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Abstract. We study the PageRank mass of principal components in a
bow-tie Web Graph, as a function of the damping factor c. It is known
that the Web graph can be divided into three principal components:
SCC, IN and OUT. The Giant Strongly Connected Component (SCC)
contains a large group of pages all having a hyper-link path to each
other. The pages in the IN (OUT) component have a path to (from) the
SCC, but not back. Using a singular perturbation approach, we show
that the PageRank share of IN and SCC components remains high even
for very large values of the damping factor, in spite of the fact that it
drops to zero when c tends to one. However, a detailed study of the OUT
component reveals the presence of “dead-ends” (small groups of pages
linking only to each other) that receive an unfairly high ranking when c
is close to one. We argue that this problem can be mitigated by choosing
c as small as 1/2.

1 Introduction

The link-based ranking schemes such as PageRank [1], HITS [2], and SALSA [3]
have been successfully used in search engines to provide adequate importance
measures for Web pages. In the present work we restrict ourselves to the analysis
of the PageRank criterion and use the following definition of PageRank from [4].
Denote by n the total number of pages on the Web and define the n×n hyper-link
matrix W as follows:

wij =







1/di, if page i links to j,
1/n, if page i is dangling,
0, otherwise,

(1)

for i, j = 1, . . . , n, where di is the number of outgoing links from page i. A page
is called dangling if it does not have outgoing links. The PageRank is defined as
a stationary distribution of a Markov chain whose state space is the set of all
Web pages, and the transition matrix is

G = cW + (1 − c)(1/n)11T . (2)
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Here and throughout the paper we use the symbol 1 for a column vector of ones
having by default an appropriate dimension. In (2), 11T is a matrix whose all
entries are equal to one, and c ∈ (0, 1) is the parameter known as a damping
factor. Let π be the PageRank vector. Then by definition, πG = π, and ||π|| =
π1 = 1, where we write ||x|| for the L1-norm of vector x.

The damping factor c is a crucial parameter in the PageRank definition. It
regulates the level of the uniform noise introduced to the system. Based on the
publicly available information Google originally used c = 0.85, which appears
to be a reasonable compromise between the true reflection of the Web structure
and numerical efficiency (see [5] for more details). However, it was mentioned in
[6] that the value of c too close to one results into distorted ranking of important
pages. This phenomenon was also independently observed in [7]. Moreover, with
smaller c, the PageRank is more robust, that is, one can bound the influence of
outgoing links of a page (or a small group of pages) on the PageRank of other
groups [8] and on its own PageRank [7].

In this paper we explore the idea of relating the choice of c to specific prop-
erties of the Web structure. In papers [9,10] the authors have shown that the
Web graph can be divided into three principal components. The Giant Strongly
Connected Component (SCC) contains a large group of pages all having a hyper-
link path to each other. The pages in the IN (OUT) component have a path to
(from) the SCC, but not back. Furthermore, the SCC component is larger than
the second largest strongly connected component by several orders of magnitude.

In Section 3 we consider a Markov walk governed by the hyperlink matrix W
and explicitly describe the limiting behavior of the PageRank vector as c → 1
with the help of the singular perturbation theory [11,12,13,14]. We experimen-
tally study the OUT component in more detail to discover a so-called Pure OUT
component (the OUT component without dangling nodes and their predecessors)
and show that Pure OUT contains a number of small sub-SCC’s, or dead-ends,
that absorb the total PageRank mass when c = 1. In Section 4 we analyze the
shape of the PageRank of IN+SCC as a function of c. The dangling nodes turn
out to play an unexpectedly important role in the qualitative behavior of this
function. Our analytical and experimental results suggest that the PageRank
mass of IN+SCC is sustained on a high level for quite large values of c, in spite
of the fact that it drops to zero as c → 1. Furthermore, the PageRank mass
of IN+SCC has a unique maximum. Then, in Section 5 we show that the to-
tal PageRank mass of Pure OUT component increases with c. We argue that
c = 0.85 results in an inadequately high ranking for Pure OUT pages and we
present an argument based on the singular perturbation theory for choosing c
as small as 1/2. We confirm our theoretical argument by experiments with log
files. We would like to mention that the value c = 1/2 was also used in [15] to
find gems in scientific citations. This choice was justified intuitively by stating
that researchers may check references in cited papers but on average they hardly
go deeper than two levels. Nowadays, when search engines work really fast, this
argument also applies to Web search. Indeed, it is easier for the user to refine
a query and receive a more relevant page in fraction of a second than to look
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for this page by clicking on hyper-links. Therefore, we may assume that a surfer
searching for a page, on average, does not go deeper than two clicks.

2 Datasets

We have collected two Web graphs, which we denote by INRIA and FrMathInfo.
The Web graph INRIA was taken from the site of INRIA, the French Research
Institute of Informatics and Automatics. The seed for the INRIA collection was
Web page www.inria.fr. It is a typical large Web site with around 300.000 pages
and 2 millions hyper-links. We have collected all pages belonging to INRIA. The
Web graph FrMathInfo was crawled with the initial seeds of 50 mathematics
and informatics laboratories of France, taken from Google Directory. The crawl
was executed by Breadth First Search of depth 6. The FrMathInfo Web graph
contains around 700.000 pages and 8 millions hyper-links. As the Web seems to
have a fractal structure [16], we expect our datasets to be enough representative.

The link structure of the two Web graphs is stored in Oracle database. We
could store the adjacency lists in RAM to speed up the computation of PageRank
and other quantities of interest. This enables us to make more iterations, which
is extremely important when the damping factor c is close to one. Our PageRank
computation program consumes about one hour to make 500 iterations for the
FrMathInfo dataset and about half an hour for the INRIA dataset for the same
number of iterations. Our algorithms for discovering the structures of the Web
graph are based on Breadth First Search and Depth First Search methods, which
are linear in the sum of number of nodes and links.

3 The structure of the hyper-link transition matrix

Let us refine the bow-tie structure of the Web graph [9,10]. We recall that the
transition matrix W induces artificial links to all pages from dangling nodes.
Obviously, the graph with many artificial links has a much higher connectivity
than the original Web graph. In particular, if the random walk can move from
a dangling node to an arbitrary node with the uniform distribution, then the
Giant SCC component increases further in size. We refer to this new strongly
connected component as the Extended Strongly Connected Component (ESCC).
Due to the artificial links from the dangling nodes, the SCC component and IN
component are now inter-connected and are parts of the ESCC. Furthermore,
if there are dangling nodes in the OUT component, then these nodes together
with all their predecessors become a part of the ESCC.

In the mini-example in Figure 1, node 0 represents the IN component, nodes
from 1 to 3 form the SCC component, and the rest of the nodes, nodes from 4 to
11, are in the OUT component. Node 5 is a dangling node, thus, artificial links
go from the dangling node 5 to all other nodes. After addition of the artificial
links, all nodes from 0 to 5 form the ESCC.

The part of the OUT component without dangling nodes and their predeces-
sors forms a block that we refer to as a Pure OUT component. In Figure 1 the
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Fig. 1. Example of a graph

# INRIA FrMathInfo

total nodes 318585 764119
nodes in SCC 154142 333175

nodes in IN 0 0
nodes in OUT 164443 430944

nodes in ESCC 300682 760016
nodes in Pure OUT 17903 4103

SCCs in OUT 1148 1382
SCCs in Pure Out 631 379

Fig. 2. Component sizes in INRIA and Fr-
MathInfo datasets

Pure OUT component consists of nodes from 6 to 11. Typically, the Pure OUT
component is much smaller than the Extended SCC.

The sizes of all components for our two datasets are given in Figure 2. Here
the size of the IN components is zero because in the Web crawl we used the
Breadth First Search method and we started from important pages in the Giant
SCC. For the purposes of the present research it does not make any difference
since we always consider IN and SCC together.

Let us now analyze the structure of the Pure OUT component in more detail.
It turns out that inside Pure OUT there are many disjoint strongly connected
components. We refer to these sub-SCC’s as “dead-ends”, since once the random
walk induced by transition matrix W enters such a component it will not be able
to leave the component. In Figure 1 there are two dead-end components {8, 9}
and {10, 11}. We have observed that in our two datasets the majority of dead-
ends are of sizes 2 or 3.

Let us now characterize the new refined structure of the Web graph in terms
of ergodic structure of the Markov chain induced by the matrix W . First, we note
that all states in the dead-ends are recurrent, that is, the Markov chain started
from any of these states always returns back to it. In contrast, all the states
from ESCC are transient, that is, with probability 1, the Markov chain induced
by W eventually leaves this set of states and never returns back. The stationary
probability of all these states is zero. We note that the Pure OUT component
also contains transient states that eventually bring the random walk into one of
the dead-ends. For simplicity, we add these states to the giant transient ESCC
component.

Now, by appropriate renumbering of the states, we can refine the matrix W
by subdividing all states into one giant transient block and a number of small



5

recurrent blocks as follows:

W =











Q1 0 0
. . .

0 Qm 0
R1 · · · Rm T











dead-end (recurrent)

· · ·
dead-end (recurrent)
ESCC+[transient states in Pure OUT] (transient)

(3)

Here for i = 1, . . . , m, a block Qi corresponds to transitions inside the i-th
recurrent block, and a block Ri contains transition probabilities from transient
states to the i-th recurrent block. Block T corresponds to transitions between
the transient states. For instance, in example of the graph from Figure 1, the
nodes 8 and 9 correspond to block Q1, nodes 10 and 11 correspond to block Q2,
and all other nodes belong to block T . Let us denote by π̄OUT,i the stationary
distribution corresponding to block Qi.

We would like to emphasis that the recurrent blocks here are really small,
constituting altogether about 5% for INRIA and about 0.5% for FrMathInfo. We
believe that for larger data sets, this percentage will be even less. By far most
important part of the pages is contained in the ESCC, which constitutes the
major part of the giant transient block. However, if the random walk is governed
by transition matrix W it is absorbed with probability 1 into one of the recurrent
blocks.

The use of the Google transition matrix G with c < 1 (2) instead of W ensures
that all the pages are recurrent states with positive stationary probabilities.
However, if c = 1, the majority of pages turn into transient states with stationary
probability zero. Hence, the random walk governed by the Google transition
matrix G is in fact a singularly perturbed Markov chain. Informally, by singular
perturbation we mean relatively small changes in elements of the matrix, that
lead to altered connectivity and stationary behavior of the chain. Using the
results of the singular perturbation theory (see e.g., [11,12,13,14]), in the next
proposition we characterize explicitly the limiting PageRank vector as c → 1.

Proposition 1. Let π̄OUT,i be a stationary distribution of the Markov chain gov-
erned by Qi, i = 1, . . . , m. Then, we have

lim
c→1

π(c) = [πOUT,1 · · · πOUT,m 0] ,

where

πOUT,i =

(

# nodes in block Qi

n
+

1

n
1T [I − T ]−1Ri1

)

π̄OUT,i (4)

for i = 1, ..., m, I is the identity matrix, and 0 is a row vector of zeros that
correspond to stationary probabilities of the states in the transient block.

Proof. First, we note that if we make a change of variables ε = 1− c the Google
matrix becomes a transition matrix of a singularly perturbed Markov chain as in
Lemma 1 (see Appendix) with A = W and C = 1

n
11T −W . Specifically, Ai = Qi,
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Li = Ri, E = T and µi = π̄OUT,i. Next, define the aggregated generator matrix
D as follows:

D =
1

n
11T B − I =

1

n
1[n1 + 1[I − T ]−1R11, · · · , nm + 1[I − T ]−1Rm1] − I.

(5)

Using the definition of C together with identities π̄OUT,i(1/n)11T = (1/n)11T

and π̄OUT,iQi = π̄OUT,i, it is easy to verify that the matrix D in (5) has been
computed in exactlly the same way as the matrix D in Lemma 1. Furthermore,
since the aggregated transition matrix D + I has identical rows, its stationary
distribution ν is simply equal to each of these rows. Thus, invoking Lemma 1 we
obtain (4).

The second term inside the brackets in formula (4) corresponds to the Page-
Rank mass received by a dead-end from the Extended SCC. If c is close to one,
then this contribution can outweight by far the fair share of the PageRank,
whereas the PageRank mass of the giant transient block decreases to zero. How
large is the neighborhood of one where the ranking is skewed towards the Pure
OUT? Is the value c = 0.85 already too large? We will address these questions in
the remainder of the paper. In the next section we analyze the PageRank mass
IN+SCC component, which is an important part of the transient block.

4 PageRank mass of IN+SCC

In Figure 3 we depict the PageRank mass of the giant component IN+SCC, as a
function of the damping factor, for FrMathInfo. Here we see a typical behavior

Fig. 3. The PageRank mass of IN+SCC as a function of c.

also observed for several pages in the mini-web from [6]: the PageRank first grows
with c and then decreases to zero. In our case, the PageRank mass of IN+SCC
drops drastically starting from some value c close to one. Our goal now is to
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explain this behavior. Clearly, since IN+SCC is a part of the transient block,
we do expect that the corresponding PageRank mass drops to zero when c goes
to one. Thus, the two phenomena that remain to be justified are: the growth of
the PageRank mass when c is not too large, and the abrupt drop to zero after
reaching a (unique) extreme point.

The plan of the analysis in this section is as follows. First, we write the ex-
pression for the PageRank mass of IN+SCC, ||πIN+SCC||, as a function of c. Then
we consider the derivative of ||πIN+SCC(c)|| at c = 0 and prove that, surprisingly,
this derivative is always positive in the graph with sufficiently large fraction
of dangling nodes. This explains the fact that ||πIN+SCC(c)|| is initially increas-
ing. Further, we use singular perturbation theory to show that the derivative
of ||πIN+SCC(c)|| at c = 1 is a large negative number, and that ||πIN+SCC(c)|| can
have only one extreme point in (0, 1).

We base our analysis on the model where the Web graph sample is subdivided
into three subsets of nodes: IN+SCC, OUT, and the set of dangling nodes DN.
We assume that all links to dangling nodes come from IN+SCC. This simplifies
the derivation but does not change our conclusions. Then the Web hyper-link
matrix W in (1) can be written in the form

W =





Q 0 0
R P S

1
n
11T 1

n
11T 1

n
11T





OUT
IN+SCC ,
DN

where the block Q corresponds to the hyper-links inside the OUT component,
the block R corresponds to the hyper-links from IN+SCC to OUT, the block P
corresponds to the hyper-links inside the IN+SCC component, and the block S
corresponds to the hyper-links from SCC to dangling nodes. In the above, n is
the total number of pages in the Web graph sample, and the blocks 11T are the
matrices of ones adjusted to appropriate dimensions.

Let us derive the expression for the PageRank mass of IN+SCC. Dividing
the PageRank vector in segments corresponding to the blocks OUT, IN+SCC
and DN, namely, π = [πOUT πIN+SCC πDN], we can rewrite the well-known formula
(see e.g. [17])

π =
1 − c

n
1T [I − cW ]−1 (6)

as a system of three linear equations:

πOUT[I − cQ] − πIN+SCCcR −
c

n
πDN11T =

1 − c

n
1T , (7)

πIN+SCC[I − cP ] −
c

n
πDN11T =

1 − c

n
1T , (8)

− πIN+SCCcS + πDN −
c

n
πDN11T =

1 − c

n
1T . (9)

Now we would like to solve (7–9) for πIN+SCC. To this end, we first observe that if
πIN+SCC and πDN1 are known then from (7) it is straightforward to obtain πOUT:

πOUT = πIN+SCCcR[I − cQ]−1 +

(

1 − c

n
+ πDN1

c

n

)

1T [I − cQ]−1.
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Therefore, let us solve equations (8) and (9). Towards this goal, we sum the
elements of the vector equation (9), which corresponds to the postmultiplication
of equation (9) by vector 1.

−πIN+SCCcS1 + πDN1−
c

n
πDN11T1 =

1 − c

n
1T1

Now, denote by nIN , nOUT , nSCC and nDN the number of pages in the IN com-
ponent, OUT component, SCC component and the number of dangling nodes.
Since 1T1 = nDN , we have

πDN1 =
n

n − cnDN

(πIN+SCCcS1 +
1 − c

n
nDN ).

Substituting the above expression for πDN1 into (8), we get

πIN+SCC

[

I − cP −
c2

n − cnDN

S11T

]

=
c

n − cnDN

1 − c

n
nDN1T +

1 − c

n
1T .

Denote by α = (nIN + nSCC)/n and β = nDN/n the fractions of nodes in
IN+SCC and DN, respectively, and let uIN+SCC = (nIN + nSCC)−11T be a
uniform probability row-vector of dimension nIN + nSCC . Then from the last
equation we directly obtain

πIN+SCC(c) =
(1 − c)α

1 − cβ
uIN+SCC

[

I − cP −
c2α

1 − cβ
S1uIN+SCC

]−1

. (10)

Equation (10) gives the desired expression for the PageRank mass of IN+SCC
as a function of c, and we can analyze the behavior of this function by looking
at its derivatives. Define

k(c) =
(1 − c)α

1 − cβ
, and U(c) = P +

cα

1 − cβ
S1uIN+SCC. (11)

Then the derivative of πIN+SCC(c) with respect to c is given by

π′

IN+SCC
(c) = uIN+SCC

{

k′(c)I + k(c)[I − cU(c)]−1(cU(c))′
}

[I − cU(c)]−1, (12)

where from (11) after simple calculations we get k′(c) = −(1 − β)α/(1 − cβ)2,
(cU(c))′ = U(c) + cα(1 − cβ)−2S1uIN+SCC.

Now we are ready to explain the fact that ||πIN+SCC(c)|| is increasing when c
is small. Consider the point c = 0. Using (12), we get

π′

IN+SCC
(0) = −α(1 − β)uIN+SCC + αuIN+SCCP. (13)

One can see from the above equation that the PageRank of pages in IN+SCC
with many incoming links will increase as c increases from zero, which explains
the graphs presented in [6]. Next, for the total mass of the IN+SCC component,
from (13) we obtain

||π′

IN+SCC
(0)|| = −α(1 − β)uIN+SCC + αuIN+SCCP1 = α(−1 + β + p1),
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where p1 = uIN+SCCP1 is the probability that a random walk on the hyperlink
matrix stays in IN+SCC for one step if the initial distribution is uniform over
IN+SCC. If 1−β < p1 then the derivative at 0 is positive. Since dangling nodes
typically constitute more than 25% of the graph [18], and p1 is usually close to
one, the condition 1− β < p1 seems to be comfortably satisfied in Web samples.
Thus, the total PageRank of the IN+SCC increases in c when c is small. Note
by the way that if β = 0 then ||πIN+SCC(c)|| is strictly decreasing in c. Hence,
surprisingly, the presence of dangling nodes qualitatively changes the behavior
of the IN+SCC PageRank mass.

Now let us consider the point c = 1. Again using (12), we get

π′

IN+SCC
(1) = −

α

1 − β
uIN+SCC[I − P −

α

1 − β
S1uIN+SCC]−1. (14)

We will show that the derivative above is a negative number with a large absolute
value. Note that the matrix in the square braces is close to singular. Denote by P̄
the hyper-link matrix of IN+SCC when the outer links are neglected. Then, P̄ is
an irreducible stochastic matrix. Denote its stationary distribution by π̄IN+SCC.
Then we can apply Lemma 2 (see Appendix) from the singular perturbation
theory to (14) by taking A = P̄ , εC = P̄ −P −α(1−β)−1S1uIN+SCC, and noting
that

εC1 = R1 + (1 − α − β)(1 − β)−1S1.

Combining all terms together and using π̄IN+SCC1 = ||π̄IN+SCC|| = 1 and uIN+SCC1 =
||uIN+SCC|| = 1, by Lemma 2 we obtain

||π′

IN+SCC
(1)|| ≈ −

α

1 − β

1

π̄IN+SCCR1 + 1−β−α
1−β

π̄IN+SCCS1
.

It is expected that the value in the denominator of the second fraction is typically
small (indeed, in our dataset INRIA, the value is 0.022), and hence the mass
||πIN+SCC(c)|| decreases very fast as c approaches one.

Having described the behavior of the PageRank mass ||πIN+SCC(c)|| at the
boundary points c = 0 and c = 1, now we would like to show that there is at
most one extremum on (0, 1). It is sufficient to prove that if ||π′

IN+SCC
(c0)|| ≤ 0

for some c0 ∈ (0, 1) then ||π′

IN+SCC
(c)|| ≤ 0 for all c > c0. To this end, we apply

the Sherman-Morrison formula to (10), which yields

πIN+SCC(c) = π̃IN+SCC(c) +

c2α
1−cβ

uIN+SCC[I − cP ]−1S1

1 + c2α
1−cβ

uIN+SCC[I − cP ]−1S1
π̃IN+SCC(c), (15)

where

π̃IN+SCC(c) =
(1 − c)α

1 − cβ
uIN+SCC[I − cP ]−1 (16)

represents the main term in the right-hand side of (15). (The second summand
in (15) is about 10% of the total sum for the INRIA dataset for c = 0.85.) Now
the behavior of πIN+SCC(c) in Figure 3 can be explained by means of the next
proposition.
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Proposition 2. The term ||π̃IN+SCC(c)|| given by (16) has exactly one local max-
imum at some c0 ∈ [0, 1]. Moreover, ||π̃′′

IN+SCC
(c)|| < 0 for c ∈ (c0, 1].

Proof. Multiplying both sides of (16) by 1 and taking the derivatives, after some
tedious algebra we obtain

||π̃′

IN+SCC
(c)|| = − a(c) +

β

1 − cβ
||π̃IN+SCC(c)||, (17)

where the real-valued function a(c) is given by

a(c) =
α

1 − cβ
uIN+SCC[I − cP ]−1[I − P ][I − cP ]−11.

Differentiating (17) and substituting β
1−cβ

||π̃IN+SCC(c)|| from (17) in the resulting
expression, we get

||π̃′′

IN+SCC
(c)|| =

{

−a′(c) +
β

1 − cβ
a(c)

}

+
2β

1 − cβ
||π̃′

IN+SCC
(c)||.

Note that the term in the curly braces is negative by definition of a(c). Hence,
if ||π̃′

IN+SCC
(c)|| ≤ 0 for some c ∈ [0, 1] then ||π̃′′

IN+SCC
(c)|| < 0 for this value of c.

We conclude that ||π̃IN+SCC(c)|| is decreasing and concave for c ∈ [c0, 1], where
||π̃′

IN+SCC
(c0)|| = 0. This is exactly the behavior we observe in the experiments.

The analysis and experiments suggest that c0 is definitely larger than 0.85 and
actually is quite close to one. Thus, one may want to choose large c in order to
maximize the PageRank mass of IN+SCC. However, in the next section we will
indicate important drawbacks of this choice.

5 PageRank mass of ESCC

Let us now consider the PageRank mass of the Extended SCC component
(ESCC) described in Section 3, as a function of c ∈ [0, 1]. Subdividing the Page-
Rank vector in the blocks π = [πPureOUT πESCC], from (6) we obtain

πESCC(c) = (1 − c)γuESCC[I − cT ]−1 = (1 − c)γuESCC

∞
∑

k=1

ckT k, (18)

where T represents the transition probabilities inside the ESCC block, γ =
|ESCC|/n is the fraction of pages contained in the ESCC, and uESCC is a uni-
form probability row-vector over ESCC. Clearly, we have ||πESCC(0)|| = γ and
||πESCC(1)|| = 0. Furthermore, it is easy to see that ||πESCC(c)|| is a concave
decreasing function, since

d

dc
||πESCC(c)|| = −γuESCC[I − cT ]−2[I − T ]1 < 0

and
d2

dc2
||πESCC(c)|| = −2γuESCC[I − cT ]−3T [I − T ]1 < 0.

The next proposition establishes the upper and lower bounds for ||πESCC(c)||.
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Proposition 3. Let λ1 be the Perron-Frobenius eigenvalue of T , and let p1 =
uESCCT1 be the probability that the random walk started from a randomly chosen
state in ESCC, stays in ESCC for one step. If p1 ≤ λ1 and

p1 ≤
uESCCT k1

uESCCT k−11
≤ λ1 for all k ≥ 1, (19)

then
γ(1 − c)

1 − cp1
< ||πESCC(c)|| <

γ(1 − c)

1 − cλ1
, c ∈ (0, 1). (20)

Proof. From condition (19) it follows by induction that

pk
1 ≤ uESCCT k1 ≤ λk

1 , k ≥ 1,

and thus the statement of the proposition is obtained directly from the series
expansion of πESCC(c) in (18).

The conditions of Proposition 3 have a natural probabilistic interpretation.
The value p1 is the probability that the Markov random walk on the Web sam-
ple stays in the block T for one step, starting from the uniform distribution
over T . Furthermore, pk = uESCCT k1/(uESCCT k−11) is the probability that the
random walk stays in T for one step provided that it has stayed there for the
first k − 1 steps. It is a well-known fact that, as k → ∞, pk converges to λ1,
the Perron-Frobenius eigenvalue of T . Let π̂ESCC be the probability-normed left
Perron-Frobenius eigenvector of T . Then π̂ESCC, also known as a quasi-stationary
distribution of T , is the limiting probability distribution of the Markov chain
given that the random walk never leaves the block T (see e.g. [19]). Since
π̂ESCCT = λ1π̂ESCC, the condition p1 < λ1 means that the chance to stay in
ESCC for one step in the quasi-stationary regime is higher than starting from
the uniform distribution uESCC. This is quite natural since the quasi-stationary
distribution tends to avoid the states, from which the random walk is likely to
leave the block T . Furthermore, the condition in (19) says that if the random
walk is about to make its k-th steps in T , then it leaves T most easily at step
k = 1, and it is most hard to leave T after an infinite number of steps. Both
conditions of Proposition 3 are satisfied in our experiments on both data sets.
Moreover, we noticed that the sequence (pk, k ≥ 1) was increasing from p1 to
λ1.

With the help of the derived bounds we conclude that ||πESCC(c)|| decreases
very slowly for small and moderate values of c, and it decreases extremely fast
when c becomes close to 1. This typical behavior is clearly seen in Figure 4,
where ||πESCC(c)|| is plotted with a solid line. The bounds are plotted in Figure 4
with dashed lines. For the INRIA dataset we have p1 = 0.97557, λ1 = 0.99954,
and for the FrMathInfo dataset we have p1 = 0.99659, λ1 = 0.99937.

From the above we conclude that the PageRank mass of ESCC is smaller
than γ for any value c > 0. On contrary, the PageRank mass of Pure OUT
increases in c beyond its “fair share” δ = |PureOUT |/n. With c = 0.85, the
PageRank mass of the Pure OUT component in the INRIA dataset is equal to
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Fig. 4. PageRank mass of ESCC and bounds, INRIA (left) and FrMathInfo (right)

1.95δ. In the FrMathInfo dataset, the unfairness is even more pronounced: the
PageRank mass of the Pure OUT component is equal to 3.44δ. This gives users
an incentive to create dead-ends: groups of pages that link only to each other.
Clearly, this can be mitigated by choosing a smaller damping factor. Below we
propose one way to determine an “optimal” value of c.

Since the PageRank mass of ESCC is always smaller than γ we would like
to choose the damping factor in such a way that the ESCC receives a “fair”
fraction of γ. Formally, we would like to define a number ρ ∈ (0, 1) such that
a desirable PageRank mass of ESCC could be written as ργ, and then find the
value c∗ that satisfies

||πESCC(c∗)|| = ργ. (21)

Then c ≤ c∗ will ensure that ||πESCC(c)|| ≥ ργ. Naturally, ρ should somehow
reflect the properties of the substochastic block T . For instance, as T becomes
closer to stochastic matrix, ρ should also increase. One possibility to do it is to
define

ρ = vT1,

where v is a row vector representing some probability distribution on ESCC.
Then the damping factor c should satisfy

c ≤ c∗,

where c∗ is given by
||πESCC(c∗)|| = γvT1. (22)

In this setting, ρ is a probability to stay in ESCC for one step if initial distribution
is v. For given v, this number increases as T becomes closer to stochastic matrix.
Now, the problem of choosing ρ comes down to the problem of choosing v.
The advantage of this approach is twofold. First, we still have all the flexibility
because, depending on v, the value of ρ may vary considerably except it can not
become too small if T is really close to stochastic matrix. Second, we can use
a probabilistic interpretation of v to make a reasonable choice. One can think
for instance of the following three intuitive choices of v: 1) π̂ESCC, the quasi-
stationary distribution of T , 2) the uniform vector uESCC, and 3) the normalized
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PageRank vector πESCC(c)/||πESCC(c)||. The first choice reflects the proximity of
T to a stochastic matrix. The second choice is inspired by definition of PageRank
(restart from uniform distribution), and the third choice combines both these
features.

If conditions of Proposition 3 are satisfied, then (20) holds, and thus the
value of c∗ satisfying (22) must be in the interval (c1, c2), where

(1 − c1)/(1 − p1c1) = ||vT ||, (1 − c2)/(1 − λ1c2) = ||vT ||.

Numerical results for all three choices of v are presented in Table 1.

v c INRIA FrMathInfo

π̂ESCC c1 0.0184 0.1956
c2 0.5001 0.5002
c∗ .02 .16

uESCC c1 0.5062 0.5009
c2 0.9820 0.8051
c∗ .604 .535

πESCC/||πESCC|| 1/(1 + λ1) 0.5001 0.5002
1/(1 + p1) 0.5062 0.5009

Table 1. Values of c∗ with bounds.

If v = π̂ESCC then we have ||vT || = λ1, which implies c1 = (1−λ1)/(1−λ1p1)
and c2 = 1/(λ1 + 1). In this case, the upper bound c2 is only slightly larger
than 1/2 and c∗ is close to zero in our data sets (see Table 1). Such small c
however leads to ranking that takes into account only local information about
the Web graph (see e.g. [20]). The choice v = π̂ESCC does not seem to represent
the dynamics of the system; probably because the “easily bored surfer” random
walk that is used in PageRank computations never follows a quasi-stationary
distribution since it often restarts itself from the uniform probability vector.

For the uniform vector v = uESCC, we have ||vT || = p1, which gives c1, c2, c
∗

presented in Table 1. We have obtained a higher upper bound but the values of
c∗ are still much smaller than 0.85.

Finally, consider the normalized PageRank vector v(c) = πESCC(c)/||πESCC(c)||.
This choice of v can also be justified as follows. Consider the derivative of the
total PageRank mass of ESCC. Since [I − cT ]−1 and [I − T ] commute, we can
write

d

dc
||πESCC(c)|| = −γuESCC[I − cT ]−1[I − T ][I − cT ]−11,
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or, equivalently,

d

dc
||πESCC(c)|| = −

1

1 − c
πESCC[I − T ][I − cT ]−11

= −
1

1 − c

(

πESCC − ||πESCC||
πESCC

||πESCC||
T

)

[I − cT ]−11

= −
1

1 − c
(πESCC − ||πESCC||v(c)T ) [I − cT ]−11,

with v(c) = πESCC/||πESCC||. It is easy to see that

||πESCC(c)|| = γ − γ(1 − uESCCT1)c + o(c).

Consequently, we obtain

d

dc
||πESCC(c)|| = −

1

1 − c
(πESCC − γv(c)T + γ(1 − uESCCT1)cv(c)T + o(c)) [I−cT ]−11.

Since in practice T is very close to stochastic, we have

1 − uESCCT1 ≈ 0, and [I − cT ]−11 ≈
1

1 − c
1.

The latter approximation follows from Lemma 2. Thus, satisfying condition (22)
means keeping the value of the derivative small.

Let us now solve (22) for v(c) = πESCC(c)/||πESCC(c)||. Using (18), we rewrite
(22) as

||πESCC(c)|| =
γ

||πESCC(c)||
πESCC(c)T1 =

γ2(1 − c)

||πESCC(c)||
uIN+SCC[I − cT ]−1T1,

Multiplying by ||πESCC(c)||, after some algebra we obtain

||πESCC(c)||2 =
γ

c
||πESCC(c)|| −

(1 − c)γ2

c
.

Solving the quadratic equation for ||πESCC(c)||, we get

||πESCC(c)|| = r(c) =

{

γ if c ≤ 1/2,
γ(1−c)

c
if c > 1/2.

Hence, the value c∗ solving (22) corresponds to the point where the graphs of
||πESCC(c)|| and r(c) cross each other. There is only one such point on (0,1),
and since ||πESCC(c)|| decreases very slowly unless c is close to one, whereas
r(c) decreases relatively fast for c > 1/2, we expect that c∗ is only slightly
larger than 1/2. Under conditions of Proposition 3, r(c) first crosses the line
γ(1− c)/(1−λ1c), then ||πESCC(c)||1, and then γ(1− c)/(1−p1c). Thus, we yield
(1 + λ1)

−1 < c∗ < (1 + p1)
−1. Since both λ1 and p1 are large, this suggests that

c should be chosen around 1/2. This is also reflected in Table 1.
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Last but not least, to support our theoretical argument about the undeserved
high ranking of pages from Pure OUT, we carry out the following experiment.
In the INRIA dataset we have chosen an absorbing component in Pure OUT
consisting just of two nodes. We have added an artificial link from one of these
nodes to a node in the Giant SCC and recomputed the PageRank. In Table 2
in the column “PR rank w/o link” we give a ranking of a page according to
the PageRank value computed before the addition of the artificial link and in
the column “PR rank with link” we give a ranking of a page according to the
PageRank value computed after the addition of the artificial link. We have also
analyzed the log file of the site INRIA Sophia Antipolis (www-sop.inria.fr)
and ranked the pages according to the number of clicks for the period of one
year up to May 2007. We note that since we have the access only to the log file
of the INRIA Sophia Antipolis site, we use the PageRank ranking also only for
the pages from the INRIA Sophia Antipolis site. For instance, for c = 0.85, the
ranking of Page A without an artificial link is 731 (this means that 730 pages
are ranked better than Page A among the pages of INRIA Sophia Antipolis).
However, its ranking according to the number of clicks is much lower, 2588.
This confirms our conjecture that the nodes in Pure OUT obtain unjustifiably
high ranking. Next we note that the addition of an artificial link significantly
diminishes the ranking. In fact, it brings it close to the ranking provided by
the number of clicks. Finally, we draw the attention of the reader to the fact
that choosing c = 1/2 also significantly reduces the gap between the ranking by
PageRank and the ranking by the number of clicks.

c PR rank w/o link PR rank with link rank by no. of clicks

Node A

0.5 1648 2307 2588
0.85 731 2101 2588
0.95 226 2116 2588

Node B

0.5 1648 4009 3649
0.85 731 3279 3649
0.95 226 3563 3649

Table 2. Comparison between PR and click based rankings.

To summarize, our results indicate that with c = 0.85, the Pure OUT com-
ponent receives an unfairly large share of the PageRank mass. Remarkably, in
order to satisfy any of the three intuitive criteria of fairness presented above, the
value of c should be drastically reduced. The experiment with the log files con-
firms the same. Of course, a drastic reduction of c also considerably accelerates
the computation of PageRank by numerical methods [21,5,22].
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Appendix: Results from Singular Perturbation Theory

Lemma 1. Let A(ε) = A+εC be a transition matrix of perturbed Markov chain.
The perturbed Markov chain is assumed to be ergodic for sufficiently small ε

different from zero. Let the unperturbed Markov chain (ε = 0) have m ergodic
classes. Namely, the transition matrix A can be written in the form

A =











A1 0 0
. . .

0 Am 0
L1 · · · Lm E











∈ R
n×n.

Then, the stationary distribution of the perturbed Markov chain has a limit

lim
ε→0

π(ε) = [ν1µ1 · · · νmµm 0],

where zeros correspond to the set of transient states in the unperturbed Markov
chain, µi is a stationary distribution of the unperturbed Markov chain corre-
sponding to the i-th ergodic set, and νi is the i-th element of the aggregated
stationary distribution vector that can be found by solution

νD = ν, ν1 = 1,

where D = MCB is the generator of the aggregated Markov chain and

M =







µ1 0 0
. . .

0 µm 0






∈ R

m×n, B =











1 0
. . .

0 1

φ1 · · · φm











∈ R
n×m.

with φi = [I − E]−1Li1.

The proof of this lemma can be found in [11,12,14].
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Lemma 2. Let A(ε) = A−εC be a perturbation of irreducible stochastic matrix
A such that A(ε) is substochastic. Then, for sufficiently small ε the following
Laurent series expansion holds

[I − A(ε)]−1 =
1

ε
X−1 + X0 + εX1 + ... , (23)

with

X−1 =
1

µC1
1µ, (24)

where µ is the stationary distribution of A. It follows that

[I − A(ε)]−1 =
1

µεC1
1µ + O(1) as ε → 0. (25)

Proof. The proof of this result is based on the approach developed in [11,23].
The existence of the Laurent series (23) is a particular case of more general
results on the inversion of analytic matrix functions [23]. To calculate the terms
of the Laurent series, let us equate the terms with the same powers of ε in the
following identity

(I − A + εC)(
1

ε
X−1 + X0 + εX1 + . . .) = I,

which results in
(I − A)X−1 = 0, (26)

(I − A)X0 + CX−1 = I, (27)

(I − A)X1 + CX0 = 0. (28)

From equation (26) we conclude that

X−1 = 1µ−1, (29)

where µ−1 is some vector. We find this vector from the condition that the equa-
tion (27) has a solution. In particular, equation (27) has a solution if and only
if

µ(I − CX−1) = 0.

By substituting into the above equation the expression (29), we obtain

µ − µC1µ−1 = 0,

and, consequently,

µ−1 =
1

µC1
µ,

which together with (29) gives (24).


