case of the DropTail buffer management policy, it is
possible to express the average sending rate and the average
buffer load as functions of the buffer size. These functions
are given in the next theorem.

Theorem 1. Let B be the router buffer size and the
DropTail buffer management policy is used in the router.



Then, the average sending rate and the average amount of
data in the buffer are given by

A=p, 6)
F=B- B, 7)

when B € [By, c0), where By = %%, and X and z are
given by

) )
z= 6(7‘1 ) (0% + 762 + 2(r — /7% — 62)(6% — 7)), (9)

when B € [0, By), where 7 = (u — pf8 — af86)/a and 6 =
v/2B/a.

Proof: The fluid model (1) and (2) with the impulsive
control of sending rate A\ based solely on the buffer content
x can evolve in three distinct periodic regimes. In the first
regime, the size of buffer B, which determines the moments
of the impulse control applications, is sufficiently large and
the buffer is never empty (see Figure 1). In the second
regime, the buffer becomes empty only at isolated points of
time (see Figure 2). The second regime can be considered as
a limiting case of the first regime. Then, in the third regime,
the buffer stays empty during a non-zero length time interval
of each cycle (see Figure 3).

One can show that no other cycles can take place. Given
any initial conditions, it is clear that after some time A(t)
becomes less than p. Let A < p be the value of A
immediately after a jump: A = A(¢ + 0) = BA(t — 0) and
calculate <I>(5\), the value immediately after the next jump.
If the trajectory between the jumps does not touch the axis
x = 0 then ®(\) = B2u— BA. Since this map is contracting,
there exists only one stable point A* (denoted below as A(0))
which defines the cycle. If the trajectory does touch the
horizontal axis, the reasoning must be slightly modified and
the system converges to a cycle of the third type.

Let us study the first regime. Without loss of generality,
we can consider only one cycle that starts at time 0 just after
the sending rate reduction and finishes at the time moment
T of the next rate reduction. Thus, we have that

z(0) = z(T) = B. (10)

Between two consecutive rate reductions the system evolves
according to the differential equations (1) and (2), and hence,

{ A(t) = M0) + o,
z(t) = z(0) + (A(0) — p)t + $¢2,

for ¢ € [0,T). From condition (10) we determine that the
duration of the cycle is T = 2(u — A(0)) /. Then, from the
condition A(0) = BA\(T — 0), we get

2

_ 2pl1-p
and, consequently, T' = FREE Next, we calculate the

minimal amount of data in the buffer B,,;,. which is
achieved at the middle of the cycle.

_w(-p)7
20 (14 )2

Since in this regime the buffer is never empty, A = . Then,
one can easily calculate the average amount of data in the
buffer

Bunin = (T/2) = B — By = (11)

A0) —p o, 5 2

5 T+ 6T =B 330.
In particular, the equation (11) provides an expression for
the value of By, which defines the limiting regime when the
buffer becomes empty only at isolated points of time (see
Figure 2).

Next, let us study the third regime. Points A and D in
Figure 3 correspond to the beginning and the end of a cycle
as defined for the first regime. At point B the buffer becomes
empty, and at point C the sending rate again becomes equal
to the transmission capacity p and the amount of data in the
buffer starts to grow from zero.

Denote by 7 the time of the system transition from A to
C and denote by 6 the time of the system transition from C
to D.

For two segments of the system trajectory A-B and C-D,
we can write

=B+

{ A(r) = BNT) + a1 = p,
ANT) =p+ab.

Thus, we have that 7 = (p — Bp — af0)/a. Taking into
account that A(0) = B(u+af) and 7+60 = (1-8)(0+p/),
one can calculate the average sending rate as a function of
0

1

T+0
Next, we note that

)\:

/ ") + as] ds = #(a@ + )

z(T) = %aGQ = B,

and, consequently, we can express 6 as a function of B, that
is, § = v/2B/a.

Let us now calculate the average amount of data in the
buffer. Towards this end, denote by 7y the time of the system
transition from A to B. The value of 7 is determined by the
following equation
«

2

z(r0) = 2(0) + (A(0) — p)mo + 570
a o
= 502 —aTT) + 57’3 =0.

Hence, 19 = 7 — v/72 — 62. And then, we have

Tz = ’7'—]}-9 /OTO x(s)ds—i—/ z(s)ds]
- 6(;1 Gy10° + 70" + 26" — )]



This completes the proof.
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Fig. 3. The third regime (B < By).

Two limiting cases are of particular interest for us: (a)
when the throughput is close to the router transmission
capacity and (b) when the average amount of data in the
buffer is close to zero. Let us first consider case (b).

Corollary 1: When B [0, # — 0 and X — 124,

Proof: The proof immediately follows from formulae
(8) and (9).
[ |

Corollary 1 implies that even in the case of the zero buffer
size and completely synchronized connections (7 = n), the
system utilization is quite high (around 75%, if 8o = 0.5).
If there are for instance five non-synchronized connections,
the system utilization improves to 95% but the buffer stays
empty. We recall that here we use a fluid model. In practice,
the granularity of the data flow imposes some minimal
constraints on the size of the buffer. Nevertheless, as was

observed in [4], the utilization of a link improves very fast
when the buffer size is increased from zero to some small
value.

. _ w2 (1B
Corollary 2: When B 1 By = g—aw,

Z — By/3 and
A= .

We note that By corresponds to the minimal size of the
buffer when the link is fully utilized. If one cares only about
the throughput of a TCP connection, then By corresponds
to the optimal choice of the buffer size. Let us study how
the value of By depends on the number of competing TCP
connections.

First, let us consider the case of a single TCP connection
when o = 1/RTT? and 8 = By = 0.5. In this case, we have
By = (uRTT)?/18.

Next, let us study how much buffer space one needs
to allocate for multiple TCP connection. To get a clear
dependence of the optimal buffer size on the number of
TCP connections, we Analise the symmetric case when all
TCP connections have the same Round Trip Times. Thus,
we have that o = n/RTT?. If TCP connections are always
synchronized, we have g8 = 0.5 and

(uRTT)?
18n '’
where n is the number of TCP connections. And if TCP

connections are not synchronized, we have 8§ =1 —1/(2n)
and

By =

_ (uRTT)?
~ 2n(4n —1)2

TT)?
~ (u$n3) as n — oo.

By (12)
This is a surprising result, as in [3] the asymptotics for the
optimal buffer size is inversely proportional to 4/n. Thus,
the present model recommends that one can choose even
smaller buffer sizes than suggested in [3]. Of course, this
recommendation is true as long as the fluid model is valid.
Similar observations on the applicability of the rule of [3]
were made in [6] and in [8].

Another interesting fact is that the asymptotics By ~
1/+/m suggested in [3] is explained by the desynchronization
effect. From the present model it is also clear that the
desynchronization helps a lot. However, the present model
also implies that even if TCP connections are completely
synchronized, the optimal buffer size decreases as 1/n when
n, the number of TCP connections, increases. It is stated in
[3] that in the case of synchronized connections one should
follow the BDP rule as for the case of a single connection.
The present model as well as the simulations of the ensuing
Section 111 do not appear to confirm this statement.

Changing B from 0 up to By, we can plot the Pareto set,
which has a shape as in Figure 4.

Next we illustrate that the difference in the value of By is
a direct consequence of the traffic model used to characterize
the dynamics of the TCP sending rate and the interaction of
TCP with packet losses.

The BDP rule of thumb [17] can be explained with the help
of the following model. Consider a network with a single
TCP connection. As above, let A(7), p and RTT denote



Fig. 4. The Pareto set.

the sending rate at time 7, the capacity of the link and the
round trip time, respectively. Based on the behavior of the
TCP protocol, roughly speaking, upon experiencing a packet
loss a TCP sender stops sending data during a time period
equal to RTT. After this inactivity period, the sender resumes
transmitting at a rate approximately equal to the capacity of
the link (see Figure 5). Hence, in order the link to be fully
utilized during the amount of time in which the sender is
not transmitting, the size of the buffer must be equal to the
dashed area in Figure 5. Namely, we have

By > RTT x u,

which is commonly referred as the bandwidth-delay product
rule of thumb. We refer to [17, Section 3] and [3, Section
1.2] for a more detailed discussion on the derivation of the
rule-of-thumb.

buffer overlflow, x(T)=B

A(D) Bo

-

Fig. 5. Representation of Byg.

In our model, the evolution of the sending rate and the
queue length are governed by equations (1) and (2). In
Figure 6 we represent the dynamics of the sending rate in
time.

buffer overlflow, x(T)=B

~Y

T2 T

Fig. 6. Representation of Byg.

Then, similarly to the previous case, the value of By

corresponds to the dashed area. And consequently, we have

T/2
By = pT/2—/ A(s)ds
0

uT/2 — XN0)T/2 — a/2(T/2)?

w (1-p)?
2a (1 + B)?’

which is precisely the value obtained in equation (11).

Of course, each model has its own limitations. We think
that the first model is more appropriate in the case of a
single TCP connection, whereas our model is more suitable
in the case of multiple TCP connections. This statement is
confirmed by the simulations presented in the next section.

= T?a/8=

I1l. SIMULATIONS

We perform network simulations with the help of NS-
2, the widely used open-source network simulator [12]. We
consider the following benchmark example of a TCP/IP
network with a single bottleneck link. The topology may for
instance represent an access network. The capacity of the
bottleneck link is denoted by p and its propagation delay
is denoted by d. The capacities of N links leading to the
bottleneck link are supposed to be large enough (or the load
on each access link is small enough) so that they do not
hinder the traffic. Each of these N links has a propagation
delay d;. We assume that in each access link there is one
persistent TCP connection.

In the NS simulations we use the following values for the
network parameters: bottleneck capacity is p = 100Mbps,
bottleneck link propagation delay d = 1ms, the access link
capacity and delay are 100Mbps and 1ms, respectively. The
packet size is 500bytes and we use the New Reno flavor
of TCP. The number of access links is equal to the humber
of connections. The fact that the delays in the access links
are the same implies that the TCP connections will be
synchronized.

In Figure 7 we depict the Pareto set for the cases of NV =
5 and N = 20 connections. The qualitative shape of the
curves agrees with what our model predicts. When the buffer
size is 0, the achieved average sending rates are respectively
64.4Mbps and 66.6Mbps, slightly lower than 75Mbps, the
value obtained in Corollary 1.

In our numerical example, let By be the minimum buffer
size that guarantees a link utilization greater than 99.9%.
According to this definition, in our simulation the values
of By are equal to 120 (N = 5) and 70 (N = 20),
while equation (12) gives a value of 250 (V = 5) and
62 (N = 20). We note that in this example the bandwidth
delay product suggests that the buffer length should be set to
150 independently of the number of TCP connections. The
»Stanford rule” provided in [3] (z x RT'T/+/N) indicates
that the buffer size should be set to 67 (N = 5) and 21
(IV = 20), respectively.

The differences between the results obtained with the
analytical model, and those obtained by simulations can
be explained by the fact that the aggregated traffic in the
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Fig. 7. The Pareto set for N = 5 and N = 20.

simulations is not as smooth as the fluid model we used in
the model. Hence, when the buffer length is 0, the obtained
average sending rate is smaller than the one obtained with
the fluid model. Similarly, in the simulated scenario the
minimum buffer length that guarantees full utilization of the
link is larger than the one the fluid model predicts.

In Figure 8 we depict the relative error incurred by the
three above mentioned methods. We note that the error
of the fluid model reduces very quickly as the number of
connections increases. In particular, Figure 8 confirms that
the BDP rule is appropriate for the case of a single TCP
connection but in the case of multiple TCP connections one
should apply a different model.

T T
our fluid model
— — Stanford rule
— — —BDP rule

relative error with respect to simulations (%)

. . . . . . n
0 2 4 6 8 10 12 14 16 18 20
number of connections (N)

Fig. 8. Relative error of By

IV. CONCLUSIONS

In this paper we have formulated the problem of choosing
the buffer size of routers in the Internet as a multi-criteria
optimization problem. In agreement with previous works,
our model suggests that as the number of long-lived TCP
connections sharing the common link increases, the required
minimum buffer size to achieve full link utilization reduces.
We have shown that the various existing rule-of-thumbs in

the literature are a direct consequence of the assumptions
made to model the aggregate traffic that arrives into the
bottleneck link. The simulations carried out confirm the
qualitative insights drawn from our model. In particular, it
seems that due to the fluid model approach used in our
analysis, the obtained value of the minimal buffer size can
be considered as a lower bound. The Pareto set obtained for
our model allows us to dimension the IP router buffer size
to accommodate real time traffic as well as data traffic.
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