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Abstract

We introduce MarkMax a new flow-aware Active Queue
Management algorithm for Additive Increase Multiplicative
Decreases protocols (like TCP). MarkMax sends a conges-
tion signal to a selected connection whenever the total back-
log reaches a given threshold. The selection mechanism is
based on the state of large flows. Using a fluid model we de-
rive some bounds that can be used to analyze the behavior
of MarkMax and we compute the per-flow backlog. We con-
clude the paper with simulation results, using NS-2, com-
paring MarkMax with Drop Tail and showing how Mark-
Max improves both the fairness and link utilization when
connections have significantly different Round Trip Times.

Keywords: AQM, TCP, Drop Tail, MarkMax, Maxmin
Fairness

1 Introduction

It has been known for a long time that if TCP (Trans-
mission Control Protocol) connections with different RTTs
(Round Trip Times) share a bottleneck link, TCP connec-
tions with smaller RTTs take a larger share of the bandwidth
[11, 14]. In [13] the authors have observed that under syn-
chronization assumptions a TCP connection obtains a share
of the link capacity proportional to RTTα with 1 < α < 2.
In [9] the author has used a fluid approximation to derive
a more rigorous model for the case when connections have
different RTT . Then, in [3] it was observed that in the case
of not complete synchronization and, especially when RED
[12] is used, the distribution of the link capacity is more fair.
In particular, the experiments of [3] have suggested that a
TCP connection obtains a share of the link capacity propor-
tional to RTT 0.85. This was later justified by an analytical
model for the case of two competing TCP connections [5].
In [2] the authors have used a fluid model to analyze what
happens if only one connection reduce its sending rate when
multiple connections share the same bottleneck link but they
have ignored backlog dynamics: whenever the total arrival

rate at the bottleneck link is equal to its capacity one of the
connection reduces its sending rate, so that the backlog is
always zero. In [19] the authors have proposed an MLC(l)
AQM (Active Queue Management) algorithm to approach
maxmin fairness. In particular, for l = 1 the MLC(l) algo-
rithm performs similar to RED and for l = 2 the MLC(l)
algorithm performs similar to CHOKe [15]. The authors of
[19] argue that by choosing a significantly large parameter
l one can be arbitrary close to the maxmin fairness. The
present work indicates that this does not appear to be the
case.

Building upon [8, 2] and [18] we propose a new flow-
aware active queue management packet dropping scheme
(MarkMax). The main idea behind MarkMax is to identify
which connection should reduce its sending rate instead of
which packets should be dropped. To improve fairness we
propose to cut flows with the largest sending rate during
the congestion moments. Several AQM schemes previously
proposed do not discriminate between flows. Typically they
drop every incoming packet with a certain probability that
is a function of the state of the queue.

When AQM was first introduced in the 1990s it was un-
feasible to classify incoming packets in real time for high
speed links but with technological advances this is now pos-
sible. Furthermore, to reduce the numbers of flows that
need to be tracked, it is possible to concentrate on the larger
flows using the heavy-hitter counters of [18] to identify
large flows. Then, according to [6] we suggest to treat short
flows with priority and mark large flows which have the
largest backlog during the congestion moments. We also
suggest to use Explicit Congestion Notification (ECN) [16]
to minimize the number of dropped packets.

The paper is organized as follows: In the next Section 2
we specify the algorithm. Then, in Section 3 we perform its
theoretical analysis. We conclude the paper with a section
on NS-2 simulations illustrating the performance of Mark-
Max.



2 The MarkMax Algorithm

The algorithm has three parameters: the thresholds θ, θl,
θh, selected in such a way that θl < θ < θh. The threshold
θ acts as a “trigger,” whenever the queue size is above this
value one connection is cut. We propose two different ways
of selecting which connection to cut, as described later on.
The other two thresholds are needed because we are dealing
with a packet based system with non-zero propagation and
queueing delays.

Let q be the queue size and flag be a Boolean variable
initialized to TRUE. The following algorithm is executed
every time a new packet arrives:

enqueue packet
if q ≤ θl or q ≥ θh

then flag ← TRUE
if q ≥ θ and flag=TRUE

then a. select connection with MarkMax-B (full
backlog based MarkMax) or MarkMax-T
(backlog tail based MarkMax)

b. set the ECN flag in the first packet of the se-
lected connection from the head of the queue

c. flag ← FALSE

The θh and θl thresholds are used do determine whether
a congestion signal should be sent or not, if q ≥ θ. After a
congestion signal is sent the algorithm will not send another
one as long as the queue remains in the interval [θl, θh].

The θh threshold acts as a safety mechanism covering the
cases when a single cut in the sending rate of the selected
connection might not be enough to reduce the total arrival
rate to a value smaller than the capacity of the outgoing link.
Whenever the queue size is above θh we keep sending con-
gestion signals to the selected connection. This does happen
especially during the slow start phase.

Given that the system has non-zero propagation and
queueing delays whenever we set the ECN bit of a certain
connection we need to wait for the sender to receive the cor-
responding acknowledgment before it reduces its sending
rate. Before such reduction is noticeable at the bottleneck
link we still need to wait for the propagation and queueing
delay between the sender and the bottleneck link. During
this time the sending rate and the queue will keep growing
so that, at the bottleneck link, it is not immediately possible
to conclude whether a single cut is enough or not. Clearly if
we set θh too high the system will respond slowly, whenever
one cut is not enough, and the queue will be larger. On the
other hand if we set θh too close to θ unnecessary multiple
cuts can take place.

The lower threshold θl is needed because the queue size
can oscillate around θ, due to the arrival and departure of
single packets and to the bursty nature of the arrival flows.

If the queue size is close to θ the threshold can be crossed
multiple times, so if we use only one threshold θ this could
generate multiple congestion signals, potentially causing
the sender to reduce its sending rate multiple times1. Fur-
thermore it could happen that different connections are se-
lected, causing, again, multiple and unnecessary cuts. Be-
cause of these oscillations using θl is the only way to de-
termine whether the selected connection has reacted to the
congestion signal.

Even if a single cut is enough to reduce the total send-
ing rate to a value smaller than the capacity of the outgoing
link the additive increase aspect of TCP will increase the
sending rate again so that the backlog will, eventually, start
to increase again. Clearly if we set θl too low the backlog
might never reach it forcing the algorithm to use only the θh
threshold and to send multiple spurious congestion signals.

In the next section we use a fluid approximation to fur-
ther discuss the selection of θ and θh. Based on the simu-
lations we run it looks reasonable to suggest that θh and θl
can be set as follows: θh = 1.15 · θ and θl = 0.85 · θ.

After enqueueing the arriving packet the algorithm sets
the flag variable to TRUE if the queue size has grown too
large or has sufficiently decreased. In both cases the queue
size is sufficiently far from θ so that we should send a new
congestion signal if q ≥ θ. This is done by the last if state-
ment: at first a connection is selected, then the ECN flag
is set in the first packet from the head of the queue of the
selected connection. Finally the flag is set to FALSE to in-
dicate the fact that one congestion signal has already been
sent.

We propose two different criteria for selecting the con-
nection to be cut: MarkMax-B selects the connection with
the biggest (per connection) backlog and MarkMax-T se-
lects the connection with the biggest backlog in the final
part of the queue (the tail). As such the MarkMax-T variant
has one extra parameter, expressed as a percentage, indicat-
ing the portion of the queue that will be considered.

The per connection backlog is related to the sending rate
of each connection. Clearly a larger sending rate will re-
sult in larger backlog. More precisely the connection with
the biggest backlog is the connection with the largest av-
erage sending rate since the beginning of the current busy
period. Larger values of θ and corresponding larger queues
lead to a larger averaging window, basically increasing the
“memory” of the system. The idea behind MarkMax-T is to
reduce the averaging window in order to identify the con-
nection with the biggest instantaneous rate.

1The ECN specification does mention that senders should reduce the
sending rate only once per round trip time, but this is not enough to guar-
antee that multiple cuts will not take place if we mark multiple packets.



3 Fluid Model

Consider N TCP connections sharing a single bottleneck
link with capacity µ. Let RTTi be the round trip time of the
i-th connection (i = 1, . . . , N ) and λi(t) its sending rate at
time t. We approximate the behavior of the system using
a fluid model. Data is represented by a fluid that flows into
the buffer with rate λ(t) =

∑
i λi(t), and it leaves the buffer

with rate µ if there is a non-zero backlog. Fluid models
have been successfully used to model TCP connections. In
[1] it is shown that such a model adequately describes the
behavior of a TCP connection, provided the average sending
rate is large enough.

As in [7] we assume that, between congestion signals,
senders increase their sending rate linearly. If at time t0 the
sending rate of the i-th sender is λ0,i then at time t > t0 its
sending rate is λi(t) = λ0,i +αit, where αi = 1/(RTT i)2.
For the sake of simplicity we assume that RTT i is a con-
stant, as if it often done (see, for example, [4, 17, 7]).

It is not too hard to see that, if at time t0 the sending
rates are λ0,i and the total backlog is x0, the backlog x(t) is
given by:

x(t) = x0 + (λ0 − µ)t +
α

2
t2. (1)

Where λ0 =
∑

i λ0,i and α =
∑

i αi, provided x0 and λ0

are such that x0 ≥ (λ0−µ)2

2α . If x0 < (λ0−µ)2

2α and λ0 < µ
then, after a decreasing phase, the buffer will be empty for
a certain time and will finally start increasing again. In this
case

x(t) =


x0 + (λ0 − µ)t + αt2

2 , if t ≤ t1

0, if t1 ≤ t ≤ µ−λ0
α

α
2

(
t− µ−λ0

α

)2

, if t > µ−λ0
α

(2)

where t1 = µ−λ0−
√

(µ−λ0)2−2αx0

α .
Solving λ(t) = λ0 + αt for t and substituting in (1) we

have that

x(λ) =
λ2

2α
− λµ

α
+ x0 +

µλ0

α
− λ2

0

2α
(3)

provided x0 ≥ (λ0−µ)2

2α . A similar expression can be obtain
substituting the value of t in (2). Figure 1 shows some of
the possible trajectories of the system. Note that all these
parabolas have the same shape in the sense that as x0 and λ0

vary the only thing that changes is the height of the vertex
on the λ = µ line.

One possible way of adapting the MarkMax algorithm
to the fluid case is as follows: every time the total backlog
x(t) reaches θ we can “send a congestion signal” to the cor-
responding connection by multiplying its sending rate by β
(0 < β < 1). Throughout the paper we will use β = 1/2 (to

µ

θ

λ0

(2.1) (2.2)

(3)

(1)

βµ λ−λ+ λmax

x(λ)

λ+
∗

Figure 1: Some of the possible trajectories in the state space

model TCP New Reno) unless otherwise stated. The two se-
lection methods previously discussed can easily be adapted
as well: for MarkMax-B we select the connection with the
biggest backlog, while for MarkMax-T we pick the connec-
tion with the biggest instantaneous sending rate. Recall that
the idea behind MarkMax-T was exactly this and, with the
fluid model, we know λi(t) exactly so there is no need to
approximate it.

To simplify the analysis, unless otherwise specified, we
assume that the source reacts immediately to the conges-
tion signals. Combining this with the fact that we know the
sending rate after a cut and the are no short term oscillations
in the queue size, it suffices to use only one threshold (θ).
As a consequence whenever the backlog reaches θ the cho-
sen connection, say j, immediately changes its rate to βλj .
If

∑
i 6=j λi + βλj > µ (that is the arrival rate is still greater

than µ) the procedure is repeated by selecting a new con-
nection to cut (it can be the same one or not, depending on
the specific case) until the total sending rate is less than µ.
For the MarkMax-T version this procedure is guaranteed to
terminate: eventually all connections will be cut. While for
MarkMax-B this is not the case: if multiple cuts are needed
the algorithm will always pick the same connection. As
there is no feedback delay the backlog does not change. If
the sum of the rates of the other connections is greater than
µ even an infinite number of cuts will not suffice and the
algorithm will not terminate. Given that this happens only
in the fluid model and only for very large (and unrealistic)
values of θ we decided not to address the problem.

It is worth noting that using this fluid model it is also pos-
sible to exactly compute the per connection backlog, at any
given time t, using an approach based on network calculus
[10]. Let Ri,in(t) be the total amount of traffic sent by the
i-th connection until time t (this is generally called a “pro-
cess” in network calculus), that is Ri,in(t) =

∫ t

0
λi(u)du.

Similarly let Ri,out(t) be the total amount of traffic of con-
nection i that has left the buffer until time t. Clearly the
backlog at time t is xi(t) = Ri,in(t) − Ri,out(t) so that we
need to compute Ri,in(t) and Ri,out(t) to find xi(t). Let
t1, . . . , tn be the times at which a congestion signal was



sent (to any of the connections). Between two congestion
signals, say tj and tj+1, we know that if λi(t) = λi,j + αit
then Ri,in(t) = Si,j + λi,j(t − tj) + αi

2 (t − tj)2 where
λi,j , λi(tj) and Si,j , Ri,in(tj). This way we can also
compute Ri,in(τ) for any τ ≤ t.

To compute Ri,out(t) we can take advantage of the fact
that we are dealing with a fluid FIFO queue with contin-
uous inputs (the arrival rate is bounded) so that the de-
lay for all the bits exiting at time t is the same and it
is equal d(t) = inf {u ≥ 0|Rin(t− u) ≤ Rout(t)} where
Rin(t) =

∑
i Ri,in(t) and Rout(t) =

∑
i Ri,out(t). This im-

plies that Ri,out(t) = Ri,in(t − d(t)). As we know Ri,in(τ)
for any τ ≤ t we only need to find d(t) to compute Ri,out(t).

Let v , t− d(t), that is the bits that are exiting at time t
joined the queue at time v. We can find v exploiting the fact
that Ri,in(v) = Rout(t) and that Rout(t) = µ(t − u), where
u is the beginning of the system busy period containing t
and can be found because Ri,in(τ) is known for all τ ≤ t.
We also have that, if tk ≤ τ ≤ tk+1:

Rin(τ) = Sk + λ0(τ − tk) +
α

2
(τ − tk)2, (4)

where k , max {j|Sj < S} and Sj ,
∑

i Si,j . That is
the traffic exiting at time t entered in the buffer between
tk and tk+1. As tk ≤ v ≤ tK+1 we can use (4) to solve
Rin(v) = µ(t− u) for v and finally compute d(t) = t− v.
Knowing d(t) we can use Ri,out(t) = Ri,in(t − d(t)) to
compute xi(t) = Ri,in(t)−Ri,out(t).

Using this method we wrote a simulator for the fluid
model (in Python) that implements both variants of Mark-
Max. Using this simulator we have noticed that, provided
the value of θ is not too big, MarkMax-B and MarkMax-T
behave in a very similar way. In the remainder of this sec-
tion we present some results that can be derived using the
fluid model.

3.1 Guideline Bounds

Let tθ be such that x(tθ) = θ. Let λ− and λ+ be, re-
spectively, the total sending rate before and after the cut(s)
at time tθ. Let

g(λ) =

{
0, if λ ≤ µ
(λ−µ)2

2α , if λ ≥ µ
,

(marked as (2.2) in Figure 1) and let A = {(λ, x)|x >
g(λ)}. It is easy to verify that if (λ0, x0) ∈ A, then any tra-
jectory starting at (λ0, x0) stays in A. Furthermore, given
that we send the congestion signal(s) whenever x(t) = θ
and that there is no feedback delay, the maximum rate λmax

corresponds to intersection between g(λ) and x = θ in Fig-
ure 1. It is easy to see that λmax = µ +

√
2αθ.

Clearly all the trajectories described by (3) intersect the
x = θ line twice, once to the left of the λ = µ line and once

to the right. Only the intersection points to the right corre-
spond to an increasing backlog phase so that λ− is always
between µ and λmax. We can also bound λ+: as we keep
sending congestion signals until the arrival rate is less than
µ we have λ+ ≤ µ. The fact that λ− ≥ µ implies that λ+

cannot be smaller than βµ (this happens when λ+ = µ and
either there is only one connection or, in the case of multi-
ple connections, the biggest one is significantly bigger than
the others). Combining all this we have:

µ ≤λ− ≤ µ +
√

2αθ, (5)

βµ ≤λ+ ≤ µ. (6)

After the cut(s) the total sending rate will be reduced by
a factor β̃ , λ+/λ−, which is always smaller than β.

Lemma 1. If we use MarkMax-T then:

β

1 +
√

2αθ/µ
≤ β̃ ≤ N + β − 1

N
. (7)

Proof. Let λ−i be the sending rate of i-th connection at
time tθ so that λ− =

∑
i λ−i . And let j be such that

λj = maxi{λi}, then:

β̃ =
λ+

λ−
≤ 1− (1− β)

λ−j
λ−

≤ 1− (1− β)
λ−

λ−N
=

N − 1 + β

N
.

Where the first equality is the definition of β̃, the first in-
equality follows from the fact that λ+ ≤ βλ−j +

∑
i 6=j λ−j =

λ−−λ−j (1−β); this inequality is true because the right hand
side corresponds to the case where there is only a single cut
and in this case λ+ is largest. The second the inequality
follows from the fact that λj = maxi{λi} ≥ λ−

N .
By (6) and (5) we have that λ+ ≥ βµ and λ− ≤ µ +√

2αθ, combining these inequalities with the definition of
β̃ we have the lower bound.

Using the upper bounds in (5) and (7) we have:

λ+ = β̃λ− ≤ (µ +
√

2θα)
N + β − 1

N
. (8)

As the upper bound on β̃ corresponds to the case where only
one connection is cut, if the right hand side of (8) is less than
µ then a single cut of the connection with the biggest rate
will be enough. The following lemma follows immediately
by setting the right hand side of (8) less than or equal to µ
and solving for θ.

Lemma 2. If we use MarkMax-T and if

θ ≤ 1
2α

µ2(1− β)2

(N − 1 + β)2
, (9)

then λ+ = βλj +
∑

i 6=j λi ≤ µ (that is after a single cut
λ < µ), where λj = maxi{λi}.



Using the lower bound in (8) we can find a lower bound
on θ so that there will be no underflow. That is the backlog
is always positive and the link is fully utilized.

Lemma 3. If we use MarkMax-T and if

θ >
µ2(1− ζ)2

2α
, (10)

where ζ = β

1+
√

2αθ/µ
, then the backlog is positive.

Proof. We have that:

λ+ = β̃λ− ≥ ζµ

>
µ−
√

2αθ

µ
µ = µ−

√
2αθ,

where the first inequality follows from (7) and (5) and the
second from (10). It is easy to see that if λ+ > λ+

∗ =
µ −
√

2αθ then the backlog is always positive (see Figure
(1): we want the vertex of the parabola (3) to be on the
x = 0 axis), which completes the proof.

We conclude with a bound that can be used as a guideline
to set θh.

Lemma 4. At time t = tθ + RTTj

x(t) ≤ θ +
√

2αθRTT j +
α

2
RTT 2

j (11)

where RTTj = maxi RTTi.

Proof. Consider a cycle that start at time tθ then at time
t = tθ + RTTi

x(t) = θ + (λ− − µ)(t− tθ) +
α

2
(t− tθ)2

= θ + (λ− − µ)RTTi +
α

2
RTT 2

i

≤ θ +
√

2αθ max
i
{RTTi}+

α

2
max

i
{RTT 2

i },

where the first equality follows from (1), and the inequality
from the upper bound in (5).

Using (11) it is possible to know by how much the queue
could grow between the time the threshold θ is reached and
the time the “slowest” of the connections (i.e. the one with
the biggest RTT ) reacts to a congestion signal.

4 Simulation Results

We have modified the NS-2 simulator in order to simu-
late the behavior of the proposed algorithm. We have im-
plemented both the MarkMax-B and the MarkMax-T, re-
ferred to as MM-B and MM-T, respectively, in this section.

For MM-T we only consider the last 10% of the queue (re-
call that for this version we are considering only the final
part of the queue when determining the connection with the
biggest backlog). We have compared MarkMax with the
standard Drop Tail (DT) policy, by setting the queue size
for DT equal to θ. For the MM case the buffer size was
large enough to be considered unlimited so that we could
verify that MM can stabilize the queue size.

We consider three scenarios, the corresponding topolo-
gies are presented in Figure 2. Each node si has a TCP
connection with node di. All the connections have a Maxi-
mum Segment Size (MSS) of 540 B. The bottleneck link is
the link between the nodes S and D and has capacity µ and
propagation delay abtlnk. The links (si, S) and (D, di) have
capacity µi and propagation delay ai. For the first scenario
(see Figure 2(a)) there are only two sources and two desti-
nations while for the second scenario there is an additional
TCP connection sending traffic in the opposite direction on
the bottleneck link in order to introduce some variability in
the flow of the acknowledgments for connections 1 and 2.
The links used by this additional connection are represented
as dotted lines in Figure 2(a). In the third scenario we con-
sider 10 connections (see Figure 2(b)) with all the traffic
going in one direction. In all cases only the link (S, D)
uses MM while all the other links use DT.

Let q̄ be the average queue size at the bottleneck link
and q̄i (i = 1, ..., N ) be the average queue sizes for the
i-th connection. Using Little’s formula we have that the
average queueing delay at the bottleneck link is T̄ = q̄/µ
. We can express the round trip time of the i-th connec-
tion as: RTT i = 4ai + 2abtlnk + T̄ , assuming the service
time of each packet is negligible. Let δi , RTT i − T̄ =
4ai + 2abtlnk. By increasing δi for some connections we
model different propagation and queueing delays of multi-
ples links that, for the sake of simplicity, are not explicitly
considered.

Let tf be the total simulation time. Given that all the
sources start sending data at time 0 we have that the bot-
tleneck link could transmit at most µtf units of data. Let
D(tf) be the total amount of data actually transmitted dur-
ing the simulation so that the utilization of the link is
ρ , D(tf)/(µtf). Let Di(tf) be the total amount of data
received by the i-th connection so that gi = Di(tf)/tf is the
corresponding goodput. To compare the fairness of differ-
ent solutions we use Jain’s fairness index which is defined
as:

J =

(∑N
i=1 gi

)2

N
∑N

i=1 g2
i

.

Note that 1
N ≤ J ≤ 1 and that bigger values indicates

greater fairness.
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Figure 2: Network topologies

4.1 Fluid Model

Using the fluid model simulator we investigate the be-
havior of MarkMax-B for different values of θ. In this
case µ =70 Mbit/s, RTT1 =12 ms, αi = 540 · 10−6

RTT2
i

MB/s,
i = 1, 2. Table 1 shows the values of Jain’s index and bot-
tleneck link utilization for this case. As θ increases the uti-
lization increases as well, due to the increase in the average
backlog size. When θ is not sufficiently large the utilization
is less than one due to periodic underflows. For each value
of θ Jain’s index decreases but it is not too far from 1.

θ = 60MSS θ = 240 MSS θ = 960 MSS
RTT2
RTT1

J ρ J ρ J ρ

3 0.9893 0.890 0.9906 0.9500 0.9815 0.9964

7 0.9874 0.892 0.9874 0.9401 0.9788 0.9990

10 0.9861 0.890 0.9869 0.9400 0.9760 0.9990

20 0.9846 0.889 0.9863 0.9440 0.9754 0.9990

50 0.9836 0.899 0.9821 0.9433 0.9664 0.9925

Table 1: Fluid Model: Jain’s index, utilization.

4.2 Scenario 1

For Scenario 1 we set µ =70 Mbit/s,
µ1 = µ2 =300 Mbit/s, δ1 =12 ms, θ =240 MSS,
θl =200 MSS, θh =280 MSS, θDT =240 MSS. Table 2
gives the values of Jain’s index and link utilization for
different values of δ2/δ1 and different queue management
algorithms. Both MM variants outperform DT except in
the first case when δ2/δ1 = 3. In this case Jain’s index for
DT is bigger but the utilization is somewhat lower. At the
same time the difference between Jain’s index for DT and
MM is significantly large for larger values of δ2/δ1. Table
3 shows that the average queue size for the MM algorithms
is somewhat larger than for DT. This is due to the increased
link utilization obtained by MM.

We have verified that in this case the hypothesis of
Lemma 2 are satisfied and in the simulations it is indeed
the case that one cut is always enough to reduce the total
sending rate to a value less than µ.

As the difference between MM-B and MM-T is not sig-
nificant we only use MM-B in the remaining scenarios.

DT MM-B MM-T
δ2
δ1

J ρ J ρ J ρ

3 0.9893 0.9751 0.9853 0.9999 0.9633 0.9999

7 0.7540 0.9720 0.9625 0.9999 0.9515 0.9999

10 0.5361 0.9563 0.9494 0.9999 0.9501 0.9997

20 0.5484 0.9993 0.9561 0.9994 0.9258 0.9997

Table 2: Scenario 1: Jain’s index, utilization.

DT MM-B MM-T
δ2
δ1

q̄/ B T̄ /ms q̄/ B T̄ /ms q̄/ B T̄ /ms

3 78373 8.9 87257 9.9 86753 9.9

7 74802 8.5 81723 9.3 81547 9.3

10 69219 7.9 80019 9.1 79502 9.1

20 68268 7.8 74297 8.4 74189 8.4

Table 3: Scenario 1: average queue size and delay.

4.3 Scenario 2

The only difference between the first and second sce-
nario is that there is one additional TCP connection (s3, d3)
sending data in the opposite direction on the bottleneck link.
All the parameters are the same as in scenario 1 with the
only difference being that the buffer size for the DT queue
between D and S (that is the queue used by the data traffic
of connection 3 and the acknowledgments of connections 1
and 2) is set to 240 MSS and the δ3 = δ2 . Table 4 shows
that as in the previous scenario MM-B outperforms DT. Not
surprisingly the presence of traffic competing with the ac-
knowledgments on the (D,S) link does alter the perfor-
mance of MM-B, for lower values of δ2/δ1 there is a slight
increase in Jain’s index but for higher values it decreases
and the utilization is always lower than in the previous case.
Most likely this is due to the fact that the presence of traffic
disrupting the flow of the acknowledgments increases the
round trip time.

DT MM-B
δ2
δ1

J ρ q̄/ B J ρ q̄/ B

7 0.8561 0.9338 34443 0.9637 0.9600 41966

10 0.7769 0.9497 32174 0.9632 0.9510 39486

20 0.6910 0.9146 28699 0.9228 0.9702 41350

50 0.5244 0.9262 29021 0.8572 0.9937 50408

Table 4: Scenario 2: Jain’s index, utilization and average
queue size.



4.4 Scenario 3

In the last scenario we have 10 connections sharing
the (S, D) link and no connections using the reverse
link, µ =70 Mbit/s, µi =300 Mbit/s, i = 1, . . . , 10,
δ1 =12 ms, δi+1 =

√
2δi, i = 1, . . . , 9, θ =240 MSS,

θl =200 MSS, θh =280 MSS, θDT =240 MSS. Table 5
shows that MM-B has a significantly higher Jain’s index,
and slightly higher utilization, at the expenses of a moder-
ate increase in the average queue size.

J ρ q̄/ B T̄ /ms

DT 0.5848 98,91 65207 7

MM-B 0.9313 99,99 98913 11

Table 5: Scenario 3: Jain’s index, utilization and average
queue size and delay

5 Conclusion and Future Work

We have introduced MarkMax: a simple flow-aware
AQM algorithm. We have used a fluid model to set the pa-
rameters of the algorithm as well as to analize its behaviour.
We have also shown how to compute the per-flow backlog
using such a model. We have simulated the two proposed
variants (MarkMax-B and MarkMax-T) using NS-2, show-
ing how they improve the fairness and link utilization com-
pared to the standard Drop Tail algorithm.

These results are definitely promising and warrant fur-
ther analysis. Of all the issues that we plan on addressing
we would like to mention performance and queue stability
with large number of connections and comparison between
MarkMax-B and MarkMax-T. So far we have conducted
simulations with up to 10 connections but it is not imme-
diately clear if the algorithm would perform equally well
with more connections. It is conceivable that, at least in
some cases, cutting a single connection could no be enough
to bring the total sending rate to a value smaller than µ. We
would also like to determine whether MarkMax-B always
outperforms MarkMax-T as indicated by the simulations we
run so far or if it the situation can be reversed by properly
selecting the fraction of the queue that is considered while
computing the per-connection backlog in MarkMax-T.
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