
Distributed Spectral Decomposition in Networks by
Complex Diffusion and Quantum Random Walk

Konstantin Avrachenkov∗, Philippe Jacquet†, Jithin K. Sreedharan∗
∗INRIA, Sophia Antipolis, France
†Alcatel-Lucent Bell Labs, France

e-mails: k.avrachenkov@inria.fr, philippe.jacquet@alcatel-lucent.com, jithin.sreedharan@inria.fr

Abstract—In this paper we address the problem of finding
top k eigenvalues and corresponding eigenvectors of symmetric
graph matrices in networks in a distributed way. We propose a
novel idea called complex power iterations in order to decompose
the eigenvalues and eigenvectors at node level, analogous to time-
frequency analysis in signal processing. At each node, eigenvalues
correspond to the frequencies of spectral peaks and respective
eigenvector components are the amplitudes at those points. Based
on complex power iterations and motivated from fluid diffusion
processes in networks, we devise distributed algorithms with
different orders of approximation. We also introduce a Monte
Carlo technique with gossiping which substantially reduces the
computational overhead. An equivalent parallel random walk
algorithm is also presented. We validate the algorithms with
simulations on real-world networks. Our formulation of the spec-
tral decomposition can be easily adapted to a simple algorithm
based on quantum random walks. With the advent of quantum
computing, the proposed quantum algorithm will be extremely
useful.

I. INTRODUCTION

Spectral properties of a graph or a network are of interest
to diverse fields due to its strong influence in many practical
algorithms. However the computational complexity associated
to the estimation of eigenvalue spectrum and eigenvectors
has been a demanding problem for a long time. In the
context of network science, the design of distributed spectral
decomposition methods is particularly important.

We consider any symmetric matrix associated to an undi-
rected graph with n nodes and weighted edges. For instance,
the matrix can be the adjacency matrix A = [aij], 1 ≤ i, j ≤ n
in which aij denotes the weight of the edge between the nodes
i and j. Due to symmetry the eigenvalues are real and can be
ranked in decreasing order as λ1 ≥ λ2 ≥ . . . ≥ λn. We study
the largest k eigenvalues λ1, . . . , λk and the corresponding
eigenvectors u1, . . . ,uk.

Though the ideas proposed in the paper are applicable to
any symmetric graph matrix, we use the adjacency matrix A
to illustrate the ideas in the rest of the paper.

This work is supported by INRIA Alcatel-Lucent joint lab (ADR Network
Science).
c©2016 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

A. Relevance of spectral decomposition
The existing works list many applications of the spectrum

of graph matrices. The applications are matrix dependent and
here we give a very limited list of uses for the adjacency
matrix. In particular, the eigenvalues and eigenvectors can
be needed globally or locally. Global applications require a
central unit to collect eigenvalues and eigenvector components
from all the nodes and then pass this global information
to the algorithms behind the application. But in case of
local applications, the underlying algorithms run separately
at each node by making use of the respective component
in the extreme eigenvectors, along with the knowledge of
eigenvalues.

Following are some of the applications of the adjacency
matrix related to graphs and networks.

1) Number of triangles: The spectral information of ad-
jacency matrix can be used to obtain information about the
global as well as local knowledge of the number of tri-
angles (in other words, about global and local clustering).
The total number of triangles in a graph is 1/6

∑n
i=1 |λi|3

and the number of triangles that a node m participated in,
is 1/2

∑
i=1 |λi|3 ui(m) [1]. Hence if we calculate top k

eigenvalues and eigenvector components locally at node m,
we can approximate with good accuracy how much connected
its neighbors are.

2) Dimensionality reduction, link prediction and Weak and
strong ties: The knowledge of k top eigenvector components
at a node maps it into a point in Rk. Then new links can
be suggested among unconnected nodes when the distance
between them in the mapped vector space is small [2].

Weak ties occur when the endpoints of an edge are part
of well connected nodes, but with very few common friends
in between the endpoints. Strong ties happen in the opposite
sense [3]. The k-dimensional vector associated to the end-
points can be used to find out weak or strong ties.

3) Finding near-cliques: Typical graph clustering works on
the whole graph and will often assign isolated nodes to some
clusters, and subsequently would fail to detect communities
with good internal coherence. Therefore it is practically rele-
vant to find communities which are like cliques and extract it
from the main graph. The work in [4] shows that the spectrum
of adjacency matrix can be useful for this. They propose the
idea of EigenSpokes which is a phenomenon whereby straight
lines are observed in the eigenvector-eigenvector scatter plots

of the adjacency matrix. It is then derived that nodes which are
placed near to each other on the EigenSpokes have the same
set of neighbors and hence can be used to detect clique-like
structures.

4) Spectral clustering: For the problem of finding clusters
in a network, spectral clustering is a prominent solution among
the studied techniques [5]. In its basic statement, the spectral
clustering algorithm takes the first k normalized eigenvectors
u1, . . . ,uk of the adjacency or the Laplacian matrix. Let φφφ(h)
be a vector made of components of node h in u1, . . . ,uk.
The k-means clustering algorithm is then applied to different
φφφ(h)’s, and this will partition the nodes in the network.
In fact which matrix to take is dependent on the objective
function to optimize (average association in case of adjacency
matrix instead of normalized cut in Laplacian) [6]. The main
bottleneck in spectral clustering is the computation of extreme
eigenvectors, which we try to accomplish here with much less
complexity. Recently another promising spectral clustering
method based on non-backtracking matrix is introduced in [7].

B. Related work and contributions of the paper

We provide a straightforward interpretation of eigenvalue
spectrum and eigenvectors in terms of peaks in the frequency
domain of complex exponential of A and exploit it for devel-
oping distributed algorithms. To the best of our knowledge, the
first distributed network spectral decomposition algorithm was
proposed in [2]. The most challenging part of the algorithm
in [2] is the distributed orthonormalization at each step of the
algorithm. This a difficult operation, which the authors solve
by communicating information via random walks. Clearly if
the graph has a small conductance (a typical case for many
large graphs), this operation will take extremely long time
at each step of the algorithm. Our first distributed algorithm
based on the diffusion of complex fluid across the network, an
implementation of complex power iterations, do not require
orthonormalization. In [8], [9] the authors use techniques
from signal processing which are in the same spirit of our
approach. However their approach either need to use two
time steps or two hop-neighbourhoods for each iteration,
while our algorithms work with one time step and one-hop
neighbourhood. The approach of [8], [9] distort the values
of eigenvectors and eigenvalues and the correction needed
is not evident. Moreover, since the methods in [8], [9] are
based on classic Fourier transforms, the eigenvalues might not
get detected because of spurious picks in the spectrum. Our
approach overcomes this problem by using Gaussian smooth-
ing. Our algorithms can also be immediately implemented
via light weight gossiping and random walks with complex
rewards. A recent gossip algorithm based on reinforcement
learning was introduced in [10], but it computes only the
principal eigenvector. From the analysis of the our diffusion
technique, we observe that our algorithms are scalable of
the order of maximum degree. Finally our method has a
very interesting relation to the quantum random walks, which
with the advancement of quantum computing can make our
approaches very efficient.

C. Organization
The paper is organized as follows. In Section II we re-

view some classical challenges in computing the spectrum of
graphs. Section III presents the central idea of the paper, com-
plex power iterations, and explains various approximations. In
Section IV we present in detail two distributed approaches
for network spectral decomposition. Then, in Section V we
explain that our approach can be efficiently realized using a
quantum algorithm. In Section VI we analyse the error terms
and provide recommendations for the choice of parameters.
Numerical results presented in Section VII demonstrate the
scalability of the approach. In Section VIII we discuss an
extension to non-symmetric matrices.

II. CHALLENGES IN CLASSIC TECHNIQUES

Here we illustrate two problems (among many) faced by
existing techniques with the help of two classic algorithms.

The first one, power iteration, consists of computing the
iterative power b` = A`b0 for the increasing integer ` with
b0 as an initial vector. Using the spectral decomposition of
A, we have

A` =
∑
j

λ`juju
ᵀ
j .

We adopt the convention ‖uj‖ = 1. Depending of λ1 being
greater or smaller than one, the iteration b` = A`b0 for ` ≥ 1
will exponentially decrease or increase without proper step
normalization. The normalization introduced is

b`+1 =
1

‖b`‖
Ab` . (1)

Notice that b` converges to λ1u1 when `→∞. The problem
is that this method cannot be readily applied to the search of
the other eigenvalues because the first eigenvalue screens the
exponentially decreasing secondary eigenvalues: b` = λ1u1+

O
(

(λ2

λ1
)`
)

.
In order to compute the other eigenvalues one can use the

inverse iteration methods based on the formula

b`+1 =
1

‖b`‖
(A− µI)−1b`, (2)

for an arbitrary real number µ < λ1. The iteration will
converge to 1

λj−µuj where j is the index of the eigenvalue
closest to µ. The search consists of approaching the eigenvalue
by tuning the parameter µ. The difficulty of the method is in
computing the inverse matrix (or solution of the linear system)
for each selected values µ which is computationally costly.
Furthermore, the use of normalization at each iterative step,
in (1) as well as in (2), will make it difficult an adaptation to
the distributed context, i.e., the normalization requires frequent
pausing of the iteration in order to compute and disseminate
the normalization factor.

In the next section we propose a new method called complex
power iterations. From an initial vector b0 and given integer
k, the method will return the k first eigenvalues λ1, . . . , λk
and the vectors 〈b0uj〉uj for j = 1, . . . , k. Notice that the
uj’s can be retrieved via normalization, but it will turn out
that this is an unnecessary step.

III. COMPLEX POWER ITERATIONS

Now we introduce the main idea in the paper, the complex
power iterations, which we use to compute the spectrum of the
matrix of a network in an efficient way. We consider an undi-
rected graph. For convenience we summarize the important
notation used in this paper in Table I. We derive a technique

Notation Meaning
G Graph

(V,E) Node set and edge set
n Number of nodes
A Adjacency matrix
aij weight of the connection from nodes i to j in A

λ1, . . . , λk Top k eigenvalues in descending order
u1, . . . ,uk Eigenvectors corresponding to λ1, . . . , λk
Nj Neighbor list of node j without including self loop
Dj Degree of node j without including self loop
∆ max{D1, . . . , Dn}

a(k) kth component of a column vector a
‖a‖ Euclidean norm of vector a
x` Approximation of exp(iε`A) multiplied by b0

x` Approximation of exp(iε`A) multiplied by b0

TABLE I
LIST OF IMPORTANT NOTATIONS

that is analogous to the frequency spectrum in the time-
frequency analysis and apply it to graph spectrum analysis.
In this perspective, the domain of eigenvalues corresponds to
the frequency domain.

From the eigendecomposition of the symmetric matrix A,
A =

∑
j λjuju

ᵀ
j , we have eiAt =

∑
j e
itλjuju

ᵀ
j . Notice

that the function eiAt is pseudo periodic and its harmonics
correspond exactly to the spectrum of the matrix. The advan-
tage of complex exponential is that the whole spectrum can
be recovered via the classic Fourier transform, contrary to the
expression eAt (dropping the imaginary unit i) where the effect
of the other eigenvalues λj for j > 1 decays exponentially
when t→∞. Indeed, we formally have

1

2π

∫ +∞

−∞
eiAte−itθdt =

n∑
j=1

δλj
(θ)uju

ᵀ
j , (3)

with δλj being the Dirac function translated of the quantity
λj . However this expression is not easy to handle numerically
because any truncated or discretization version of the integral
will generate too large fake harmonic oscillations that will hide
the Dirac peaks (we show an example of this in Section VII).
To overcome this problem we use the spectral smoothing via
convolution with a Gaussian function of variance v > 0 :

1

2π

∫ +∞

−∞
eiAte−t

2v/2e−itθdt

=

n∑
j=1

1√
2πv

exp(− (λj − θ)2

2v
)uju

ᵀ
j , (4)

Notice that the above expression converges to (3) when v → 0.
In order to ease visualization, a scalar product is taken with
an initial vector b0. Figure 1 shows a sample plot produced
from (4) at some node m, by varying θ. The detection of
the eigenvalues corresponds to locating the peaks and the

θ

6 7 8 9 10 11 12 13 14 15 3 4 5
0

0.2

0.4

0.6

0.8

1

λ6 λ5 λ4 λ3 λ2 λ1

√

2π

v
(ut

1b0)u1(m)

Fig. 1. Spectral plot at node m.

quantities
√

2π
v (bᵀ

0uj)uj(m) corresponds to the values at
these peaks as we will see later.

The key for the computation of (4) is the determination
of the factor eiAt which does not come naturally from the
expression of matrix A. We fix a number ε > 0 and we use
the discretization eiA`ε = (I + iεA)`(1 +O(ε2`)), where I is
the identity matrix, for the calculation of left-hand side in (4),∫ +∞

−∞
eiAte−t

2v/2e−itθdt

= ε<

(
I + 2

dmax∑
`=1

(I + iεA)`e−i`εθe−`
2ε2v/2

)
+O(ε2dmax) (5)

The quantity `ε in the sum plays the role of variable t in the
integral. Applying the expression to an initial vector b0, we
define,

f θ = ε<
(
b0 + 2

dmax∑
`=1

e−i`εθe−`
2ε2v/2x`

)
, (6)

where x` is used to approximate eiε`Ab0. For instance, in (5),
(I + iεA)` is taken as an estimate of eiε`A.

We notice that the expression of fθ does not use any
discretisation over the θ variable or on the v variable and turns
out to be analytical functions of these variable. Therefore the
search of peaks corresponding to the eigenvalues turns out to
be finding the zeroes of the derivative of fθ under the condition
that fθ is above a certain threshold.

This process and the way to tune the best values of ε, v and
dmax will be discussed in Section VI-C. In the next section we
refine some higher order approximation of eiε`A which can be
used to obtain more accurate expressions.

A. Higher Order Approximations

The approximation x` of ei`εAb0 in (6) can be made more
accurate by using Runge-Kutta (RK) methods. Indeed, we
have x`+1 = (I + iεA)x`. We also notice that eiAtb0 is the
solution of the differential equation ẋ = (iA)x with initial
condition x(0) = b0. We use Runge-Kutta (RK) methods
[11] to solve this differential equation numerically. With x(`ε)
approximated by x`, the iteration in such a method can be
defined as follows,

x`+1 = x` +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4, (7)

where x0 = b0, k1 = ε(iAx`), k2 = εiA(x` + 1/2 k1),
k3 = εiA(x`+1/2k2) and k4 = εiA(x`+k3). It is observed

that (7) is equivalent to x` =
(
I + (iεA) + . . .+ (iεA)4

4!

)`
b0.

This is the RK method of order-4. This equivalence can be
easily generalized to any order r RK methods as,

x` =

 r∑
j=0

(iεA)j

j!

`

b0. (8)

In this paper we use order r = 1, 2 and 4.

IV. COMPLEX DIFFUSION

The previous analysis is based on a centralised approach
where we can manage to make matrix multiplications. The
real challenge in the networking context is to make the
computations distributed. Thus, in order to compute (6), we
propose and compare the following three techniques:

(i) Centralized approach: Here we assume that the adja-
cency matrix A is fully known to a centralized unit.
We use order-1 (5), order-2 or order-4 (7) technique to
compute the approximation.

(ii) Complex diffusion: It is a distributed and asynchronous
approach in which only local information is available at
each node, which is the list of its neighbors. Here, each
node communicates with all its neighbors at each time
epoch.

(iii) Monte Carlo techniques: This is also a distributed
technique with only local information, but with much
reduced complexity than Complex diffusion as each node
communicates with only one neighbor. Monte Carlo
techniques can be implemented either using Monte Carlo
Gossiping or using parallel random walks.

The matrix X (size n× (dmax + 1)) approximates ei`εA for
0 ≤ ` ≤ dmax,

X =
[
x0 x1 . . . xdmax

]
≈

[
b0 eiεAb0 . . . eidmaxεAb0

]
The above three methods employ different techniques to
compute X. At any node m, once the corresponding row
in X is computed, then fθ(m) (cf. (6)) can be calculated
independent of other nodes, and thus spectral plot and the
extreme eigenvalues and eigenvectors are obtained.

A. Complex Diffusion

The key of the computation in (6) is the calculation of the
sequence x` or the associated polynomial x(z) =

∑dmax

`=0 z`x`.
Complex Diffusion uses the idea of fluid diffusion in networks
to compute the coefficients of this polynomial in z. The
algorithms proposed in this section are distributed in the sense
that each node needs only to know and to communicate with
its neighbors. They can be made asynchronous as well since
there is no central clock to control the fusion-diffusion process.

We first consider the complex diffusion based on the order-
1 approximation, i.e., x` = (I + iεA)`b0. For order-1

calculations, the node m will start with an initial fluid b0(m)
and a copy of this fluid is diffused to all of its neighbors with
weight iεam,h, h ∈ N (m). A copy is also diffused to itself
with weight 1+iεamm. The technique is detailed in Algorithm
IV.1. At each node, we compute the polynomial x(z) which
corresponds to the equivalent row in X. Then vector x(z) is
made of the polynomials x(z) computed on each node m. In
the algorithm, the procedure SEND(h, f) transmits fluid f to
node h and RECEIVE(h) collects fluid from h.

Algorithm IV.1: COMPLEXDIFFUSION(m,b0)

C(z)← b0(m)
d← 0
while (d ≤ dmax)

do

x(z)← x(z) + C(z)
for each h ∈ N (j)

do
{

SEND(h, am,hεiC)
C(z)← (1 + iεaj,j)C(z)z
for each h ∈ N (j)

do
{
C(z)← C(z) + zRECEIVE(h)

d← d+ 1
return (x(z))

The total number of fluid diffusion-fusion cycles at each
node should be dmax in case the diffusions are synchronised.
For asynchronous diffusions the diffusion will stop when all
quantities C have only monomials of degree larger than dmax,
thus equal to zero after truncation. This will occur when all
paths of length dmax have been processed in sequence. This
can be easily detected if we assume a maximum time tmax for
a diffusion-fusion cycle on each node, the process should stop
after any laps of duration tmaxdmax with no diffusion-fusion.

At first sight, the quantities x(z)’s would need to be
collected only at the end of the parallel computations. In fact,
even this is not needed since the computation of fθ(m) and the
peak detection can be made locally as long as the initial vector
b0 is not orthogonal to the uj , and the quantity (bᵀ

0uj)uj(m)
be returned.

The polynomial technique explained in Algorithm IV.1 can
also be implemented in vector form. We can extend the
technique to higher order approximations. The pseudo-code
in Algorithm IV.2 implements the order-2 complex diffusion.
The use of parameter C2(z) is the artefact for the diffusion
of matrix (iεA)2. Indeed, the fluid must be retransmitted
towards relay before being added to x(z). This is the reason
why the number of iteration must be raised to 2dmax. The
generalisation to a diffusion of order-r, is straightforward since
it consists of the diffusion of matrix (iεA)r. To this end
we add additional parameters C2(z) by a vector Cr(z) with
r−1 components C2

r , . . . C
r
r and the procedure SEND transmits

iεam,h(C(z)+Crr (z)) and SEND-r consists of transmitting the
vector [C(z), C2

r (z, . . . , Cr−1r (z)].
In parallel each node can compute their function f(θ) (cf.

(6)) and detect the peaks. When a node has detected the values
λ` for those peaks, with ` = 1, . . . , k and the corresponding
values f(λ`) are broadcasted in a specific packet with a specific

Algorithm IV.2: DIFFUSIONORDER2(m,b0)

C(z)← b0(m)
C2(z)← 0
d← 0
while (d ≤ 2dmax)

do

x(z)← x(z) + C(z)
for each h ∈ N (m)

do
{

SEND(h, am,hεi(C(z) + 1
2C2(z)))

SEND-2(h, am,hεiC(z))
C2(z)← iεam,mC(z)
C(z)← (1 + iεam,m)zC(z)
for each h ∈ N (m)

do
{
C(z)← C(z) + zRECEIVE(h)
C2(z)← C2(z) + RECEIVE-2(h)

d← d+ 1
return (x(z))

sequence number. The packet will be repeated all along the
network. At the end of the process, all the nodes in the network
can reconstitute the vectors f(λ`) and perform any algorithm
based on eigenvectors. It is very possible that the values of the
λ` will not perfectly match from one node to another, but this
is not crucial since, in most cases, the structure of the vectors
f(λ`) can accept some inaccuracy.

Complexity of the algorithm

In case of inverse power iteration method, assuming dmax

iterations for different µ values (best case), we get the
net computation cost (in terms of packets exchanged) as
|E|n2 + (n|E| + |E|)dmax (The first term due to diffusion
of coefficients of (A − µI)−1 in the whole network, and
second term due to the iterations and final collection in a
central node). If we consider the delay, many packets may
fly in parallel, and a diffusion will have a delay proportional
to D, the diameter of the graph. Therefore the net delay will be
proportional to D+ 2Ddmax. Notice that this will correspond
to a throughput proportional to n |E|D in each iteration. But
in case of complex diffusion the total number of packets
exchanged is |E|dmax + n|E| and the net delay is dmax +D.
The throughput here is |E|D , much smaller by a factor n than
the throughput of the power iteration.

B. Complex Gossiping

In the order-1 computation (5), the terms (I + iεA)`b0 for
0 ≤ ` ≤ dmax can also be calculated by the following Monte
Carlo approach. We have

xk+1 = (I + iεA)xk, x0 = b0.

Then
xk+1 = xk + iεDPxk,

where D is the diagonal matrix with entries as the degrees of
the nodes (D1, . . . , Dn), and P = D−1A is the transition
probability matrix of a random walk on graph defined by

matrix A. For m and h nodes in the graph, we denote pmh
the probability transition from m to h, namely equal to am,h

Dm
.

We have the identity on the mth component of xk+1,

xk+1(m) = xk(m) + iεDmE(xk(ξm)), (9)

with ξm as a randomly picked neighbour of node-m. Similar
local updating rule applies for other nodes as well. The
expectation in (9) can be calculated using Monte Carlo ap-
proach. Interestingly we observe in simulation results that
small number of iterations provides good accuracy for the
Monte Carlo simulation. The algorithm is iterated several
times and then averaged in order to smooth the variations
due to the random selection of neighbor. The algorithm is
as follows:

Algorithm IV.3: COMPLEXGOSSIPING(m,b0)

d← 1
x(z)← b0(m)
while (d ≤ dmax)

do

for each j ∈ N (m)

do

if REQUESTWAITINGFROM(j)

then

d′ ← REQUESTLEVEL(j)
if (d′ < d) then

SEND(j, iεCOEFF(x(z), zd
′
))

ξm ← RANDOMNEIGHBOR(m)
SENDREQUEST(ξm, d− 1)
x(z)← x(z)+

zd COEFF(x(z), zd−1) +Dmz
dRECEIVE(ξm)

d← d+ 1
return (x(z))

The procedure COEFF(x(z), zd) returns coefficient of the
term zd in x(z). REQUESTWAITINGFROM(j) is a boolean
valued procedure indicating if a request is waiting from node
j, REQUESTLEVEL(j) is the degree of the coefficient required
by node j and SENDREQUEST(j, d) is the procedure which
sends to node j the request to fetch the coefficient of degree
d. Notice that with the procedure SENDREQUEST, the local
process will wait until the neighbor ξm will respond. Though
this will introduce delays, it is limited to waiting time of a
single neighbor to deliver. But such a scheme will avoid the
use of synchronous clock in the system.

The gossiping algorithm introduced here is a variant of the
diffusion algorithms mentioned in the previous section, i.e.,
instead of taking fluid from all the neighbors, the gossiping
technique collects the fluid from only one random neighbor.
The algorithm can also be extended to order-2 and order-4.

V. QUANTUM RANDOM WALK TECHNIQUES

We have described in the previous section methods to solve
a discretisation of equation

∂

∂t
bt = iAbt.

This equation is very similar to the classic Schrödinger equa-
tion

i~
∂

∂t
Ψt = HΨt,

where Ψt is the wave function represented by a vector of
complex numbers, ~ is the Planck constant and H is the
Hamiltonian of the system (which is a Hermitian matrix). If
H is formed from graph matrices like A, we have the wave
function of a particle wandering on a network, which is called
quantum random walk. In this section we will first show that
the evolution of the wave function of a quantum random walk
can be simulated via several parallel classic random walks with
complex reward and use it in order to extract the spectrum
information. Then we propose a pure quantum random walk
algorithm.

A. Quantum random walk algorithm via classic random walks

This is a distributed technique in which the nodes require
only local information, but with reduced complexity compared
to Complex gossiping as only one node communicates with
another neighbor node at each cycle, for each random walks.

Assume we consider order-1 approximation. At each itera-
tion, we run the following algorithm:

1) Each node-m has a vector of length dmax+1 (mth row of
X) with x`(m) representing mth entry of (I + iεA)`b0.

2) A set of classic random walks start from each node
initially. All the random walks associated to node-m has
the initial fluid b0(m).

3) All the random walks start moving to one of their
neighbor, which is selected uniformly at random.

4) At time step k > 2, at each node m, only the first arrived
random walk wins and the fluid carried by this random
walk (F) will be used for updating xk(m). The fluid
update will happen at node-m when it also receives the
fluid from its own previous level xk−1(m). Then

xk(m) = xk−1(m) + iεDmF.

After the update of xk(m), all the random walks at node-
m (the one which won and the ones which lost) will
update their fluid as xk(m). In case no random walks
arrive at a particular node at level k after a certain time,
it will take the fluid from its previous level k − 1 only.

5) The random walks keep moving and all of them stop
when the time step k reaches dmax.

Like the gossiping technique, the above algorithm is also
iterated several times to get the desired convergence. The
pseudocode of a more generalized technique is given in
Algorithm V.1.

The procedure MOVEWAITING() is the set of the notifica-
tion of random walk moves to node m, MOVELEVEL(M) is
the level of the move notification M , and SENDMOVE(j, d, c)
is the process of moving random walk to the level d at node
j carrying the value c, and MOVEVALUE(M) is the value
carried the random walk notification M .

B. Pure Quantum Random Walk algorithm

In this section, we elaborate the connection of our technique
to quantum computing. We make use of quantum random
walks (QRW) on graphs to massively distribute our spectrum
calculations. Compared to the classic random walks, in which

Algorithm V.1: PARALLELRANDOMWALK(m,b0)

d← 0
x(z)← b0(m)
while (d ≤ dmax)

do

for each M ∈ MOVEWAITING()

do

d′ ← MOVELEVEL(M)
if (d′ > d) then

for d′′ ← d+ 1 to d′
do

{
x(z)← x(z) + zd

′′
x(z)

d← d′

x(z)← x(z) + zdDmMOVEVALUE(M)
ξm ← RANDOMNEIGHBOR(m)
SENDMOVE(ξm, d+ 1, εiCOEFF(x(z), zd))

return (x(z))

walker can exist in only one state at a time, QRW moves
simultaneously over all the states by exploiting the idea
of superposition in quantum mechanical systems [12]. The
quantum mechanical system we assume to perform the spectral
decomposition is described as follows.

We focus on continuous time QRW on a graph in which the
position of the walker depends on the Hamiltonian H which
is taken as H = A + ∆I where ∆ is the maximum degree.
The translation by ∆ is necessary in order to make the energy
values positive and will only cost a translation of the spectrum.

The walker is represented by a qubit made out of a chain
of L atoms where each of them is spin oriented, either up
(1) or down (0). Therefore the qubit has a capacity of L
bits and can describe all the 2L binary codewords of length
L, corresponding to integers between 0 and dmax − 1, with
dmax = 2L. For 0 ≤ k ≤ dmax − 1, we denote |k〉
the state of the qubit corresponding to the integer k. At
initialization, state of the qubit is uniform on all codewords:
(1/
√
dmax)

∑dmax−1
k=0 |k〉.

We consider a splitting chain made of L polarized gates
such that the state |k〉 is delayed by kε time units. To achieve
this, for 0 ≤ r ≤ L the rth gate let the qubit with spin 0
pass or delay the spin 1 by 2rε via a delay line. At the end
of splitting chain, the qubit is injected in the graph on each
node `. The wave function Ψdmax

t of the walker at time t, a
complex valued vector on the vertices of the graph, formed
from such a process satisfies

Ψdmax
t =

1√
dmax

dmax−1∑
k=0

ei(t−kε)HΨ0|k〉. (10)

Here Ψ0 is the wave function of the walker when it is inserted
in the graph, for instance when the walker is introduced on
node `: Ψ0(m) = δ`(m) for any node m. At time t ≥ εdmax,
we take the qubits on any node m, Ψdmax

t (m). We apply on
it the quantum Fourier transform (QFT) as described in the
Shor’s algorithm [13]. Essentially this implements a discrete
Fourier transform (DFT) approximation of the continuous
Fourier transform in (3). The QFT outputs the DFT coefficients
{yk} as

∑dmax−1
k=0 yk|k〉. During measurement of the QRW, kth

index is obtained with probability |yk|2, and this will be an
eigenvalue point shifted by ∆ (along with appropriate scaling
of frequencies in discrete domain to continuous domain). Thus
multiple run-measurement process of the QRW produces the
different eigenvalues. The empirical probability of λj +∆ can
be calculated via measurements and will be proportional to
|uj(m)|2.

The splitting chain technique with injection into the original
graph can be further modified in order to introduce the Gaus-
sian smoothing (4) which improves the accuracy of the spectral
decomposition, but is not described here. Moreover, Ψ0 could
be (1/

√
2)(δ`′(m) + δ`(m)) so that sign(uj(`)uj(`

′)) can be
revealed.

VI. PARAMETER ANALYSIS AND TUNING

A. Order of Convergence

There are three factors governing the convergence rate:
1) Riemann integral approximation to left-hand side of the

integral (4):

ε<

(
I+ 2

dmax∑
`=1

ei`εAb0e
−i`εθe−`

2ε2v/2

)

=

∫ +T

−T
eiAtb0e

−t2v/2e−itθdt+O
(
λ1ε

2dmax‖b0‖
)
, (11)

where T = εdmax. The factor λ1‖b0‖ is an upperbound
of the derivative of eitAb0. Notice that λ1 can in turn be
upper bounded by ∆ the maximum weighted degree of
the graph.

2) Approximating ei`εA by r-order Runge-Kutta method
(with the equivalent expression (8)), we get

ε<

(
I+ 2

dmax∑
`=1

e−i`εθe−`
2ε2v/2xlb0

)

= ε<

(
I+ 2

dmax∑
`=1

ei`εAb0e
−i`εθe−`

2ε2v/2

)
+O

(
λ1ε

r+2(dmax)
2‖b0‖

)
.

3) Error in truncated integral:∫ T

−T
eiAtb0e

−t2v/2e−itθdt

=

∫ ∞
−∞

eiAtb0e
−t2v/2e−itθdt

+O

(√
2π

v
erf
(√

v

2
εdmax

)
‖b0‖

)
where erf(x) indicates the Gaussian error function.

It can be seen that convergence rate in (11) dominates. In
addition, we should have εdmax large while ε2dmax is small.

B. Choice of initial vector b0 and algebraic multiplicity

In order to compute the approximation (6) in a distributed
manner in the network itself, each node select its own com-
ponent of the initial vector b0. The components could be all
equal to 1, b0 = 1, but in this case it may be orthogonal
to eigenvectors. Indeed if the graph is regular then 1 is

colinear to the main eigenvector, and therefore orthogonal to
the other eigenvectors. To circumvent this problem, each node
can randomly select a component so that the probability it
results into an orthogonal vector be negligible.

Another interesting option is to select b0 as a vector of i.i.d.
Gaussian random variables with zero mean and variance w. In
this case

E[bᵀ
0f(θ)] = w

n∑
j=1

√
2π

v
exp(− (λj − θ)2

2v
).

The left-hand side of the above expression can be calculated
by Monte Carlo techniques and this will give equal peaks for
all the eigenvalues. Hence, the eigenvalues and subsequently
the eigenvector components can be deduced with very good
accuracy. We call this technique trace-technique, since this
method indeed is like taking trace of the original approxima-
tion matrix, right-hand side of (4).

In case of algebraic multiplicity k of a particular eigen-
value λ, trace-technique will give the peaks approximately as
kw
√

2π/v and E[b0f
ᵀ
θ=λ] will be the projection matrix on

eigenspace of λ, i.e., E[b0f
ᵀ
θ=λ] =

√
2π
v w

∑k
`=1 u`u

ᵀ
` .

C. Choice of parameters

1) Parameter v: The selection of v is governed by the fact
that we need to discern distinct eigenvalues by locating the
peaks in the spectral plot. When we need to locate top k
eigenvalues, with 99.7% of the Gaussian areas not overlapping,
6v < min1≤i≤k−1 |λi − λi+1|. In general for a large graph,
a sufficiently lower value of v will be enough to distinguish
between the peaks. For larger εdmax, variation in v will not
affect the plot apart from the resolution of the peaks, but for
lower εdmax, lower value of v creates spurious ripples across
the plot.

2) Parameter ε: From Fourier analysis literature, it is
known that the discretization of the integral in (4) with ε leads
to multiple copies of the spectrum. According to sampling
theorem, in order to avoid aliasing among them, the choice
of ε is controlled by the net bandwidth B of the spectrum
as ε < 1/(2B). Here B ≈ |λ1 − λn| + 6v, including 99.7%
of the Gaussian variations associated to λ1 and λn. We have,
|λ1 − λn| < 2λ1 < 2∆, with ∆ being the maximum degree
of the graph and a proof of the last inequality can be found
in [14]. Hence choosing ε < 1/(4∆ + 12v) will ensure that
sampling theorem is satisfied.

3) Parameter dmax: From Section III-A, T should → ∞
and Tε → 0. This implies as dmax →∞, ε should be chosen
as 1/dmax < ε < 1/

√
dmax, asymptotically.

Scalability: Combining the argument behind the selection
of ε and dmax (with dmax chosen accordingly by fixing ε),
we can say that dmax depends on maximum degree ∆, not on
the number of nodes n. Thus, we expect that our approach is
highly scalable.

VII. NUMERICAL RESULTS

We demonstrate the algorithms described above with numer-
ical studies on real-world networks. First, in order to compare

θ

3 4 5 6 7 8 9 10 11 12 13 14 15

f
θ
(V

a
lj
ea
n
)

-1

0

1

2

3

4

Without Gaussian smoothing

With Gaussian smoothing

Eigen values points

ǫ =0.02
dmax =1500
v =0.01

Fig. 2. Les Misérables graph: with and without Gaussian smoothing

θ

3 4 5 6 7 8 9 10 11 12 13 14 15

f
θ
(V

a
lj
ea
n
)

0

1

2

Theory
Order-2 approx., ǫ = 0.02, dmax = 1500
Order-1 approx., ǫ = 0.001, dmax = 15000
Order-4 approx., ǫ = 0.02, dmax = 1500
Eigenvalue points

v = 0.01

Fig. 3. Les Misérables graph: Centralized algorithms

and show the effectiveness of the different techniques, we
consider Les Misérables network, graph of characters of the
novel Les Misérables. Later, we examine Enron email network,
the email communication network among Enron employees
and DBLP network which is a co-authorship network from the
DBLP computer science bibilography. We have chosen these
datasets so that their sizes differ in orders of magnitude. The
datasets are taken from [15] where several parameters of the
datasets can be found.

In the following simulation results, in order to show the
decomposition at the node level, we consider one particular
node in each of the networks examined. We select such a node
as one of the top 2% highest degree nodes in the network. In
the figures, we have also shown the actual eigenvalue points,
which are cross-checked with eigs function in Matlab and
adjacency spectrum function in the Python module Networkx.

Les Misérables network

In Les Misérables network, nodes are the characters and
edges are formed if two characters appear in the same chapter.
The number of nodes is 77 and number of edges is 254. We
look at the spectral plot in a specific node called Valjean, a
character in the associated novel.

We first show in Figure 2 the smoothing effect Gaussian
term brings in the finite sum approximation (6). Indeed, Gaus-
sian smoothing technique eliminates spurious picks. Different
centralized algorithms are shown in Figure 3. As shown in the
figure, the order-1 algorithm takes ten times more dmax than
order-2 and order-4. This is mainly because lower ε is needed
for order-1 due to slower convergence and this in turn leads
to higher dmax. We also observe that order-4 matches nearly
perfectly with the theoretical values.

The numerical results for the Monte Carlo gossiping tech-
nique explained in Section IV-B is shown in Figure 4. Inter-

θ
5 6 7 8 9 10 11 12 13 14 15

f
θ
(V

a
lj
ea
n
)

-1

0

1

2

3

4
Theory
Gossiping, iterations=100
Gossiping, iterations=10
Gossiping, iterations=1
Eigenvalue points

ǫ = 0.001
dmax = 15000
v = 0.01

Fig. 4. Les Misérables graph: Monte Carlo gossiping

θ
5 6 7 8 9 10 11 12 13 14 15

f
θ
(V

a
lj
ea
n
)

-1

0

1

2

3

4

Theory

Random Walk, iterations=1

Centralized order-1 apprxn.

Eigen values points

ǫ =0.001
dmax =20000
v =0.01

Fig. 5. Les Misérables graph: random walk

estingly, even one iteration of Monte Carlo averaging provides
sufficient information about the eigenvalues and it can be
observed that smaller number of iterations are needed for
practical convergence of this algorithm.

Figure 5 presents the random walk implementation of the
Monte Carlo gossiping. Here we used only one Monte Carlo
averaging and four random walks are started from each node.
We notice again that just with one iteration, it shows very good
performance with respect to the order-1 centralized algorithm.

Enron email network

The nodes in this network are the email ID’s of the
employees in Enron and the edges are formed when two
employees communicated through email. Since the graph is
not connected, we take the largest connected component with
33, 696 nodes and 180, 811 edges. The node considered is the
highest degree node in that component.

Figure 6 shows the complex diffusion with order-4 calcu-
lation and we find it is exactly matching with the theory. In
Figure 7, the gossiping approach is shown which also performs
very well.

θ

50 60 70 80 90 100 110 120 130 140

f
θ
(N

o
d
e
ID

=
5
0
3
8
)

-0.5

0

0.5

1
Theory

Diffusion Order-4 impn.

Eigen values points

ǫ = 0.003
dmax = 5000
v = 0.05

Fig. 6. Enron email network: Diffusion order-4

θ

50 60 70 80 90 100 110 120 130

-0.5

0

0.5

1

1.5

2
Theory

Gossiping, iterations:10

Gossiping, iterations:2

Eigen values points

ǫ = 0.00015

dmax = 70000

v = 0.05

Fig. 7. Enron email network: Gossiping

DBLP network

We provide one more example, DBLP computer science
network, which is ten times larger than Enron email network.
It is made out of co-authorship network where the nodes are
the authors and the edges between two authors are formed
if they have written at least one paper together. The number
of nodes is 317, 080 and number of edges is 1, 049, 866. We
consider the node with ID 6737, which has degree in top 2%
of the network.

In order to show the effectiveness of the scalability argument
provided in Section VI-C for higher order approximations, the
diffusion algorithm with order-4 is shown in Figure 8. The
algorithm is matching very well with the theory. The dmax

for order-4 diffusion in Enron-email and DBLP networks for
a good match with theory, is around 5000. This is in tune
with our finding in Section VI-C that dmax mainly depends
on |λ1− λn|. In case of Enron-email |λ1− λn| = 159.72 and
in DBLP network |λ1−λn| = 132.42. They are at least in the
same order.

θ

45 55 65 75 85 95 105 115 125

f
θ
(N

o
d
e
ID

=
6
7
3
7
)

0

1

2

3

4

5

Theory
Diffusion Order-4 apprx.
Eigen values points

ǫ =0.003
dmax =5000
v =0.1

Fig. 8. DBLP network: Diffusion order-4

VIII. ASYMMETRIC MATRICES

Here we check the applicability of the proposed algorithms
to asymmetric matrices. In this case some of the eigenvalues
will be complex with the exception of the main eigenvalue
which will be still real. The right and left eigenvectors will be
different, A =

∑
j λjujv

ᵀ
j , and consequently,∫ ∞

−∞
eitAe−vt

2/2−itθdt

=
∑
j

ujv
ᵀ
j exp

(
− (<(λj)− θ)2

2v

)
× exp

(
(=(λj)

2

2v

)
cos (=(λj(<(λj)− θ))) .

This implies that the peaks on the eigenvalues have value
exp

(
(=(λj)

2

2v

)
which may be extremely large and too dis-

crepant between eigenvalues. Nevertheless the complex dif-
fusion and quantum random walks could be applied if the
eigenvalues with non zero imaginary part are clearly separated
from the pure real eigenvalues. This is the case when using
the non-backtracking matrix based spectral clustering of [7],
where it is proved to be more efficient than the classic spectral
clustering provided the graph satisfies certain properties.

IX. CONCLUSION

We have proposed some new approaches for distributed
spectral decomposition of graph matrices. The fourier analysis
of complex exponential of the graph matrices, with Gaussian
smoothing, turns out to have a simple interpretation of the
spectrum in terms of peaks at eigenvalue points. This expo-
sition leads us to develop two efficient distributed algorithms
based on “complex power iterations”: complex diffusion if the
nodes can collect data from all the neighbors and complex
gossiping when data is taken from only one random neighbor.
Later we detailed the connection of complex exponential
of graph matrices to quantum random walk techniques. We
derived the order of convergence of algorithms and it is found
that the algorithms are scalable in proportion to the maximum
degree of the graph. Numerical simulations on real-world
networks of varying order of magnitude in size, showed the
effectiveness and scalability of our various algorithms.

REFERENCES

[1] C. Tsourakakis, “Fast counting of triangles in large real networks without
counting: Algorithms and laws,” in ICDM, Dec 2008, pp. 608–617.

[2] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” in STOC, 2004, pp. 561–568.

[3] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge University Press, 2010.

[4] B. A. Prakash, A. Sridharan, M. Seshadri, S. Machiraju, and C. Falout-
sos, “Eigenspokes: Surprising patterns and scalable community chipping
in large graphs,” in PAKDD, 2010, pp. 435–448.

[5] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[6] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[7] C. Bordenave, M. Lelarge, and L. Massoulié, “Non-backtracking spec-
trum of random graphs: community detection and non-regular ramanujan
graphs,” in FOCS, Oct 2015, pp. 1347–1357.

[8] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters of a
graph: A distributed algorithm,” Automatica, vol. 48, pp. 15–24, 2012.

[9] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized
estimation of laplacian eigenvalues in multi-agent systems,” Automatica,
vol. 49, no. 4, pp. 1031–1036, 2013.

[10] V. S. Borkar, R. Makhijani, and R. Sundaresan, “Asynchronous gossip
for averaging and spectral ranking,” IEEE J. Sel. Areas Commun., vol. 8,
no. 4, pp. 703–716, 2014.

[11] M. Tenenbaum and H. Pollard, Ordinary Differential Equations. Dover
Publications, Oct 1985.

[12] S. E. Venegas-Andraca, “Quantum walks for computer scientists,” Syn-
thesis Lectures on Quantum Computing, vol. 1, no. 1, pp. 1–119, 2008.

[13] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM journal on computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[14] L. Lovász, “Eigenvalues of graphs,” 2007, unpublished. [Online].
Available: http://www.cs.elte.hu/∼lovasz/eigenvals-x.pdf

[15] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

