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Abstract

The Discriminatory Processor Sharing (DPS) model is a multi-class
generalization of the egalitarian Processor Sharing model. In the DPS
model all jobs present in the system are served simultaneously at rates
controlled by a vector of weights {gk > 0; k = 1, . . . , K}. If there are Nk

jobs of class k present in the system, k = 1, . . . , K, each class-k job is
served at rate gk/

PK
j=1 gjNj . The present article provides an overview

of the analytical results for the DPS model. In particular, we focus on
response times and numbers of jobs in the system.
Keywords. Discriminatory Processor Sharing, Asymptotic Analysis,
M/G/1, Conservation Law.

1 Introduction

Conventional telephone networks provide a guaranteed service rate by allocating
dedicated channels to accepted calls. In contrast, in data networks and multi-
task operating systems the capacity is time-shared between all users and as a
consequence the service rate allocated to each user depends on the total number
of users. This technological development created a need for new mathematical
models that could capture the fundamental properties of time-sharing systems.
Kleinrock [32] introduced the Processor Sharing (PS) model where the capacity
is shared equally among all the users present in the system. Since then, the
PS model has attracted significant attention from the research community. For
available results on the PS model we refer the interested reader to [32, 27, 51]
and [9] in the present special issue.

∗This work is part of a French-Dutch Van Gogh research project funded by NWO (The
Netherlands Organization for Scientific Research) and EGIDE under grant VGP 61-520. This
work was done while U. Ayesta was an ERCIM Postdoc fellow at CWI.
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One limitation of the PS model lies in its inability to describe heterogeneous
time-sharing systems, in which users from different classes obtain unequal shares
of the capacity. For example, in the Internet the service rate a connection ob-
tains depends on the characteristics of its path [34] and in modern CPUs the
service rate of each task depends on its priority level [5, 47]. To model such sit-
uations multi-class time-sharing systems were proposed. Two main models have
emerged: Generalized Processor Sharing (GPS) and Discriminatory Processor
Sharing (DPS). The GPS model guarantees a minimum service rate to each
class. When there are no jobs in one of the classes, its share of the capacity is
distributed among the active classes. We refer to [40, 50] and references therein
for more details on GPS. Unlike in GPS, in the DPS model the capacity that
each class obtains is not guaranteed, and in fact the capacity allocated to each
class depends on the number of jobs currently present in all the classes. The
DPS model was proposed and studied by Kleinrock [31] under the name Priority
Processor Sharing. In the DPS model all jobs present in the system are served
simultaneously at rates controlled by a vector of weights {gk > 0; k = 1, . . . ,K},
where K denotes the number of classes. If there are Nk jobs of class k present
in the system, k = 1, . . . , K, each class-k job is served at rate

rk(N1, N2, ..., NK) =
gk∑K

j=1 gjNj

. (1)

When all the weights are equal, the DPS model is equivalent to the standard PS
system. By changing the DPS weights, one can effectively control the instan-
taneous service rates of different job classes. Thus, the possibility of providing
different service rates to users of various classes makes DPS an appropriate
model to study the performance of heterogeneous time-sharing systems.

After the work of Kleinrock, the paper by Fayolle, Mitrani and Iasnogorod-
ski [16] made the most important advance in the analysis of the DPS model.
In [16] the authors obtained the expected conditional response times as the
solution of a system of integro-differential equations. In addition, the authors
provided a thorough analysis for the case of exponentially distributed service
requirements. Since the appearance of [16] until recently, publications on DPS
have been very sparse. Despite the simplicity of the model description and the
fact that the properties of the egalitarian PS queue are quite thoroughly under-
stood, the analysis of DPS has proven to be extremely difficult. For example,
results on an important basic metric like the distribution of the response time
in the system have only been derived under certain limiting regimes (time-scale
decomposition, overload etc.) Similarly, results for general service requirements
are also scarce.

The range of applications of DPS is broad. Perhaps the most natural ap-
plication of DPS is to model Weighted-Round-Robin (WRR) scheduling. DPS
mimics the performance of WRR when the service quotas are smaller than the
service requirements and when the switching delay associated with the change
of job is negligible. Similarly, DPS may be an appropriate model for a mod-
ified version of WRR known as Deficit-Round-Robin [46]. The last few years
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have witnessed a significant increase of interest in the DPS model, partly mo-
tivated by the need to understand the performance of future communication
networks that are expected to provide different quality of service to different
groups of users. The first paper discussing the applications of DPS in the con-
text of flow-level performance of bandwidth sharing mechanisms was [34], where
by numerical means the authors discussed the advantages and disadvantages of
discriminatory bandwidth sharing in the Internet. For more applications of DPS
in communication networks see [12, 20, 1, 14, 25].

The survey is organized as follows. Section 2 introduces the notation used
throughout the survey. We have followed a thematic approach for the exposition
of technical results. Section 3 reviews the results on the expected conditional
response time. Section 4 contains the results on the moments of the uncondi-
tional response time and numbers of jobs in the system. Section 5 presents the
results on DPS in heavy-traffic and overload regimes. Finally, Section 6 reviews
the results that aim at characterizing the achievable performance of DPS as a
function of the weights. Throughout the paper, we state results without proofs,
and when available we provide intuitive explanations.

2 Notation

Let k ∈ K be a job class index, where K = {1, . . . , K} is the set of indices.
Unless otherwise stated, we assume that the arrival process of class k is a Poisson
process with rate λk. Thus the aggregated job arrival process is also Poisson
with rate λ =

∑K
j=1 λj . Let Xk, k = 1, . . . , K, denote the random variable

corresponding to the service requirements of class-k jobs. We denote by Fk(·) the
distribution of Xk, and we use F k(x) = 1−Fk(x) to denote the complementary
service requirement distribution. We use xi

k = E[Xi
k] to denote its i-th moment.

For notational ease we write xk = E[X1
k ]. Unless otherwise specified, the service

requirement distribution will be general. In the particular case of exponentially
distributed service requirements, we will use the notation µk = 1/xk.

Let τk be a random variable that denotes the response time (time in the
system) for an arbitrary class-k job. Let T i

k = E[τ i
k] denote the i-th moment

of the response time and let Tk = E[τ1
k ]. Let τk(x) be the response time in

steady state of a class-k job that requires x units of service. We denote by
Tk(x) = E[τk(x)] the expected conditional response time of a class-k job whose
service requirement is x and let T ′k(x) be its derivative (existence is shown in
Section 3). Similarly, let nk be a random variable that denotes the number of
class-k jobs in the system. Let Lk = E[nk] denote the mean number of class-k
jobs and let Lij = E[ninj ], where 1 ≤ i, j ≤ K. Note that by Little’s law we
have Lk = λkTk. In sample-path arguments, we will use Nk(t), k = 1, . . . ,K,
to denote the number of class-k jobs in the system at time t.

When required, the superscript π will be added to emphasize the dependency
on the particular scheduling policy π.

Since the DPS queue is work-conserving (see Section 6.1), the steady state
exists in the non-saturated regime, i.e., when ρ =

∑K
j=1 ρj < 1, where ρk = λkxk
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for k = 1, . . . , K. With the exception of Section 5, it will always be assumed
that the DPS queue operates in the stable regime, i.e., ρ < 1.

3 Expected Conditional Response Time

The expected conditional response times Tk(x), k = 1, . . . , K, can be found as
a solution of a system of integro-differential equations. Such a system was first
derived by O’Donovan [39], but unfortunately it contained an error. Then, after
the error was communicated to him [37], the corrected form of the equations
was presented in [16]. The derivation of these equations was inspired by similar
equations that Kleinrock et al. [33] derived (see also [32]) for a processor sharing
queue with batch Poisson arrivals. The development of the integro-differential
equations relies on the so-called “tagged job” approach, in which one keeps track
of the evolution of the system from the arrival until the departure of a tagged
job. Let us tag a class-k job with service requirement greater than x. We note
that Tk(x) can also be interpreted as the average time needed for a class-k job
in order to get x units of service. Then, in view of equation (1), for sufficiently
small ∆ the expected conditional response time satisfies

Tk(x + ∆) = Tk(x) + ∆ +
K∑

j=1

gj

gk
∆Lj(x) + o(∆),

where Lj(x) is the expected number of class-j jobs in the system when the
tagged job has attained service x. Note that while the tagged job obtains
∆ units of service, a class-j job obtains gj

gk
∆ units of service. Taking the limit

∆ → 0, it is readily seen that the derivative of the expected conditional response
time exists and is given by T ′k(x) = 1 +

∑K
j=1

gj

gk
Lj(x). Further developing the

expressions for Lj(x), j = 1, . . . , K, it was shown in [16] that the expected
conditional response times of the various classes satisfy the following system of
integro-differential equations

T ′k(x) = 1 +
K∑

j=1

∫ ∞

0

λj
gj

gk
T ′j(y)[1− Fj(y +

gj

gk
x)]dy

+
∫ x

0

T ′k(y)
K∑

j=1

λj
gj

gk
[1− Fj(

gj

gk
(x− y))]dy, (2)

for k = 1, . . . ,K. The natural boundary conditions are Tk(0) = 0, k = 1, . . . ,K.
The following theorem was proved in [16] under the assumption of finite

second moments of the service requirement distributions. This condition was
relaxed in [2], leaving ρ < 1 as a sufficient condition.

Theorem 1 The system of equations (2) has a unique solution which is given
by

Tk(x) = gk

∫ x/gk

0

a(t)dt +
∫ x/gk

0

b(t)dt,
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where a(x) is the unique solution of the defective renewal equation

a(x) = 1 +
∫ x

0

a(y)Ψ(x− y)dy (3)

with

Ψ(x) =
K∑

j=1

λjgjF j(gjx),

and b(x) satisfies

b(x) = c(x) +
∫ ∞

0

b(y)Ψ(x + y)dy +
∫ x

0

b(y)Ψ(x− y)dy (4)

with

c(x) =
K∑

j=1

λjg
2
j

∫ ∞

0

a(y)F j(gj(x + y))dy.

As a consequence of equation (1), if there are two classes j, k ∈ K such
that gj = gk, then τk(x) d= τj(x) for all x ≥ 0, where d= denotes equality in
distribution. For the case gj 6= gk, the authors of [2] showed using sample-
path arguments that the conditional response times are stochastically ordered
according to the DPS weights.

Theorem 2 If gk ≥ gl, then τk(x) ≤st τl(x), that is, P (τk(x) > y) ≤ P (τl(x) >
y) for all y ≥ 0. Thus, for all x ≥ 0 and for all n ≥ 1, we have that Tn

k (x) =
E[τn

k (x)] ≤ E[τn
l (x)] = Tn

l (x).

In particular, Theorem 2 implies that for any k and j such that k 6= j, the two
curves, Tk(x) and Tj(x), do not cross.

In [10] the authors analyze the asymptotic behavior of the response time
distribution. Their main result relates for each class k the asymptotic tail
behavior of the response time to the tail of the service requirement distribution.
We recall that a random variable X is regularly varying of index ν if P{X >
x} = l(x)x−ν , where l(·) is a slowly varying function, i.e., limx→∞ l(ηx)/l(x) =
1, η > 1.

Theorem 3 Let the service requirement distributions of class-k jobs and the
distribution of an arbitrary job be regularly varying of index ν > 2. Then

lim
x→∞

P{τk > x}
F k((1− ρ)x)

= 1.

The result of Theorem 3 can be interpreted as follows. Let us consider a job
with a very large service requirement. This job will remain in the system for a
long time. If the system is stable, during this time “regular” jobs will arrive, be
served and depart. On average, the server will devote a fraction of service equal
to ρ to the “regular” jobs and hence, the large job will receive the remaining
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service, i.e., a fraction 1 − ρ. Consequently, the amount of service received
by the large job during x is approximately (1 − ρ)x. The weights of the DPS
discipline do not play a role in the above explanation, and they do not appear
in the statement of Theorem 3. We refer to [10] and [9, Section 5] in the present
special issue for further details on the derivation of Theorem 3.

We note that Theorem 3 does not require the assumption of Poisson arrivals.
Hence, in the particular case of K = 1, Theorem 3 generalizes the main result
of [53] for the egalitarian PS model, where the assumption of Poisson arrivals
was required.

Another point of view on the same phenomenon was provided in [16], where
it was shown that as the service requirement tends to infinity the slowdown in
the DPS system approaches the slowdown of the PS system, that is,

lim
x→∞

Tk(x)
x

=
1

1− ρ
.

We note that similarly to Theorem 3, the weights do not appear in the result.
This result was strengthened in [2], where it was proved that the expected
conditional response time of class k has an asymptote with slope 1/(1− ρ). In
addition a simple closed-form expression for the asymptotic bias was provided.

Theorem 4 Let x2
k be finite for all k = 1, . . . , K. Then the expected conditional

response time of class k has an asymptote with slope 1/(1−ρ) and the following
bias

lim
x→∞

(
Tk(x)− x

1− ρ

)
=

∑K
j=1 λj(1− gk

gj
)x2

j

2(1− ρ)2
. (5)

We note that the value of the bias depends on the value of the weights. In fact
the value of the bias depends on the second moments of the classes that have
different weights. This result was proved by combining the integro-differential
equations (2) and the conservation law introduced in Theorem 11.

3.1 Exponential Service Requirements

For the case of exponentially distributed service requirements, the authors of
[16] further developed Theorem 1 and obtained a closed-form expression for the
expected conditional response times. Let m be the number of different elements
in the vector v = (gkµk)k=1,...,K .

Theorem 5 Let the service requirement distributions be exponential. Then the
expected conditional response time of a class-k job with required service time x
is equal to

Tk(x) =
x

1− ρ
+

m∑

j=1

gkcjαj + dj

α2
j

(
1− e−αjx/gk

)
, (6)
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where −αj, j = 1, 2, . . . , m, are the m distinct negative roots of

K∑

j=1

λjgj

µjgj + s
= 1, (7)

and cj and dj, j = 1, . . . , m, are given respectively by

cj =
∏m

k=1(gkµk − αj)
−αj

∏m
k 6=j(αk − αj)

,

and

dj =

(∑K
k=1 λkg2

k/(µ2
kg2

k − α2
j )

) ∏m
k=1(µ

2
kg2

k − α2
j )∏m

k 6=j(α
2
k − α2

j )
.

Theorem 5 can be readily extended to the case of a hyperexponential service
requirement distribution. Assume that there are two classes i, j such that gi =
gj . Then Ti(x) = Tj(x) for all x ≥ 0 and hence the jobs of the two classes
can be seen as belonging to a single class with hyperexponential distribution
λi/(λi + λj)Fi(x) + λj/(λi + λj)Fj(x). This argument can be generalized to an
arbitrary number of phases.

4 Moments of Response Times and
Numbers of Jobs

In a stable PS system the mean number of jobs in the system is finite [27]
regardless of the characteristics of the service requirement distribution. In the
context of single-class systems, this result illustrates the benefits of time-sharing
disciplines compared to more traditional disciplines such as First Come First
Served, where the expected number of jobs is infinite if the second moment of
the service requirement is infinite. In [3] the authors proved that the finiteness
of the mean number of jobs is preserved by DPS.

Theorem 6 An upper bound for the mean number of class-k jobs present in
the system is as follows:

Lk ≤ ρk

1− ρ


1 +

1
gk(1− ρ)

K∑

j=1

gjρj


 .

In particular, the mean number of class-k jobs in the system is finite.

We would like to emphasize that the above upper bound is insensitive to
the service requirement distributions. Theorem 6 shows the benefits of time-
sharing scheduling disciplines compared to strict priority rules in the context of
multi-class systems. Under strict priority disciplines, the mean number of jobs
in the system is infinite if the distribution of the service requirement of a class
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has an infinite second moment. The robustness of DPS comes from the fact
that the share of the server that a given class obtains depends on its weight as
well as on the numbers of jobs present in the system. As a consequence, the
share obtained by a class will increase proportionally as the numbers of jobs of
this class grows and in this way the DPS discipline prevents classes with small
weights from experiencing starvation.

In [8] the authors derived stochastic upper and lower bounds for the number
of jobs by considering a DPS system as a PS network, where each node in the
network represents a class of jobs. The nodes of such a network are coupled
through their service capacity. The service speed of each node depends on
the numbers of jobs present at all nodes. The DPS network turns out to be
monotonic, which means that removing a customer from any node increases the
service rate of all customers. The obtained bounds require a more restrictive
condition than ρ < 1 and they rely on the calculation of the so-called balance
function.

4.1 Exponential Service Requirements

In this subsection we turn the attention to exponentially distributed service
requirements. Several of the results reported below have been extended to
phase-type and general distributions (see Section 4.2).

In [24] the authors calculate the expected unconditional response time of
a class-k job conditioned on the number of jobs found upon arrival Tk(N),
k = 1, . . . , K, where N = (N1, . . . , NK).

Theorem 7 Let the service requirement distributions be exponential. Then
Tk(N) is an affine function in N, i.e., there exist constants Bkj, j = 0, . . . , K,
such that

Tk(N) = Bk0 +
K∑

j=1

NjBkj ,

where for all k = 1, . . . ,K,

Bkj =

{
1

µk(1−σk) if j=0,
gj

(gkµk+gjµj)(1−σk) otherwise, (8)

where the constants σk, k = 1, . . . , K, are given by

σi =
K∑

k=1

λkgk

giµi + gkµk
. (9)

Theorem 7 provides crucial insights into the dynamics of DPS by decomposing
the response time (conditioned on the number of jobs present in the system) into∑K

j=1 Nj independent summands. In fact, each of the jobs in the system con-
tributes to the tagged job’s response time with an additive component, which is
independent of other jobs’ contributions. For more discussion on decomposition
results see Section 4.2 below.
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Unconditioning on the number of jobs found upon arrival and using the fact
that Poisson Arrivals See Time Averages (PASTA) as well as Little’s law, it is
readily seen from Theorem 7 that the expected unconditional response times
Tk, k = 1, . . . , K, can be found as the solution of a system of linear equations.

Theorem 8 Let the service requirement distributions be exponential. Then the
unconditional expected response times satisfy the following system of linear equa-
tions:

Tk = Bk0 +
K∑

j=1

TjλjBkj , (10)

where for all k = 1, . . . ,K and j = 0, 1, . . . ,K, Bkj are given in Theorem 7.

We note that the system of equations (10) can be derived from the integral
equation (2) (see [16] for more details), by multiplying both sides of the integral
equation by eµkt, integrating over t ∈ (0,∞) and using

Tk =
∫ ∞

0

Tk(x)µke−µkxdt =
∫ ∞

0

T ′k(x)e−µkxdx.

A closed-form solution of the system of equations (10) is only available for
the case of K = 2, and reads

T1 =
1

µ1(1− ρ)

(
1 +

µ1ρ2(g2 − g1)
µ1g1(1− ρ1) + µ2g2(1− ρ2)

)
, (11)

and

T2 =
1

µ2(1− ρ)

(
1 +

µ2ρ1(g1 − g2)
µ1g1(1− ρ1) + µ2g2(1− ρ2)

)
. (12)

By Little’s law, Theorem 8 can be easily modified to obtain an equivalent system
of equations for the mean number of jobs in the system.

In the case of exponential service requirements, the vector consisting of the
numbers of jobs in each of the classes is a Markov process. Based on the
Chapman-Kolmogorov equations for this process, the authors of [41, 28] provide
methods to obtain higher moments of the unconditional number of jobs in the
system. Basically, the proposed algorithms require solving multiple systems of
linear equations. For the second moment, it turns out that the expectations
Lk1k2 , for all 1 ≤ k1, k2 ≤ K satisfy

Lk1k2 −
K∑

i=1

gi
λk1Lk2i + λk2Lik1 + λiLk1k2

gk1µk1 + gk2µk2 + giµi
= (gk1 + gk2)

λk1Lk2 + λk1Lk1

gk1µk1 + gk2µk2

,

where the Lk = λkTk and Tk, k = 1, . . . , K, correspond to the solution of the
system of equations (10).

It is worthwhile noting that in addition to the unconditional number of jobs
in the system, the authors of [28] also provide a system of differential equations
in order to determine moments of the conditional response time.
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4.2 Phase-Type and General Service Requirements

Researchers have succeeded in extending some of the results on DPS with ex-
ponential service requirement distributions to the larger class of phase-type
distributions. We refer the interested reader to [48, 49, 24] for extensions of the
results of Section 4.1 to phase-type service requirement distributions.

In [41] the authors consider general service requirement distributions. By
conditioning not only on the number of jobs, but also on their remaining service
requirements, the authors of [41] show that the response times allow a decompo-
sition into independent summands. Unfortunately, in the absence of information
on the initial conditions this decomposition does not yield steady-state results.
For this reason, this approach has proven to be more fruitful in the analysis of
the egalitarian PS queue [52, 19].

In [13] the authors develop an approximate but more tractable decomposition
result for DPS which turns out to be quite accurate for moderate differences in
service weights.

4.3 Asymptotic Analysis: Time-Scale Decomposition

In [8] and [49] the authors consider a DPS queue with general service require-
ment distribution and perform a time-scale separation. As a consequence, from
the perspective of a given class, the arrival and service completions of the other
classes occur either on an extremely fast or slow time scale. The analysis of this
limiting regime yields closed-form expressions for the marginal distributions of
the queue lengths. The obtained formulae provide insights into the performance
of the system as a function of the weights. The time-scale decomposition has
also been used for an approximate analysis of response times in a DPS system
with admission control [11].

For the sake of clarity, we present here results for the mean number of jobs
and only for the case K = 2. The exposition below is based on [49]. The
dynamics of class 1 are modified by introducing a scaling parameter r > 0.
The job arrival process is Poisson with mean rate λr

1 = λ1r and the service
requirement is F r

1 (x) = F1(rx). It is easy to see that after these modifications
the class-1 load remains invariant, that is ρr

1 = ρ1, for all r > 0. When r →∞
a complete time-scale separation occurs. From the perspective of class-2 jobs,
the dynamics of class 1 will average out on its relevant time-scale and thus

L∞2 =
ρ2

1− ρ
. (13)

On the other hand, from the perspective of class 1 the dynamics of class 2 vanish
and hence if there are N2 class-2 jobs in the system, class 1 approximately
behaves as a standard PS system with (g2/g1)N2 “permanent jobs”. Thus, we
obtain

L∞1 =
ρ1

1− ρ1

(
g2

g1
L∞2 + 1

)
=

ρ1

1− ρ1

(
g2

g1

ρ2

1− ρ
+ 1

)
. (14)

From equations (13) and (14), the authors of [49] conclude that by giving
larger weight to class 1 (g1 > g2), the number of class-1 jobs can be reduced,
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whereas the number of class-2 jobs will not change significantly. In contrast, if
class 2 were given higher preference (g2 > g1), the number of class-2 jobs will
not be reduced, while the number of class-1 jobs would drastically increase. In
[49] the authors report numerical results that illustrate that the performance of
a relatively slow class would be quite insensitive with respect to the choice of the
weights and that the performance becomes more sensitive as the dynamics of the
class accelerate. More guidelines on setting weights are presented in Section 6.

5 Heavy-Traffic and Overload Regimes

In this section we consider a DPS system when it operates in the heavy-traffic
regime (ρ ↑ 1) as well as in overload (ρ > 1). In addition, we briefly discuss
related results in a closed DPS system, where the number of jobs tends to
infinity.

5.1 Heavy-Traffic Regime

The authors of [48] have considered the DPS model in a heavy-traffic regime
with phase-type service requirements when ρ =

∑K
j=1 ρj → 1 while ρj/ρi re-

mains constant for all i, j ∈ K. Their result is a generalization of the result for
exponentially distributed service requirements obtained in [42]. The following
result has been obtained in [48], but we note that the analysis presented in [42]
is much more detailed.

Theorem 9 If the service requirement distributions are of phase-type, then for
[ρ1, ..., ρK ] → [ρ̄1, ..., ρ̄K ], with

∑K
j=1 ρ̄j = 1,

(1− ρ)[n1, n2, ..., nK ] d→ E · [ ρ̄1

g1
,
ρ̄2

g2
, ...,

ρ̄K

gK
],

where d→ denotes convergence in distribution and E is an exponentially dis-
tributed random variable with mean

∑
k pkx2

k∑
k pkxk

∑
k

ρ̄kx2
k

gkxk

,

where pk = λk/λ, k = 1, . . . ,K.

We note that the mean of the exponential distribution in Theorem 9 is equal to
1 in the case of standard PS, that is, when gj = 1 for j = 1, . . . , K.

Theorem 9 reflects a so-called state-space collapse. In heavy traffic, the ran-
dom vector (1− ρ)[n1, n2, ..., nK ] converges in distribution to a constant vector
multiplied with an exponentially distributed random scalar. The fact that the
scaled queue lengths are proportional to a common exponentially distributed
random variable can be explained by the fact that the distribution of the work-
load in an M/G/1 queue (scaled by 1 − ρ) is also exponentially distributed in
heavy-traffic [29].
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5.2 Overload Regime

In [1] the authors study a DPS queue in overload, that is, when ρ > 1. Their
analysis is based on techniques developed in [26], where egalitarian PS was
analyzed. In the main result the authors proved that under rather general
conditions, the number of jobs of any class k in the system grows asymptotically
linearly with a rate βk. Interestingly, βk depends on the distribution of the job
sizes in a complex manner, and not just on their first moments. In contrast, the
dependence of βk on the arrival process is only through the arrival rates of the
various classes.

Theorem 10 Let ρ > 1. In addition assume that the arrival rate of class-k
jobs is λk (not necessarily Poisson). Then

lim
t→∞

Nk(t)
t

= βk a.s. (15)

where yk = βk, k = 1, . . . , K, are the unique positive solutions of

yk = λk

(
1− E

[
e
−Xk

1
gk

PK
j=1 yjgj

])
k = 1, . . . , K. (16)

The response time τn
k of the n-th class-k job satisfies

lim
n→∞

τn
k

n
− e

σn
k

γ
gk − 1
λk

= 0 (17)

in distribution, where σn
k denotes the service requirement of the n-th class-k job

and γ =
∑K

j=1 gjβj.

Note that it follows from equation (17) that even in overload conditions, even-
tually all jobs complete and leave the system in a finite time.

Assume now that the service requirements are exponentially distributed.
By definition, the class-k job departure rate is λk − βk. Then, in view of equa-
tions (1) and (15) we have that for all k = 1, . . . ,K, λk − βk = gkβkPK

j=1 gjβj
µk.

Hence, the values of βk, k = 1, . . . ,K, are given by

βk =
λkγ

µkgk + γ
, (18)

where γ is given in Theorem 10. On the other hand, since the DPS queue
is a work-conserving system it holds that ρ − 1 =

∑K
j=1 βj

1
µj

. Then, after
substituting the expression of equation (18) and straightforward manipulations
we obtain that ν = γ is the unique strictly positive solution of

1 =
K∑

i=1

λigi

µigi + ν
. (19)

We note that equations (18) and (19) can be derived directly from equation (16)
under the assumption of exponential service requirement distributions [1].

Interestingly, equation (19) is the same as equation (7), and whose roots
enabled the computation of the expected conditional response times in steady
state.

12



5.3 Closed DPS Models

In [35] the authors consider a DPS queue with K classes of permanent jobs.
Each job alternates between an off state corresponding to an exponentially
distributed thinking time, and an on state, in which a session with exponentially
distributed service requirement is sent to the DPS queue. There are Nk jobs of
type k and M =

∑K
j=1 Nj permanent jobs altogether. The system is studied

as M becomes large. It turns out that the job growth rate in time in the
standard overloaded DPS is the same as the growth rate in M for the closed
queue. For instance, equations (14) and (15) in [35] are exactly the same as
equations (18) and (19) and in fact they were derived with similar arguments
as the ones used in Section 5.2.

In [38] the author considered the same model as in [35] but in moderately
heavy-traffic regime so that ρ = 1− a/

√
M , where a = O(1) as M →∞. Two-

term asymptotic approximations to the mean numbers of jobs, and the mean
response times of all classes are obtained. In addition, the author of [38] obtained
the leading term in the asymptotic approximation to the joint distribution of the
numbers of jobs in the DPS node, which is a zero-mean multivariate Gaussian
distribution.

6 Setting the Weights

We now turn the attention to the problem of weight setting. Sections 6.1 and 6.2
review guidelines for setting the weights from a system point of view, that is,
when a central entity chooses the weights in order to optimize some system-wide
metric (for example the mean number of jobs in the system). In Section 6.3 we
review the problem of setting weights from the jobs’ (customers’) point of view.
With that objective in mind, DPS is studied as a non-cooperative game where
jobs may pay some amount in return for a higher priority weight.

6.1 Conservation Law and Achievable Performance

The so-called work conservation property is fundamental to single-server (multi-
class) systems and provides useful insights into the behavior of a system. We
recall that a discipline is called work-conserving if the server works at full speed
whenever there is work in the system. As a direct consequence of equation (1),
it is easy to verify that a DPS queue is indeed work-conserving. Exploiting the
work conservation property, the so-called Conservation Laws have been derived
[30, 32, 4]. In [2], the authors proved the following conservation law for DPS
queues.

Theorem 11 Let the second moments of the service requirement distributions
be finite, i.e., x2

k < ∞, for all k = 1, . . . , K. Then,

K∑

j=1

λj

∫ ∞

0

Tj(x)F j(x)dx =

∑K
j=1 λjx2

j

2(1− ρ)
. (20)
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The term λj

∫∞
0

Tj(x)F j(x)dx, j = 1, . . . ,K, can be interpreted as the con-
tribution of class-j jobs to the total mean unfinished work [32, Sections 3.4
and 4] and [4, Section 3.2]. Summing the contribution over all classes we ob-
tain the total mean unfinished work in the queue, which is the same for all
work-conserving disciplines. Since the compound arrival process is Poisson, the
total mean unfinished work in the system is given by the well known Pollaczek-
Khintchine formula which corresponds to the expression on the right-hand side
of equation (20).

In the particular case of exponentially distributed service requirements, equa-
tion (20) becomes

K∑

j=1

ρjTj =
1

(1− ρ)2

K∑

j=1

λj

µ2
j

. (21)

We note that in this case equation (21) not only holds for DPS queues, but
for general non-anticipating disciplines (both non-preemptive and preemptive
resume) [15]. Based on equation (21), the authors of [36] characterized the
achievable performance of a DPS queue and proved the so-called “almost com-
plete” property of DPS.

Theorem 12 Assume that the service requirement distributions are exponen-
tial. Let Π and ΠDPS denote the set of non-anticipating disciplines in a multi-
class M/M/1 queue and the set of DPS disciplines, respectively. Let P and
PDPS denote the polyhedra that contain all the achievable mean-delay vec-
tors, that is, P = {Tπ : π ∈ Π} and PDPS = {Tπ : π ∈ ΠDPS}, where
Tπ = (Tπ

1 , . . . , Tπ
K). Then PDPS is the interior subset of P.

Theorem 12 states that if a performance vector is an interior point of P,
then it can be achieved by a DPS discipline with a suitable choice of weights.
If the desired performance vector is on the boundary of P, then it can be
approximated by DPS as closely as desired. We note that an arbitrary boundary
point corresponds to a strategy where certain subsets of classes have priority
over other subsets, and within the classes of a given subset, the capacity is
shared according to some appropriate weights. In particular, the performance
vectors of the K! vertices of P are achieved by the K! strict preemptive resume
priority disciplines that give priority to classes according to a permutation of
the class indices.

We denote by π(φ) the strict preemptive resume priority discipline that gives
priority to classes according to the permutation of the indices φ = (φ1, . . . , φK).
It is known (see for example [15, 45, 18]) that under the assumption of expo-
nential service requirements, the optimal scheduling discipline with respect to
the objective

min{
K∑

j=1

cjL
π
j : π ∈ Π}, (22)

is a strict preemptive resume priority discipline π(φ), where

cφ1µφ1 ≥ cφ2µφ2 ≥ . . . ≥ cφK
µφK

.
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In particular, the strategy that minimizes the mean number of jobs in the system
will be a strict preemptive resume priority discipline π(φ) such that

µφ1 ≥ µφ2 ≥ . . . ≥ µφK
.

Hence, in the case of exponential service requirements and in view of Theo-
rem 12, DPS will always be sub-optimal. It is important to note that this
situation changes completely when we consider distributions with an infinite
second moment. If a class has an infinite second moment, the mean number
of jobs in the system will be infinite, and as a consequence the objective func-
tion (22) will be unbounded. Thus, in view of Theorem 6, any DPS system
will outperform all strict priority systems. Unfortunately, for the case of gen-
eral service requirement distributions, very little is known about how to set the
weights of DPS in order to improve the overall performance.

Under the assumption of exponential service requirements, one would expect
that in order for DPS to outperform PS, one should set the weights in such a way
that the DPS system approaches the optimal strict priority. Specifically, one
should give larger weights to the classes with smaller mean. In the particular
case of two classes we obtain from equations (11) and (12)

LDPS − LPS =
−ρ1ρ2(g1 − g2)(µ1 − µ2)

(1− ρ) (µ1g1(1− ρ1) + µ2g2(1− ρ2))
,

where LDPS =
∑2

k=1 LDPS
k and LPS =

∑2
k=1 LPS

k . Thus, we note that if
µ1 ≥ µ2 and g1 ≥ g2, then LDPS ≤ LPS . In [2] the authors compared the
performance of DPS and PS with an arbitrary number of classes and proved
that, under an additional technical condition, if the weights of DPS are chosen
in decreasing order with respect to the mean service requirements of the classes,
the mean number of jobs in a DPS queue is smaller than in PS. This result
can be seen as a multi-class counterpart of the classical single-class results on
age-based scheduling, where it is well known that giving preferential treatment
to short jobs reduces the mean number of jobs in the system [44, 43, 17].

In a slightly different setting, the authors of [22] consider a DPS model with
two job classes, entry fees and waiting costs, in which the server is allowed to
set the weights with the objective of maximizing the profit.

6.2 Utility-Based Resource Allocation

The allocation provided by a DPS system can be interpreted as the allocation
that maximizes the aggregate utility of the various classes for a given user pop-
ulation. More specifically, consider a single server shared by K traffic classes.
Assume that there are Nk class-k jobs in the system, k = 1, . . . , K. In [7] the
authors consider the following optimization problem

max
rk,k∈K

{
K∑

k=1

wkNkU

(
rk

wk

)}
, (23)
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subject to the capacity constraint

K∑

k=1

Nkrk ≤ 1, (24)

where the constants wk, k = 1, . . . , K, denote the weights for class-k jobs and
the utility function U(·) is increasing and strictly concave. Then it can be
shown that the service rates rk, k = 1, . . . ,K, that solve the above optimization
problem correspond to a DPS system, that is, the service rates rk are given by
equation (1) with weights gk = wk.

In [6] the authors considered a specific choice of the utility function U(r) =
r(1−α)/(1− α) and studied the optimal allocation in the context of networks.

6.3 A Non-Cooperative Game Approach

Game theory provides a framework to study how jobs would choose their weights
in order to maximize their own profit. Several non-cooperative models based
on the DPS model are presented in [21, Section 4.3]. By non-cooperative we
mean that each arriving job would take his own decision about the choice of
his weight so as to maximize his personal payoff, which can be expected to be
composed of a utility part (the expected response time) and a cost part (the
price to pay for choosing a given weight). The decision of which weight to choose
can be expected to depend on the available information. The solution concept
in the non-cooperative setting is the Nash equilibrium, i.e., a set of decisions for
all jobs such that no one can strictly improve his payoff by deviating from the
equilibrium point.

We present here one model, and we refer to [21, Section 4.3] (see also [23])
for more results in the same spirit. It is assumed that the service requirements
are exponentially distributed with parameter µ and the cost per unit of time
spent in the system is C. In addition, jobs are not aware of their own service
requirement and have no information on the state of the system. Two weights
g1 > g2 ≥ 0 are available. Without loss of generality assume that g1 + g2 = 1.
A strategy is characterized by a probability q of choosing the higher priority
weight g1. Each job has a choice of paying an amount of θ > 0 and obtaining
the priority parameter g1, or else getting the priority parameter g2. Jobs decide
whether to buy priority after comparing the price to pay θ and the achievable
reduction in the response time as a consequence of purchasing the high priority
weight g1. The following result holds [21].

Theorem 13 Let the service requirements be exponential with parameter µ.
Consider a non-cooperative model in which jobs may decide to pay an amount
θ in order to get a higher priority weight g1 instead of g2. Then,

• if θ < Cρ(g1−g2)
µ(1−ρ)(1−ρg2)

, q = 1 is a Nash equilibrium,

• if θ > Cρ(g1−g2)
µ(1−ρ)(1−ρg1)

, q = 0 is a Nash equilibrium,
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• if Cρ(g1−g2)
µ(1−ρ)(1−ρg2)

< θ < Cρ(g1−g2)
µ(1−ρ)(1−ρg1)

, there are three equilibria: q = 0, q =
1, and q = 1

ρ(g1−g2)
− C

θ(µ−λ) − g2
g1−g2

.

Theorem 13 shows that the larger the fraction of jobs who purchase high priority,
the more valuable it becomes for a job to become high priority. The authors
of [21] described the above strategies with the term “follow the crowd”. In the
first (second) case, the price is that low (high) that regardless of other jobs’
choice, it is optimal to purchase (not purchase) priority. In the third case, for
a given medium price, if nobody buys priority it is better not to buy priority
either, but if all jobs choose priority, then it is better to do so as well. Thus,
there are two pure equilibria. In addition, there is a third, mixed and unstable
equilibrium, where a certain fraction of jobs purchase priority, such that any
job is indifferent between the two options (and might in fact also adopt a mixed
strategy).

Let us now consider the case g1 = 1 and g2 = 0. Then, Theorem 13 shows
that if θ is smaller than the cost of the mean waiting time in an M/M/1 queue,
that is, θ < Cρ

µ(1−ρ) , then all jobs will purchase priority in equilibrium. As a con-
sequence, the possibility of buying priority worsens the situation for everybody.
In equilibrium all jobs pay θ but in practice no one benefits from it since the
mean delay will remain the same.

Acknowledgments

The authors wish to thank the anonymous reviewers for the careful reading
and for providing valuable comments that helped improve the presentation.
The authors also gratefully acknowledge the kind help and advice of Rudesindo
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