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Abstract

Fair resource allocation is usually studied in a static context, in which a fixed amount of
resources is to be shared. In dynamic resource allocation one usually tries to assign resources
instantaneously so that the average share of each user is split fairly. The exact definition of the
average share may depend on the application, as different applications may require averaging
over different time periods or time scales. Our main contribution is to introduce new refined
definitions of fairness that take into account the time over which one averages the performance
measures. We examine how the constraints on the averaging durations impact the amount of
resources that each user gets. We also address how the spatial component, which arises due to
mobility of users, influences resource sharing under different fairness criteria. We demonstrate
these new concepts via example applications.
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1. Introduction

Let us consider some set S of resource that we wish to distribute among I users by
assigning user i a subset Si of it. We shall be interested in allocating subsets of the resource
fairly among the users. The set S may actually correspond to one or to several resources. We
shall consider standard fairness criteria for sharing the resources among users. We shall see,
however, that the definition of a resource will have a major impact on the fair assignment.

We associate with each user i a measurable function xi that maps each point in S to some
real number. Then, we associate with each i a utility ui which maps all measurable subsets
Si to the set of real numbers. We shall say that S is a resource if ui(Si) can be written for
each Si ⊂ S as

ui(Si) = f

(∫
Si

xi(s)ds

)

As an example, consider I mobiles that wish to connect to a base station between 9h00 and
9h10 using a common channel. The time interval is divided into discrete time slots whose
number is N . Assume that the utility for each mobile i of receiving subsets Ni of slots
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depend only on the number of slots Ni it receives. Then the set of N slots is considered to
be a resource.

Next assume that if mobile i receives the channel at time slot t then it can transmit at a
throughput of Xi

t . Assume that the utility of user i is a function of the total throughput it
has during this fraction of an hour. Then again the N slots are considered as a resource.

We adopt the idea that fair allocation should not be defined in terms of the object that
is split but in terms of the utility that corresponds to the assignments. This is in line with
the axiomatic approach for defining the Nash bargaining solution for example. With this in
mind, we may discover that the set of N slots cannot always be considered as a resource
to be assigned fairly. Indeed, a real-time application may consider the N slots as a set of
n resources, each containing B = N/n consecutive slots. A resource may correspond to the
number of time slots during a period of 100 ms. The utility of the application is defined as
a function of the instantaneous rate, i.e. the number of slots it receives during each period
of 100 ms. (With a playout buffer that can store 100 ms of voice packets, the utility of the
mobile depends only on how many slots are assigned to it during 100 ms and not which slots
are actually assigned to it.)

Related work: Our work is based on the α-fairness notion introduced in [3]. This, as
well as other fairness notions can be defined through a set of axioms, see [13]. This paper is
inspired by several papers which already observed or derived fairness at different time-scales
[9, 11, 12, 10, 5, 1]. However, we would like to mention that the T -scale fairness (a unifying
generalization of long- and short- term fairness) and multiscale fairness are new concepts
introduced in the present work.

Structure of the paper: In Section 2, we introduce a resource sharing model which
is particularly suitable for wireless applications. We also define several fairness criteria. In
Section 3, we apply these new concepts to study spectrum allocation in fading channels. Fair
resource sharing taking into account the spatial component which arises due to mobility of
users is addressed in Section 4. Section 5 concludes the paper and provides avenues for future
research.

2. Resource Sharing model and fairness definitions

Consider n mobiles located at points x1, x2, ..., xn, respectively. We assume that the utility
Ui of mobile i depends on its location xi and on the amount of resources si it gets.

Let S be the set of assignments; an assignment s ∈ S is a function from the vector x
to a point in the n-dimensional simplex. Its ith component, si(x) is the fraction of resource
assigned to mobile i.

Definition 1. An assignment s is α-fair if it is a solution of

Z(x, s, α) := max
s

∑
i

Zi(xi, si, α) such that,

∑
i

si = 1, si ≥ 0 ∀i = 1, ..., n (1)

where, Zi(xi, si, α) :=
(Ui(xi, si))

1−α

1− α
for α �= 1 and

Zi(xi, si, α) := log (Ui(xi, si)) for α = 1

2



We shall assume throughout that Ui is non-negative, strictly increasing and is concave in
si. Then for any α > 0, Zi(xi, si, α) is strictly concave in si. We conclude that Z(xi, si, α) is
strictly concave in s for any α > 0 and therefore there is a unique solution s∗(α) to (2).

Definition 2. [3] We call Zi(si, ·, α) the fairness utility of mobile i under si, and we call
Z(s, ·, α) the instantaneous degree of α-fairness under s.

In applications, the state X will be random, so that the instantaneous amount of resource
assigned by an α-fair allocation will also be a random variable. Thus, in addition to instan-
taneous fairness we shall be interested in the expected amount assigned by being fair at each
instant.

Definition 3. We call E[Z(s,X, α)] the expected instantaneous degree of α-fairness under s.

In Section 2.1 we introduce the expected long-term fairness in which the expected amount
of resource is assigned fairly.

Definition 4. We say that a utility is linear in the resource if it has the form:

Ui(xi, si) := siqi(xi).

For example, consider transmission between a mobile source and a base station, and
assume
(i) that the base station is in the origin (x = 0) but at a height of one unit, whereas all
mobiles are on the ground and have height 0. Thus, the distance between the base station

and a mobile located on the ground at point x is
√

1 + ||x||2.
(ii) that the Shannon capacity can be used to describe the utility. If the resource that is
shared is the frequency (denoted by C below) then the utility has the linear form:

U(C, x) := Cq(x); with q(x) = log

(
1 +

P (x2 + 1)−β/2

σ2

)

2.1. Fairness over time: Instantaneous Versus Long-term α-fairness

Next we consider the case where xi(t), i = 1, ..., n, may change in time.

Definition 5. We define an assignment to be instantaneous α-fair if at each time t each
mobile is assigned a resource so as to be α-fair at that instant.

Consider the instantaneous α-fair allocation and assume that time is discrete. We thus
compute the instantaneous α-fair assignment over a period of T slots as the assignment that
maximizes (for α �= 1)

n∑
i=1

(Ui(xi(t), si(t)))
1−α

1− α
for every t = 1, ..., T .

This is equivalent to maximizing

T∑
t=1

n∑
i=1

(Ui(xi(t), si(t)))
1−α

1− α
. (2)
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For α = 1, we replace

(Ui(xi(t), si(t)))
1−α

1− α
by log[Ui(xi(t), si(t))]

.
The optimization problem (2) corresponds to the α-fair assignment problem in which there

are nT players instead of n players, where the utility of player i = kn+ j (k = 0, ..., T −1, j =
1, ..., n) is defined as

Ui(xi, si) = Uj(xj(k + 1), sj(k + 1)).

Definition 6. Thus the expected instantaneous fairness criterion in the stationary and er-
godic case regards assignments at different time slots of the same player as if it were a different
player at each time slot!

Note that when considering the proportional fair assignment, then the resulting assign-

ment is the one that maximizes
∏n

i=1

∏T
t=1 Ui(xi(t), si(t)).

Definition 7. Assume that the state process X(t) is stationary ergodic. Let λi be the sta-
tionary probability measure of X(0). The long-term α-fairness index of an assignment s ∈ S
of a stationary process X(t) is defined as

Zλ(s) :=

n∑
i=1

Z
i
λ(s); with Zi

λ(s) =

(
Eλ [Ui(Xi(0), si(X(0)))]

)1−α

1− α
.

An assignment s is long-term α-fair if it maximizes Zλ(s) over s ∈ S.

As we see, instead of attempting to have a fair assignment of the resources at every t, it is the
expected utility in the stationary regime that one assigns fairly according to the long-term
fairness. Under stationarity and ergodicity conditions on the process X(t) this amounts in an
instantaneous assignment of the resources in a way that the time average amount allocated
to the users are α-fair.

2.2. Fairness over time: T -scale α-fairness

Next we define fairness concepts that are in between the instantaneous and the expected
fairness. They are related to fairness over a time interval T . Either continuous time is
considered or discrete time where time is slotted and each slot is considered to be of one time
unit. Below, we shall understand the integral to mean summation whenever time is discrete.

Definition 8. The T -scale α-fairness index of s ∈ S is defined as

ZT (s) :=

n∑
i=1

Zi
T (s); with Zi

T =

[
1
T

∫ T
0 Ui(Xi(t), si(X(t)))dt

]1−α

1− α
.

The expected T -scale α-fairness index is its expectation. An assignment s is T -scale α-fair
if it maximizes ZT (s) over s ∈ S.

Definition 9. The T -scale expected α-fairness index of s ∈ S is defined as

ZT (s) :=

n∑
i=1

Zi
T (s); with Zi

T =

[
1
T

∫ T
0 E[Ui(Xi(t), si(X(t)))]dt

]1−α

1− α
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2.3. Examples

We shall consider the following simple example of 2-scale fairness

Example 1. Consider two time slots and two mobile stations. To whoever the first time slot
will be allocated, that mobile would send or receive 25 units. At the second slot, a rate of
5 (resp. 10) units will be used if the slot is assigned to mobile 1 (resp. 2). We make the
following observations. By [i,j] we shall denote the allocation that assigns slot 1 to mobile i
and slot 2 to mobile j. The allocation [1,2] maximizes the global utility and moreover, the
α-fair 2-scale utility for any α.

Thus, we observe that the α-assignment is not monotone: The player with larger utilities
received less at the α-fair utility, for all values of α!

Example 2. (Example 1 continued) We now change a single utility in the last example:
assume that if mobile 2 receives the first slot then it earns 102 units.

(i) Now the global optimal solution is the assignment [2,2].

(ii) The proportional fair solution (α = 1) is [2,1].

(iii) The maxmin fair assignment is [1,2].
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Figure 1: Performance index of [2,1] (dashed line)
and [1,2] (solid line) assignments as a function of α
(horizontal axis)
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Figure 2: Performance index of [2,1] (dashed line)
and [2,2] (solid line) assignments as a function of α
(horizontal axis)

We depict in Figure 1 the performance index of the assignments [1,2] and [2,1]. We see
that the max-min fair assignment [2,1] is 2-scale α-fair for all α larger than 1.36, whereas
the assignment [1,2] is α-fair for α ∈ [1, 1.36].

For α < 1 the two best assignments are [2,1] and [2,2]. The former is optimal over
α ∈ [0.17, 1] and the latter over α ∈ [0, 0.17]. This is seen from Figure 2.

Assume that the state processes is stationary ergodic. Then for any assignment s ∈ S we
would have by the Strong Law of Large Numbers:

lim
T→∞

1

T

∫ T

0
Ui(Xi(t), si(X(t)))dt = Eλ [Ui(Xi(0), si(X(0)))] .
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Hence, for every i and s, we have,

lim
T→∞

Zi
T (s) = lim

T→∞

[
1
T

∫ T
0 Ui(Xi(t), si(X(t)))dt

]1−α

1− α

=
(Eλ [Ui(Xi(0), si(X(0)))])1−α

1− α
= Z

i
λ(s).

Assume that Ui is bounded. Then Zi
T is bounded uniformly in T . The bounded convergence

then implies that

lim
T→∞

E[Zi
T (s)] = Z

i
λ(s). (3)

Theorem 1. Assume that the convergence in (3) is uniform in s. Let s∗(T ) be the T -scale
α-fair assignment and let s∗ be the long-term α-fair assignment. Then the following holds:

• s∗ = limT→∞ S∗(T )

• For any ε > 0, s∗ is an ε-optimal assignment for the T -scale criterion for all T large
enough.

• For any ε > 0, s∗(T ) is an ε-optimal assignment for the long-term fairness for all T
large enough.

Proof. According to [2], any accumulation point of s∗(T ) as T → ∞ is an optimal solution

to the problem of maximizing ZT over S. Due to the strict concavity of ZT in s it has a
unique solution and it is coincides with any accumulation point of s∗(T ). This implies the
first statement of the theorem. The other statements follow from Appendices A and B in [2].

2.4. Fairness over different time scales: Multiscale fairness

We consider real-time (RT) and non real-time (NRT) traffic. Resource allocation policy
for RT traffic is instantaneous-fair, while for the NRT traffic, it is expected-fair. The available
resources are divided amongst the RT and NRT traffic so as to guarantee a minimum quality
of service (QoS) requirement for the RT traffic and to keep service time as short as possible
for the NRT traffic.

The real-time traffic would like the allocation to be instantaneously α-fair. For α > 0,
this guarantees that at any time it receives a strictly positive allocation.

The non real-time traffic does not need to receive at each instant a positive amount of al-
location. It may prefer the resources to be assigned according to the T -scale α-fair assignment
where T may be of the order of the duration of the connection. Moreover, different non real-
time applications may have different fairness requirements. For instance, bulk FTP transfer
can prefer fairness over time scale longer than a time scale for some streaming application.

In order to be fair, we may assign part (say half) of the resource according to the instan-
taneous α-fairness and the rest of the resources according to the T -scale α-fairness. We thus
combine fairness over different time scales.

We may now ask how to choose what part of the resource would be split according to the
instantaneous assignment and what part according to the T -scale assignment. We propose to
determine this part using the same α-fair criterion.

Specifically we define the multiscale fairness as follows:
6



Definition 10. The multiscale α-fairness index of s ∈ S is defined as

ZT1,...,Tn(s) :=

n∑
i=1

Zi
Ti
(s); with Zi

Ti
=

[
1
Ti

∫ Ti

0 Ui(Xi(t), si(X(t)))dt
]1−α

1− α

The expected multiscale α-fairness index is its expectation. An assignment s is multiscale
α-fair if it maximizes ZT1,...,Tn(s) over s ∈ S. We also say that multiscale α-fair assignment
is (T1, ..., Tn)-scale fair assignment.

3. Application to spectrum allocation in fading channels

Figure 3: Spectrum allocation in random fading channels

We consider a fast-changing and a slowly-changing user (Figure 3), whose channels are
modeled by the Gilbert model. The users can be either in a good or in a bad state. The
dynamics of the users is described by a Markov chain {Yi(t)}t=0,1,... i = 1,2, with the transition
matrix and stationary distribution as:

Pi =

[
1− εiαi αi

βi 1− εiβi

]
; πi =

[
βi

αi+βi

αi
αi+βi

]
.

Let ε1 = 1 and ε2 = ε. Note that the parameter ε does not have an effect on the stationary
distribution, but, it influences for how long the slowly-changing user stays in some state. The
smaller ε, the more seldom the user changes the states.

We assume that state 1 is a bad state and state 2 is a good state. Let hij represent the
channel gain coefficient of user i in channel state j. The utility (achievable throughput via
Shannon capacity) of user i in state j is given by

Uij = sij log2(1 +
|hij|2pi

σ2
)

where sij is the resource allocation and pi is the power that corresponds to user i.

First, we would like to analyze T -scale fairness and to see the effect of the time scale on
the resource allocation. Specifically, we consider the following optimization criterion

2∑
i=1

1

1− α

[
1

T

T∑
t=0

Ui(t)

]1−α

→ max
s1,s2

(4)

with Ui(t) = si(t)qi,Yi(t) and s1(t) + s2(t) = 1.

Let us consider several options for the time horizon T :
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Instantaneous fairness. If we take T = 1 we obtain the instantaneous fairness. Namely,
criterion (4) takes the form

1

1− α

[
U1−α
1 (0) + U1−α

2 (0)
] → max

s1,s2

The solution of the above optimization problem is given by

si(0) =
q
(1−α)/α
i,Yi(0)

q
(1−α)/α
1,Y1(0)

+ q
(1−α)/α
2,Y2(0)

This allocation results in the following expected throughputs

θ1 =
∑
i,j

q
1/α
1,i

q
(1−α)/α
1,i + q

(1−α)/α
2,j

π1,iπ2,j , θ2 =
∑
i,j

q
1/α
2,j

q
(1−α)/α
1,i + q

(1−α)/α
2,j

π1,iπ2,j. (5)

Mid-term fairness. Let us take the time horizon as a function of the underlying dynamics
time parameter ε, that is T = T (ε), satisfying the following conditions: (a) T (ε) → ∞ and
(b) T (ε)ε → 0. Condition (a) ensures that

1

T (ε)

T (ε)∑
t=0

1{Y1(t) = i} → π1,i, as ε → 0,

and condition (b) ensures that

1

T (ε)

T (ε)∑
t=0

1{Y2(t) = i} → δY2(0),i, as ε → 0.

The above results follow from the theory of Markov chains with multiple time scales (see e.g.,
[4]). It turns out to be convenient to take the following notation for the resource allocation:
We denote by s(t) the allocation for the fast-changing user and by 1 − s(t) the resource
allocation for the slowly-changing user. Thus, we have s1(t) = s(t) and s2(t) = 1 − s(t).
We denote by s̄i,j = E[s(t)|Y1(t) = i, Y2(t) = j]. We note that since the fast-changing user
achieves stationarity when T (ε) → ∞ we are able to solve (4) in stationary strategies. Then,
criterion (4) takes the form

1

1− α

[
(π1,1q1,1s̄1,Y2(0) + π1,2q1,2s̄2,Y2(0))

1−α

+ ((1− π1,1s̄1,Y2(0) − π1,2s̄2,Y2(0))q2,Y2(0))
1−α

] → max
s̄1,Y2(0), s̄2,Y2(0)

The above nonlinear optimization problem can be solved numerically. The expected through-
puts in the mid-term fairness case are given by

θ1 = (π1,1q1,1s̄1,1 + π1,2q1,2s̄2,1)π2,1 + (π1,1q1,1s̄1,2 + π1,2q1,2s̄2,2)π2,2,

θ2 = (1− π1,1s̄1,1 − π1,2s̄2,1)q2,1π2,1 + (1− π1,1s̄1,2 − π1,2s̄2,2)q2,2π2,2. (6)
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Long-term fairness. In the case of long-term fairness we set T = ∞ which results in the
following criterion

1

1− α

[
E[U1]

1−α + E[U2]
1−α

] → max
s1,s2

Due to stationarity, we can solve the above optimization problem over sequences in stationary
strategies. Namely, we have the following optimization problem

1

1− α

[
((π1,1π2,1s̄1,1 + π1,1π2,2s̄1,2)q1,1 + (π1,2π2,1s̄2,1 + π1,2π2,2s̄2,2)q1,2)

1−α

+ ((π2,1 − π1,1π2,1s̄1,1 − π1,2π2,1s̄2,1)q2,1

+ (π2,2 − π1,1π2,1s̄1,1 − π1,2π2,2s̄2,2)q2,2)
1−α

] → max
s̄1,1, s̄1,2, s̄2,1, s̄2,2

The expected throughputs in the long-term fairness case are given by

θ1 = ( π1,1π2,1s̄1,1 + π1,1π2,2s̄1,2)q1,1 + (π1,2π2,1s̄2,1 + π1,2π2,2s̄2,2)q1,2

θ2 = ( π2,1 − π1,1π2,1s̄1,1 − π1,2π2,1s̄2,1)q2,1

+ (π2,2 − π1,1π2,1s̄1,1 − π1,2π2,2s̄2,2)q2,2 (7)

Let us also consider the expected instantaneous fairness which is given by criterion

1

1− α

[
E[U1−α

1 (t)] + E[U1−α
2 (t)]

] → max
s1,s2

which is equivalent to

1

1− α

⎡
⎣∑

ij

π1,iπ2,j

∫ 1

0
(sq1,i)

1−αdFij(s)

+
∑
ij

π1,iπ2,j

∫ 1

0
((1− s)q2,j)

1−αdFij(s)

⎤
⎦ → max

Fij

where Fij(s) is the distribution for s(t) conditioned on the event {Y1(t) = i, Y2(t) = j}. The
above criterion is maximized by

Fij(s) =

{
0, if s < q

(1−α)/α
1,i /(q

(1−α)/α
1,i + q

(1−α)/α
2,j ),

1, if s ≥ q
(1−α)/α
1,i /(q

(1−α)/α
1,i + q

(1−α)/α
2,j ).

Thus, we can see that the expected instantaneous fairness criterion is equivalent to instan-
taneous fairness.

Multiscale fairness: Next, let us consider multiscale fairness over time. Specifically,
(T1, T2)-scale fairness is defined by the following criterion

1

1− α

⎡
⎣
(

1

T1

T1∑
t=0

U1(t)

)1−α

+

(
1

T2

T2∑
t=0

U2(t)

)1−α
⎤
⎦ → max

s1,s2

In this particular example, there are 6 possible combinations of different time scales. It turns
out that in this example only the (1,∞)-scale fairness gives a new resource allocation. The
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other combinations of time scales reduce to some T -scale fairness. Thus, let us first consider
the multiscale fairness when we apply instantaneous fairness to the fast-changing user and
long-term fairness to the slowly-changing user. The (1,∞)-scale fairness corresponds to the
following optimization criterion

1

1− α

[
U1(0)

1−α + E[U2(t)]
1−α

] → max
s1,s2

which is equivalent to

1

1− α

[
(q1,Y1(0)(s̄Y1(0),1π2,1 + s̄Y1(0),2π2,2))

1−α

+(q2,1(1− s̄Y1(0),1)π2,1 + q22(1− s̄Y1(0),2)π2,2)
1−α

] → max
s̄Y1(0),1, s̄Y1(0),2

The expected throughputs in the (1,∞)-scale fairness case are given by

θ1 = ( q1,1(s̄1,1π1,1π2,1 + s̄1,2π1,1π2,2) + q1,2(s̄2,1π1,2π2,1 + s̄2,2π1,2π2,2)),

θ2 = ( q2,1(1− s̄1,1)π2,1 + q22(1− s̄1,2)π22)π1,1

+ (q2,1(1− s̄2,1)π2,1 + q22(1− s̄2,2)π22)π1,2.

As we have mentioned above, the other combinations of time scales reduce to some T -scale
fairness. In particular, (1, T (ε))-fairness reduces to the instantaneous fairness, (T (ε),∞)-
fairness reduces to long-term fairness, and (T (ε), 1)-, (∞, 1)- and (∞, T (ε))-fairness all reduce
to mid-term fairness.

Table 1: Case 1,2 & 3: Shannon capacity (q)/probability(π)

Case-1 Case-2 Case-3

state-1 state-2 state-1 state-2 state-1 state-2
(bad) (good) (bad) (good) (bad) (good)

User-1 2/0.2 8/0.8 3/0.1 9/0.9 3/0.9 9/0.1

User-2 2/0.2 8/0.8 1/0.3 7/0.7 1/0.3 7/0.7

Let us consider a numerical example. The parameters are given in Table 1. We consider
three typical cases. The first case corresponds to the symmetric scenario. In the second case,
the fast-changing user has in general better channel conditions. In the third scenario the
slowly-changing user (user 2) is more often in the good channel state than the fast-changing
user (user 1).

We plot the expected throughput of the mobiles for various fairness criteria for case-3 in
Figure 4. Plots and explanation for case-1 and case-2 are provided in [18].

In the third scenario, the second user always gets better share in terms of throughput.
This is expected as the second user spends on an average more time under better channel
conditions (channel with a good state) and the long- or short- term throughput is the principal
component of the optimization criteria. It is natural that long-term fairness gives the best
efficiency for both types of users. However, we note that the (1,∞)-scale fairness provides
better control in terms of fairness. The (1,∞)-scale fairness based allocation provides the
second best efficiency after the long-term fairness based allocation. Thus, we conclude that
multiscale fairness provides good sensitivity to the variation of the fairness parameter and
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Figure 4: Throughput(θ) as a func-
tion of α for instantaneous, mid-
term, long-term and (1,∞)-scale
fairness criteria (Case 3).

at the same time good performance in expected throughput. Below we shall see that the
multiscale fairness has another good property with respect to variance of the throughput.
It is curious to observe that in this example the instantaneous fairness does not really help
fast-changing user.
Coefficient of variation: We compute the coefficient of variation for short-term, mid-term,
long-term and multiscale fairness. For this, we first compute the second moment of the
throughput and then find the ratio of the standard deviation to its mean. For any user i, the

coefficient of variation Γi =

√
E[θ2i ]

E[θi]
.

In Figure 5, we plot the coefficient of variation in throughput for the various fairness
criteria considered above. It is very interesting to observe that except the (1,∞)-scale fairness
criterion all the other fairness criteria behave similarly with respect to the coefficient of
variation. Only in the case of (1,∞)-scale fairness the coefficient of variation decreases for
sort-term fairness oriented user. This is a very desirable property of the multiscale fairness
as a short-term fairness oriented user is typically a user with a delay sensitive application.
Similar to efficiency in throughput, multiscale fairness achieves efficiency in terms of overall
variance as well.

4. A heterogeneous approach to resource allocation

In the previous sections, we discussed the notion of α-fairness to include time scale consid-
erations for fair assignment of resources. Two extreme cases are elastic traffic (file transfer)
and interactive voice. In this section, we consider time scale separation in the fairness that is
related to the mobility of the users 2. We solve the problem when the utilities are linear in
the resources. We apply these results in the context of fair resource allocation in small cell
networks in a dynamic setting and show how mobility and the constraints on the averaging
durations impact the amount of resources each user gets.

2This work was presented in the proceedings of the workshop on Indoor Outdoor Femto Cells [15]
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Figure 5: Coefficient of variation in
expected throughput as a function
of α for instantaneous, mid-term,
long-term and (1,∞)-scale fairness
criteria (Case 3).

Resource allocation algorithms often try to achieve fairness and efficiency. In particular,
opportunistic scheduling algorithms in both uplink and downlink achieve higher throughputs
by giving preference to mobiles with better relative channel conditions. Preference according
to relative channel conditions rather than absolute channel conditions mean that the radio
conditions of each mobile are normalized by the averaged conditions of that channel until
then, and mobiles with best normalized radio conditions are selected for transmission; this
guarantee fairness.

Averaging the radio conditions is done in practice using some low pass filter. Thus aver-
aging is done over some effective period T . A longer T achieves a larger opportunistic gain at
the cost of longer starvation periods. In other words, efficiency is obtained at the cost of being
more unfair over a short time scale. Where as elastic traffic may prefer to be insensitive to
short time scale unfairness, interactive real-time applications may need averaging over shorter
time.

In the previous sections, we introduced the concept of T -scale and multiscale fairness
[14]. We considered abstract time varying channels, time scales were related to the channel
coherence times. In this section, we assume that user mobility is the source of channel
variations and the timescale of fairness is determined by spatio-temporal behavior of the
user. For example, such situations arise when resource allocation has to take into account
that a user can be located at any random location over his region of mobility. The fairness
concepts developed with this notion can be applied for example in small cell networks (e.g.,
pico or femto cells) [7, 8]. The scheduler in this case takes into account the expected utility
of the user over his region of mobility to compute the resource allocation.

In subsequent paragraphs, we shall discuss instantaneous fair share of resources and how
this can be applied for short-term fair share of resources in an example application (see sub
section 4.1.1) the case of long-term fair share of resources follows this sub section (see sub
section 4.1.2).

Consider the linear resource allocation model. Recall from definition 4 that a utility is
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linear in the resource if it has the form:

Ui(xi, si) := siqi(xi).

Then, the α-fair utility can be written as:

Zi(s, x, α) := s1−α
i vi(x), vi :=

(qi(xi))
1−α

1− α

In the case of linear resources the instantaneous α-fairness has a nice explicit expression.

Theorem 2. (i) The α-fair share is given by

s∗i =
vi(xi)

1/α∑
j vj(xj)

1/α
=

qi(xi)
1/α−1∑

j qj(xj)
1/α−1

(ii) The utility for mobile i under the fair assignment is then

Ui(s
∗, x) =

vi(xi)
1/α∑

j vj(xj)
1/α

qi(xi) =
qi(xi)

1/α∑
j qj(xj)

1/α−1

(iii) The optimal value Z is given by

Z =
1

1− α

∑
i

(
qi(xi)

1+1/α∑
j qj(xj)

1/α

)1−α

Proof. We relax the constraint and use KKT condition. s is optimal if and only if there
is some λ > 0 such that s maximize Lλ s.t. si ≥ 0 for all i, where

Lλ =
∑
i

s1−α
i vi + λ(1−

∑
i

si)

Equating the derivative w.r.t. si to zero gives

s−α
i vi(xi) =

λ

1− α

so that si =

(
1− α

λ
vi(xi)

)1/α

Since the sum of si is 1, we conclude that

λ

1− α
=

⎛
⎝∑

j

vj(xj)
1/α

⎞
⎠

α

Substituting in the previous equation yields (i), from which (ii), (iii) follows. 
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Example 3. Consider as an example a path loss β = 2 and let the base station be located
one unit above the mobiles. We assume that qi(x) is proportional to the attenuation between

the mobile and the base station: qi(x) = ciq(x) where q(x) = (1 + x2)−β/2. For β = α = 2 we
have

s∗i (x) =
c
−1/2
i (1 + x2i )

1/2∑
j c

−1/2
j (1 + x2j )

1/2
.

Furthermore,

Ui(s
∗, x) = s∗i (x)qi(xi) =

c
1/2
i (1 + x2i )

−1/2∑
j c

−1/2
j (1 + x2j )

1/2
.

Let us consider a simple example of allocation amongst indoor and outdoor users.

Example 4. Say, we have in total N time slots. The allocation happens in a bundle of 6
slots, such that, either we allocate all of it to an outdoor user located at x1 or fair share
them amongst 3 indoor users located at (y1, y2, y3) with yi ∈ (0, L), with any user getting two
consecutive slots. Now the question is ”Given that we fair-share among the indoor users, how
do we fair share between the outdoor and the indoor users?”.

In this example, we assume any user gets a throughput q ∈ [0, 1]. Let {U1, U2}, represent
the utility of user 1 and sum utility of users 2−4 and let {T1, 1−T1} represent their respective
assignment of resources. Now, utility of user 1,

U1(T1) = 6T1q1(x1).

Let s̄ = {s1, s2, 1−s1−s2} represent the assignment of resources for the indoor users. Then,
utility of users 2− 4 is

u2(T1, s̄) = 6s1(1− T1)q2(y2),

u3(T1, s̄) = 6s2(1− T1)q3(y3) and

u4(T1, s̄) = 6(1− s1 − s2)(1 − T1)q4(y4).

Now the α-fair share s̄∗ = {s∗1, s∗2, 1− (s∗1 − s∗2)} is given by,

s̄∗ = argmax
s̄

4∑
i=2

E[ui(T1, s̄)]
1−α1

1− α1

The sum utility of users 2− 4 is,

U2(T1) =

4∑
i=2

6s̄i
∗(1− T1)qi(yi)

The α-fair share between the outdoor and indoor users is,

T ∗
1 = argmax

T1

E [U1(T1)]
1−α + E [U2(1− T1)]

1−α

1− α

14



4.1. Application to resource allocation in small cell networks

Small cell networks, typically constitute pico and femto cells, which are small portable base
stations, typically designed for use in home, small business, commercial centers, hot spots,
etc. These base stations connect to the service providers network via DSL or cable broadband
and allow service providers to improve capacity and extend service coverage to address the
growing mobile broadband needs. These deployments address wide cellular markets that
include GSM, WiMAX and LTE technologies. Typically the service range extends to few tens
to couple of hundreds of meters covering indoor and outdoor partitions typical of residential
homes and offices. For the state of art and current research trends in small cell networks, see
[16, 17, 7, 8, 19, 6] and the references therein.

In our example application, we consider an indoor-outdoor partition as shown in Figure
6. Let Ω be the line segment [−L,L], with the indoor partition spanning [0, L]. Assume that
the base station is located just to the left of the wall. Mobile 1 is at some point x ≤ 0 outdoor
and user 2 remains always indoor and is located at some Yt which is uniformly distributed
over [0, L].

Figure 6: Indoor-outdoor scenario: User 1 located at x,
user 2 located indoor at Yt

We let qi(x) = ciq(x) with c1 = 1 and c2 is equal to some large fixed number. Thus the
presence of the wall between the base station and mobile 2 is modeled by a multiplicative
attenuation by some constant c2. Assume that the mobility pattern of mobile 2 is uniform
over the indoor part [0, L].

We consider allocation of the fraction of time between the two mobiles. We apply the
results obtained in Section-III to obtain the short-term fair resource allocation.

4.1.1. Short-term fair share of resources

We compute the expected utility for each user when assigning the channel so as to achieve
instantaneous fairness. The expected utility for mobile 1 under the instantaneous optimal
fairness s is given by

U1(s
∗, x) = s∗(x)q1(x), where s∗(x) :=

a

a+ b

for β = 2, a := c
−1/α
1 log

(
1 +

1

x2

)−1/α

b := c
−1/α
2

[
log(1 +

1

L2
) +

2

L
tan−1(L)

]−1/α

Note that mobile 2 has a mobility pattern which is uniform over the indoor part [0,L]

and hence its utility is given by 1
L

∫ L
0 log(1 + 1

x2 )dx = log(1 + 1
L2 ) +

2
L tan−1(L), which is the

second term in the denominator.
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Similarly, the utility of mobile 2 is given by

U2(s
∗, x) = [1− s∗(x)] c2q2(x).
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Figure 7: Scheduler s∗ for the indoor and outdoor
user with instantaneous fairness as a function of α
for α > 1. Wall attenuation 6 dB, path-loss β = 3,
position of outdoor user x = −3.
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Figure 8: Throughput θ for the indoor and outdoor
user with instantaneous fairness as a function of α
for α > 1. Wall attenuation 6 dB, path-loss β = 3,
position of outdoor user x = −3.

Numerical example: In Figure 7 and Figure 8, we plot the scheduler and the instantaneous
throughput for the indoor and outdoor user, as a function of α. We fix the location of the
outdoor user at x = −3, path-loss β = 3. We set L = 3 for this example. The indoor user is
located at some point which is uniformly distributed over [0, L].

Observation: When the fairness index α is small, we observe that the instantaneous
throughput achieved is higher as the outdoor user is located at the boundary (−L). But,
as the fairness index increases, the throughput of the indoor and the outdoor user starts to
converge. Notice that the outer user is scheduled more often as α increases, which results
in an increase in the outdoor users throughput. Thus, the instantaneous fair scheduler that
takes into account the region of mobility for the indoor user favors the outdoor user as the
degree of fairness, α, increases.

Discussion: In the above analysis if the resource allocation had not taken into account
user 2’s (indoor user) mobility, the throughput of the indoor user would have been less for
smaller α and would tend to increase as the degree of fairness α increases. Also, one would
have noticed that the indoor user is scheduled more often with an increase in α contrary to the
observation that we saw in the numerical example. Thus, for small values of α, considering
the region of mobility for the indoor user favors the outdoor user.

4.1.2. Long-term fair share of resources

Next we consider the long-term fairness. The long-term allocation s ∈ S (which is a
function of x and Yt) is given by maximizing
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Z(s) :=
1

1− α

[(
1

L

∫ L

0
dys1(x, y)q(x)

)1−α

+

(
1

L

∫ L

0
dyc2s2(x, y)q(y)

)1−α
]

Theorem 3. The long-term α-fair policy is given by s2(x2) = 1 for x2 ≤ l(α) and is otherwise
zero, where l(α) is the solution of the fixed-point equation

l(α) =

(
1− 1

β − 1

(
c2
q(l(α))

q(x)

)1− 1
α

)−1

L

where q(x) is a monotone decreasing function of the form x−β

Proof. It is easy to see that α-fair policy has to have the form mentioned in the theorem
statement. If not, for example say there exists an optimal policy which allocates mobile
2 in two disjoint intervals. Then, one can construct a better policy by shifting the right
most interval to the end of the left interval and this contradicts the optimality. Thus the
optimization simplifies to one-dimensional optimization

max
s

Z(s) = max
l∈[0,L]

Z(sl).

where, sl2(x) = 1 for {x ≤ l}.

It is easy to see that

Z(sl) =
1

1− α

[(
L− l

L
q(x)

)1−α

+

(
1

L

∫ l

0
c2 q(y)dy

)1−α
]
.

The optimal l(α) is obtained by differentiating the above equation w.r.t l and equating to
zero, which results in the fixed-point equation

(
(L− l(α))q(x)

)−α
q(x)−

(
c2

∫ l(α)

0
q(y)dy

)−α

q(l(α)) = 0.

Specifically when q(x) = x−β then the fixed-point equation simplifies to

l(α) =

(
1− 1

β − 1

(
c2
q(l(α))

q(x)

)1− 1
α

)−1

L



Numerical example: We plot in Figure 9 a numerical example to observe how l(α) varies

with α for α > 1. In this example, we consider path loss β = 2, location of the outdoor user
x = −2 and wall attenuation of 6 dB.

Observation: We observe that as α increases, the value of l(α) monotonically decreases
and starts to saturate. Also, it is interesting to note that the indoor user is scheduled when
its mobility and the fairness of resource allocation, (l(α), α), lie within the dashed region
below the curve. Thus, with a long-term fair scheduler, as the mobility region increases, the
range of fairness applicable decreases.
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Figure 9: l(α) for long-term fairness as a function of α
(α > 1) and wall attenuation of 6 dB ,path-loss β = 2,
position of outdoor user x = −2.

5. Conclusions and future research

We have introduced T -scale fairness and multiscale fairness. The notion of T -scale fairness
allows one to address in a flexible manner requirements of emerging applications (like You
Tube) which demand quality of service requirement between strict real-time traffic and best-
effort traffic. The notion of multiscale fairness allows one to use a single optimization criterion
for resource allocation when different applications are present in the network. We compared
the new fairness notions with the previously known criteria of instantaneous and long-term
fairness criteria and illustrated them with an example application of spectrum allocation when
users with different dynamics are present in the system. We demonstrated that the multiscale
fairness provides a versatile framework for resource allocation.

Next, we investigated how the spatial component, which arises due to mobility of users,
influences resource sharing under different fairness criteria. By considering that utilities are
linear in resources, we derived explicit expressions for the short-term and long-term fair
resource allocation. We applied this in the context of fair resource allocation in indoor-
outdoor small cells in a dynamic setting. In the case of short-term fairness, we observed
that the scheduler starts to schedule the outdoor user more often as the degree of fairness
increases, which is contrary to the case if the region of mobility had not been considered.
When considering long-term, we observed how the resource allocation to the mobile user
depends on a combination of its region of mobility and fairness of resource allocation. As
the region of mobility increases, the degree of fairness applicable decreases. We envisage that
these concepts can be used to derive some very interesting insights into resource allocation.
Especially, one can for example consider the base station to be located inside and study how
the resource allocation changes. Also, the indoor user can be static and the outdoor user can
be mobile. Further one can include certain mobility models for users that are mobile and
study fair resource allocation.

Also, it would be interesting to investigate how multiscale fairness criterion allows to
allocate resources when a number of applications with different QoS requirements are present
in the network. It is also interesting to investigate T -scale fairness in the non-stationary
regime.
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