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Abstract

Let H and K be Hilbert spaces and for each z ∈ C let A(z) ∈ L(H, K)
be a bounded but not necessarily compact linear map with A(z) analytic
on a region |z| < a. If A(0) is singular we find conditions under which
A(z)−1 is well defined on some region 0 < |z| < b by a convergent Laurent
series with a finite order pole at the origin. We show that by changing
to a standard Sobolev topology the method extends to closed unbounded
linear operators and also that it can be used in Banach spaces where
complementation of certain closed subspaces is possible. Our method is
illustrated with several key examples1.

1 Introduction

Let H and K be Hilbert spaces and consider bounded but not necessarily com-
pact linear operators A0 ∈ L(H,K) and A1 ∈ L(H,K). Let A(z) = A0 + A1z
be a linear perturbation of A0 that depends on a single complex parameter
z ∈ C. When A0 is non-singular the Neumann expansion can be used to calcu-
late (A0 + A1z)−1. We refer to Courant and Hilbert [4] p. 18 and pp. 140–142
for further discussion.

Lemma 1.1 (Neumann) Let A0 ∈ L(H,K) and A1 ∈ L(H,K) and suppose
that A0

−1 is well defined. Let A(z) = A0 + A1z where z ∈ C. Then for some
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b > 0 we have A(z)−1 is well defined for |z| < b with

A(z)−1 =
∞∑

j=0

(−1)j(A0
−1A1)jA0

−1zj .

When A0 is singular we consider three different situations.

• A0 is not 1–1.

• A0 is 1–1 and A0(H) is closed but A0 is not onto.

• A0 is 1–1 but A0(H) is not closed.

We outline the procedure when A0 is not 1–1. Let M = A0
−1({0}) and

N = A1(M). If there is some z0 6= 0 for which A(z0)−1 is well defined
then calculation of (A0 + A1z)−1 ∈ L(K,H) can be reduced to a term in z−1

plus a similar projected calculation of (A0,22 + A1,22z)−1 ∈ L(N⊥,M⊥) where
A0,22 ∈ L(M⊥, N⊥) and A1,22 ∈ L(M⊥, N⊥). If A0,22 is non-singular the Neu-
mann expansion can be applied to the projected problem and the original inverse
can be represented on a region 0 < |z| < b by a convergent Laurent series with
a pole of order 1 at the origin. If A0,22 is not 1–1 then the reduction procedure
can be applied again. Thus the procedure is essentially recursive. If the proce-
dure terminates after a finite number of steps then the inverse operator A(z)−1

is defined on some region 0 < |z| < b by a convergent Laurent series with a
finite order pole. The other cases are manipulated so that a similar reduction
procedure can be used. The method is not restricted to Fredholm operators.

We also consider unbounded operators. When A0 : D(A0) ⊂ H 7→ K is a
densely defined and closed unbounded linear operator we show that by changing
to a standard Sobolev topology on H we can replace A0 by a bounded operator
and apply the previous results. Several key examples will be presented.

We will show that the procedure can be applied when A(z) ∈ L(X,Y ) where
X and Y are Banach spaces provided X = M ⊕M ′ and Y = N ⊕ N ′ where
M = A0

−1({0}) and N = A1(M) and M ′ and N ′ are complementary spaces.
We consider some specific cases and an example of a perturbed Markov process.

We use augmented operators to extend the work on linear perturbations to
polynomial perturbations and then to analytic perturbations.

2 Previous work

Much of the work on perturbed operators has been restricted to matrix operators
[2, 8, 7, 20, 22], classes of differential operators [16, 22] or Fredholm operators [9]
and has often been primarily concerned with analysis of the eigenspaces [15, 17].
The paper [7] by Gohberg et al on the local theory of regular analytic matrix
functions uses a canonical system of root functions to compute a representation
of the Laurent principal part of the inverse function near an isolated singular
point. In this analysis the determinant of the matrix function plays a key di-
agnostic role. Although the earlier, beautifully written, paper by Vishik and
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Lyusternik [22] is more general in scope the inversion formulae are developed
for singularities on finite dimensional subspaces. The book [8] by Gohberg et al
presents a systematic treatment of perturbation theory for Fredholm operators
but once again relies on finite dimensional techniques. To extend the theory to
more general classes some of the familiar algebraic techniques must be discarded
or revised. In this paper we consider bounded but not necessarily compact linear
operators and pay particular attention to cases where the null space is non triv-
ial for the unperturbed operator but becomes trivial under perturbation. Our
methodology follows early papers by Sain and Massey [19] and Howlett [12] on
input retrieval in finite dimensional linear control systems, the PhD thesis by
Avrachenkov [1] on analytic perturbations and their application and subsequent
work by Howlett and Avrachenkov [13] and Howlett et al [14] on basic theoreti-
cal aspects of operator perturbation. Our approach was inspired by the work of
Schweitzer and Stewart [20] on a corresponding matrix inversion problem but
our technique depends on a geometric separation of the underlying spaces. The
separation mimics the algebraic separation employed by Howlett [12] for ma-
trix operators but does not depend directly on other established perturbation
techniques. For this reason we defer to the PhD thesis by Avrachenkov [1], the
paper by Avrachenkov et al [2], the book by Gohberg [9] and the fundamental
work by Kato [15] for a more comprehensive review of the literature. Our work
relies heavily on standard functional analysis for which we cite the classic texts
by Courant and Hilbert [4], Diestel [5], Dunford and Schwartz [6], Hewitt and
Stromberg [11], Luenberger [18], Singer [21] and Yosida [23].

3 Bounded operators: the basic inversion pro-
cedure

We use two key results established by Howlett and Avrachenkov [13]. These
results are not widely available and so we repeat them here. Assume A0 is not
1–1.

3.1 The key lemma

The following lemma establishes the basis for the inversion procedure.

Lemma 3.1 (Howlett & Avrachenkov) Let H and K be Hilbert spaces and
let A0, A1 ∈ L(H,K) be bounded linear maps. For each z ∈ C define A(z) ∈
L(H,K) by A(z) = A0 + A1z. Suppose M = A0

−1({0}) 6= {0} and let N =
A1(M) ⊂ K. If A(z0)−1 is well defined for some z0 6= 0 then A1 is bounded
below on M and N is a closed subspace of K.

Proof. By the Banach Inverse Theorem (see Luenberger [18] p. 149) the
map (A0 +A1z0) is bounded below on H. Therefore we can find ε > 0 such that

‖(A0 +A1z0)x‖ ≥ ε‖x‖
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for all x ∈ H. Since A0m = 0 it follows that

‖A1m‖ ≥
ε

|z0|
‖m‖

for all m ∈ M . If {nr} is a Cauchy sequence in N = A1(M) then nr = A1mr

where {mr} is a corresponding sequence in M . Because A1 is bounded below
on M the sequence {mr} must also be a Cauchy sequence. If mr → m and
nr → n then A1m = n. Thus n ∈ A1(M) = N . 2

3.2 The key orthogonal decomposition

Since M = A0
−1({0}) is closed and since the orthogonal complement M⊥ is

also closed it follows that H1 = M and H2 = M⊥ are each Hilbert spaces.
Let P ∈ L(H,H) denote the natural projection onto the subspace M ⊂ H and
define associated mappings Pi ∈ L(H,Hi) for i = 1, 2 by setting P1 = P and
P2 = I − P . Define R ∈ L(H,H1 ×H2) by the formula

Rx =
(
P1x
P2x

)
for each x ∈ H. Since 〈Rx1, Rx2〉 = 〈x1, x2〉 for each x1, x2 ∈ H the mapping
R defines a unitary equivalence between H and H1 × H2. In the same way
note that N = A1(M) is closed and since N⊥ is also closed it follows that
K1 = N and K2 = N⊥ are each Hilbert spaces. Let Q ∈ L(K,K) denote the
natural projection onto the subspace N ⊂ K and define associated mappings
Qj ∈ L(K,Kj) for j = 1, 2 by setting Q1 = Q and Q2 = I − Q. Define
S ∈ L(K,K1 ×K2) by the formula

Sy =
(
Q1y
Q2y

)
for each y ∈ K. The mapping S defines a unitary equivalence between K and
K1 ×K2. Now partition the operators A0 and A1 in the form

SA0R
∗ =

(
0 A0,12

0 A0,22

)
and SA1R

∗ =
(
A1,11 A1,12

0 A1,22

)
where A0,ij , A1,ij ∈ L(Hi,Kj) and where we note that A0,11 = Q1A0P

∗
1 = 0,

A0,12 = Q1A0P
∗
2 , A0,21 = Q2A0P

∗
1 = 0, A0,22 = Q2A0P

∗
2 , A1,11 = Q1A1P

∗
1 ,

A1,12 = Q1A1P
∗
2 , A1,21 = Q2A1P

∗
1 = 0 and A1,22 = Q2A1P

∗
2 .

Remark 3.2 Recall that if A0 is not 1–1 and (A0 + A1z0)−1 exists for some
z0 ∈ C with z0 6= 0 then A1 is bounded below on H1. Equivalently we can say
that A1,11 ∈ L(H1,K1) is bounded below. It follows that A1,11 is a 1–1 mapping
of H1 onto K1.
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3.3 The key inversion formula

We use the notation introduced in the previous subsection.

Theorem 3.3 (Howlett & Avrachenkov) Let A0 ∈ L(H,K) with H1 =
A0

−1({0}) 6= {0}. Suppose A1,11 ∈ L(H1,K1) is a 1–1 mapping of H1 onto
K1 = A1(H1). The mapping A(z) ∈ L(H,K) is a 1–1 mapping of H onto K
if and only if z 6= 0 and (A0,22 + A1,22z) ∈ L(H2,K2) is a 1–1 mapping of
H2 = H⊥

1 onto K2 = K⊥
1 . In this case

A(z)−1 = P ∗1 SA
−1
1,11Q1/z

+
[
P ∗2 − P ∗1A

−1
1,11(A0,12 +A1,12z)/z

]
(A0,22 +A1,22z)−1Q2. (3.1)

Proof. Since

A(z) = S∗
(
A1,11z A0,12 +A1,12z

0 A0,22 +A1,22z

)
R

where R and S are unitary operators it follows that A(z)−1 exists if and only if(
A1,11z A0,12 +A1,12z

0 A0,22 +A1,22z

)−1

exists. Let x = Rξ and y = Sη. The system of equations A(z)x = y has a
unique solution x ∈ H for each y ∈ K if and only if the system of equations

(A1,11z)ξ1 + (A0,12 +A1,12z)ξ2 = η1

(A0,22 +A1,22z)ξ2 = η2

has a unique solution ξ ∈ H1×H2 for each η ∈ K1×K2. The latter system can
be rewritten as

(A0,22 +A1,22z)ξ2 = η2

(A1,11z)ξ1 = η1 − (A0,12 +A1,12z)ξ2

and so there is a unique solution if and only if z 6= 0 and both A1,11 is a 1–1
mapping of H1 onto K1 and (A0,22 + A1,22z) is a 1–1 mapping of H2 onto K2.
Therefore

ξ2 = (A0,22 +A1,22z)−1η2

ξ1 = A−1
1,11 [η1 − (A0,12 +A1,12z)ξ2] /z

and hence, by back substitution, x = P ∗1 ξ1 + P ∗2 ξ2 gives

x = {P ∗1A−1
1,11Q1/z+

[
P ∗2 − P ∗1A

−1
1,11(A0,12 +A1,12z)/z

]
(A0,22 +A1,22z)−1Q2}y.

Thus we obtain the desired formula for A(z)−1. 2
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Remark 3.4 If A0,22 ∈ L(H2,K2) is a 1–1 mapping of H2 onto K2 then
A0,22

−1 is well defined and for some real number b > 0 the operator (A0,22 +
A1,22z) ∈ L(H2,K2) is defined by a convergent Neumann series in the region
|z| < b. Thus the operator A(z)−1 is defined in the region 0 < |z| < b by a
convergent Laurent series with a pole of order 1 at z = 0.

Example 1 (Continuous spectrum) Each element in the space L2(R) can
be represented by a Fourier integral and defined by a continuously distributed
spectral density. A bounded linear operator on L2(R) can be regarded as a linear
transformation on a continuous spectrum. Let

w(t) =
2 sin(u0t)

t

where u0 ∈ R and u0 > 0. Define A0 : L2(R) 7→ L2(R) by the formula

A0x(t) = x(t)− [x ∗ w](t) = x(t)− 1
π

∫
R
x(τ)w(t− τ)dτ

for all t ∈ R. The Fourier cosine and sine transforms are defined by

Fc[p](u) =
1
π

∫
R
p(t) cos(ut)dt and Fs[p](u) =

1
π

∫
R
p(t) sin(ut)dt

for each p ∈ L2(R). It is well known that p can be reconstructed by the formula

p(t) =
∫

R
[Fc[p](u) cos(ut) + Fs[p](u) sin(ut)] dt

and that the correspondence p ∈ L2(R) ⇔ (Fc[p],Fs[p]) ∈ L2(R) × L2(R) is
unique. If p, q ∈ L2(R) then

Fc[p ∗ q](u) = Fc[p](u)Fc[q](u)−Fs[p](u)Fs[q](u) and
Fs[p ∗ q](u) = Fc[p](u)Fs[q](u) + Fs[p](u)Fc[q](u).

Since Fc[w](u) = χ(−u0,u0)(u) and Fs[w](u) = 0 it follows that

Fc[A0x](u) = Fc[x](u)−Fc[x ∗ w](u) = Fc[x](u)
[
1− χ(−u0,u0)(u)

]
and

Fs[A0x](u) = Fs[x](u)−Fs[x ∗ w](u) = Fs[x](u)
[
1− χ(−u0,u0)(u)

]
for each x ∈ L2(R). Define A1 : L2(R) 7→ L2(R) by A1x = x for all x ∈ L2(R)
and consider the equation (A0 + A1z)x = y. The solution is given by x =
(A0 + A1z)−1y provided the inverse exists. Taking a Fourier cosine transform
of the original equation gives

Fc[x](u)
[
(1 + z)− χ(−u0,u0)(u)

]
= Fc[y](u)

and hence

Fc[x](u) = Fc[y](u)χ(−u0,u0)(u) ·
1
z

+ Fc[y](u)
[
1− χ(−u0,u0)(u)

]
· 1
1 + z

= Fc[y ∗ w](u) · 1
z

+ [Fc[y](u)−Fc[y ∗ w](u)] · [1− z + z2 − · · · ]
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for |z| < 1. In similar fashion a Fourier sine transform of the original equation
gives

Fs[x](u)
[
(1 + z)− χ(−u0,u0)(u)

]
= Fs[y](u)

from which it follows that

Fs[x](u) = Fs[y ∗ w](u) · 1
z

+ [Fs[y](u)−Fs[y ∗ w](u)] · [1− z + z2 − · · · ]

for |z| < 1. Therefore the solution is

x(t) = (y ∗ w)(t) · 1
z

+ [y(t)− (y ∗ w)(t)] · [1− z + z2 − · · · ]

for |z| < 1. Note that the Laurent series has a pole of order 1 provided (y ∗w) 6=
0. By considering the Fourier transforms it can be seen that (y ∗ w) = 0 if and
only if Fc[y](u) = 0 and Fs[y](u) = 0 for almost all u ∈ (−u0, u0).

Remark 3.5 If A(z0) ∈ L(H,K) is non-singular then (A0,22 + A1,22z0) ∈
L(H2,K2) is also non-singular. If A0,22 ∈ L(H2,K2) is onto but not 1 − 1
then Theorem 3.3 can be applied to the operator (A0,22 + A1,22z). Thus the
procedure is essentially recursive.

Example 2 Let u : [−π, π] 7→ R be defined by u(t) = (−1) · sgn(t) for all
t ∈ [−π, π]. That is

u(t) =

 1 for t ∈ (−π, 0)
0 for t = −π, 0, π

−1 for t ∈ (0, π).

Let H = K = L2([−π, π]). Define A0 : H 7→ K by setting

A0x(t) =
1
16

[
(x ∗ u)(t) + (x ∗ u)(−t)

]
=

1
16

∫ π

−π

x(s)
[
u(t− s) + u(−t− s)

]
ds

= − 1
8

[
X(t) +X(−t)

]
+

1
8

[
X(t− π) +X(−t+ π)

]
where X(t) =

∫
[0,t]

x(s)ds and where we have used the periodic extension of u(t)
as required in the convolution integral. The functions

e0 = 1, e1(t) = cos t, f1(t) = sin t, e2(t) = cos 2t, f2(t) = sin 2t, . . .

form an orthogonal basis for L and hence we can represent each element f ∈ L
as an infinite sequence

f = (a0, a1, b1, a2, b2, . . .) ⇔ a0 +
∞∑

n=1

[anen + bnfn]
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of Fourier coefficients. Note that A0en = 0, A0f2m = 0 and A0f2m−1 =
e2m−1/(2m− 1) for all m,n ∈ N. The null space M = A−1

0 ({0}) is defined by

M = {x | x ∈ H and x = (a0, a1, 0, a2, b2, a3, 0, a4, b4, . . .)}

and the orthogonal complement M⊥ = A−1
0 ({0})⊥ is defined by

M⊥ = {x | x ∈ H and x = (0, 0, b1, 0, 0, 0, b3, 0, 0, . . .)}.

Both M and M⊥ are infinite dimensional spaces. In terms of the Fourier coef-
ficients the mapping A0 ∈ L(H,K) can be described by the relationship

A0(a0, a1, b1, a2, b2, a3, b3, a4, b4, . . .) = (0, b1, 0, 0, 0, b3/3, 0, 0, 0, . . .).

Let A1 = I. The perturbed operator (A0 + A1z) : H 7→ K can be defined by an
equivalent transformation (A0 +A1z) : `2 7→ `2 using the formula

(A0 +A1z)(a0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, . . .)
= (a0z, b1 + a1z, b1z, a2z, b2z, b3/3 + a3z, b3z, a4z, b4z, . . .)

where a0, an and bn are the usual Fourier coefficients. Solving a simple set of
equations shows that the equivalent inverse transformation (A0 +A1z)−1 : `2 7→
`2 is defined by

(A0 +A1z)−1(c0, c1, d1, c2, d2, c3, d3, c4, d4, c5, d5, . . .)

=
(
c0
z
,
c1
z
− d1

z2
,
d1

z
,
c2
z
,
d2

z
,
c3
z
− d3

3z2
,
d3

z
,
c4
z
,
d4

z
, . . .

)
where c0, cn and bn are the usual Fourier coefficients. The inverse operator has
a pole of order 2 at the origin. Write H = M ×M⊥ and K = N ×N⊥ where
N = A1(M) = M and N⊥ = M⊥. Now using an infinite dimensional matrix
notation

(A0 +A1z) =



z 0 0 0 0 · · · 0 0 · · ·
0 z 0 0 0 · · · 1 0 · · ·
0 0 z 0 0 · · · 0 0 · · ·
0 0 0 z 0 · · · 0 0 · · ·
0 0 0 0 z · · · 0 1

3 · · ·
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · z 0 · · ·
0 0 0 0 0 · · · 0 z · · ·
...

...
...

...
...

...
...

...
. . .


=
[
Iz A0,12

0 Iz

]

and hence

(A0 +A1z)−1 =

 I · 1
z

−A0,12 ·
1
z2

0 I · 1
z

 .
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Remark 3.6 If the procedure is applied recursively to generate a sequence

M⊥
1 ⊃M⊥

2 ⊃ · · ·

of complementary spaces and if M⊥
n is finite dimensional for some n ∈ N then

the recursive procedure terminates after a finite number of steps and the Laurent
series has a finite order pole and converges on some region 0 < |z| < b.

Remark 3.7 If the action of the operators is restricted to a finite dimensional
subspace for the purpose of numerical calculation then the Laurent series for the
inverse of the perturbed restricted operator has at most a finite order pole.

The recursive procedure may continue indefinitely as the following example
shows.

Example 3 Consider the mappings on ` 2 defined by the infinite matrices

A0 =
[

0 A0,12

0 A0,22

]
=


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .


and

A1 =
[
A1,11 A1,12

0 A1,22

]
=


1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

 = I

and the linearly perturbed infinite matrix

A(z) =
[
A1,11z A0,12 +A1,12z

0 A0,22 +A1,22z

]
=


z 1 0 0 · · ·
0 z 1 0 · · ·
0 0 z 1 · · ·
0 0 0 z · · ·
...

...
...

...
. . .

 = (A0 + Iz).

The reduced problem to calculate (A0,22 +A1,22z)−1 is the same as the original
problem to calculate A(z)−1. By an elementary calculation

(A0 + Iz)−1 =


z−1 −z−2 z−3 −z−4 · · ·
0 z−1 −z−2 z−3 · · ·
0 0 z−1 −z−2 · · ·
0 0 0 z−1 · · ·
...

...
...

...
. . .


= I · 1

z
+ (−1)A0 ·

1
z2

+ (−1)2A2
0 ·

1
z3

+ · · · .
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In general this series does not converge near z = 0 but if y =
∑n

j=1 yjej for
some natural number n ∈ N then only the first n terms are non-zero and the
series converges for all z 6= 0 with a pole of order at most n at the origin.

4 Bounded operators: the adjoint inversion for-
mula

These results were originally proposed in [14]. Assume A0 is 1–1 and A0(H) is
closed but A0 is not onto.

4.1 The adjoint operator

Let A0 ∈ L(H,K). The Hilbert space adjoint A0
∗ ∈ L(K,H) is defined by

the relationship 〈x,A0
∗y〉 = 〈A0x, y〉 for all x ∈ H and y ∈ K. The following

standard result is used.

Lemma 4.1 Let A0 ∈ L(H,K) and let A0
∗ ∈ L(K,H) denote the Hilbert

space adjoint. If A0
−1({0}) = {0} and A0(H) is closed but A0(H) 6= K then

[A0
∗]−1({0}) 6= {0} and A0

∗(K) = H. Thus the adjoint operator A0
∗ is onto

but not 1–1.

Remark 4.2 If A−1 ∈ L(K,H) is well defined then [A∗]−1 = [A−1]∗ ∈ L(H,K)
is also well defined.

Lemma 4.1 and Remark 4.2 provide a basis for the inversion procedure when
A0

−1({0}) = {0} and A0(H) is closed but A0(H) 6= K.

Theorem 4.3 Let A0 ∈ L(H,K) and suppose A0
−1({0}) = {0} with A0(H)

closed but A0(H) 6= K. If the inverse operator A(z0)
−1 = (A0 + A1z0)−1 is

well defined for some z0 6= 0 then [A(z0)∗]−1 = (A0
∗ + A1

∗z0)−1 = [A(z0)−1]∗

is also well defined. If Theorem 3.3 can be applied to show that for some b > 0
the inverse operator [A(z)∗]−1 is well defined for 0 < |z| < b then A(z)−1 =
[{A(z)∗}−1]∗ is also well defined for 0 < |z| < b.

Proof. Apply the original inversion formula to the adjoint operator A(z)∗

and recover the desired series from the formula A(z)−1 = [{A(z)∗}−1]∗. 2

5 Bounded operators: non-closed range

We begin with an important and well-known observation.

Lemma 5.1 If A0 ∈ L(H,K) and A0(H) is not closed then A0 is not bounded
below.
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Outline of Proof. If y ∈ A0(H) \ A0(H) then we can find {xn} ∈ H
such that ‖A0xn − y‖K → 0 as n → ∞. If ‖xn‖H is bounded then by the
Eberlein–Shmulyan theorem (see Yosida [23] pp. 141-145) there is a subsequence
{xn(m)} and some x ∈ H such that xn(m) converges weakly to x. It follows that
A0xn(m) converges weakly to A0x and hence that A0x = y ∈ A0(H). This is a
contradiction. Thus {xn} is unbounded and since {A0xn} is bounded it follows
that A0 is not bounded below. 2

When A0(H) is not closed in K the essence of the difficulty is that K is
an inappropriate image space with an inappropriate topology. We restrict the
image space and define a new topology.

Definition 5.2 Let M = A0({0})−1 be the null space of A0. Let 〈·, ·〉E :
A0(H)×A0(H) 7→ C be defined by the formula

〈y, v〉E = 〈y, v〉K + 〈x⊥M , u⊥M 〉H
for each y, v ∈ A0(H) where x⊥M , u⊥M ∈ M⊥ are the uniquely defined elements
with A0x

⊥
M = y and A0u

⊥
M = v.

Lemma 5.3 The space KE = {A0(H), 〈·, ·〉E} is a Hilbert space.

The mapping A0,E ∈ L(H,KE) defined by A0,Ex = A0x for all x ∈ H is onto
but not necessarily 1–1. Of course it may well be true that KE can be regarded
as a closed subspace of some larger Hilbert space K ′ in which case the mapping
A0,E ∈ L(H,K ′) is no longer onto. In any case the original inversion formulae
can now be applied to the perturbed operator (A0,E +A1,Ez) ∈ L(H,K ′) where
we assume the perturbation operator A1,E ∈ L(H,K ′).

Example 4 (A modified integral operator) Let H = K = L2([0, 1]). Note
that the space L2([0, 1]) can be generated by the limits of all Cauchy sequences of
continuous functions {xn} ∈ C0([0, 1]) in L2([0, 1]) satisfying xn(0) = xn(1) = 0.
Define A0 ∈ L(H,K) by setting A0x(t) = X (1)−X(t) where

X(t) =
∫ t

0

x(s)ds and X (u) =
∫ u

0

X(t)dt.

If we define xn ∈ H by
xn(s) = sinnπs

then ‖xn‖ = 1/
√

2 for all n ∈ N but we have

A0xn(t) =
cosnπt
nπ

and hence ‖A0xn‖ → 0 as n → ∞. Therefore A0 is not bounded below and
A0(H) is not closed in K. For instance if we define y0 ∈ K by the formula

y0(t) =


1
2 for 0 < t < 1

2

− 1
2 for 1

2 < t < 1

=
2
π

[
cosπt− cos 3πt

3
+

cos 5πt
5

− · · ·
]
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then y0 ∈ A0(H)\A0(H). In general there are many non-differentiable functions
on the boundary of the set A0(H). Define a new scalar product on A0(H) by
setting

〈y, v〉E = 〈y, v〉K + 〈x, u〉H
where x, u are the unique solutions to y = A0x and v = A0u. If we use the new
topology induced by the new scalar product then non-differentiable functions,
such as y0, are removed from the image space. The image space now consists
of those functions y ∈ L2([0, 1]) with generalized derivative y′ ∈ L2([0, 1]) such
that

∫ 1

0
y(t)dt = 0, and with ‖y‖2E = ‖y‖22 + ‖y′‖22.

6 Unbounded operators that are both densely
defined and closed

We refer the reader to the book by Yosida [23] pp. 193-201 for general results
about densely defined closed linear operators and their adjoints. Suppose A0 :
D(A0) ⊂ H 7→ K is a densely defined and closed unbounded linear operator.
For each ϕ,ψ ∈ D(A0) define a new inner product

〈ϕ,ψ〉E = 〈ϕ,ψ〉H + 〈A0ϕ,A0ψ〉K

and corresponding norm ‖ϕ‖E = [〈ϕ,ϕ〉E ]1/2. The space HE = (D(A0), 〈·, ·〉E)
is a Hilbert space. We denote the new mapping by A0,E : HE 7→ K. In practice
the operator A0 may be defined on a dense subset C ⊂ H but may not be
closed. In such cases the set HE ⊂ H is defined as the completion of C in
the new norm. The point x ∈ H will belong to HE if there exists a sequence
{ϕn} ∈ C with ‖ϕn − x‖E → 0 as n→∞. Thus we must also have y ∈ K with
‖A0ϕn − y‖K → 0. The completion is guaranteed if we allow the limit process
to define an appropriate equivalence class.

Lemma 6.1 The mapping A0,E : HE 7→ K is a bounded linear mapping. That
is A0,E ∈ L(HE ,K).

Remark 6.2 A0(H) is closed if and only if A0 is bounded below on D(A0).

Theorem 6.3 (J. von Neumann) If A is both densely defined and closed
then A∗A and AA∗ are self-adjoint with (I+A∗A)−1 ∈ L(H) and (I+AA∗)−1 ∈
L(K).

Lemma 6.4 The new adjoint mapping A0,E
∗ ∈ L(K,HE) is defined in terms

of the original adjoint mapping A0
∗ : D(A0

∗) ⊂ K 7→ H by the formulae

A0,E
∗ = A0

∗(I +A0A0
∗)−1 = (I +A0

∗A0)−1A0
∗.

Since the operator A0,E : HE 7→ K is a bounded linear mapping the
original inversion formula can now be applied to a linearly perturbed opera-
tor (A0,E + A1,Ez) ∈ L(HE ,K) where we assume the perturbation operator
A1,E ∈ L(HE ,K).
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Example 5 (The differentiation operator) Let H = L2([0, 1]) and define
A0ϕ(t) = ϕ ′(t) for all ϕ ∈ C1

0([0, 1]) and all t ∈ [0, 1]. For each {ϕn} ∈ C1
0([0, 1])

with ∫
[0,1]

{
|ϕm(t)− ϕn(t)|2 + |ϕ ′

m(t)− ϕ ′
n(t)|2

}
dt→ 0

as m,n→∞ there exist functions x and y such that∫
[0,1]

|ϕn(t)− x(t)|2dt→ 0 and
∫

[0,1]

|ϕ ′
n(t)− y(t)|2dt→ 0

as n→∞. We say y = x ′ is the generalized derivative of x. Note that

‖x‖2 =
∫ 1

0

∣∣∣∣∫ t

0

x ′(s)ds
∣∣∣∣2 dt ≤ 1

2
‖x ′‖2.

The Hilbert space HE is the completion of the space C1
0([0, 1]) with the inner

product

〈x, u〉E =
∫ 1

0

[x(t)u(t) + x ′(t)u ′(t)]dt

and the norm

‖x‖E =
[∫ 1

0

{|x(t)|2 + |x ′(t)|2}dt
]1/2

.

It can be shown that

HE = {x | x ∈ C0
0([0, 1]) and x ′ ∈ L2([0, 1])}.

The space HE = H1
0 ([0, 1]) is an elementary example of a Sobolev space. De-

fine the generalized differentiation operator A0,E : HE 7→ K by the formula
A0,Ex = limn→∞A0ϕn where ϕn ∈ C1

0([0, 1]) and ϕn → x in HE as n → ∞.
Thus A0,Ex = x ′ is simply the generalized derivative. It follows from the in-
equality above that A0,E is bounded below and hence A0,E(HE) is closed. It is
also obvious that ‖A0,Ex‖ ≤ ‖x‖E and so A0,E ∈ L(HE ,K). For the original
mapping A0 : C1

0([0, 1]) ⊂ L2([0, 1]) 7→ L2([0, 1]) consider the adjoint mapping
A0

∗. If A0
∗η = ξ then∫ 1

0

ϕ ′(t)η(t)dt =
∫ 1

0

ϕ(t)ξ(t)dt ⇒
∫ 1

0

ϕ ′(t)
[
η(t) +

∫ t

0

ξ(s)ds
]
dt = 0

for all ϕ ∈ C1
0([0, 1]). Hence η is differentiable and ξ = −η ′ = A0

∗η. Now
consider the adjoint of the generalized mapping. If A0,E

∗η = ζ then∫ 1

0

ϕ ′(t)η(t)dt =
∫ 1

0

[ϕ(t)ζ(t) + ϕ ′(t)ζ
′
(t)]dt

and therefore ∫ 1

0

ϕ ′(t)
[
η(t)− ζ

′
(t) +

∫ t

0

ζ(s)ds
]
dt = 0
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for all ϕ ∈ C1
0([0, 1]). Hence ζ ′ is differentiable and ζ − ζ ′′ = −η ′. It follows

that
(I +A0

∗A0)A0,E
∗ = A0

∗ ⇔ A0,E
∗ = (I +A0

∗A0)−1A0
∗.

Example 6 (Discrete spectrum) Each element in the space L2([0, 1]) can be
represented by a Fourier series and defined by a countably infinite discrete spec-
trum. A bounded linear operator on any subspace of L2([0, 1]) can be regarded as
a linear transformation on a discrete spectrum. Let H = H2([0, 1]) ∩H1

0 ([0, 1])
be the Hilbert space of measurable functions x : [0, 1] 7→ C with∫

[0,1]

[
|x(t)|2 + |x ′(t)|2 + |x ′ ′(t)|2

]
dt <∞,

and x(0) = x(1) = 0 and with inner product given by

〈x1, x2〉H =
∫

[0,1]

[x1(t)x2(t) + x1
′(t)x2

′(t) + x1
′ ′(t)x2

′ ′(t)] dt.

Let K = L2([0, 1]) be the Hilbert space of measurable functions y : [0, 1] 7→ C.
Define A0, A1 ∈ L(H,K) by setting

A0x = x ′ ′ + π2x and A1x = x

for all x ∈ H. Note that ‖x ′ ′‖2K ≤ ‖x‖2H . For each y ∈ K and z ∈ C we wish
to find x ∈ H to solve the differential equation

[x ′ ′(t) + π2x(t)] + zx(t) = y(t).

This equation can be written in the form (A0+A1z)x = y and hence the solution
is given by x = (A0 + A1z)−1y provided the inverse exists. If ek : [0, 1] 7→ C is
defined by ek(t) =

√
2 sin kπt for each k = 1, 2, . . . and all t ∈ [0, 1] then each x ∈

H can be written as x =
∑∞

k=1 xkek where xk ∈ C and
∑∞

k=1 k
4|xk|2 <∞ and

each y ∈ K can be written as y =
∑∞

k=1 ykek where yk ∈ C and
∑∞

k=1 |yk|2 <∞.
The operator A0 is singular because A0e1 = 0. Nevertheless (A0 +A1z) is non-
singular for 0 < |z| < 3π2 and equating coefficients in the respective Fourier
series gives the solution

x1 = y1/z and xk = (−1)yk/[π2(k2 − 1)− z] for k ≥ 2.

By writing the solution in the form

x =
y1e1

z
−

∞∑
k=2

ykek

π2(k2 − 1)

[
1 +

z

π2(k2 − 1)
+ · · ·

]

= y1e1 ·
1
z
−

∞∑
k=2

ykek

π2(k2 − 1)
· 1−

∞∑
k=2

ykek

[π2(k2 − 1)]2
· z − · · ·

for 0 < |z| < 3π2 we can see that the expansion is a Laurent series with a pole
of order 1 at z = 0.



Inversion of perturbed linear operators 15

7 Inversion of perturbed linear operators on Ba-
nach space

Our results can also be applied in some Banach spaces. The material in this
section is based on the general theory of Banach spaces described in [5], [6],
[11], [15], [21] and [23]. In particular we use the terminology of Kato [15] in
the following matter. Let X be a Banach space over the field C of complex
numbers. The space X∗ is the space of all bounded conjugate linear functionals
on X. Thus X∗ = L(X,C) and for each f ∈ X∗ and each z1, z2 ∈ C and
x1, x2 ∈ X we have

〈f, z1x1 + z2x2〉 = z1〈f, x1〉+ z2〈f, x2〉.

Remark 7.1 In this section are guided by the following observations. Let X,Y
be Banach spaces with A0, A1 ∈ L(X,Y ). Let M = A0

−1({0}) and N = A1(M).
If X = M ⊕M ′ and Y = N ⊕N ′ where M ′ and N ′ are complementary spaces
then the inversion procedure used for Hilbert spaces can be applied in exactly the
same way. The problem is that not all closed subspaces can be complemented in
Banach space. Our investigation is therefore directed towards the case when the
subspaces M and N can be defined by bounded linear projections.

7.1 General projection methods

We note the following well known result which is a compilation of results given
in [5] p. 37, [11] p. 232 and [21] p. 111.

Theorem 7.2 If X is a uniformly convex Banach space then X is reflexive and
strictly convex. If M is a closed linear subspace of X then for each x ∈ X there
is a uniquely defined element xM ∈ M such that ||x − xM || ≤ ||x −m|| for all
m ∈M .

Unfortunately the projection PM : X 7→ X defined by PM (x) = xM is
generally non linear and so it is not possible to proceed as before. In certain
special cases the above projection is linear.

7.2 Linear projections

We begin with an example of a linear projection in a uniformly convex space.

Example 7 Let p ∈ R with 1 < p < ∞ and let X = lp. Let f ∈ X∗ = lq

where 1/p + 1/q = 1 and 〈f, x〉 =
∑∞

k=1 fkxk for each x ∈ lp. The space lp is
uniformly convex. If

M = {m | m ∈ lp and 〈f,m〉 = 0}

then the natural projection ξ = PMx is defined by

ξk = xk −
f̂k|fk|q−1〈f, x〉

||f ||qq
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where f̂k = fk/|fk|. The projection is clearly linear in x.

In some cases linear projections can be constructed. It is well known for
instance, that bounded linear projections can always be constructed if the sub-
space is closed and finite dimensional or finite co-dimensional. Let X,Y be
Banach spaces over the field C and let X∗, Y ∗ be the corresponding adjoint
spaces. We need the following elementary result.

Lemma 7.3 Let T ∈ L(X,Y ). If T is a 1–1 mapping of X onto Y then the
adjoint mapping T ∗ ∈ L(Y ∗, X∗) is a 1–1 mapping of Y ∗ onto X∗. Note that
if f ∈ X∗ and g = f ◦ T−1 ∈ Y ∗ then f = T ∗g.

Example 8 Let A0, A1 ∈ L(X,Y ) and suppose that for some finite linearly
independent set {fj}j=1,2,...,r ⊂ X∗ the subspace M = A0

−1({0}) ⊂ X is defined
by

M = {m | 〈fj ,m〉 = 0 for each j = 1, 2, . . . , r}.

Choose {xk}k=1,2,...,r ⊂ X such that 〈fj , xk〉 = δjk where δjk is the Kronecker
delta and define PM ∈ L(X) by the formula

PM (x) = x−
r∑

k=1

〈fk, x〉xk.

Since PM and I − PM are linear projections we can write X = PM (X) ⊕ [I −
PM ](X). Suppose there exists z0 ∈ C with z0 6= 0 so that T0

−1 = z0(A0 +
A1z0)−1 ∈ L(Y,X) is well defined and let {gj}j=1,2,...,r ⊂ Y ∗ be given by the
formula

gj = [T0
∗]−1

fj = z0(A∗0 +A∗1z0)
−1fj .

For each m ∈ M we have 〈gj , A1m〉 = 〈[T0
−1]∗fj , T0m〉 = 〈fj ,m〉 and so the

subspace N = A1(M) ⊂ Y has the form

N = {n | 〈gj , n〉 = 0 for each j = 1, 2, . . . , r}.

Since {gj}j=1,2,...,r ⊂ Y ∗ are linearly independent there exist {yk}k=1,2,...,r ⊂ Y
such that 〈gj , yk〉 = δjk and we can define QN ∈ L(Y ) by the formula

QN (y) = y −
r∑

k=1

〈gk, y〉yk

for each y ∈ Y . Because QN and I − QN are linear projections we can write
Y = QN (Y )⊕ [I −QN ](Y ).

7.3 Mean transition times for a perturbed Markov process

The intrinsic structure of a Markov process can be substantially changed by a
small perturbation. For instance the perturbation may introduce state transi-
tions that are not possible in the original unperturbed process. In such cases
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the mean passage times between states can be calculated by finding the inverse
of a perturbed linear operator. We introduce our example with a brief motivat-
ing discussion but refer to [3] for technical information about the terminology.
Consider a Markov chain defined on the discrete state space S = {0, 1

r ,
2
r , . . . , 1}

with transition probabilities defined by the matrix

T =



1 0 0 · · · 0 0
1
2

1
2 0 · · · 0 0

1
3

1
3

1
3 · · · 0 0

...
...

...
. . .

...
...

1
r

1
r

1
r · · · 1

r 0
1

r+1
1

r+1
1

r+1 · · · 1
r+1

1
r+1


.

The transition matrix acts on a discrete probability measure π ∈ R1×(r+1) to
produce a transformed discrete probability measure T (π) ∈ R1×(r+1) defined
by the formula T (π) = π · T . Thus for each j = 0, 1, . . . , r we have

T (πj) =
r∑

k=j

πk

k + 1
.

If we write πj = ∆ξj and define the cumulative probability ξj = ∆ξ0 + ∆ξ1 +
· · ·+ ∆ξj then by an appropriate sum of the above equations we obtain

T (ξj) = ξj + (j + 1)
r∑

k=j+1

∆ξk
k + 1

.

An analogous Markov process with a continuous state space [0, 1] is defined by
the formula

Tξ([0, t]) = ξ([0, t]) + t

∫
(t,1]

dξ([0, s])
s

for all t ∈ [0, 1]. The transformation T now acts on the space of regular count-
ably additive measures on [0, 1]. The following example shows how our pro-
posed inversion procedure can be applied to the calculation of mean passage
times for the perturbed continuous state Markov process defined by the opera-
tor Tε = (1−ε)I+εT . The mean passage times are determined by the deviation
operator [I − Tε + T∞ε ]−1 − T∞ε . The properties of the deviation operator are
described in [3]. Markov processes with continuous state space are discussed in
[23].

Example 9 Let X = C([0, 1]) be the Banach space of continuous complex valued
functions on [0, 1] and X∗ = rca([0, 1]) the corresponding adjoint space of regular
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countably additive complex valued measures on [0, 1]. Define a continuous state
Markov process T : X∗ 7→ X∗ by the formula

Tξ([0, t]) = ξ([0, t]) + t

∫
(t,1]

dξ([0, s])
s

for t ∈ [0, 1) with Tξ([0, 1]) = ξ([0, 1]). Consider the transformation Tε : X∗ 7→
X∗ defined by

Tε = (1− ε)I + εT

where I : X∗ 7→ X∗ is the identity transformation. The transformation Tε is a
perturbation of the identity that allows a small probability of transition between
states. We will investigate the key operator

[I − Tε + T∞ε ]−1

where T∞ε = limn→∞T
n
ε . We can see that

dTξ([0, t]) =

(∫
(t,1]

dξ([0, s])
s

)
dt

and if we define E : X 7→ X by setting

Eϕ(s) =
1
s

∫
[0,s]

ϕ(t)dt

for each ϕ ∈ X then

〈Tξ, ϕ〉 =
∫

[0,1]

ϕ(t)

(∫
(t,1]

dξ([0, s]
s

)
dt

=
∫

[0,1]

(
1
s

∫
[0,s]

ϕ(t)dt

)
dξ([0, s]) = 〈ξ, Eϕ〉.

Thus T = E∗. For each n = 0, 1, . . . it is not difficult to show that

En+1ϕ(s) =
∫

[0,s]

wn(s, t)ϕ(t)dt

where wn(s, t) = [ln(s/t)]n/[n!s]. Note that wn(s, t) ≥ 0 for t ∈ (0, s] with∫
[0,s]

wn(s, t)dt = 1

and wn(s, t) ↓ 0 uniformly in t for t ∈ [σ, s] for each σ > 0 as n→∞. It follows
that En+1ϕ(s) → ϕ(0)χ[0,1](s) for each s ∈ [0, 1]. Hence we deduce that

〈Tn+1ξ, ϕ〉 = 〈ξ, En+1ϕ〉 → ξ([0, 1])ϕ(0)
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for each ϕ ∈ X. If we define the Dirac measure δ ∈ X∗ by the formula 〈δ, ϕ〉 =
ϕ(0) then we can say that Tn+1ξ → T∞ξ = ξ([0, 1])δ in the weak∗ sense. Let
ϕ ∈ X be any fixed test function and let τ be a positive real number. We can
find N ∈ N such that

|〈T kξ, ϕ〉 − ξ([0, 1])ϕ(0)| < τ

for all k ≥ N + 1. It follows that

|〈Tn+1
ε ξ, ϕ〉 − ξ([0, 1])ϕ(0)|

=

∣∣∣∣∣
n+1∑
k=0

(
n+ 1
k

)
(1− ε)n+1−kεk

[
〈T kξ, ϕ〉 − ξ([0, 1])ϕ(0)

] ∣∣∣∣∣
≤

N∑
k=0

(
n+ 1
k

)
(1− ε)n+1−kεk

∣∣∣〈T kξ, ϕ〉 − ξ([0, 1])ϕ(0)
∣∣∣

+

[
n∑

k=N+1

(
n+ 1
k

)
(1− ε)n+1−kεk

]
τ

≤

[
N∑

k=0

(
n+ 1
k

)
(1− ε)n+1−kεk

∣∣∣〈T kξ, ϕ〉 − ξ([0, 1])ϕ(0)
∣∣∣ ] + τ

and hence
lim sup

n→∞
|〈Tn+1

ε ξ, ϕ)〉 − ξ([0, 1])ϕ(0)| ≤ τ.

Since τ is arbitrary it follows that 〈Tn+1
ε ξ, ϕ〉 → ξ([0, 1])ϕ(0) for each ϕ ∈ X.

Thus we say that Tn+1
ε ξ → T∞ε ξ = ξ([0, 1])δ in the weak∗ sense. Hence T∞ε =

T∞. If we define A0 = T∞ and A1 = I − T then the equation

[I − Tε + T∞ε ]ξ = η ⇔ [T∞ + ε(I − T )]ξ = η

can be rewritten as (A0 +A1ε)ξ = η where A0 is singular. The null space of A0

is given by
M = A0

−1({0}) = {µ | µ([0, 1]) = 0}

and the projection PM : X∗ 7→ X∗ onto M is defined by

µ = PMξ = ξ − ξ([0, 1])δ

for each ξ ∈ X∗. We wish to find a simple description for the space N = A1(M).
On the one hand if ν = (I − T )µ then 〈ν, ϕ〉 = 〈µ, ϕ − Eϕ〉 for ϕ ∈ X. If we
write χ[0,1] to denote the characteristic function of the interval [0, 1] then since
Eχ[0,1] = χ[0,1] it follows that

ν([0, 1]) = 〈ν, χ[0,1]〉 = 〈µ, χ[0,1] − Eχ[0,1]〉 = 0.

On the other hand suppose ν([0, 1]) = 0. If we set ψ = ϕ − Eϕ then ψ ∈ X
and ψ(0) = 0. By solving an elementary differential equation it can be seen that
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ϕ− Eϕ(1)χ[0,1] = ψ − Fψ where

Fψ(s) =
∫

(s,1]

ψ(t)
t
dt.

Note that Fψ(0) = Eϕ(1) − ϕ(0) is well defined. Define 〈µ, ψ〉 = 〈ν, ψ − Fψ〉
for each ψ ∈ X with ψ(0) = 0. Since 〈ν, χ[0,1]〉 = 0 we deduce that

〈ν, ϕ〉 = 〈ν, ϕ− Eϕ(1)χ[0,1]〉 = 〈ν, ψ − Fψ〉 = 〈µ, ψ〉 = 〈µ, ϕ− Eϕ〉

for each ϕ ∈ X. Therefore ν = (I − T )µ and hence

N = A1(M) = {ν | ν([0, 1]) = 0}

and the projection QN : X∗ 7→ X∗ is defined by

ν = QNη = η − η([0, 1])δ

for each η ∈ X∗. By applying an appropriate decomposition to the given equation
with µ = PMξ ∈ M and ν = QNη ∈ N and by noting that A0δ = δ and
A1µ = µ(I − E) we obtain

εµ(I − E) + ξ([0, 1])δ = ν + η([0, 1])δ.

By equating corresponding terms we have εµ(I − E) = ν and ξ([0, 1])δ =
η([0, 1])δ. The former equation means that ε〈µ, ϕ−Eϕ〉 = 〈ν, ϕ〉 for each ϕ ∈ X
and could be rewritten as ε〈µ, ψ〉 = 〈ν, ψ − Fψ〉 for each ψ ∈ X with ψ(0) = 0.
Thus εµ = ν(I − F ). Since ξ = µ+ ξ([0, 1])δ the solution is given by

ξ =
1
ε
ν(I − F ) + η([0, 1])δ =

1
ε
QNη(I − F ) + (I −QN )η.

As expected there is a pole of order one at ε = 0.

8 Polynomial perturbations

We extend the above results for linear perturbations on Hilbert space to poly-
nomial perturbations. In view of the previous remarks we assume all operators
are bounded.

8.1 The augmented operator notation

Let H and K be Hilbert spaces and let {Ai} ⊂ L(H,K). For k ∈ N with k > 1
define A(k)

0 ∈ L(Hk,Kk) by setting

A(k)
0 =


A0 0 · · · 0
A1 A0 · · · 0
...

...
. . .

...
Ak−1 Ak−2 · · · A0


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and A(k)
r ∈ L(Hk,Kk) for r ≥ 1 by setting

A(k)
r =


Ark Ark+1 · · · Ark−k+1

Ark+1 Ark+2 · · · Ark−k+2

...
...

. . .
...

Ark+k−1 Ark+k−2 · · · Ark

 .
For r = 0, 1, . . . and each X ∈ Hk the value A(k)

r (X) is defined by formal matrix
multiplication. Define D : L(H,K) 7→ L(Hk,Kk) by

D(A) =


A 0 · · · 0 0
0 A · · · 0 0
...

...
...

...
0 0 · · · A 0
0 0 · · · 0 A


for each A ∈ L(H,K) and define Z(z) ∈ L(Hk,Hk) by

Z(z) =


0 0 · · · 0 zI
I 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
0 0 · · · I 0


for all z ∈ C. We will normally write

Z = [E2, E3, . . . , Ek, zE1].

We note that

Z2 = [E3, E4, . . . , Ek, , zE1, zE2]
Z3 = [E4, E5, . . . , zE1, zE2, zE3]
· · · · · ·
Zk = z[E1, E2, . . . , Ek−1, Ek] = zI

and in general for r = 0, 1, . . . and s = 0, 1, . . . , k − 1 we have

Zrk+s = zr[Es+1, Es+2, . . . , Ek, zE1, . . . , zEs].

Since Zk = zI it follows that ‖Z‖ = |z|1/k.

8.2 Some equivalent series

Let {Ai}i=0,1,... ⊂ L(H,K).

Lemma 8.1
∑∞

i=0D(Ai)Zi =
∑∞

r=0A
(k)
r zr for all z ∈ C.
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Proof. Expand the LHS and collect terms according to the powers of z.
2

Lemma 8.2
∑∞

i=0D(Ai)Zi converges for ‖Z‖ < b1/k if and only if
∑∞

i=0Aiz
i

converges for |z| < b.

Proof. Suppose the LHS converges when ‖Z‖ < b1/k ⇔ |z| < b. By
expanding the first column of the LHS we see that the series

As +As+kz
k +As+2kz

2k + · · ·

converges when |z| < b for each s = 0, 1, . . . , k − 1. Hence the series

k−1∑
s=0

[
As +As+kz

k +As+2kz
2k + · · ·

]
zs =

∞∑
i=0

Aiz
i

also converges for |z| < b. Thus the RHS converges when |z| < b. The reverse
implication is established by a similarly elementary argument. 2

Lemma 8.3 ( ∞∑
i=0

D(Ai)Zi

)( ∞∑
i=0

D(Xi)Zi

)
= Zm

is valid for some non-negative integer m if and only if( ∞∑
i=0

Aiz
i

)( ∞∑
i=0

Xiz
i

)
= zmI

is also valid.

Proof. Both identities are true if and only if
i∑

j=0

AjXi−j = δimI

for each i = 0, 1, . . . where δim is the Kronecker delta. If ‖Aj‖ ≤ hj+1 for some
h ∈ R with h > 0 then ‖Xj‖ ≤ kj+1 for some k ∈ R with k > 0. An inductive
argument justifying geometric bounds of this type can be found in [12]. 2

8.3 More notation

For s < k define X (k,s)
i ∈ L(Kk,Hk) by

X (k,s)
0 =



0 0 · · · 0 · · · 0
...

...
...

...
0 0 · · · 0 · · · 0
X0 0 · · · 0 · · · 0
X1 X0 · · · 0 · · · 0
...

...
. . .

...
...

Xs−1 Xs−2 · · · X0 · · · 0


,
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X (k,s)
1 =



Xs · · · X0 · · · 0
...

...
. . .

...
Xk · · · Xk−s · · · X0

...
...

...
Xs+k−1 · · · Xk−1 · · · Xs+1


and

X (k,s)
r =

 Xrk+s · · · Xrk−k+s+1

...
...

X(r+1)k+s−1 · · · Xrk+s


for r > 1.

8.4 The polynomial inversion formulae

The polynomial inversion formula is equivalent to a corresponding linear inver-
sion using augmented operators.

Theorem 8.4 The inverse operator

(A0 + · · ·+Akz
k)−1 ∈ L(K,H)

is given by the formula

(A0 + · · ·+Akz
k)−1 =

1
zrk+s

(X0 +X1z + · · · )

where r ∈ {0, 1, . . .} and s ∈ {0, 1, . . . , k − 1} if and only if the inverse operator

(A(k)
0 +A(k)

1 z)−1 ∈ L(Kk,Hk)

is given by the formula

(A(k)
0 +A(k)

1 z)−1 =
1
zr

(X (k)
0 + X (k)

1 z + · · · )

when s = 0 and

(A(k)
0 +A(k)

1 z)−1 =
1

zr+1
(X (k,s)

0 + X (k,s)
1 z + · · · )

when s ∈ {1, 2, . . . , k − 1}.

Proof. The proof follows by expanding the various expressions in the state-
ment of the theorem and equating corresponding elements. 2

Example 10 Let

A0 =
[

1 1
0 0

]
, A1 =

[
1 0
0 0

]
and A2 =

[
0 0
1 1

]
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and define A(z) = A0 +A1z +A2z
2. An elementary calculation shows that

X(z) = A(z)−1 =
1
z3

[
z2 −1
−z2 1 + z

]
for z 6= 0 and hence we have

X0 =
[

0 −1
0 1

]
, X1 =

[
0 0
0 1

]
and X2 =

[
1 0
−1 0

]
with Xj = 0 for j > 2. We note also that

A(2)
0 =


1 1 0 0
0 0 0 0
1 0 1 1
0 0 0 0

 and A(2)
1 =


0 0 1 0
1 1 0 0
0 0 1 1
0 0 0 0

 .
If we define A(2)(z) = A(2)

0 +A(2)
1 z then another elementary calculation shows

that

X (z) = A(2)(z)−1 =
1
z2


0 0 z2 −z
0 z −z2 z
z −1 0 0
−z 1 0 z


for z 6= 0. By comparing the various expressions we can see that k = 2, r = 1
and s = 1. Thus we write X (z) = X (2,1)(z) and observe that

X (2,1)
0 =

[
0 0
X0 0

]
, X (2,1)

1 =
[
X1 X0

X2 X1

]
, X (2,1)

2 =
[

0 X2

0 0

]
with X (2,1)

j = 0 for j ≥ 3.

9 Analytic perturbations

Suppose A(z) converges in the region |z| < a. If [A(z0)]−1 is well defined for
some z0 6= 0 with |z0| < a then by the Banach Inverse Theorem we can find
δ > 0 such that

‖A(z0)x‖ ≥ δ‖x‖

for all x ∈ H. Because the series converges in norm there exists m such that∥∥∥∥∥
[

m∑
i=0

Aiz
i
0

]
x

∥∥∥∥∥ ≥ δ

2
‖x‖

for all x ∈ H. Hence [Am(z0)]−1 is well defined. Since Am(z) is a polynomial
perturbation we can calculate [Am(z)]−1 and

[A(z)]−1 = [Am(z) +Rm(z)]−1 = [I +Am(z)−1Rm(z)]−1Am(z)−1.
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10 Conclusions and future work

We have shown that when A(0) is singular it is nevertheless possible that the
operator A(z)−1 is well defined on some region 0 < |z| < b by a Laurent series
expansion with a finite order pole at z = 0. In future work we will analyse the
perturbation of certain generalized inverse operators defined by a well posed
minimum norm problem. For instance we wish to find a bounded linear operator
X(z) = X0(z) of Hilbert-Schmidt type which solves the problem

min
X(z)

‖A(z)X(z)B(z)− C(z)‖2

where A(z), B(z) are bounded linear operators, C(z) is a bounded linear opera-
tor of Hilbert-Schmidt type and ‖ · ‖2 is the Hilbert-Schmidt norm. If A(0) and
B(0) are singular but A(z)−1 and B(z)−1 are well defined for z 6= 0 we believe
the fundamental solution X0(z) is a Tichonov regularisation that can be repre-
sented near z = 0 by a Maclaurin series. We note Theorem 2.3 on pp. 144–145
in the book by Gohberg et al [9] which guarantees a well posed problem and
recent work by Golub et al [10] on numerical solution of a corresponding matrix
problem which suggests the Tichonov regularisation.
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