
Analysis of Scalable TCP in the presence of Markovian Losses

E. Altman K. E. Avrachenkov A. A. Kherani

B.J. Prabhu

INRIA Sophia Antipolis

06902 Sophia Antipolis, France.

Email:{altman,k.avratchenkov,alam,bprabhu}@sophia.inria.fr

Abstract

In high speed networks, the standard TCP’s AIMD
algorithm was observed to be inefficient in utilizing the
link capacity. As a result of which several proposals
such as High-Speed TCP, FAST and Scalable TCP,
were put forward. In contrast to the additive increase
multiplicative decrease algorithm used in the standard
TCP, Scalable TCP uses a multiplicative increase mul-
tiplicative decrease (MIMD) algorithm for the window
size evolution. In this paper, we first present an ap-
proximate expression for the throughput of a long last-
ing Scalable TCP session when the losses are i.i.d. and
due to window dependent errors. We then present an
analysis when the losses are due to Markovian window
independent errors. We compare our analytical results
with ns-2 simulations.

1 Introduction

The additive increase algorithm of the standard
TCP has been observed to recover slowly from packet
losses due to events not related to congestion. This
phenomenon becomes pronounced when a TCP ses-
sion transfers large files over high speed networks in
which packet losses could occur due to link layer er-
rors [1]. Since the losses are not due to congestion, the
additive increase in the recovery phase after a window
reduction results in inefficient use of the large band-
width. In order to improve the utilization of the avail-
able capacity in high speed networks, modifications to
the standard TCP have been proposed in [1]-[3]. In [4],
Kelly has proposed a variation of TCP, called Scalable
TCP, wherein upon each ACK it receives, the sender
increases its congestion window (cwnd) by 0.01 pack-
ets. When a loss event is detected, the sender decreases
cwnd by a factor of 0.125. Hence, if the window size
is W (t) at some time t (meaning that there are W (t)

unacknowledged packets in the network) then, in the
absence of losses, the window size after an RTT (round-
trip time), W (t+RTT ), would be 1.01×W (t), whereas
if there are losses during (t, t + RTT ), W (t + RTT )
will be around 0.875 ×W (t) (here we assume that, as
in New Reno and SACK, the window is reduced only
once during a round trip time even if there are several
losses). A feature of this algorithm is that, starting
from a window size of some fraction of the bandwidth-
delay product (BDP), the number of RTTs required to
reach BDP is independent of the link speed.

The outline of this paper is as follows. In Section
2, we present the system model and some preliminary
analysis. In Section 3, we analyse the performance of
Scalable TCP in the presence of packet errors. These
packet losses can be either due to link errors or some
window based dropping/marking scheme. We provide
an approximate expression of the throughput and com-
pare it with ns-2 simulations. In Section 4, we consider
the loss process to be Markovian but window indepen-
dent, and present a corresponding model. The simula-
tion results are presented in Section 5.

2 System Model

We consider the scenario where a single FTP ap-
plication transfers data using Scalable TCP. Scalable
TCP uses Multiplicative Increase and Multiplicative
Decrease(MIMD) congestion control in contrast to the
AIMD algorithm of the standard TCP. Let Wn denote
the sender’s congestion window at the end of the nth

RTT. The recursive equation for Wn is given by

Wn+1 ← α ∗Wn no losses,

Wn+1 ← β ∗Wn one or more losses,

where α > 1, and β < 1. Here we assume that the
sender decreases the window only once in a RTT even
if there were multiple losses. In [4], the author suggests
using α = 1.01 and β = 0.875.



Let An be a random variable such that An = α
if there were no losses in the nth RTT, and An = β
otherwise. We can rewrite the recursive equation as
follows.

Wn+1 = min(AnWn, Bu), (1)

where Bu is the upper bound on the sender’s window.
This upper bound may be due to the receiver’s buffer
limitation. In [5], the authors presented an analysis
of Equation 1 when the the process An was indepen-
dent of Wn and was i.i.d. In this paper, we extend
the analysis to window independent Markovian losses
and also to random window dependent losses. Random
window dependent losses include losses due to packet
errors which may occur on fibre optic links.

3 Window Dependent Random Losses :

An Approximation

Our analysis is based on the results obtained in [5].
We consider that the losses are window dependent.
Specifically, we assume that each packet is dropped (or,
equivalently, is in error) with a constant probability q.
As a consequence of this assumption, the probability of
packet drops in an RTT are no longer independent of
the window size in that RTT. Then, we propose an ap-
proximation to this model, which will enable us to com-
pute the throughput in the window dependent model
using the expression of throughput in the window in-
dependent model obtained in [5].

Let Wn be the window size in the nth RTT. Let pn

be the probability that the window is reduced in the
nth RTT. Then, pn is given by

pn = 1− (1− q)Wn . (2)

The process An is defined as

An =

{

α w.p. 1− pn,
β w.p. pn.

Let k be equal to − log[β]/ log[α]. Now, we propose an
approximation to the above model. For q · Bu << 1,
we can approximate pn as

pn ≈ qWn. (3)

Using the approximation (3), the average window drop
probability, E[p], in an RTT is given by

E[p] = qE[W ]. (4)

In [5], the throughput expression for window indepen-
dent random losses, when the sender’s window is upper

bounded, was obtained as

E[W ] = Bu(1− (k + 1)p)
1− α−1

pα−(k+1) − α−1 + (1− p)
,

(5)
where p was the probability of decreasing the window
in an RTT. This probability was independent to W .
Eqn. (5) together with (4) gives

E[W ] = Bu(1− (k + 1)qE[W ]) ·

1− α−1

qE[W ]α−(k+1) − α−1 + (1− qE[W ])
.

The above equation is a quadratic equation in E[W ],
namely

c2E[W ]2 + c1E[W ] + c0 = 0, (6)

where c2 = q 1−α−(k+1)

1−α−1 , c1 = −(1 + (k + 1)qBu), and
c0 = Bu. Therefore, its roots can be explicitly written
as

E[W ]1,2 =
−c1 ±

√

c2
1 − 4c2c0

2c2
, (7)

Proposition 3.1 The solution of equation (6) which
satisfies the inequality E[W ] ≤ Bu is

E[W ] =
−c1 −

√

c2
1 − 4c2c0

2c2
. (8)

We can now obtain an approximate throughput of the
session in the window dependent loss model by using
(8). We note that this expression is an approximation
and we shall compare this approximation with actual
simulation results at the end of Section 5.

We can now compute the limit of (8) when Bu tends
to infinity. It can be shown that

lim
Bu→∞

E[W ] =
1

q · (k + 1)
. (9)

The above equation gives the relation between the
expected window size (or, equivalently, the expected
throughtput) of a connection when the loss probabil-
ity is sufficiently large such that the upper bound of
the window is rarely reached or when there is no up-
per bound on the window. The expected throughput
is given by

E[η] =
1

RTT · q · (k + 1)
(10)

The expected throughput of the MIMD algorithm is
inversely proportional to the packet error probability,
unlike that of the AIMD algorithm. It is also inversely
proportional to k which is the ratio of the logarithm of
the increase parameter to the logarithm of the decrease
parameter. This result is similar to the result obtained
in [4].



4 Markovian Window Independent

Losses

4.1 General Model

In this section, we analyze the window process in the
presence of Markovian and window independent losses.
In each RTT, the probability of experiencing a loss is
independent of the window. However, this probability
depends on the loss probability in the previous RTT.
Let Ln denote the state of the loss process in the nth

RTT. The state space of Ln is assumed to be finite
with cardinality N . When Ln is in state i, the loss
probability in the nth RTT is pi for i = 1, 2, ..., N .
Let A denote the transition probability matrix of Ln.
The window evolution conditioned on the error process
being in state i is given by

Wn+1|(Ln = i) =

{

min(αWn, Bu) w.p. 1− pi,
max(βWn, Bl) w.p. pi.

(11)
In this model we consider the window process to be
bounded from both above and below. We now make
the transformation

Yn =
log[Wn]− log[Bl]

log[α]
, (12)

to obtain

Yn+1|(Ln = i) =

{

min(Yn + 1,M) w.p. 1− pi,
max(Yn − k, 0) w.p. pi.

(13)

The numbers k = − log[β]
log[α] and M = log[Bu]−log[Bl]

log[α] are

assumed to be integers. With this formulation, the
state space of Yn is the set of integers 0, 1, ...,M , and
there is a one to one relationship between W and Y ,
Therefore, the distribution of W can be obtained from
the distribution of Y .

The couple (Yn, Ln) is a two dimensional discrete-
time Markov chain. Let P = diag(pk) be a N × N
matrix. Let T be the transition probability matrix of
(Yn, Ln). Then,

T =







P A (I − P )A 0 0 . . . 0
P A 0 (I − P )A 0 . . . 0
P A 0 0 0 . . . 0
0 P A 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.
0 . . . P A 0 0 (I − P )A






.

The matrix T is the transition matrix of a finite
G/M/1-type Markov chain. The stationary probabil-
ity vector of the matrix T can be obtained using the
numerical techinques [6].

We can obtain more explicit results using matrix-
analytic and matrix geometric methods if we consider

two particular cases: a) the upper bound Bu is infinity;
and b) the lower bound Bl is zero. This is a topic of
our future research.

5 Simulation Results

In the congestion avoidance phase, Scalable TCP
uses the following algorithm to update the sender’s
window at the end of every RTT:

Wn+1 =















1.01×Wn
if no losses are detected
in the present RTT,

0.875×Wn
if one or more losses are
detected in the present RTT.

The simulations are performed using ns-2 [7]. The
source code of standard TCP was modified to incorpo-
rate the multiplicative increase of Scalable TCP. The
simulation setup has a source and a destination node.
The source node has infinite amount of data to send
and uses Scalable TCP with New Reno flavor. The
link bandwidth is 150Mbps and the two way propaga-
tion delay is 120ms. The window at the source is lim-
ited to 2000 packets to emulate the receiver advertised
window. The BDP for this system is approximately
2250 packets (packet size is 1040 bytes). In the Scal-
able TCP we have implemented in ns-2, the following
assumptions are made:

• The minimum window size, Bl, is 8. The growth
rate of Scalable TCP is very small for small win-
dow sizes. It has been recommended in [4] to use
the Scalable algorithm after a certain threshold.

• There is no separate slow start phase since slow
start can be viewed as a multiplicative increase
algorithm with α = 2.

• For each positive ACK received, the window is in-
creased by α− 1 packets. When a loss is detected,
the window is reduced by a factor of β. α is taken
as 1.01 and β is taken as 0.86. This value of β

gives k = − log[β]]
log[α] ≈ 15. We set α and β in this

way so as to be close to the values recommended
in [4] (α = 1.01, β = 0.875).

In the simulations, the desired performance metrics
are obtained by sampling the window at an interval
of RTT = 0.12s. We would like to note that in the
present setting RTT is very close to the propagation
delay, and hence, does not vary much. We compare
the approximate throughput formula for the window
dependent loss model as obtained using (8), with sim-
ulations. In Figures 1 and 2, the throughput is plot-
ted as a function of the packet loss probability, q, for



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1e-05  0.0001  0.001  0.01

T
h
ro

u
g
h
p
u
t 
(P

kt
s/

R
T

T
)

Packet loss prob.

Theo.
NS Sim.

Figure 1: Throughput versus packet loss probability.
Bu = 500.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1e-05  0.0001  0.001  0.01

T
h
ro

u
g
h
p
u
t 
(P

kt
s/

R
T

T
)

Packet loss prob.

Theo.
NS Sim.

Figure 2: Throughput versus packet loss probability.
Bu = 2000.

two different maximum window sizes, Bu = 500 and
Bu = 2000. The approximation gives a good match
over a large range of values of q. Although we had as-
sumed qBu << 1, the approximation seems to give a
good match for larger values of q, too. As q increases,
the expected window size, E[W ], and the probability of
being near Bu decreases. The inequality, qE[W ] << 1,
still holds for larger values of q, and therefore the ap-
proximation seems to give a good match.

5.1 Effect of Window Independent Markovian
Losses

The effect of bursty losses on the behaviour of AIMD
protocols was studied in [8]. It was observed that, in
the absence of explicit window limitation, the through-
put of TCP improved as the burstiness in the losses
increased. In this subsection, we study the behaviour

of Scalable TCP when burstiness increases in the losses.
First, we describe the error model used, and then com-
pare the result obtained using the model of Section 4
with simulations.

In order to induce burstiness in the losses, we con-
sider a Markovian loss process with two states. In the
”GOOD” state, the TCP session observes no losses. In
every RTT that the loss process is in the ”BAD” state,
the session suffers a loss with probability one. We in-
duce burstiness in losses by varying the average dura-
tion that the loss process stays in the ”BAD” state. In
the notation of Section 4,

A =

[

g 1− g
1− b b

]

, P =

[

0 0
0 1

]

. (14)

The stationary vector of A is given by

γ =

[

1− b

2− b− g

1− g

2− b− g

]

. (15)

Let pa be the average probability of error. Then,

pa =
1− g

2− b− g
.

We denote the burstiness parameter by b. As b in-
creases, the probability that a loss would occur in the
following RTT given that a loss occured in the present
RTT also increases. Therefore, losses tend to occur
more in bursts as b increases. In order to see the effect
of burstiness, we fix an average loss probability and
vary b from 0 to 0.9. When b is zero, the loss pro-
cess switches to a good state immediately after a loss.
Therefore, losses cannot occur in consecutive RTTs and
hence there is no burstiness in losses.

The basic simulation setup is the same as in the in-
dependent loss scenario. However, the losses now occur
according to a Markovian loss process with transtion
matrix A and loss probability matrix P given by (14).
In Figure 3, the average loss probability is fixed at
0.02. We observe that the throughput decreases as the
burstiness parameter increases. This observation may
seem to be contrary to that in [8] where it was noted
that bursty losses improve the throughput. However,
we note that, unlike in [8], in this study the sender’s
window is limited by the receiver’s advertised window,
and this leads to the decrease in throughput.

As the average loss probability increases, the effect
of bursty losses also increases. The graph of through-
put versus the burstiness parameter for pa = 0.04 is
given in Figure 4.

6 Conclusions

First, we presented a mathematical model and an
approximate analysis for computing the moments of



 360

 380

 400

 420

 440

 460

 480

 500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
h
ro

u
g
h
p
u
t 
(P

kt
s/

R
T

T
)

Burstiness parameter (b)

Anal.
Sim.

Figure 3: Throughput versus burstiness parameter.
pa = 0.02. Bu = 500.

 250

 300

 350

 400

 450

 500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
h
ro

u
g
h
p
u
t 
(P

kt
s/

R
T

T
)

Burstiness parameter (b)

Anal.
Sim.

Figure 4: Throughput versus packet loss probability.
pa = 0.04. Bu = 500.

the window size, and, in particular, the throughput
of a single connection using MIMD congestion control
algorithm in the presence of random window depen-
dent losses. In the case of a limitation on the sender’s
window, the throughput could be computed by solving
a quadratic equation. In the absence of a limitation,
the throughput was proportional to inverse of the loss
probability. We then studied the window behaviour in
the presence of Markovian window independent losses.
It was observed that when the sender’s window is lim-
ited by the receiver’s advertised window, bursty losses
lead to decrease in the throughput.

References

[1] S. Floyd. HighSpeed TCP for Large Congestion
Windows. RFC 3649, Experimental, December
2003.

[2] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Moti-
vation, Architecture, Algorithms, Performance. In
Proceedings of the IEEE INFOCOM, March 2004.

[3] L. Xu, K. Harfoush, and I. Rhee. Binary Increase
Congestion Control (BIC) for Fast Long-Distance
Network. In Proceedings of the IEEE INFOCOM,
March 2004.

[4] T. Kelly. Scalable TCP: Improving Performance in
Highspeed Wide Area Networks. Computer Comm.
Review, 33(2):83–91, April 2003.

[5] E. Altman, K. Avratchenkov, C. Barakat, A. A.
Kherani, and B. J. Prabhu. Analysis of Scalable
TCP. In Proceedings of the IEEE International
Conference on High Speed Networks and Multime-
dia Communications (HSNMC), 2004.

[6] G. Latouche and V. Ramaswami. Introduction to
Matrix Analytic Methods in Stochastic Modeling.
ASA-SIAM Series on Statistics and Applied Prob-
ability. SIAM, 1999.

[7] S. McCanne and S. Floyd. ns: Network Simulator.
Available at http://www.isi.edu/nsnam/ns/.

[8] E. Altman, K. E. Avrachenkov, and C. Barakat.
TCP in Presence of Bursty Losses. In Proceedings
of ACM SIGMETRICS, 2000.


