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Abstract

We study the interaction between the MIMD (Multiplicative Increase Multiplicative De-
crease) congestion control and a bottleneck router with Drop Tail buffer. We consider the
problem in the framework of deterministic hybrid models. We study conditions under which
the system trajectories converge to limiting cycles with a single jump. Following that, we
consider the problem of the optimal buffer sizing in the framework of multi-criteria opti-
mization in which the Lagrange function corresponds to a linear combination of the average
throughput and the average delay in the queue. As case studies, we consider the Slow Start
phase of TCP New Reno and Scalable TCP for high speed networks.

Keywords: Deterministic hybrid model, Stability, Pareto set, Optimization

1 Introduction

Most traffic in the Internet is governed by TCP/IP (Transmission Control Protocol and Internet
Protocol) [1, 15]. TCP protocol tries to adjust the sending rate of a source to match the available
bandwidth along the path. The current TCP New Reno uses MIMD congestion control during
the initial Slow Start phase and AIMD (Additive Increase Multiplicative Decrease) congestion
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control during the principal Congestion Avoidance phase. In the AIMD congestion control
scheme in the absence of congestion signals from the network, TCP enlarges the congestion
window linearly in round trip times and, upon the reception of a congestion signal, TCP reduces
the congestion window by a multiplicative factor. In the MIMD congestion control scheme
in the absence of congestion signals from the network TCP enlarges the congestion window
exponentially in round trip times.

A significant increase of link capacities has posed a challenge to the current TCP implemen-
tation. The current TCP New Reno version is not able to utilise efficiently high speed links
[12]. To mitigate this problem, several new TCP versions (HS-TCP, FAST-TCP, Scalable TCP,
H-TCP, CUBIC-TCP, BIC-TCP for example) have been proposed [12, 16, 17, 18, 25, 30]. These
algorithms have in common that in the absence of congestion, the sources enlarge the congestion
window in a much more aggressive fashion than the standard TCP New Reno does. An extensive
overview and comparison of different TCP versions for high capacity links is given in [19]. In the
present work we analyze the MIMD congestion control which is a base for Scalable TCP [17].

On the other hand, most of the routers in the Internet are of Drop Tail type. In basic Drop
Tail routers, apart from the router capacity, the buffer size is the only parameter to be tuned. In
fact, the buffer size is one of the few parameters of the TCP/IP network that can be managed
by network operators. This makes the choice of the router buffer size very important in the
TCP/IP network design. This choice has recently received considerable attention [3, 4, 5, 6, 7,
11, 13, 22, 23, 24, 26, 27, 28, 29]. (This is far from an exhaustive list of relevant references.)
However, most of these works study only the AIMD congestion control algorithm.

In this paper we study the interaction of MIMD congestion control algorithms with Drop
Tail buffers. We consider the problem in the framework of deterministic hybrid models, which
describe systems with both discrete and continuous behavior. Recently, hybrid models have
been successfully applied to the modeling of communication networks [4, 5, 7, 8, 14]. The model
in the present paper is a significant extension of the models in [7]. In particular, in [7], the
Round Trip Time (RTT) is regarded ignorably small, so that there is no delay between sending
data out and receiving the corresponding acknowledgements. This means that as soon as the
buffer is filled full, there will be an instantaneous multiplicative reduction (without any delay)
on the sending rate. In comparison, in the current work, as will be seen in Section 2, we
take accurately into account the time-varying nature of the RTT, resulting in a time-varying
delay between sending out data and receiving corresponding acknowledgements. The present
more accurate model allows us to provide conditions for the absence of multiple subsequent
reductions of the congestion window and estimate more accurately the minimal buffer size for
the full link utilization. Furthermore, we recommend the use of the Delayed Ack mechanism [1]
and the reduction of the window growth parameter in order to avoid the undesirable regime of
subsequent window reductions. Additionally to the analytical expression for the minimal buffer
size for the full link utilization, we construct the Pareto set to achieve the trade off between
the high link utilization and small queueing delays. In particular, our results suggest that in
order to achieve high utilization, one can size the buffer much smaller than the bandwidth-delay
product. Our analytical results are confirmed by NS simulations [20].

This research was partially supported by the Alliance: Franco-British Research Partnership
Programme, project ‘Impulsive Control with Delays and Application to Traffic Control in the
Internet’ (PN08.021). Research of PhD student Mr. Y.Zhang was supported by the ORSAS
award and the University of Liverpool Graduate Association postgraduate scholarship (Hong
Kong).
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2 Mathematical model

Consider a long-lived MIMD TCP connection that sends data through a bottleneck router.
Denote by w(t) the instantaneous congestion window of the TCP connection at time t ∈ [0,∞).
Let x(t) be the amount of data in the bottleneck queue at time t, B > 0 be the size of the Drop
Tail buffer, and µ be the capacity of the bottleneck router.

If x(t) < B, the evolution of w(t) is given by differential equation

dw

dt
=

mw

T + x(t)/µ
. (1)

Here T is the two way propagation delay and m being a constant, is some fixed multiplicative
factor. Note that T + x(t)/µ corresponds to the RTT at time moment t.

The sending rate of the window based congestion control is given by

λ(t) =
w(t)

T + x(t)/µ
. (2)

We emphasize that the time parameter t corresponds to the local time observed at the router.
When x reaches B at time t∗, i.e. x(t∗) = B, the buffer starts to overflow. The overflow

of the buffer will be noticed by the sender only after the time delay δ = T + B/µ. Upon the
reception of the congestion signal at time t∗ + δ, the congestion window is reduced according to

w(t∗ + δ + 0) = βkw(t∗ + δ − 0). (3)

Usually, k = 1, but sometimes it is necessary to send several congestion signals in order to reduce
the sending rate below the transmission capacity of the bottleneck router.

Therefore, between the instantaneous jumps of the congestion window w, we have the dy-
namical system

ẋ =











λ(t) − µ, if 0 < x(t) < B, or x(t) = 0 and λ(t) ≥ µ,
or x(t) = B and λ(t) ≤ µ;

0 otherwise,
(4)

where λ(t) is given by (2).

Let us discuss particular parameter settings. Curently, the MIMD congestion control mech-
anism is used in:

(a) Slow Start regime [1] in the standard TCP New Reno;

(b) Scalable TCP [17] for high speed links.

In the Slow Start regime we have β = 0.5. The value of m depends on whether the Delayed
Ack mechanism [1] is enabled or not. If the Delayed Ack mechanism is enabled, m = 0.5, and if
it is not enabled, m = 1.

In Scalable TCP we have β = 0.875 and m = 0.01.
We would like to recall that a similar hybrid model can be used to study the AIMD congestion

control [5, 8, 14]. One only needs to change equation (1) to the following equation

dw

dt
=

M

T + x(t)/µ
.

The AIMD congestion control is used in the principal Congestion Avoidance regime of TCP
New Reno. In this case, we have β = 0.5, and M is equal to the half packet size if the Delayed
Ack mechanism is enabled, and otherwise M is equal to the packet size.
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3 Convergence to limiting cycles

Let us first begin with some definitions.

Definition 1 A cycle is defined as the trajectory starting with the initial state w(0) = w0 =
W0 ∈ [β(µT+B), µT+B), x(0) = x0 = B at t = 0, and reaching the same point for the first time
at some moment Tcycle, called the duration of the cycle. Note that Tcycle > δ = T +B/µ because
W0 < B + µT. A cycle with x(t) staying at zero for a positive time interval is called clipped.
Otherwise it is unclipped. In particular, a cycle with x(t) staying at 0 at a single time moment
is called critical, and it is referred to as an unclipped cycle. In addition, a cycle, possibly with
more than one instantaneous jump though (i.e. k > 1 in (3) ), is called simple, if it has only
one loop (one convex time interval containing no jumps (3)). Otherwise, it is called complicated
(see Figure 7 at the end of the Appendix).

The case of a simple cycle with k = 1 is most interesting because in this case we avoid
multiple subsequent packet losses. Such a cycle will be called a 1−cycle or a cycle of order one.
In the general case, a simple cycle is called k−cycle (a cycle of order k).

Let

B∗ = µT
1 − em+1β

m+1
m − (m+ 1)em

(

1 − eβ
1
m

)

βems1

(m+ 1)em
(

1 − eβ
1
m

)

βems1

, (5)

where

s1 =
1

m+ 1
ln





1 − emβ

βemm
(

1 − eβ
1
m

)



 . (6)

Theorem 1 (a) For an arbitrary B > B∗, the system trajectory converges to the limiting
unclipped 1-cycle from an arbitrary initial state iff β < β̄, where β̄ is the single solution to

(m+ 1)emβ̄(1 − eβ̄
2
m ) + em+1β̄2(1+ 1

m
) = 1 (7)

in the interval (0, e−m).

(b) Suppose B = B∗. Then the limiting cycle is of order one and critical iff β < e−m.

(c) Suppose B < B∗. Then the limiting cycle is of order one and clipped iff β < e−m.
In cases (b) and (c), the system trajectory also converges to the limiting cycle from an

arbitrary initial state.
A simple 1−cycle (clipped or unclipped) exists iff βem < 1.

Remark 1 According to the proofs given in the Appendix, in case (a), condition β < β̄ can be
relaxed to β < e−m sacrificing the convergence from an arbitrary initial state. Specifically, if
β < e−m, B > B∗, and w0 ∈ [βem(B + µT ), B + µT ), then the system trajectory converges to
the limiting cycle, which is of order one and unclipped.

Inequality β < β̄ is a sufficient condition for the convergence from an arbitrary initial state
in all three cases of Theorem 1.

Suppose β̄ ≤ β < e−m. According to the proof of Theorem 1, in case B > B∗ a trajectory
does not converge to the limiting unclipped 1−cycle iff after each series of jumps w(t∗ + δ+0) <
βem(B+µT ). In this situation, double jumps always happen, so that one can use the developed
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theory with β being replaced with β2. As a result, one can face only the convergence to a simple
2−cycle which can be unclipped, critical or clipped. Complicated cycles never appear.

In particular, the above theorem implies that the buffer size B∗ is the minimal buffer size
for the full link utilization. The following asymptotics holds for small values of m

B∗(m) = µT
(1 − β +m ln(m))

β
+ o(m ln(m)). (8)

The asymptotics (8) can be verified by the application of the L’Hôpital’s rule. The asymptotics
(8) together with the exact expression (5) can be considered as an improvement of the results
presented in [7, 10]. In particular, for Scalable TCP the above asymptotics gives B ∗ ≈ 0.09µT .
Thus, a single Scalable TCP connection requires about 10 times less buffer space than a standard
TCP New Reno connection, which requires up to µT buffer space [27].

Note that in the Slow Start phase of TCP New Reno without the Delayed Ack mechanism
[1] the condition β < e−m is violated and it is possible to have subsequent window reductions.
However, if the Delayed Ack mechanism is enabled, the value of m reduces from 1 to 0.5 and
condition β < e−m is satisfied. We note that if m = 0.5, condition β < β̄ is not satisfied since
in this case β̄ = 0.43. However, even if condition β < β̄ is violated, the system trajectory can
still converge to 1-cycle from some initial conditions. To avoid for sure the undesired regime of
multiple window reductions, one can reduce the value of m to 0.4 in the Slow Start regime.

In the case of Scalable TCP, the inequality β < β̄ is valid as β̄ ≈ 0.98, and the regime of
multiple window reductions is not realized in any network conditions and configurations.

4 Pareto set for the buffer sizing

Let us study what effect has the choice of the buffer size on the performance of TCP with MIMD
congestion control. In particular, we are interested in the optimal buffer sizing. We have two
criteria here, namely the average throughput, defined by

ḡ = lim
t→∞

1

t

∫ t

0
g(t)dt,

where

g(t) =

{

λ(t) if x(t) < B
µ if x(t) = B,

and the average amount of data in the buffer, defined by

x̄ = lim
t→∞

1

t

∫ t

0
x(t)dt.

More precisely, one is interested in maximizing ḡ and minimizing x̄. Clearly those two ob-
jectives are contradictory. This is a typical situation in multi-criteria optimization. A standard
approach is to optimize one criterion under constraints on the other one. And the solution
providing the optimality gives a point in the Pareto set. As is known, see e.g. [21], it can be
obtained by solving the optimization problem

max
B

{

lim
t→∞

1

t

∫ t

0
(c1g(t) − c2x(t))dt

}

with (c1, c2) ∈ IR2
+. Different values of c1 > 0 and c2 > 0 lead to the complete Pareto set which

must be closed. Based on the Pareto set, one can make the decision on the parity between the

5



two objectives. Mathematical description of partial orders and connected Pareto sets can be
found in [9].

We study the Pareto optimality in the framework of the simple clipped (or critical) 1−cycle,
i.e. we assume that β < e−m and B ≤ B∗. The formulae for ḡ and x̄ can be written as

ḡ =
1

Tcycle

∫ Tcycle

0
g(t)dt,

and

x̄ =
1

Tcycle

∫ Tcycle

0
x(t)dt,

where Tcycle is the duration of the cycle. The following propositions provide expressions for
the average sending rate, throughput, and amount of data in the buffer. In particular, the
expressions allow us to plot the Pareto set parameterized by the buffer size.

Firstly, consider the case B ≥ B∗ and suppose the limiting 1−cycle is realized (see Theorem
1(a)). Then the duration of that cycle equals

Tcycle =
B + µT

µm

{

m+
(1 − eβ

1
m )(m+ 1)(1 − emβ)

1 − em+1β1+ 1
m

}

, (9)

and the following proposition holds.

Proposition 1 The average sending rate is given by

λ̄ =
(1 − β)em(1 − eβ1/m)(m+ 1)µ

[

m(1 − em+1β1+1/m) + (1 − eβ1/m)(m+ 1)(1 − emβ)
] , (10)

the average throughput is given by
ḡ = µ,

and the average amount of data in the buffer is given by

x̄ =
1

Tcycle

{

TB

∫ S

0
y(s)ds+

B2

µ

∫ S

0
y2(s)ds+BT +

B2

µ

}

, (11)

where S = 1
m ln 1

β − 1, and

y(s) =
β(1 + µT

B )em(1 − eβ1/m)

1 − em+1β1+1/m
(ems − e−s) −

µT

B
+ e−s(1 +

µT

B
).

The proofs are presented in the Appendix.
Secondly, consider the case B < B∗ and β < e−m. According to Theorem 1(c), all trajectories

converge to the clipped limiting 1−cycle; the phase portrait is presented in Figure 1.
To calculate the main parameters λ̄, ḡ, and x̄, we need the following quantities and functions.
- Starting point of the cycle, i.e., the minimal value of w in Figure 1:

w0 = µTβem(SCD+1), (12)

where SCD is the single positive solution of

µT (emSCD + e−SCDm) − (m+ 1)(µT +B) = 0. (13)
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-Duration of the cycle:

Tcycle =
T

m
ln

1

β
+
B

µ

{

∫ SAB

0
YAB(s)ds+

∫ SCD

0
YCD(s)ds+ 1

}

, (14)

where SAB is the smaller positive solution of

0 = w0e
mSAB − µT (m+ 1) + e−SAB [(m+ 1)(B + µT ) − w0] ; (15)

here

YAB(s) =
1

B(m+ 1)

{

w0e
ms − µT (m+ 1) + e−s [(B + µT )(m+ 1) − w0]

}

, s ∈ [0, SAB ], (16)

YCD(s) =
µT

B(m+ 1)
ems −

µT

B
+ e−s

(

µTm

B(m+ 1)

)

, s ∈ [0, SCD]. (17)
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Figure 1: Clipped 1-cycle for Scalable TCP with µ = 1Gbps, T = 10ms, and B = 100pkts.
Packet size is 4000 bits.

Proposition 2 The average sending rate is given by

λ̄ =
w0

Tcyclem

(

1

β
− 1

)

, (18)

the average throughput is given by

ḡ =
1

Tcycle

{

w0

m
(

1

βem
− 1) + µT +B

}

, (19)

and the average amount of data in the buffer is given by

x̄ =
1

Tcycle

{

TB

(

∫ SAB

0
YAB(s)ds+

∫ SCD

0
YCD(s)ds

)

+
B2

µ

(

∫ SAB

0
Y 2

AB(s)ds+

∫ SCD

0
Y 2

CD(s)ds

)

+B

(

T +
B

µ

)

}

. (20)
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The proofs are presented in the Appendix.
According to Proposition 1, if B ≥ B∗ and the limiting 1-cycle is realized, then λ̄ given by

(10) is strictly greater than µ and B-independent. Thus, (λ̄ − µ) 6→ 0 as B → ∞. It means
that in the MIMD case the rate of data loss in buffer overflow does not decrease as the buffer
size increases. In contrast, in the AIMD case, we have (λ̄ − µ) → 0 as B → ∞ [5]. This
surprising result has the following explanation. In the MIMD case, when the cycle is unclipped
both the amount of data transfered over the cycle and the cycle duration are proportional to
B + µT . For the parameters of the Slow Start phase of TCP New Reno with the Delayed
Ack mechanism (m = 0.5), the expression (10) gives (λ̄ − µ)/µ ≈ 0.3. Fortunately, the Slow
Start phase switches to the Congestion Avoidance phase after the first loss is detected by triple
duplicate acknowledgement [1]. According to (10), Scalable TCP induces as little as 0.1% losses.

According to Proposition 2, as B → 0, we have x̄ → 0 and ḡ → µ(βem − 1 −m)/ ln(β). In
particular, in the case of Scalable TCP, we have ḡ → 0.95µ as B → 0. We recall from [5] that for
AIMD, when the packet size is small in comparison with the BDP (Bandwidth Delay Product)
µT , we have ḡ → µ(1+β)/2 as B → 0. Thus, the Congestion Avoidance phase of TCP New Reno
with β = 0.5 has the worse link utilization of 0.75µ than that of Scalable TCP with β = 0.875
(0.95µ) when the buffer size is small. It turns out that this difference mostly comes from different
values of β. In fact, one can easily check that µ(βem − 1 −m)/ ln(β) = µ(1 + β)/2 + o(1 − β)
and consequently, if one chooses the same value of β close to one for AIMD and MIMD, the link
utilization would be the same for the two congestion control mechanisms for small buffer sizes.

5 Simulation results

We perform network simulations with the help of NS-2, the widely used open-source network
simulator [20]. We consider the following benchmark example of a TCP/IP network with a single
bottleneck link. The topology may for instance represent an access network. The capacity of
the bottleneck link is denoted by µ and its propagation delay is denoted by d. We will consider
several choices for the values of µ and d. The packet size is 500bytes = 4000bits. When we
simulate a scenario with multiple connections, we will assume that each connection is connected
to the bottleneck link via its own access link. The capacities of the access links are supposed to
be large enough so that they do not hinder the traffic.

We consider the MIMD control strategy with m = 0.01 and β = 0.875, that is, the standard
values for Scalable TCP.

5.1 Impact of the buffer size on the link utilization

We first study how the utilization depends on the buffer size. We consider the values µ = 1Gbps
= 1 Gigabit per second and d = 5ms (thus T = 2d = 10ms).

In Figure 2, based on our analytical results, we plot the value of B∗ (equation (5)) as a
function of m. We observe from Figure 2 that for m = 0.01, the value of B∗ is approximately
230 packets (the packet size is 4000 bits).

We investigate the impact of the buffer size on the link utilization. From Theorem 1 it
follows that according to the fluid model, B∗ = 230 packets is the minimum buffer size such
as the link is utilized at 100%. Note that the BDP for these values is equal to 2500 packets.
According to the well known rule of thumb for AIMD connections [27], the minimum buffer size
that guarantees 100% utilization is 2500 packets.

Our fluid model predicts that for MIMD, the minimum buffer is much smaller (230 in this
example). In Figure 3 we provide the utilization of the link for several values of the buffer size.
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Figure 2: B∗ (in packets) as a function of m for Scalable TCP with µ = 1Gbps, T = 10ms, and
β = 0.875.

We note that in the simulation the minimum buffer size where we observe 100% utilization is 450
packets. We note that the utilization when the buffer size is 230 packets is already quite high
since it is very close to 99%. Clearly our fluid model predicts a much smaller value, which can
be explained by the fact that the simulated traffic is not as smooth as it is in the fluid model.
However we note that the fluid model estimation for B∗ is of the same order as the optimal
value obtained via simulations when comparing it with the BDP rule-of-thumb for AIMD given
in [27].
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Figure 3: Utilization against buffer size

5.2 Trajectories of the dynamical systems

We simulate now the evolution in time of the congestion window, the buffer occupancy and the
sending rate. We consider the same example as above, namely, µ = 1Gbps = 1 Gigabit per
second and d = 5ms (thus T = 2d = 10ms). The packet size is 4000 bits. We consider again
Scalable TCP, that is, m = 0.01 and β = 0.875.
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In Figures 4 and 5 we depict the curves of x(t), w(t) and λ(t) for B = 230 and B = 500,
respectively. As predicted by Theorem 1, for B = 230, the cycle is critical, and the link is utilized
at 100%. For B = 500, the cycle is unclipped and the buffer does never empty. For B = 100, we
plot the phase portrait of a clipped cycle in the plane (w, x) in Figure 1 for illustrative means.
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Figure 4: Evolution in time of the buffer occupancy, congestion window and sending rate for
Scalable TCP with µ = 1Gbps, T = 10ms, and B = 230pkts.
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Figure 5: Evolution in time of the buffer occupancy, congestion window and sending rate for
Scalable TCP with µ = 1Gbps, T = 10ms, and B = 500pkts.

The figures for sending rate λ(t) might appear a bit odd from the first glance. However,
the flat part with the steep increasing part following it can be understood in the following way.
Consider the derivative of λ with respect to t (corresponding to the part before x reaches buffer

size B). Based on equations (1, 2, 4), one can easily show that dλ
dt =

λ(m+1−λ
µ
)

T+ x
µ

. Now, focusing

on the numerator, clearly, dλ
dt = 0 when λ = µ(m + 1), as confirmed also by the figures. Say

λ(t̂) = µ(m+ 1). After this point t̂, we have a sliding mode, since λ > µ(m+ 1) ⇒ dλ
dt < 0 and

λ < µ(m + 1) ⇒ dλ
dt > 0. This sliding mode explains the flat part. On the other hand, this

motion is up to the point when x reaches B. Then as far as x stays there, dλ
dt = mλ

T+ B
µ

, explaining

the steep increasing part after the flat part.

5.3 Pareto set

Now we compare the numerical Pareto Set with the expressions for λ̄ and ḡ given in Propositions
1 and 2. We consider AIMD (New Reno version [1]) and MIMD connections. In the case of
AIMD we will obtain the Pareto Set for several values of number of persistent connections,
whereas for MIMD we will only consider one. We recall that several symmetric synchronized
MIMD connections are equivalent to a single MIMD connection.
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Let N denote the number of persistent connections in the simulation. We will assume that
each connection is connected to the bottleneck link via its own access link. The capacities of
the N access links leading to the bottleneck link are supposed to be large enough (or the load
on each access link is small enough) so that they do not hinder the traffic. For each of these N
links, the delay and capacity are di = 1ms and µi = 1000Mbps, respectively. The fact that the
delays in the access links are the same implies that the TCP connections will be synchronized.

We consider the following values for the bottleneck link: capacity is µ = 100Mbps, bottleneck
link propagation delay d = 1ms, the access link capacity and delay are 1000Mbps and 1ms,
respectively. Thus T = 2(d+ di) = 0.004 sec.

In Figure 6 we depict the Pareto set for the cases of AIMD with N = 2, N = 5 and N = 20
connections, and MIMD with just one connection. The qualitative shape of the curves agrees
with what our model predicts. In particular, MIMD achieves the full link utilization with a
much smaller buffer size than in the case of AIMD. We also display the theoretical trade-off
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Figure 6: The trade-off curves for AIMD (N = 2, N = 5, N = 20, M = 1 packet = 500 bytes)
and MIMD (N = 1, m = 0.01), β = 0.875, T = 0.004 sec, µ = 1000 Mbps.

curve for the mathematical fluid model as given in Propositions 1, 2. It turns to be close to
the curve coming from simulations. However, when comparing the results obtained from the
analytical model and from simulations we have observed some differences. For example, when
the buffer size is zero, the simulated average sending rate is smaller than the one obtained with
the fluid model. Similarly, in the simulated scenario the minimal buffer size that guarantees the
full utilization of the link is larger than the one predicted by the fluid model. These differences
can be explained by the fact that the traffic in the simulations is not as smooth as the fluid
model that we have used.

11



6 Conclusions

We have analyzed a hybrid model for the interaction between the MIMD congestion control
mechanism and a Drop Tail Internet router buffer. The present hybrid model is a significant
extension of the model in [7]. The present model allows us to study the impact of the time-
varying Round Trip Times on the system performance. We have obtained conditions for the
absence of multiple reductions of the congestion window within one congestion cycle. It turns out
that these conditions are violated in the Slow Start phase of TCP New Reno without the Delayed
Ack mechanism. Therefore, it is indeed recommended to use the Delayed Ack mechanism in
the Slow Start phase. Fortunately, the obtained conditions are satisfied by the parameters of
Scalable TCP. For Scalable TCP, we construct the Pareto set that allows us to choose a buffer
size which achieves a trade off between high link utilization and small queueing delays.
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Appendix

The Appendix is organized as follows. Firstly, we prove a series of Lemmas and then use them
to prove Theorem 1. The proofs of Propositions 1, 2 come at the end.

To make the model more tractable, we change the time scale and the variables as follows.

ds =
dt

T + x(t)/µ
, y = x/B, and v = w/B.

Then
dv

ds
=
dv

dw

dw

dt

dt

ds
=
mw(s)

B
= mv(s), (21)

and

dy

ds
=











dy
dx

dx
dt

dt
ds = v(s) − q − y(s) if 0 < y(s) < 1, or y(s) = 0 and v(s) > q,

or y(s) = 1, and v(s) ≤ q + 1
0 otherwise,

(22)

where we have put q = µT
B , which is a positive constant. Now everything is in the new time

scale. Let s∗ be the time moment in the new time scale when the state of the system reaches 1.
That is, y(s∗) = 1. Then the impulsive control (3) can now be written as

v(s∗ + 1 + 0) = βkv(s∗ + 1 − 0), (23)

where k = min{i = 1, 2, . . . : βiv(s∗ + 1 − 0) < q + 1}, and we notice that the time delay δ has
been standardized in the new time scale. With the new variables and time scale, we see when
the buffer is filled full, y(s∗) reaches 1, after 1 RTT, the congestion signal is received leading
to a multiplicative reduction on v(s∗) with a factor βk, where k is just defined above. Note,
reducing v below q+1 = µT

B +1 exactly corresponds to reducing the instantaneous sending rate

defined as v(∗)B
T+ µ

B
below the capacity µ.

If we ignore the non-negativity constraint on variable y, then one can solve (21) and (22) for
v(s) and y(s) with initial conditions v(0) = v0 and y(0) = y0 respectively, and obtain

v(s) = v0e
ms (24)

y(s) =
v0

m+ 1
ems − q + e−s

(

y0 + q −
v0

m+ 1

)

, (25)

and the existence and uniqueness of the above two solutions follow from the initial value problems
of ordinary differential equations.

With the new variables in the new time scale, we give a corresponding version of Definition
1 as follows.

14



Definition 1’ A cycle is defined as the trajectory starting with the initial point (a particular
V0 ∈ [β(q + 1), q + 1), y(0) = y0 = 1) at s = 0, and reaching the same point for the first time
at some S + 1 ≥ 1. And S + 1 is called the duration of the cycle. A cycle with y(s) staying
at zero for a positive time interval is called clipped. Otherwise it is unclipped. In particular, a
cycle with y(s) staying at 0 at a single time moment is called critical, and it could be referred
to as an unclipped cycle. In addition, cycles, possibly with more than one instant jump though,
are called simple, if they have only one loop. Otherwise, they are called complicated.

In what follows, expression “unconstrained case” means that we ignore the non-negativity
constraint on variable y. Expression “general case” means that we impose constraint y ≥ 0.
Under “trajectory” we mean the phase portrait y(s) against v(s): see Figure 1.

Lemma 1 In the unconstrained case, 1-cycle exists iff βem < 1.

Proof. Consider the unconstrained case. A 1−cycle exists iff there exists a nonnegative number
V0 such that V0 ∈ [β(q + 1), q + 1), and

βV0e
m(S+1) = V0 (26)

1 =
V0

m+ 1
emS − q + e−S

(

1 + q −
V0

m+ 1

)

, (27)

where we have already put y0 = 1.
Firstly one can check the existence of a solution to equations (26) (27). Indeed from (26) we

have

S =
1

m
ln

1

β
− 1, (28)

so that (27) results in

V0 =
(1 + q)emβ

(

1 − eβ
1
m

)

(m+ 1)

1 − em+1β(1+ 1
m)

. (29)

Secondly, one can check that V0 given by equation (29) is in the interval [β(q + 1), q + 1),
provided 1 + q > 0 and β ∈ (0, e−m). The latter condition is necessary and sufficient for the
presented reasoning to hold.

In what follows, it is assumed that emβ < 1.

Lemma 2 Consider the unconstrained case. Starting from an arbitrary initial state v0 ∈ (0, 1+
q), y0 = 1, component y(s) attains its single minimum at the moment

s1(v0) =
1

m+ 1
ln

(1 + q)(1 +m) − v0

mv0
> 0. (30)

The value y(s1) increases with v0 and y(s1) → 1 as v0 → 1 + q.
A 1−cycle is critical for a single nonnegative value of q given by

q∗ =
(m+ 1)em

(

1 − eβ
1
m

)

βems∗1

1 − em+1β
m+1

m − (m+ 1)em
(

1 − eβ
1
m

)

βems∗1
, (31)

where s∗1 = s1(V
∗

0 ) = 1
m+1 ln





1−emβ

βemm

(

1−eβ
1
m

)



 , and V ∗

0 is given by (29) with q = q∗.

In the general case (if we impose constraint y ≥ 0) the 1−cycle is unclipped iff q ≤ q∗.
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Proof. According to equations (24) (25), we have the following equations satisfied by s1(v0):











v(s1) = v0e
ms1

y(s1) = v0
m+1e

ms1 − q + e−s1(1 + q − v0
m+1)

y(s1) = v(s1) − q.

Solving them for s1 gives (30), and

y(s1(v0)) =







(1 + q)(1 +m)v
1
m
0 − v

1+m
m

0

m







m
m+1

− q.

One can easily check that y(s1(v0)) → 1 as v0 → 1 + q. For dy(s1(v0))
dv0

, we have

dy(s1(v0))

dv0
=

m

m+ 1







(1 + q)(1 +m)v
1
m
0 − v

1+m
m

0

m







−1
m+1

×

{

1 +m

m2
v

1
m
−1

0 (1 + q − v0)

}

> 0.

Let us fix an arbitrary q > 0 and consider the corresponding simple 1−cycle with the
corresponding value of V0 defined in (29). Now

s1(V0) =
1

m+ 1
ln

1 − emβ

memβ(1 − eβ1/m)
= s∗1 (32)

and according to (22) and (24)

y(s1(V0)) = v(s1) − q = V0e
ms1 − q.

Since s1 is q−independent, y(s1(V0)) is a linear function of q. Let us show that it decreases
with q.

Indeed, if q → 0 then y(s1(V0)) has a positive limit. When q increases, y(s1(V0)) becomes
negative. To see this, notice that at the beginning of the cycle, starting from v(0) = V0 < 1 + q,
y(0) = 1, component y decreases. Moreover,

d

ds

(

y(s)

q

)∣

∣

∣

∣

s=0

=
V0

q
− 1 −

1

q
→

emβ(1 − eβ1/m)(m+ 1)

1 − em+1β1+1/m
− 1

as q → ∞.And the latter expression is negative because emβ(1−eβ1/m)(m+1)−1+em+1β1+1/m <

0 for β ∈ (0, e−m). Therefore, y(s)
q decreases with time s, when s is small, at large values of q,

starting from initial value y0

q = 1
q , meaning that y(s)

q takes negative values if q is sufficiently big,
i.e. the minimal value, y(s1) < 0.

Therefore, there exists a single value q∗ > 0 such that y(s1(V0)) = 0. Clearly, the last
equality holds iff

V ∗

0 e
ms∗1 − q∗ =

(1 + q∗)emβ(1 − eβ1/m)(m+ 1)

1 − em+1β1+1/m
ems∗1 − q∗ = 0.

It only remains to solve the equation obtained for q∗.
The last statement is obvious.
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Remark 2 According to (29)

dV0

dβ
=

(1 + q)em(m+ 1)[1 − e(1 + 1
m )β1/m − em+1β1+1/m + em+1(1 + 1

m )β1+1/m]

(1 − em+1β1+1/m)2
,

and the standard analysis of the derivatives shows that the latter function of β is positive if
β ∈ (0, e−m). Trajectories (v(s), y(s)) cannot cross when starting from different initial points
(v(0) = V 1

0 , y(0) = 1) and (v(0) = V 2
0 , y(0) = 1); thus the minimal value y(s1(V0)) increases

with β.

Corollary 1 In the general case, where constraint y(s) ≥ 0 is imposed, if a trajectory starting
with some v0 ∈ (0, 1 + q) is clipped, there will be some v̂0 ∈ (v0, 1 + q), starting with which
the trajectory just touches the horizontal v axis, i.e., y(s1(v̂0)) = 0. Furthermore, trajectories
starting with v0 ∈ [v̂0, 1 + q) are unclipped, while those with v0 ∈ (0, v̂0) are clipped. As a result,
if q ≤ q∗, V0 ≥ v̂0, where V0 is given by (29).

Proof. Everything follows directly from the first part of Lemma 2, bearing in mind that increasing
y(s1(v0)) is a continuous function of v0.

After the continuous trajectory starting with v(0) = v0 < 1 + q and y(0) = 1 finishes, that
is, the buffer is filled up and the congestion is noticed after the delay, there will be a reduction
on the variable v leading to v1 ∈ [β(1 + q), 1 + q). Therefore, as the process proceeds, we have
a sequence {vi}. If this sequence has a limit, namely v∞, a limiting cycle exists and will be
realized.

According to (24) and (25), we introduce the following denotations (for v < 1 + q):

ϕ(v) = βvem(s+1), (33)

where s > 0 solves equation

F (v, s) =
v

m+ 1

(

ems − e−s)+ (1 + q)
(

e−s − 1
)

= 0. (34)

In the unconstrained case, (or if an actual continuous trajectory is unclipped), if only one jump
is sufficient, vi+1 = ϕ(vi). We shall also use the denotation ψ(v) = ϕ(ϕ(v)) = ϕ2(v) for brevity.

Note that, if the actual continuous trajectory starting from v(0) = v, y(0) = 1 is clipped
then, at the next time moment s∗ when y(s∗) = 1, v(s∗) < vems implying v(s∗ + 1 + 0) < ϕ(v)
provided only one jump is sufficient in the unconstrained case.

Lemma 3 In the unconstrained case, starting with an arbitrary v0 ∈ [βem(1 + q), 1 + q), the
limiting simple cycle exists and is of order one.

Proof. One can check that there exists only one s > 0 solving (34) for v ∈ (0, 1 + q). It
is convenient to investigate the mapping ϕ defined on the closed segment [βem(1 + q), 1 +
q]: ϕ(1 + q) = βem(1 + q). (Equation (34) has only one zero solution for v = 1 + q and
limv→1+q−0 ϕ(v) = βem(1 + q).)

Our proof will be performed in three steps:

1. ϕ(v) decreases with v. Hence ψ(v) increases with v. This statement holds for all v ∈
(0, 1 + q).

2. ϕ : [βem(1+q), 1+q] → [βem(1+q), 1+q] and ψ : [βem(1+q), 1+q] → [βem(1+q), 1+q].
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3. {ϕn(v)} and {ψn(v)} both converge to v∞ ∈ [βem(1 + q), 1 + q).

For item 1, according to implicit differentiation and partial differention,

dϕ(v)

dv
=

βe−s(m+ 1)em(s+1)(v − (q + 1))

v (mems + e−s) − (m+ 1)(q + 1)e−s
, (35)

where the numerator of the last expression is smaller than zero for v < 1 + q.
The denominator of the last expression equals

v
(

emsm+ e−s)− (m+ 1)(q + 1)e−s =
(1 + q)(m+ 1)e−s

ems − e−s
G1(s),

where G1(s) = me(m+1)s −mems +1− ems. (We have put in v = (1+q)(1−e−s)(m+1)
ems−e−s , according to

equation (34).) Finally, G1(s) > 0 for s > 0.
For item 2, we consider v ∈ [βem(1+q), 1+q). According to item 1, ϕ(1+q) and ϕ(βem(1+

q)) give a lower and an upper bounds for ϕ(v), respectively. We then need to show that ϕ(1+q) ≥
βem(1 + q) > β(1 + q), and ϕ(βem(1 + q)) < 1 + q. Since ϕ(1 + q) = βem(1 + q), it remains to
prove that ϕ(βem(1 + q)) ≤ 1 + q.

According to (34), where we put in v = βem(1 + q), we have

(1 + q)βem

m+ 1

(

ems − e−s)+ (1 + q)
(

e−s − 1
)

= 0 ⇔ G2(s, β,m) = 0,

where G2(s, β,m) = βem (ems − e−s) + (m+ 1) (e−s − 1). Function G2(s, β,m) firstly decreases
with respect to s from zero and then increases up to ∞ after the single minimum point, resulting
in a single positive solution s solving (34) with v = βem(1 + q).

Clearly, ϕ(βem(1+q)) = β2(1+q)emem(s+1), where s solves (34) with v = βem(1+q). Define
the increasing (with respect to s) auxiliary function G3(s) = β2(1+q)emem(s+1). We aim to show
that, for ŝ satisfying G3(ŝ) = 1+q, i.e., ŝ(β,m) = 2

m ln 1
β −2, G2(ŝ(β,m), β,m) > 0. That would

say, ŝ(β,m) is greater than the solution of (34) with v = βem(1+ q), and ϕ(βem(1+ q)) < 1+ q.
We have

G2(ŝ(β,m), β,m) = (emβ)−1 − βem
(

eβ
1
m

)2
+ (m+ 1)

(

(

eβ
1
m

)2
− 1

)

= Ĝ2(β,m).

Observe that Ĝ2(β,m) → ∞ as β → 0 and Ĝ2(β,m) → 0 as β → e−m.
Furthermore,

∂Ĝ2(β,m)

∂β
= e−mβ−2Ĝ3(β,m),

where Ĝ3(β,m) = −1 − m+2
m e2m+2β

2m+2
m + 2(m+1)

m em+2β
2+m

m < 0 for β ∈ (0, e−m). Therefore,
∂Ĝ2(β,m)

∂β < 0 ⇒ Ĝ2(β,m) > 0 ⇔ G2(ŝ(β,m), β,m) > 0, as required.
It follows from item 1 that starting with an arbitrary v ∈ [βem(1 + q), 1 + q), {ψn(v)} is

a monotonic sequence. It follows from item 2 that the sequence {ψn(v)} is bounded in the
closed interval [βem(1 + q), 1 + q]. Hence, ψn(v0) → v∞ = ψ(v∞) ∈ [βem(1 + q), 1 + q] as
n → ∞. It also follows from item 2 that with emβ < 1, exactly one jump is enough, starting
with v ∈ [βem(1 + q), 1 + q).

For item 3, assume ϕ(v∞) = v′
∞

6= v∞. Let S2 and S3 be such that

0 =
v′
∞

m+ 1

(

emS2 − e−S2

)

+ (1 + q)
(

e−S2 − 1
)

(36)
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0 =
v∞

m+ 1

(

emS3 − e−S3

)

+ (1 + q)
(

e−S3 − 1
)

. (37)

Then S2 + 1 and S3 + 1 are the durations of continuous trajectories starting with v ′
∞

and v∞,
respectively. (See (34).) Then by the definition of v∞,

v∞ = ββv∞e
m(S3+1)em(S2+1),

leading to

β = e−
1
2
m(S2+S3+2). (38)

By the definition of v′
∞

, we have v′
∞

= βv∞e
m(S3+1). But from (36) we have in parallel v′

∞
=

(1+q)(m+1)(1−e−S2 )
emS2−e−S2

. If we substitute expression for v∞ coming from (37), and use formula (38),
we see that

(1 − e−S2)e
1
2
mS2

emS2 − e−S2
=

(1 − e−S3)e
1
2
mS3

emS3 − e−S3
. (39)

One can show that function (1−e−z)e
1
2

mz

emz
−e−z strictly decreases if z > 0. Hence S2 = S3 and

v′
∞

= v∞ < 1+ q because ϕ(1+ q) = βem(1+ q) 6= 1+ q. Therefore, ϕn(v0) → v∞ as n→ ∞.

Remark 3 It follows from item 3 in the proof of Lemma 3 that in the unconstrained case,
starting with an arbitrary v0 ∈ [βem(1+ q), 1+ q), complicated cycles cannot be realized, and v∞
coincides with V0 given by (29).

Corollary 2 −1 < dϕ(v0)
dv0

∣

∣

∣

V0

< 0, so that the mapping ϕ is a contraction in a neighborhood of

the stable point V0.

Proof. By putting in V0 given by (29) and S given by (28) into (35), we have dϕ(v)
dv

∣

∣

∣

V0

=

eβ1/m[(m+1)emβ−1−mem+1β1+1/m]
(1−eβ1/m)m+em+1β1+1/m

−eβ1/m . We already know that dϕ(v)
dv < 0 (see item 1 above). Hence we

just need to prove that dϕ(v0)
dv0

∣

∣

∣

V0

> −1 ⇔ P1(β,m) > 0, where P1(β,m) = (m + 1)emβ − 2 −

mem+1β
1+m

m + emβ −m +m(eβ
1
m )−1. But the standard analysis of the derivatives shows that

function P1(β,m) monotonically decreases from ∞ to 0 for β ∈ (0, e−m).

Corollary 3 In the unconstrained case, let v0 ∈ [βem(1 + q), 1 + q). Then ∀i ∈ {0, 1, 2, . . .}
vi ∈ [βem(1 + q), 1 + q), and vi+2 ∈ [min(vi, vi+1),max(vi, vi+1)].

Proof. The first statement follows from the proof of Lemma 3.
Without loss of generality, we can put i = 0. That is, we aim to show that

v2 ∈ [min(v0, v1),max(v0, v1)]. According to item 2 in the proof of Lemma 3, vi = ϕ(vi−1).
Consider the case v0 > v1. Automatically we have v2 > v1, since ϕ is decreasing. Then there
are two possibilities about the relationship between v0, v1, and v2:

1. v2 > v0 > v1.

2. v2 ∈ [v1, v0].

Suppose the first possibility is true, that is, v2 > v0 > v1. We aim to show by induction that
in this case, v2i+2 > v2i > . . . > v2 > v0 > v1 > . . . > v2i+1, ∀i ∈ {0, 1, 2, . . .}. These inequalities
hold for i = 0. Suppose they hold for some i ≥ 0. Consider the case i + 1. From the induction
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supposition we have v2i+2 > v2i. Therefore v2i+1 > v2i+3, and v2i+4 > v2i+2. Hence sequence
{vi} does not converge which contradicts Lemma 3.

Therefore, the first possibility is false. And v2 ∈ [v1, v0] holds automatically, as we want.
Exactly in the same manner, one can show that in the case v0 < v1, v2 ∈ [v0, v1]. And the case
v0 = v1 is trivial. Hence, v2 ∈ [min(v0, v1),max(v0, v1)], as required.

Remark 4 According to Corollary 1 and Corollary 3, in the general case, starting with v ∈
[βem(1 + q), 1 + q), once two consecutive unclipped trajectories are realized, all the subsequent
trajectories will be unclipped.

Lemma 4 Under the main assumption of emβ < 1, the trajectory starting with v(0) = v0 =
β(1 + q), y(0) = 1 requires no more than two jumps.

Proof. Suppose the trajectory is unclipped. Starting with v0 = β(1+q), let us examine the value
of βϕ(β(1 + q)) = β3(1 + q)em(ŝ+1), where ŝ is the single positive solution to L(s, β,m) = 0,
where L(s, β,m) = β(ems − e−s) + (m+ 1)(e−s − 1) according to (34). Hence, β3(1 + q)em(ŝ+1)

is the value of v1 after two instant jumps, if starting with v0 = β(1 + q). Define the increasing
(with respect to s) auxiliary function C(s) = β3(1 + q)em(s+1). One can easily check that the
behaviour of L(s, β,m) is similar to that of G2(s, β,m) in the proof of Lemma 3, in the sense
that it decreases firstly from zero and then increases up to infinity, with respect to s.

Let us show that L(s̃(β,m), β,m) > 0, where s̃(β,m) is the single positive solution to
C(s) = 1 + q: s̃(β,m) = − 3

m lnβ − 1.
Now

L(s̃(β,m), β,m) = β−2e−m − β
3+m

m e+ (m+ 1)(β
3
m e− 1).

Immediately L(s̃(β,m), β,m) → ∞ as β → 0. And as β → e−m, L(s̃(β,m), β,m)
→ em − e−2−m + (m + 1)(e−2 − 1) > 0, as can be verified easily. Now one can calculate
the partial derivative

∂L(s̃(β,m), β,m)

∂β
= −2β−3e−m −

m+ 3

m
β

3
m e+ (m+ 1)

3

m
β

3
m
−1e.

Immediately ∂L(s̃(β,m),β,m)
∂β → −∞ as β → 0, and one can show that

lim
β→e−m

(

∂L(s̃(β,m), β,m)

∂β

)

= −2e2m −
3 +m

m
e−2 +

3(m+ 1)

m
em−2 < 0

for any m > 0.

Finally, the analysis of the second order derivative implies ∂2L(s̃(β,m),β,m)
∂β2 > 0, so that

L(s̃(β,m), β,m) > 0.
Hence ŝ < s̃(β,m) and C(ŝ) < 1 + q meaning that βϕ(β(1 + q)) < 1 + q.
If the trajectory is clipped then the value after the next two instantaneous jumps is even

smaller than βϕ(β(1 + q)).

Corollary 4 If emβ < 1 then no-one cycle has more than two instantaneous jumps.

Proof. It is sufficient to notice that, after any instantaneous series of jumps, v ≥ β(1 + q) and
βϕ(v) ≤ βϕ(β(1 + q)).

Lemma 5 In the unconstrained case, 2−cycles are absent iff β < β̄, where β̄ is the single
solution in the interval (0, e−m) to equation (7).
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Proof. Clearly a 2−cycle, described by the starting point

V
(2)
0 =

(1 + q)emβ2
(

1 − eβ
2
m

)

(m+ 1)

1 − em+1β(2+ 2
m )

,

does not exist iff
V

(2)
0
β < 1 + q. (Compare with the proof of Lemma 1.) Or equivalently,

Q1(β) = (m+ 1)emβ(1 − eβ
2
m ) + em+1β2(1+ 1

m
) < 1.

The standard analysis of the derivatives implies that Q1(β) increases with β from Q1(0) = 0
and, after a single stationary point, decreases up to Q1(e

−
m
2 ) = 1. Therefore, equation (7) has

a single solution in interval (0, e−
m
2 ) ⊃ (0, e−m).

One can easily check that

V
(2)
0

β

∣

∣

β=e−m > 1 + q, (40)

which is equivalent to β̄ < e−m.

Remark 5 Suppose β < e−m. Then, in the general case, 2−cycles exist for some (big enough)
values of B iff β ≥ β̄. According to Lemma 1, 1−cycles also exist. What is actually realized,
depends on the initial conditions v(0) = v0, y(0) = 1.

Lemma 6 In the unconstrained case, the continuous trajectory starting from v(0) = v0 = β(1+
q), y(0) = 1 reaches level y(ŝ) = 1 with such a value of v(ŝ) that βv(ŝ+ 1) < 1 + q if and only if
β < β̄.

Proof. Clearly βv(ŝ + 1) = ϕ(v0) = β2(1 + q)em(ŝ+1), where ŝ > 0 solves equation (34) at
v = v0 = β(1 + q). Now βv(ŝ+ 1) < 1 + q ⇔ β2em(ŝ+1) < 1.

Firstly, one can check that equations

β2em(ŝ+1) = 1; (41)

β(emŝ − e−ŝ) + (m+ 1)(e−ŝ − 1) = 0 (42)

hold iff β = β̄. Indeed, substitute expression ŝ = −2 lnβ
m − 1 obtained from (41), into (42):

β(
e−m

β2
− eβ2/m) + (m+ 1)(eβ2/m − 1) = 0 ⇔ (7) ⇔ β = β̄.

Secondly, from (42) we obtain

dŝ

dβ
=

emŝ − e−ŝ

(m+ 1)e−ŝ − β(memŝ + e−ŝ)
.

The numerator is positive for ŝ > 0. After we substitute β = (1−e−ŝ)(m+1)
emŝ

−e−ŝ , obtained from (42),
into the denominator, we obtain

(m+ 1)e−ŝ(emŝ − e−ŝ) − (1 − e−ŝ)(m+ 1)(memŝ + e−ŝ)

emŝ − e−ŝ
< 0

because emŝ−ŝ −memŝ +memŝ−ŝ − e−ŝ < 0 at any positive ŝ and m. (The latter inequality can
be established when analysing the lefthand part as function of m ∈ (0,∞).) Thus dŝ

dβ < 0.
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Finally, we intend to prove that limβ→0 β
2em(ŝ+1) = 0. When β → 0, ŝ increases, but the limit

cannot be finite. (Otherwise, passing to the limit in (42) would imply (m+1)(e− limβ→0 ŝ−1) = 0.)
Hence limβ→0 ŝ = ∞, and from (42) we have limβ→0 βe

mŝ = m + 1 ⇒ limβ→0 β
2em(ŝ+1) = 0.

Therefore, β2em(ŝ+1) < 1 ⇔ β < β̄ because β̄ is the single value of β providing β2em(ŝ+1) = 1,
and the lefthand side is obvioulsy a continuous function of β.

Proof of Theorem 1. Note that β̄ is the single solution to equation (7) in the interval
(0, e−m) according to Lemma 5. If β < e−m Lemma 4 excludes trajectories with three or more
instantaneous jumps (perhaps after one first continuous trajectory is realised).

(a) Suppose β < β̄ and B ≥ B∗ ⇔ q ≤ q∗. Lemma 6 implies that (perhaps after the first one
instantaneous series of jumps) multiple reductions of component v never occur and all the further
values of vi belong to [βem(1 + q), 1 + q). For the proof of the latter statement, remember the
denotations introduced before Lemma 3, and equality ϕ(1+q) = βem(1+q). Even if a continuous
trajectory starting from v(0) = vi, y(0) = 1 is clipped, vi+1 = ϕ(v̂0) ∈ [βem(1 + q), 1 + q), where
v̂0 was defined in Corollary 1.

Suppose there exists a clipped continuous trajectory starting from v(0) = vi, y(0) = 1.
(Actually, i can equal 1 or 2.) The next trajectory starting from v(0) = vi+1 ∈ [βem(1 + q), 1 +
q), y(0) = 1 cannot be clipped because otherwise we would have obtained a clipped 1−cycle
which contradicts the last statement of Lemma 2. Thus vi+1 ≥ v̂0 and vi+2 = ϕ(vi+1). Since
vi+1 = ϕ(v̂0), we can use Corollary 3: vi+2 ≥ v̂0, so that trajectory starting from v(0) =
vi+2, y(0) = 1 is also unclipped. According to Remark 4, all the subsequent trajectories are
unclipped and converge to the limiting unclipped 1−cycle in accordance with Lemma 3.

If β ≥ β̄ then, according to Remark 5, statement (a) is false.
All the presented reasoning holds also if β̄ ≤ β < e−m and v0 ∈ [βem(1+ q), 1+ q) : multiple

jumps never occur and ∀i ≥ 0 vi ∈ [βem(1+q), 1+q). (See the proof of Lemma 3.) On the other
hand, according to Remark 5, for some initial conditions, a simple 2−cycle can be realized if B
is big enough. This observation justifies Remark 1.

(b) If B = B∗, the previous paragraph is correct, but (independently of the initial state)
no-one continuous trajectory can have multiple jumps at the end, because it cannot be situated
below the curve starting from v(0) = q, y(0) = 0 which results in the single jump at the end.
Thus, trajectories converge to the 1−cycle that is critical according to Lemma 2. The necessity
of inequality β < e−m can be proved similarly to the part (c).

(c) Similarly to case (b), continuous trajectories having multiple jumps at the end cannot be
realized if B < B∗ ⇔ q > q∗. According to Lemma 2, one cannot meet an unclipped 1−cycle.
Corollary 1 and Lemma 3 imply that v̂0 ∈ [βem(1 + q), 1 + q). Moreover, ϕ(v̂0) < v̂0 because
otherwise, starting from v(0) = v̂0, y(0) = 1 we would have had two consecutive unclipped
trajectories leading to an unclipped limiting 1−cycle according to Remark 4 and Lemma 3.

Now one of the following two scenarios can take place.
If v0 < v̂0, then the first continuous trajectory is clipped and v1 = ϕ(v̂0) < v̂0, so that the

next continuous trajectory is also clipped, and the limiting clipped 1−cycle is attained after one
iteration.

If v0 ≥ v̂0, then the first continuous trajectory is unclipped, but v1 = ϕ(v0) < v̂0. (Otherwise
we face two consecutive unclipped trajectories leading to the existence of an unclipped 1−cycle.)
Hence v1 gives a clipped continuous trajectory, and, according to the previous paragraph, we
finish with the clipped 1−cycle attained after two iterations.

As Lemma 1 says, an unclipped 1−cycle does not exist if βem < 1. One can easily show that
inequality βem < 1 is also necessary for the existence of clipped 1−cycles. Indeed, if βem ≥ 1
then formula (28) gives S ≤ 0, and that formula remains the same for clipped and unclipped
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cycles because equation (26) is universal.
The very last statement is justified in full by all the previous reasoning.

Before proving Proposition 1, let us justify formula (9). Clearly,

Tcycle =

∫ Tcycle

0
dt =

∫ S+1

0

{

T +
By(s)

µ

}

ds,

where S is given by (28), and expression (9) follows.
Proof of Proposition 1. In the case q ≤ q∗ ⇔ B ≥ B∗ = µT

q∗ , the cycle is unclipped. The av-

erage sending rate can be calculated according to formula λ̄ =

∫ S+1

0
w(s)ds

Tcycle
= B

Tcycle

∫ S+1
0 V0e

msds

(see (24)). The average throughput can be calculated as the following.

ḡ =
1

Tcycle

{

∫ Tcycle−T−
B
µ

0
λ(t)dt+ µ

(

T +
B

µ

)

}

=
1

Tcycle

{

∫ S

0
w(s)ds+ µ

(

T +
B

µ

)

}

= µ.

Also, the average amount of data in the buffer is calculated as below.

x̄ =
1

Tcycle

∫ Tcycle

0
x(t)dt =

1

Tcycle

∫ S+1

0
By(s)(T +

By(s)

µ
)ds.

In case B < B∗ ⇔ q > q∗, the cycle is clipped. As before, we use t(s) for the original (new)
time scale. The graph of the cycle in the plane (v, y) looks similarly to Figure 1; one has only
to replace “Buffer size (B)” on the y−axis by 1. Suppose the cycle starts at s = SA = 0 from
point A, reaches point B at time moment SB and so on. We shall use denotations like SBC for
SC − SB.

Point C has coordinates y = 0 and v = q, so that, when s ∈ [SC , SD],

y(s) =
q

m+ 1
em(s−SC ) − q + e−(s−SC)(

mq

m+ 1
)

according to (25). Therefore, SCD = SD−SC is the single positive solution to equation A(s) = 0
where

A(s) = qems + e−sqm− (m+ 1)(q + 1).

(Note that lims→0A(s) = −1 − m, lims→∞A(s) = ∞ and dA
ds > 0.) Equation (13) is proved.

Formula V clipped
0 = v(0) = µT

B βem(SCD+1) at the beginning of the cycle follows from (24), so that
expression (12) is justified. According to (25),

y(s) =
V clipped

0

m+ 1
ems − q + e−s

(

1 + q −
V clipped

0

m+ 1

)

for s ∈ [0, SB ], where SB = SAB is the minimal positive solution of equation yAB(SAB) = 0.
(The maximal solution is phantom, corresponding to the last moment when component y equals
zero in case we ignore the non-negativity constraint, i.e., if we deal with the unconstrained case.)
Equation (15) is obtained.

Now

Tcycle =

∫ S+1

0

[

T +
By(s)

µ

]

ds =
T

m
ln

1

β
+
B

µ

{

∫ SB

0
y(s)ds+

∫ SD

SC

y(s)ds+ 1

}
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and formulae (16) (17) (14) are proved where we made the trivial change of the (new) time scale:

YCD(s) = y(SC + s);YAB(s) = y(SA + s) = y(s).

Proof of Proposition 2. Similarly to the case B ≥ B∗, λ̄ = 1
Tcycle

∫ S+1
0 w(s)ds leads to

formula (18).
For the average throughput we have, using (24):

ḡ =
1

Tcycle

{

∫ SAD

0
w(s)ds+ µ(T +

B

µ
)

}

=
1

Tcycle

{

B

∫ S

0
v(s)ds+ µT +B

}

=
1

Tcycle

{

BV clipped
0

m
(

1

βem
− 1) + µT +B

}

.

Also the average amount of data in the buffer is calculated as follows.

x̄ =
1

Tcycle

∫ Tcycle

0
x(t)dt

=
1

Tcycle

{

∫ SB

0
By(s)

(

T +
By(s)

µ

)

ds+

∫ SD

SC

By(s)

(

T +
By(s)

µ

)

ds

+B

(

T +
B

µ

)}

=
1

Tcycle

{

TB

(

∫ SAB

0
YAB(s)ds+

∫ SCD

0
YCD(s)ds

)

+
B2

µ

(

∫ SAB

0
Y 2

AB(s)ds+

∫ SCD

0
Y 2

CD(s)ds

)

+B

(

T +
B

µ

)

}

.

Figure 7: A complicated cycle

.
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