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Abstract. We propose two asynchronously distributed approaches for
graph-based semi-supervised learning. The first approach is based on
stochastic approximation, whereas the second approach is based on ran-
domized Kaczmarz algorithm. In addition to the possibility of distributed
implementation, both approaches can be naturally applied online to
streaming data. We analyse both approaches theoretically and by experi-
ments. It appears that there is no clear winner and we provide indications
about cases of superiority for each approach.

1 Introduction

Semi-supervised learning (SSL) is a type of learning which uses both labelled and
unlabelled data for training [§]. In many practical cases, the amount of labelled
data is much less compared to the unlabelled data, making SSL a powerful
tool for processing massive data. The present work focuses on graph based SSL
[BITTI20124129)30]. Consider a (weighted) graph in which nodes belong to one of
K classes and the true class of a few nodes is given. An edge and its weight in the
graph indicate a similarity and similarity degree between two nodes, respectively.
Hence such a graph is called a similarity graph. SSL aims to estimate the class of
each of the unlabelled nodes by using the true class information of few labelled
nodes and the structure of the graph.

Being of practical importance [TTI29], graph based SSL has been widely studied.
Most though not all (see e.g., [I3l21]) methods formulate SSL as a quadratic
optimization problem [2IBJA26l2728] for feature vectors and then solve it or
the associated stationary point equation iteratively. Iterative solutions become
computationally intensive because they involve matrix operations which grow in
size as a polynomial with the graph size, though the growth can be linear or quasi-
linear in case of sparse graphs. The data can be distributed over a network (as in
sensor networks [I9] or in the internet of things) or can be stored and processed
in distributed manner as is the case in data centers. These motivate us to look for
distributed algorithms. There are a variety of algorithms that address this issue,
see, e.g., the classic text of [5] or a more recent comparative survey of [14]. We
apply variants of two of these for the solution of the stationary point equation for



the feature vectors and conduct a comparative analysis. The first, more original,
is based on gossip-type stochastic approximation, whereas the second is based
on the well known randomized Kaczmarz algorithm. The randomized Kaczmarz
algorithm has drawn much attention in recent years, beginning with the seminal
work of [23] - see [T7/IRIZT] for some subsequent work ([31] is the closest in spirit
to ours). Both approaches are asynchronously distributed and can also be applied
online to streaming data (e.g., as in stream image classification tasks [25]). There
is no clear winner with respect to accuracy and we provide indications about
cases of superiority for each approach. With respect to computational efficiency,
the stochastic approximation approach appears to be generally more efficient
than the randomized Kaczmarz approach on all our numerical examples. In the
case of online data processing, both approaches are simpler and computationally
lighter than the method of [25] based on the Nystrom approach which is not
distributed. We would also like to mention that the recent well performing SSL
methods [20] and [24] use the Jacobi method which can be straightforwardly
distributed in synchronous manner. However, we would like to note that the
convergence conditions for the asynchronous version of the Jacobi method can
be more stringent than the convergence conditions for our approaches [5].

As shall be seen later, our only requirements are: global knowledge on the
number of classes and the ability of nodes to pass information to their immediate
neighbors. The adjacency matrix of the network is defined by the support of the
similarity matrix. Clearly, our approach will be particularly efficient when the
similarity matrix is sparse. Regarding mapping data points to agents, our basic
scenario is: each node corresponds to a different agent and needs to compute the
elements of the classification functions only corresponding to itself. For instance,
this is a natural setting in wireless sensor networks. Our approaches can be
extended in a straightforward way to the case when one agent is responsible
for several nodes. The computation at each node happens in an asynchronous
fashion and the information needs to be exchanged only among the neighbours.
This highlights the distributed nature of the approaches.

Rest of the article is organised as follows: the next section introduces the
problem formally. Section 3 introduces and analyses two distributed approaches
for graph-based SSL. Section 4 shows that a number of established SSL methods
can be mapped to our general methodology. Section 5 investigates and compares
the two approaches by numerical experiments.

2 Definitions and problem formulation

Counsider a graph with (weighted) adjacency matrix A with N nodes, each
belonging to one of K classes. (We discuss online formulation of the problem
later.) The class information is given for some nodes, referred to as labelled nodes.
Define D as a diagonal matrix with D;; = d(i) for d(¢) := the (weighted) degree
of node i. We also use the standard graph Laplacian L = D — A. Define N x K



matrix Y containing information about the labelled nodes by:

1 if labelled node ¢ belongs to class 7,
Y = :
0 otherwise.

F ={F;} is a N x K matrix with Fj; representing the ‘belongingness’ of node
1 to class k. The vector Fy is referred to as ‘classification function’ or ‘feature
vector’. The aim of the SSL problem is to find F}j such that it is close to the
labelling function and it varies smoothly over the graph. The class of node i
is calculated from F' by assigning class k£ to node i if Fy, > F;, V j # k.
The optimization problem associated with the above stated requirements is to
minimize
K K
Q(F) =Y FRAFg+p Y (Fu = Yar)"B(Fap — Yar), (1)
k=1 k=1

where A is the positive (semi-)definite graph kernel and B the cost of deviation
from the labels. Typically, the support of matrix A coincides with the support
of the adjacency matrix A and matrix B is diagonal. p > 0 is the regularization
parameter. Majority of all existing graph-based semi-supervised learning methods
can be cast into the optimization formulation . A few important examples
are: Choosing A = D°"1LD°~! and B = D?°~! [2], we obtain semi-supervised
methods based on standard Laplacian (o = 1) [27], normalized Laplacian (o =
1/2) [26], and PageRank (0 = 0) [I]. If A = L and B = I, we retrieve the
semi-supervised method based on the regularized Laplacian [3J9122], which can
be viewed as a Lagrangian relaxation of the method based on harmonic functions
28]. If A =~D — A and B = I, we obtain the method based on the modified
regularized Laplacian [I5]. A good comparative overview of the graph-based
semi-supervised learning methods can be found in [I1I]. Nearly all methods
described in [II] can be represented in optimization formulation (1. In [4120/24]
the authors discussed slightly different quadratic optimization formulations of
the semi-supervised learning methods with an additional quadratic extra term.
That additional term can be included in the first or second terms of .

Except for the harmonic functions method which puts zeros for diagonal
elements of B when labels are unavailable, we used zero as default label when
unavailable, a choice neutral to the classes. This gives a bias towards zero for
learned classification functions, but because we are interested only in their ordinal
comparison, the classification is robust to this choice.

The above problem is a convex quadratic optimization problem. Applying
the first order optimality condition and solving for F. gives the stationary point
equation:

[(A+AT) + p(B+ BT)] Fur = w(B + BT)Yiy. (2)

3 Distributed approaches

In this section we describe two approaches for solution of which can be natu-
rally distributed (in asynchronous fashion) and can also be applied in a scenario



with streaming data. We prove the convergence of the proposed approaches and
comment on their rate of convergence.

3.1 Stochastic approximation approach

The first solution is based on Stochastic Approximation (SA-approach). Consider
the general problem of finding a unique solution x* of the system

z=G(z)=Br+Y, (3)

where z, Y € R% and B = {b(i,j)} € R is irreducible non-negative. In
Section 4 we show that most semi-supervised learning methods can be written in
this form for appropriate B and Y; see, e.g., , @ Define H as a diagonal matrix
with elements as row sums of E, ie., H;; = Zj Eij Define P as P = H‘lé,
viewed as the transition probability matrix on the graph, and @ is its irreducible
counterpart as in the PageRank algorithm: Q = (1 —€) P+ ¢/N E, where E is
an N x N matrix with all 1’s. Let X;,¢ > 0, be a Markov chain with transition
matrix @ and {n; };>0 a positive step-size sequence satisfying »_,~, 7 = oo and
Y i>0 n? < oo. The stochastic approximation scheme to solve is:

(4, Xt41)

P >
e =l {0 = ) e (M, — el 470, (4)

Convergence analysis In equation , if B has its Perron-Frobenius eigenvalue
A € (0,1) with the normalized positive eigenvector w = [w1,...wq]T, then the
following hold. (Proofs will appear in the journal version of the paper.) Define
the weighted norm ||z, = max; |z;/w;| .

Lemma Map G is a contraction w.r.t. ||z||, ie., |G(z) = G(Y)|lw < Az = y|w-
Using the above lemma, we can establish the following.

Theorem Almost surely, zt — z* as t — oo.

Convergence rate Section 4.2 of [6] gives results on sample complexity of a
synchronous stochastic approximation. The result broadly implies that, at time

n, the probability of remaining within a prescribed small neighborhood of z*
C

after n + 7 iterates is greater than 1 — QO e Ziznn? , C > 0. For our case where,

n =6 (%), the decay of probability of ever escaping from this neighborhood
after n + 7 iterations is exponential. Here 7 is a quantity specified in terms of
problem parameters.

We used Markov chain sampling of nodes above. For more general asyn-
chronous schemes, the following considerations apply. We can use the step size
Nu(t,iy for the it" node where v(t, i) = the number of updates node i has made
till time ¢ i.e., its local clock. Also, n; has to satisfy additional conditions as in



Chapter 7 of [6]. We then get a time scaled version of the same limiting O.D.E.
in the asynchronous case as the synchronous case and the asymptotic behavior
of the algorithm is the same as that for the synchronous case.

3.2 Randomized Kaczmarz approach

Another asynchronously distributed approach is to apply the randomized Kacz-
marz algorithm (RK-approach) to . We solve the linear system of the form
Az = b, where A = (A+ AT) 4+ pu(B+B7) and b = u(B+BT)Y. Let a; := the it"
row of A, a; := the unit normalized row a; and p; := the probability of sampling
it for the Kaczmarz update (e.g., p; = % for uniform sampling). The update rule
at step t is given by

— (@i, z(t)) r

x(t+1):x(t)+21{g(t):i}b(“ ol (5)

where Prob(§(t) = i) = p; Vi € {1,2,...,N}. Let A be the smallest non-
negative eigenvalue of the matrix ), piala;. From [7], we have that for A, €
(0,1), z(t) — 2* — 0 almost surely and E[||z(t) — z*||*] — 0 exponentially with
rate (1 — A\ppin) where z* is such that Az* = b.

The randomized Kaczmarz scheme is an inherently distributed and asyn-
chronous scheme because only one component (corresponding to a single node)
is being updated at a time, using local information from the node’s neighbours.
This sampling is done probabilistically in an i.i.d. fashion with probability vector
p = [p1,...,pn|T. We may drop the assumption of identical distribution sampling
and still retain exponential decay of mean square error as long as A, remains
bounded away from 1 from above for time-varying p. In fact, one may drop
the independence assumption as well, replacing it with the above condition on
the conditional sampling probabilities given the history. The exponential decay
rate of mean square error then is 1 — \*, where \* < 1 is the aforementioned

upper bound. For normal matrices, the condition number of a matrix M is
Amaz (M)
)\m,in(M)
maximum eigenvalues, respectively. Hence a high condition number would imply
a very small A,,;, resulting in very slow convergence.

given by k(M) = , where Apin (M) and Ajq. (M) are its minimum and

3.3 Comments on implementation

For the asynchronous implementation of and we have a Poisson local
clock at each node. The node updates its classification function once the local
clock ticks. We simulate this by performing a coin toss at each instant of the
global clock. The coin has a low probability pgy of turning up heads. The node
updates its classification function if it gets head at that time instant. There can
be multiple nodes updating at a given global instant while there can also be no
nodes updating at some other instant. This leads to the nodes updating their
classification function asynchronously.



We emphasize that both our approaches, SA and RK, require the information
only from the neighbors of the node. In fact, for any update, SA needs the
information only from one random neighbor. Updating each node independent of
the other nodes with only local information implies the distributed nature of the
updates. In theory, we can have different py for each node and convergence is
assured if py for all nodes is bounded away from zero. What we find particularly
interesting is that the unlabelled nodes do not need to know the location of the
labelled nodes. The information from the labelled nodes propagates through the
network from neighbor to neighbor.

4 Application to specific SSL methods

We discuss the application of the two approaches to several well known SSL
methods.

4.1 Normalized Laplacian-type methods

For A= D°"'LD° ! and B= D?~!in 7 we obtain the normalized Laplacian-
type methods [1I2126l27] which yields the following equation on simplification:

1 %
I— ——D 7AD" | Fup = —— Y. 6
( — ) o= v (6)
This equation can be solved using RK-approach or can be recast to resemble
as follows:

1 M
Fo=——D °AD° 'F + —/— V.. 7
=T e+ T Yok (7)

In case of normalized Laplacian-type methods, B = ﬁD“’AD"‘1 is similar
to and a scaled version of the transition probability matrix D~'A. Hence its
top eigenvalue is less than 1. Thus a stochastic approximation of the form of

written for (7)) will converge to its solution.

4.2 Regularized Laplacian method

A=L,B=11in yield the regularized Laplacian method [39)22] which on
simplification gives:

(L + /.LI)F*k = puYik. (8)
This can be solved using RK-approach or can be rewritten in a form similar to
equation which leads to the stochastic approximation scheme:

Fuo = (D + pl) " AF,p + (D + pI) 'Yy 9)

In case of regularized Laplacian, B = (D +pul)~LA. Tts row sums are < 1, making
B sub-stochastic with its top eigenvalue < 1. Hence a stochastic approximation
for @D of the form will converge to its solution.



4.3 Harmonic functions method

Finally, substituting in (2) A = L and B = diag(1,0), where the non-zero elements
correspond to the labelled points, we get the harmonic functions method [28]
which on simplification gives:

(L + pdiag(I,0))Fy = pYag. (10)

A direct application of SA-approach may not be possible for this, but application
of the RK-approach is straightforward.

5 Experiments

We test our distributed approaches on the three methods (normalized Laplacian
with o = 1/2 [26], regularized Laplacian [3J9J22] and harmonic functions [28])
applied to synthetic as well as real world graphs. As performance metric, we use
classification error, i.e., the percentage of nodes wrongly classified. For all the
experiments we took g = 0.5 as the regularization parameter (the results are
robust for reasonable values of p). For comparison purposes, we take 1 iteration =
N steps, where N is the number of nodes in the graph and one step is defined as
one application of formula for RK-approach and formula for SA-approach,
respectively. In most experiments, a uniform distribution is used for sampling
rows in RK-approach. A decreasing step size for node ¢ of where v(t,4) is

1
2+v(t,e)
the local clock at node 7 is used in .

5.1 WebKB graph

We look at the classification of webpages of 4 universities - Cornell, Texas,
Washington and Wisconsin - corresponding to the popular WebKB dataset [10].
The graph formed by the hyperlinks connecting these pages is taken such that
only webpages with hyperlinks to webpages within the dataset are considered.
Self-links are removed. Clusters thus formed are: Cornell (676), Texas (590),
Washington (982) and Wisconsin (613). The highest degree node from each class
(university main web page) is labelled. Figure [la]shows the error evolution for the
Kaczmarz implementation of the three SSL methods. Convergence only occurs
for normalized Laplacian for the number of iterations shown while both other
methods have a negative slope. Convergence occurs for regularized Laplacian
method after 200 iterations. All the methods seem to have the same initial
rate of convergence however they change drastically after around 3 iterations.
Theoretical Classification Error (TCE) for all the methods is almost the same.
Figure [IH] shows the comparison of RK-approach, SA-approach, distributed
Jacobi and power iteration for normalized Laplacian. Power iteration is simply
the repeated application of with one iteration defined as multiplication with
ﬁD‘l/zAD_l/2 once. RK-approach’s performance is better than that of SA-
approach for this graph in terms of error while convergence occurs faster for
the latter. Convergence is fastest for power iterations (PI) implementation since



in each iteration, the classification function of all the nodes is being updated
and as a result, the update performed in the consequent iteration would be with
the updated classification functions of the neighbors. This is unlike SA and RK
approach where the update might use the non-updated classification function of
its neighbor.

Let a call be defined as the transfer of information to a node from its neighbor.
This information is used for updating the classification function. As Figure
shows, the number of iterations is almost the same for RK and SA. While
updating the classification function of a node in one step of SA, only one of
its neighbors is called, whereas all neighbors are called in RK and Jacobi. As a
result, RK and Jacobi have more exchange of information and is computationally
more expensive than SA.
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Fig. 1: Performance on the WebKB graph

5.2 US football graph

We next see the classification in US college football network [I2]. Nodes in
the graph represent colleges that participated in the Division 1 games for the
2000 season. Edges between nodes represent games between the two teams they
connect. The classes and the nodes corresponding to each class are known for
this graph. There are 12 classes with each class consisting of 8-12 teams. Teams
within the same class, called ‘conference’; tend to play more games with each
other than with teams from another conference. The highest degree node from
each class (conference) is labelled. Figure [2a] shows the error evolution for the
RK-approach implementation of the three methods. The convergence is fastest
for the normalized Laplacian while the error is less for regularized Laplacian and
harmonic functions methods. Figure shows the comparison of RK-approach,
SA-approach, distributed Jacobi and power iteration for normalized Laplacian.



In this example, RK and Jacobi show similar behaviour. We recall again that RK
and Jacobi use more information and computationally more expensive than SA.
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Fig. 2: Performance on the US Football graph

5.3 Gaussian mixture model graph

A Gaussian mixture model graph of 10000 nodes with 3 classes was created
with the probability of a node belonging to either of the three classes being
equal. Each class was generated on a Gaussian kernel. Nodes within a given
radius of each other shared edges. Two nodes with the highest degree from each
class were labelled. Figure [3a] compares the error evolution of RK-approach for
the three methods. Convergence only occurs for normalized Laplacian method
for the number of iterations shown, while the other methods have a negative
slope. All the methods seem to have the same initial rate of convergence which
changes drastically after a few iterations. Figure [3b| compares the RK-approach,
SA-approach and power iteration for normalized Laplacian. The performance
of PI is best in terms of both error and rate of convergence. We would like to
emphasize that we sacrifice the rate of convergence for the distributed nature of
algorithms. However, the performance for RK and SA approaches for this graph
is different as compared to WebKB graph, Figure RK-approach has a higher
error as well as convergence time as compared to SA-approach.

5.4 Online learning

In the RK-approach as well as SA-approach, the classification function is updated
only for one or few nodes in one step. In other words, only local information is
used each time while updating, allowing for natural application of our approaches
to dynamic setting with streaming data. To illustrate the performance of our
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Fig. 3: Performance on Gaussian mixture model graph of 10000 nodes.

approaches in the dynamic setting, we consider a dynamic stochastic block model
graph in which nodes enter and leave the graph. Upon arrival, a node is connected
with another node of the same class with probability p;, = 0.15 and node from a
different class with probability pou: = 0.01; p;ry >> pout- Nodes arrive into the
graph according to the Poisson process with rate A,-. The class of the arriving
node is chosen according to a pre-specified probability distribution. Each node
stays in the graph for a random time that is exponentially distributed with
mean 1/figep, after which it leaves. The maximum number of nodes in the graph
is limited to K, i.e., nodes arriving when the number of nodes in the graph
is K do not become a part of the graph. This system can be modelled as an
M/M/K/K queue. As a result, irrespective of the number of nodes that the graph
has initially, the average of the number of nodes in the graph will reach a steady
state value given approximately by 23—7; In the considered example, the graph
has 3 classes and an incoming node could belong to either of the classes with
equal probability. We choose K = 1000, Mg = 1/(2 x 10%) and p4e, = 1/107.
Therefore, ;/\t;% = 500. Two nodes with the maximum degree from each class
were chosen as the labelled nodes during initialization. In case a labelled node
left, then a random neighbor was labelled. In the plots, K steps are considered
as one iteration.

Figures and [ show the error evolution of the RK-approach implemen-
tation of normalized Laplacian, regularized Laplacian and harmonic functions
methods, respectively, for the dynamic stochastic block model graph. The vari-
ation of the graph size is also shown in the same figures. In terms of accuracy,
the performances of regularized Laplacian and harmonic function methods are
similar, being between 0-1.5% during steady state. Interestingly, normalized
Laplacian method has a higher error compared to the other two, being close to
3.5%. Figure [5| shows a zoom of the error evolution from Figures and
From this figure, it can be seen that the convergence is faster for the normalized



Laplacian compared to the other two methods, both of which have almost the
same convergence time.
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Fig. 4: Error evolution and graph size variation for a dynamic stochastic block
model graph for Kaczmarz implementation of various methods.
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Fig. 5: This plot shows the comparison of Kaczmarz implementation of different
methods for a dynamic stochastic block model.

5.5 Faster convergence for normalized Laplacian

The convergence was faster for the normalized Laplacian method compared
to the regularized Laplacian and harmonic functions methods in all the cases
of the RK-approach application. This can be understood from the condition
number values for each method on different graphs as shown in Table [1] and
invoking theoretical observations from Section 3.2. The condition number is the
smallest for the normalized Laplacian method and the highest for the harmonic
functions method in all the cases. \,q: being less than 1 for all the methods,
the Apin must be very small for the harmonic functions method as compared to
normalized Laplacian to explain the large condition number. This leads to their
large convergence times.



Table 1: Condition number values.

Normalized Regularized Harmonic

US Football ~ 3.88 32.32 314.55
WebKB 5 300 5.6 x 10'®
Gaussian 4.46 2.8 x 10® 4.6 x 10°

6 Conclusion

We proposed two asynchronously distributed approaches for graph-based semi-
supervised learning. The first approach is based on stochastic approximation,
whereas the second is based on the randomized Kaczmarz algorithm. We demon-
strated that both the approaches can be naturally applied online to streaming
data. Both were analysed theoretically and by experiments. Our main conclusions:
there is no clear winner in terms of accuracy but the SA-approach generally
outperformed the RK-approach in terms of operations count. In terms of accuracy,
RK-approach performed better on real world datasets (US football and WebKB)
while SA-approach performed better on the synthetic Gaussian mixture model.
When using RK-approach, normalized Laplacian method showed much faster
convergence as compared to regularized Laplacian and harmonic functions owing
to its low condition number.
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