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Abstract

Several Active Queue Management (AQM) techniques for routers in the Internet have been proposed
and studied during the past few years. One of the widely studied proposals, Random Early Detection (RED),
involves dropping an incoming packet with some probability based on the estimated average queue length
at the router. The analytical approaches to obtaining average drop probabilities in a RED enabled queue
have been either based on using the instantaneous queue size for calculating the drop probability or have
considered averaging with a fluid approximation. In this paper, we use a singular perturbation based approach
to analyse a RED enabled queue with drop probabilities based on the estimated average queue size as has
been proposed in the standard RED. The singular perturbation approach is motivated by the fact that the
instantaneous and the estimated average queue lengths evolve at two different time scales. We present an
analytical method to calculate the average queue size and the average drop probability for the non responsive
flows. We also provide analytical expressions for the Poisson arrivals and exponential service times case.
Our model is derived under several approximations, and is validated through simulations.

Key words - Singular perturbation, RED.

I. INTRODUCTION

Active Queue Management (AQM) involves controlling the congestion at the routers in conjunction with
the end-to-end congestion control which is based on controlling congestion at the source [1]-[2]. The use
of a droptail queue for closed loop sources (e.g, TCP) has been observed to result in inefficient use of the
outgoing link capacity at a bottleneck router [3]. Under heavy traffic conditions, packet losses in a droptail
queue have been observed to lead to synchronized evolution of windows at different TCP sources which
use the same bottleneck link. This synchronized increase and decrease in window size at different sources
leads to inefficient use of the outgoing link capacity at the bottleneck link [3].

One of the proposals, Random Early Detection (RED), to overcome this synchronized window evolution
involves dropping packets at random before the congestion actually sets in [1]. Two of the design aims of
RED are to accept occasional bursts and to maintain a reasonable average queue length when the system
is heavily loaded with the objective of efficient use of the system capacity. Towards this end, the routers
maintain a variable corresponding to the exponentially weighted moving average of the instantaneous queue
length. An incoming packet is dropped with some probability which is a function of this estimated average
queue length. So far, the various approaches to analysing a RED enabled queue have either involved the
use instantaneous queue size, instead of the estimated average, to compute the drop probabilities [4] or have
considered averaging with a fluid approximation [5],[6]. In [7], the authors compute the joint distribution of
the instantaneous and the averaged queue length of an

�����������	�
queue as a solution of a set of differential

equations. An analytical expression for the case of buffer size
�

and 
 is also provided. However, for other
cases they present numerical methods to solve the equations.

The aim of our study is to use singular perturbation techniques [8]-[9] to provide an analytical expression
for computing the drop probabilities and average queue length in a RED enabled queue with averaging as
has been proposed in RED. Furthermore, we make use of the transition probability matrices in order to
preserve the stochastic nature of the system as opposed to a fluid approximation which is deterministic. The
use of singular perturbation technique is motivated by the fact that two different time scales are involved
in the evolution of the instantaneous and the average queue length. Indeed, for very small values of the
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Fig. 1. RED drop probability function

averaging parameter, the average queue length can be assumed to vary much more slowly compared to the
instantaneous queue length. We analyse an open loop system in which packets arrive at a RED enabled
queue in batch-poisson process. The study of close loop systems involving TCP clients will be considered
in the ensuing work.

The rest of the paper is organized as follows. In Section II we present the system model and the analytical
method to compute the drop probabilities and the average queue length. In Section III we compare the results
obtained using the analysis and with simulations. Finally, in Section IV we present the conclusions.

II. SYSTEM MODEL AND ANALYSIS

We consider a RED enabled queue at which packets arrive according to a Poisson process. The maximum
buffer size at this queue is assumed to be B. The packet service times are assumed to be exponential. Let�
�

and �� � be the instantaneous and estimated average queue lengths, respectively, before the ����� arrival.
The estimated average queue length, �� � , is an exponentially weighted moving average of the instantaneous
queue length,

���
, and is given by : �� ��������� ���! #" �� �
$  ���%���'& (1)

where the averaging parameter,
 
, is a small number. The drop probability for the

� � $ �%" ��� arrival is a
given function of �� ����� . Figure 1 shows the drop function proposed in the basic RED algorithm [1].

With this formulation, the couple
� � &(� " is a Markov chain. Its analysis is difficult, partly because the

support of � is a countable subset of the interval ) * &,+.- where
+

is the maximum queue size.
We propose an approximation that reduces the support of � to a finite set given by / �10 * &'232323&546+87 ,

where
4

is some integer. In the following discussion, �� � will refer to the discretized estimated average queue
length. We assume below that

 
is sufficiently small such that

 46+:9 �
. The modified update equation is

then written as �� �����;�<� ���! #" �� �
$  4=�
�����'& � �8>?0 * & � &'232323&546+87�2 (2)

Then we replace equation(2) by the following approximation:�� ������� �� �
$A@��B& (3)

where @ � � CDFE � w.p.
 �G4=������� � �� � " � &���

w.p.
 � �� � � 4=�
����� " � &* otherwise

&
with H � ��4  H � H & * " .

We note that with this definition, we obtainI )J�� �%��� � �� �LK �� �M&(�
�����N-O� �QPR �G4=�
����� � �� � " � $�� �S�%"TPR � �� � � 4=���%��� " ��  �G4=���%��� � �� � " & (4)
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so that (2) becomes the mean field of (3). With this approximation we only allow for transitions to
neighbouring states.

Our interest is in obtaining the steady state distribution of the couple
� �� &(� " which will allow us to study

the various performance measures (e.g., average queue length, average drop probability, etc.) of the system.
Let UV denote the transition probability matrix for the two dimensional Markov chain

� � &(� " with UW �  X" as
its stationary distribution. Let Y
Z be defined asY[Z�\ �<0  �]_^ 7 Z � V �J�
�����`�bacKF�
�d�feg& �� �h��i " & jLi;> * & � &'232323&546+k2 (5)Y[Z is a

�l+m$ �%"on �l+p$ �%"
matrix which denotes the transition probability matrix of instantaneous queue

length,
�

, for a given value of the average queue length, � �qi . Let
@ �Z &(@srZ &(@�tZ denote matrices given by@ �Z \ �<0RuN]v]%7 � wT� �� ��������iM$ � KF���%���`�xeg& �� �h��i "�  �G4 P e � i " � &@srZ \ �<0RuN]v]%7 � wT� �� ��������i �x� KF���%���`�xeg& �� �h��i "�  �Gi � 4 P e " � &@ tZ \ �<0Ru ]v] 7 � wT� �� ����� ��i(KF� �%��� �fey& �� � �qi "� �Q�! �G4 P e � i " � �! �Gi � 4 P e " � &jLiz>{0 * & � &'232323&546+87 j|e8>?0 * & � &'232323&,+87�2@ �Z i,

@srZ , and
@StZ are

�l+x$ �%"}n �l+x$ �%"
matrices which denote the transition probability of � ����� � � � $ � ,� ������� � � �6� , and � �����;� � � , respectively, when

�S�%�����fe
. We note that

@ Z ’s are diagonal matrices which
satisfy the equality @ �Z $~@srZ $~@ tZ ���#2 (6)

Using the identity w�� �� �%���'&(���%���	K �� �B&(�
� " � wT� �� �����RK �� �B&(���M&(���%��� "TP wT�J���%����K �� �M&(�
� "� wT� �� �����RK �� �B&(���%��� "�P w��J�
�����RK �� �B&(�
� " &
we can write UV as

UV �
����������
Y t �J@�rt $~@�tt " Y t @ �t * 2'2'2 2'2'2Y �_@ r� Y �(@St� Y �_@ �� * 2'2'2* Y�� @ r� Y
� @ t� Y
� @ �� 2'2'2

...
...

. . .
...

...
...

...
...

. . .
...* 2'2'2 2'2'2 Y[�`� @ r�o� Y��o� �J@ t�`� $~@ ��`� "

����������� 2 (7)

The diagonal rows entries of UV are matrices which give the transition probability matrix of
�

for a given
value of �� � , and �� ������� �� � whereas the off-diagonal entries give the transition probability matrix of

�
for

a given value of �� � and �� �%����� �� ��$ � , or �� �����z� �� � �x� . Using equation(6), we can rewrite UV asUV � V $ V @�& (8)

where
V

is given by V � ����� Y t * 2'2'2 ** Y ��2'2'2 *
...

...
. . .

...* 2'2'2 * Y��o�
������ &

and
@

is given by @p� �����
� @ �t @ �t * 2'2'2@ r� � �J@ r� $~@ �� " @ �� 2'2'2

...
...

. . .
...* 2'2'2 @ r�`� � @ r�o�

������ 2
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We note that UV is a function of the averaging parameter
 
. In [10], the recommended value of

 
is of

the order of * 2 *�*g
 . This suggests that the averaging parameter is, in general, small. This assumption on 
allows us to obtain the steady state probabilities of UV using a singular perturbation approach which we

outline below and which is computationally less expensive than algorithms to compute the invariant vectors
of matrices.

To use the singular perturbation approach, we first note that
V

is the matrix containing the transition
probability matrices of

�
for a given value of � when the averaging parameter

 � * . Thus,
V

has
46+

ergodic classes each corresponding to a particular value of �� . The stationary distribution of each of these
classes can be computed separately. This system of decomposable Markov chain is the unperturbed system
which can be analysed separately for different values of � . In general, the stationary distribution of the
unperturbed system (i.e.,

 � * ) is not the same as the stationary distribution of the original system when s� * [11]. This motivates us to use singular perturbation technique to determine the stationary distribution
of our system when

 s� * .
Later, we also show that the distributions of the instantaneous queue length and the average queue length

can be computed for the general case (i.e.
 h� * ). We note that the use of the approximation given in (3)

has resulted in a level dependent Quasi-Birth-Death (QBD) type of transition matrix which is as given in
(7). We can now use the algorithm, given in [12], for computing the steady state probability vector for level
dependent QBD.

A. Limiting case

In this subsection we obtain the steady state probability vector of UV when
 �� * . We note that all the

elements of the matrices
@ �Z and

@srZ have
 

as a common multiple and thus we can replace
@ �Z by

 �� �Z
and

@srZ by
 �� rZ where

� �Z and
� rZ have elements independent of

 
. Thus we can rewrite equation (8) asUV � V $  yV.� 2 (9)

This is the standard formulation for the singularly perturbed Markov chains [8]. The singular perturbation
approach allows us to find the stationary distribution of UV as �3���d�_� t UW �  #" .

We present the method for finding the limiting stationary distribution of UV , the details of which can be
found in [8], [9]. Let W Z denote the stationary distribution of Y Z , and l et � be a

�G46+=$ �%"�n �G46+=$ �%" �l+=$ �%"
matrix such that in the

i ��� row the entries, corresponding to the columns �� �?��i
, are given by the rows

of W Z , and is zero elsewhere. W Z is the stationary distribution of the unperturbed Markov chain of
�

when
packets are dropped with a probability depending on �� �:i

. Let � be a
�G46+m$ �%" �l+�$ �%"Qn �G46+m$ �%"

matrix such that in the
i ��� column the entries corresponding to the rows �� �d��i are

�
, and is zero elsewhere.

� � ����� W t * 2'2'2 ** W � 2'2'2 *
...

...
. . .

...* 2'2'2�2'2'2 W �`�
������ &

� � �����
�'� * 2'2'2 ** �'� 2'2'2 *
...

...
. . .

...* 2'2'212'2'2 �'�
������ &

where * and
�

are
�l+q$ �%"`n?�

vectors of * and
�
, respectively.

Let � denote the generator matrix of the aggregated Markov chain. When
 

goes to * , the stochastic
sequence �� � converges weakly to a Markov chain induced by the aggregated transition matrix. Then � is
given by � � � V.� � 2
Since W Z is the stationary distribution of Y
Z , � V reduces to � , i.e.,� � � � � 2 (10)
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Denote � �Z � W Z � �Z � � (11)� � ](¡`¢g£¤}¥ W Z �3e " �G4de � i " 2 (12)� rZ � W Z �6rZ � � (13)� ¦ £¤}§ ](¡ t W Z �3e " �Gi � 4de " 2 (14)

(15)

where W Z �3e " is the
e ��� element of W Z .

Using equations (11) and (13) we can rewrite S as

� � �����
� � �t � �t * 2'2'2� r� � � � r� $ � �� " � �� 2'2'2

...
...

. . .
...* 2'2'2 � r�`� � � r�o�

������ 2
The stationary distribution of this generator matrix can be obtained by solving ¨©� � * . The stationary
distribution, ¨ , is given by¨=\ ��0 ¨ �Gi " 7
� ¨ � * "	ª Z r �]_¡ t � �]ª Z]_¡�� � r] & iz>?0 * & � &'232323&546+87�& (16)

where ¨ � * " �¬« �`�  Z ¡ t ª Z r �](¡ t
� �]ª Z](¡�� � r]®­ r � 2

Proposition 1: Let UW �  #" be the stationary distribution of UV for a given value of
 
, and let W Z denote the

stationary distribution of Y
Z . Then, the limiting stationary distribution of UV , UW � * " is given byUW � * " � ) ¨ � W � ¨|� W � 23232 ¨y�o� W �o� -�& (17)

where ¨yZ is given in (16).
We note that the states �s¯ 4 P 4  H ��� are transient and the steady state probability of ��¯ 4 P 4  H ��� is * .
This can be shown as follows. From equation (12) we have� �Z � � ]_¡`¢ £¤}¥ W Z �3e " �G4de � i " 2
Since the packet drop probability is

�
for ��° 4 P 4  H ��� , the steady state probability, W Z �3e " , becomesW Z �3e " �²± � es� ** e ¯ * jLi ° 4 P 4  H ��� 2 (18)

This is true since all the packets arriving at the queue would be dropped and the queue would be empty. Since,W Z �3e " is as given in equation (18), and
i ° 4 P 4  H ��� ¯ * , we get that

� �Z � * &³jLi ° 4 P 4  H ��� . However,
from equation (14) we get

� rZ ¯ * jLi
. From equation (16) it follows that ¨ �Gi " � * j©i ¯ 4 P 4  H ��� .

If the arrival process to the queue is Poisson with rate ´ and the service times are exponentially distributed
with mean µ , then the stationary distribution of Y Z , W Z , is given byW Z�\ �¶0 W Z �3e " 7
� W Z � * "J· ] Z & (19)

where W Z � * " �¹¸º � ](¡ t · ] Z,»¼ r
� &
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and
· Z � ´ P � ���¾½ � �� �s��i "¿"�P µ r � . Here

½ � PÀ"
is the given drop function.

From the above analysis, using equation (16), we are able to obtain the stationary distribution of the
average queue length variable, � . We use the PASTA property which states that the arrivals see this average
queue length distribution. Hence, we can calculate the average packet drop probability asV �5Á5Â � �o�  Z ¡ t ¨ �Gi "Ã½ �Gi " & (20)

For batch arrivals, we make the assumption that every packet in a batch is dropped with same drop probability.
With this assumption, we can write the probability of dropping at least one packet in batch asV �,Á5Â � �oÄ�� rMÅ`Æ  Z ¡ t � ��� � ��� ¨ �Gi "¿" Å "�P	½ �Gi " $ �o� Z ¡ �oÄ�� rMÅoÆ ��� ½ �Gi " & (21)

B. Approximate analysis

We present an approximate analysis which allows us to obtain the mean value of � without having to find
the distribution.

Proposition 2: The equilibrium value of � , �yÇ , can be obtained by solving� Ç �q4 I �J�d� � Ç "¿" & (22)

where
I �J�d� �%Ç "¿" is the expected queue length when we drop with constant probability corresponding to �|Ç .

Using equations (12) and (14) we get� �Z � � rZ ��4 � ]_¡ t e W Z �3e "�� i}�q4 I �J� Z "�� i5& (23)

where
I �J� Z " is the expected queue length in the unperturbed Markov chain with �� ����i . The term

� �Z � � rZ
can be thought of as an indicator for transitions of the average queue length, � . We note that in states where4 I �J� Z " ¯ i , � �Z � � rZ is positive, hence indicating a tendency to increase � . Similarly, when

4 I �J� Z " ¯ i ,� �Z � � rZ is negative, hence indicating a tendency to decrease � . The equilibrium value of � will then occur at
the point where

� �Z � � rZ � * . Hence, ��Ç can be obtained by solving (22). For the existence and uniqueness
of the solution, we assume that the drop probability function (this is the case in the gentle variant of RED
[13]) is a continuous non-decreasing function,

½ � �� " , on the estimated average queue length. The effective
offered load,

· Ç , for a given equilibrium value of �gÇ is then given by· Ç � · � ���È½ � � Ç "¿" 2 (24)

Since
· Ç is a continuous non-increasing function on � Ç , we can express � Ç as� Ç � ½©r ��É ��� · Ç·ËÊS\ �ÍÌM� · Ç " 2 (25)

We note that
Ì

is continuous non-increasing function on
· Ç . Since the average queue length,

I �J�h� · Ç "¿" ,
in the stationary regime is a continuous non-decreasing function of the offered load, then we can say thatI �J�h� � Ç "¿" , is a continuous non-increasing function of � Ç . As � Ç and

I �h� PÀ"
the map to the same interval

i.e., ) * &,+Î- , we can say that the solution to equation (22) exists and is unique.

C. Exact analysis

In subsection II-A we presented an anaylsis for the limiting case
 s� * . In this subsection we online an

algorithm with which we can compute the steady state probabilities when
 6� * . However,

 
still has to

satisfy the condition
 46+:9 �

.
The transition probability matrix of the two dimensional Markov

� � &(� " given in equation (7) can be
written as

UV �
�������
Ï t Ð�t * 2'2'2 2'2'2+S� Ï � Ð � * 2'2'2* + � Ï � Ð � 2'2'2
...

...
...

. . .
...* 2'2'2Ñ2'2'2�+ �`� Ï �o�

�������� & (26)
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Fig. 2. RED drop probability function

where
+ Z & Ï Z & Ð Z denote the backward, local, and forward transition matrices, respectively. This is the

transition matrix for a level dependent
�S+ �

process. Let the UW be stationary distribution of UV . LetUW � ) UW t UW �'23232 UW �`� - , where UW Z ’s are vectors of size
�8n +

. UW Z is the steady state probability vector of
�

for � �qi . UW can be found using the following algorithm [12].
1) Compute the �©Z matrices using the following recursion� t � Ï t�LZ � Ï Z $f+ Z �G� � �LZ r � " r � Ð Z r �Ò& �SÓ i Ó 46+Ë2
2) UW �`� is computed by solving UW �`� � UW �`���L�`� &UW �`� P�� � � 2
3) UW Z & * Ó i Ó 46+ is computed using the recursionUW Z � UW Z ���,+ Z ���R�G� � � � " r � &
4) UW is found by normalization UW � UWUW Pg�

III. NUMERICAL RESULTS

In this section we present the results obtained through analysis as described in the previous section and
the results obtained through simulations. The arrival process is assumed to be Poisson batch arrival process
with rate ´ and fixed batch sizes, Ô . The service times are assumed to exponential with mean

��� µ . The
offered load,

·
, is defined as

· �1Õ ÅÖ . The analytical results were obtained by numerically calculating the
values using MATLAB. The buffer length,

+
, is taken to be 100 whereas the discretization parameter,

4
,

is taken to be 5. The drop probability function is taken to be of the formV�×5ØNÙÛÚ � CDFE * & �� 9~4ki � ���ÜÝ r �;Z �	ÞÀß���,à Þ�ß r ��Z � ÞÀß & 4ki � ��� Ó �� Ó 4  H ���� & ���¯ 4  H ��� (27)

We note that all the values of
4ki � ��� , 4  H ��� , and �� are scaled by a factor

4
in the analysis in order

to discretize the estimated average queue size. The unscaled values for
4ki � ��� and

4  H ��� are
��á

and âg* ,
respectively, and the drop probability function versus the unscaled estimated average queue length is as
shown in figure 2. We shall use the average drop probability and the probability of at least drop in a burst
as performance measures. The simulations were performed using

@
, and approximately

� *|ã packets were
generated during the simulations.
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A. Limiting case

First, we present the results for the limiting case. In the simulations, the averaging parameter,
 
, was

taken to be * 2 *�*�* � . Figures 3 shows the analytical as well as the simulation results for average packet
drop probability as a function of the offered load for different values of burst sizes. There is a fairly good
correspondence between the analytical and simulation results.

In [4] it has been argued that the number of drops becomes infinite with positive probability as
 ë� * .

However, for the drop function as shown in Figure 1, the number of consecutive drops appears to follow a
geometric behaviour for small values of the number of consecutive drops. We plot the probability of greater
than or equal to � consecutive drops as a function of � for a drop tail and a RED queue in Figure 4. The
decay rate of the tail is much faster in the case of a RED queue when compared to that of a drop tail queue.
For small values of � , the decay rate is close to

w �
, where

w
is the average packet drop probability. Most of

the mass can be seen to concentrated within small values of � and, so the geometric approximation appears
to be a reasonable one. A continuous drop function ensures that the drops are independent and, thus, reduces
the synchronization of drops for different flows. This argument supports using gentle RED. The tail drop
probability during this simulation scenario was 
 nì� * r#í which also suggests that synchronized losses are
reduced.

As mentioned above, the probability of dropping consecutive packets becomes independent when the drop
function is continuous. This suggests that the probability of drops in a burst is binomially distributed. The
probability of at least one drop in a burst can thus be approximated by

�î� � �î� w " Å
, where

w
is the average

drop probability and Ô is the burst size. This behaviour is seen in Figure 5 in which the probability of
dropping at least one packet in a burst is plotted as a function of the offered load.

Next, we validate the approximate analysis for obtaining the average queue length. In order to obtain the
average queue length we need to solve the fixed point equation as given in equation (22). For example, the
average queue length as observed by a incoming packet in a

���������
queue with finite buffer

+
is given
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by I �J� Ý5ï " � · Ý5ï� ���ì· Ý ï " � �l+�$ �%" · Ä�� ��� ÆÝ5ï� ���ì·|Ä�� ��� ÆÝ ï " & (28)

where · Ý5ï � · � �[� � Ç � 4ki � ���4  H ��� � 4ki � ��� " 2
We can now obtain the equilibrium value of average queue length by solving� Ç � · Ý5ï� ���ì· Ý5ï " � �l+q$ �%" ·|Ä�� ��� ÆÝ¿ï� �[�ì· Ä�� ��� ÆÝ5ï " 2 (29)

Similarly, for the batch arrivals we use the expression for the infinite buffer case as an approximation. The
equilibrium value for batch arrivals is obtained by solving� Ç � · Ý5ï� ���ì· Ý ï " Ô $ �
 2

(30)

For the values of
4ki � ��� , 4  H ��� , and

+
assumed in this section, we plot in Fig. 6 the average queue as

obtained from solving equations (29) and (30) numerically using MATLAB and the results obtained through
simulations.

B. General Case

Next, we consider the case when
 h� * . In the rest of this subsection we assume that the discretization

parameter,
4

, is
�
. The drop function is the same as in the previous section. We need that

 46+
be less than�

. Thus,
 

has to be chosen such that
 9 * 2 * � in order to use the QBD algorithm. We choose

 � * 2 *�*�ð
which is close to * 2 * � . In Figure 7 and Figure 8 we plot the average drop probability and the average queue
length, respectively, as a function of the offered load. We note that the behaviour is similar to that observed
in the limiting case.

In order to see the effect of choosing an averaging parameter which is not necessarily small, we plot in
Figure 9 the distribution function of the average queue length, � , using the QBD analysis, simulations, and
the singular perturbation (SP) analysis. The offered load was 1.2 and the burst size was taken to be

� * .
As can be observed from the figure, the effect of increasing

 
is to increase the variance of � . We cannot,

however, reduce the variance of � by taking the limit. There is a limiting distribution of � (as was seen from
the limiting case) and hence a limiting variance which is different from * .

IV. CONCLUSIONS

We used a singular perturbation based approach to find the limiting stationary distribution of the average
queue length and the packet drop probability in a RED enabled queue. For Poisson arrival and exponential
service times the limiting stationary distribution was given as closed form expressions. The equilibrium point
of the average queue length was found to be the fixed point solution of a function depending on the average
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queue length of a system with no averaging. The analytical results were observed to match fairly accurately
with results obtained through simulations. We also showed that by using a continuous drop function we can
reduce the number of consecutive losses thereby avoiding synchronized losses. We showed that for the case
when the averaging parameter is not small, the stationary distribution can be computed using an algorithm for
level dependent QBDs. However, for small values of the averaging parameter, the computational complexity
of using this algorithm was much greater than that by using the singular perturbation approach. In this work,
we considered scenario in which packet generation process is independent of packet drops. Future work will
involve the study of a RED queue with closed loop TCP traffic sources.
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