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Abstract

We consider a system of two separate finite-buffer M/M/1 queues served by a single server,

where the switching mechanism between the queues is threshold-based, determined by the queue

which is not being served. Applications may be found in data centers, smart traffic-light control

and human behavior. Specifically, whenever the server attends queue i (Qi) and the number of

customers in the other queue, Qj (i, j = 1, 2; j 6= i), reaches its threshold level, the server im-

mediately switches to Qj whenever Qi is below its threshold. When a served Qi becomes empty

we consider two scenarios: (i) non-work-conserving; and (ii) work-conserving. We present occa-

sions where the non-work-conserving policy is more economical than the work-conserving policy

when high switching costs are involved. An intrinsic feature of the process is an oscillation phe-

nomenon: when the occupancy of Qi decreases the occupancy of the other queue increases. This

fact is illustrated and discussed. By formulating the system as a three-dimensional continuous-

time Markov chain we provide a probabilistic analysis of the system and investigate the effects

of buffer sizes and arrival rates, as well as service rates, on the system’s performance. Numerical

examples are presented and extreme cases are investigated.
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1 Introduction

We study a two-queue finite-buffer polling-type system with a threshold-based switching policy (see

Figure 1.1). However, in contrast to other models, switching instants from one queue to another

are determined by the state of the queue which is not being served. That is, when the server

attends queue i (Qi), i = 1, 2, it serves the customers there until the first moment thereafter when

the number of customers in Qj (j = 1, 2, j 6= i) reaches its threshold level. At that instant the

server immediately switches to Qj (preemptive policy), unless the number of customers in Qi is

greater or equal to the threshold level there. In the latter case the server remains in Qi until the

number of customers there is reduced below the threshold level, and only then it switches to Qj .

The server will remain in Qj following the same switching policy, and so on. When a served Qi

becomes empty we consider two switching scenarios: (i) non-work-conserving: the server remains

in Qi until Qj reaches its threshold level, and (ii) work-conserving: the server immediately switches

to Qj if it is not empty. Although the work-conserving scenario seems more efficient, we present

cases where it is less economical when high switching costs are involved. For each queue i, i = 1, 2,

we assume that the queue capacity is Ci < ∞, so that a customer arriving at Qi and finds Ci

customers there, leaves the system never to return. Customers arrive at Qi according to a Poisson

process with rate λi and the service time there is exponentially distributed with mean 1/µi. The

processes are independent. The threshold levels are K1 ≤ C1 for Q1, and K2 ≤ C2 for Q2. To

keep the presentation more tractable, we provide analysis for the case where the threshold level in

each queue equals the full capacity of the queue, namely, K1 = C1 and K2 = C2. The analysis

when K1 < C1 and/or K2 < C2 can be performed in a similar manner, although the details become

more cumbersome. Moreover, our numerical results show that for sufficiently large values of the

thresholds and buffer capacities, the values of the buffer capacities have very little effect on the

system performance. The cases when C1 or/and C2 are infinite are currently under investigation

by the authors.

One application of such a model arises in data centers, where a rack of discs requires a spe-

cial attention when the amount of recorded data exceeds a certain limit (threshold), causing an

inefficient operation that calls for a clean up action. Another motivation for such systems is an

automated traffic-light control that regulates the traffic of vehicles crossing an intersection. The

traffic-light alternates right-of-way priority between two directions as follows: when one direction

has the right-of way and the accumulating number of cars in the other direction reaches a threshold,

the right-of-way is transferred to the latter direction, and vice versa. In fact, human-beings behave
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in a similar manner: while working on a given task they let the load of other tasks pile up. Only

when the amount of work of another task exceeds a threshold, they switch their attention to that

task.
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Figure 1.1: Two-queue polling system with threshold-based switching policy.

Polling systems have been studied extensively in the queueing literature mostly for unbounded-

buffer systems (Boon et al. 2011; Takagi 1986; Yechiali 1993; and references there). Threshold

based polling systems with unbounded buffers were also treated in the past (Lee and Sengupta

1993; Haverkort et al. 1994; Boxma et al. 1995a, 1995b; Lee 1996; Avram and Gómez-Corral

2006). Lee (1996) considered a single-server two-queue model, where a high priority queue is

served exhaustively and a low priority queue follows a k-limited service policy. Lee and Sengupta

(1993) analyzed a system where customers of each queue are served alternately unless the queue

length of the high priority queue exceeds a certain threshold. Then, only the high priority cus-

tomers are served until the queue length there reduces back to the threshold level. A variant of

the latter model was studied by Haverkort et al. (1994): once the threshold is exceeded, the server

serves the high priority queue exhaustively. Boxma et al. (1995a, 1995b) studied a similar model

in which queues are being served exhaustively unless a certain threshold level is reached. In those

studies service times are assumed to be exponentially distributed. In Boxma et al. (1995a) the

service process at queue 2 is preemptively interrupted whenever the threshold at queue 1 is reached,

while in Boxma et al. (1995b) it is nonpreemptively interrupted. The latter case was extended

by Boxma and Down (1997) to the case where service times are generally distributed, and was
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further examined by Avram and Gómez-Corral (2006) where the main objective is to investigate

the solution of a dynamic programming optimality equation.

In the current work our aim is to determine the joint distribution function of the queue size

process. To this end we formulate the system as a three-dimensional continuous-time Markov

chain and study its steady-state behavior by applying two solution methods: (i) Probability Gen-

erating Functions (PGFs), and (ii) Matrix analytic approach. We present a full analysis of the

non-work-conserving scenario, and discuss briefly the details of the work-conserving scenario. The

two scenarios are compared numerically. Moreover, such a model exhibits oscillations, whose nature

depends on the relative values of the various parameters: when the occupancy of Qi decreases the

occupancy of the other queue increases. Vivid examples of oscillations between two queues are

presented in Coffman, Puhalskii and Reiman (1995) (C.P.R) and in Arazi, Ben-Jacob and Yechiali

(2005). However, there is an important difference between the work of C.P.R and the present

model. In the former heavy load regime is needed for appearance of oscillations, whereas in this

work, the oscillations manifest themselves when the values of the thresholds are sufficiently large

irrespectively of the system load. Investigating these oscillations led to an observation that the

dynamics of the system converges to a periodic behavior when the threshold values, K1 for Q1 and

K2 for Q2, are large. We leave the probabilistic analysis of this convergence for future research. A

recent work, still in progress, by Jonckheere, Nazarathy and Rojas-Nandayapa may provide a good

base for the fluid analysis of the considered system.

The structure of the paper is as follows: In Section 2 we consider the non-work-conserving scenario.

In Subsection 2.1 we define the system as a three-dimensional Markovian process and develop

the system’s balance equations. Consequently, in Subsection 2.3, we construct the corresponding

marginal PGFs. The solution of the PGFs is obtained by solving two finite linear systems of

the form A(z)~G(z) = ~P (z) and B(w)~F (w) = ~Π(w), where ~G(z) and ~F (w) are vector functions

of the sought-for PGFs; A(z) and B(w) are finite square matrices with entries constructed from

the parameters of the system; and ~P (z) and ~Π(w) are finite-dimensional vectors consisting of un-

known boundary probabilities (Litvak and Yechiali 2003; Perel and Yechiali 2008, 2013). We show

how to calculate the boundary probabilities determining the PGFs by deriving explicit closed-form

combinatorial expressions for the determinants of A(z) and B(w). We are not aware of any pre-

vious relevant studies that obtained such explicit expressions. In Subsection 2.4 we use a matrix

analytic approach to solve the two sets of balance equations constructed in Subsection 2.1. It fol-

lows that the generator matrix defining the process differs from the classical quasi birth-and-death

(QBD) processes generators. Although the three-dimensional finite set of balance equations can
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be solved numerically, we present an algorithmic-type method to compute the steady state proba-

bilities. We use this approach since traditional matrix geometric methods (Neuts 1981; Latouche

and Ramaswami 1999) usually address infinite-dimensional systems, while truncation methods for

infinite-dimensional systems (Bright and Taylor 1995), are not relevant here. Our analysis leads

to the calculation of certain matrices defined by combinatorial expressions resembling the com-

binatorial expressions derived for the determinants of A(z) and B(w) associated with the PGFs.

Furthermore, we are able to reduce the Kolmogorov set of 2(K1 + 1) × (K2 + 1) linear equations

to a set of K1 + K2 + 2 linear equations in the K1 + K2 + 1 unknown boundary probabilities, by

which all other probabilities are calculated. In Section 3 we discuss the second switching scenario,

while in Section 4 we present numerical results. Section 5 deals with extreme cases. The oscillation

phenomenon is presented and discussed in Section 6, where the two scenarios are also compared.

Section 7 concludes the paper.

2 Scenario 1: Non-Work-Conserving Policy

2.1 Balance Equations

Let Li(t) denote the number of customers present in Qi at time t, i = 1, 2, and Li = limt→∞ Li(t).

Let I(t) = 1 if the server attends Q1 at time t, and I(t) = 2 if the server attends Q2 (I =

limt→∞ I(t)). The triple (L1(t), L2(t), I(t)) defines a non reducible continuous-time finite Markov

chain, with transition-rate diagram depicted in Figure 2.1 (the numbers 1 or 2 appearing next to

each node indicate whether I = 1, or I = 2, respectively. Each box (k, n) depicts both the state

where I(t) = 1 and the state where I(t) = 2). Let Pkn(i) = P(L1 = k, L2 = n, I = i), where

0 ≤ k ≤ K1, 0 ≤ n ≤ K2, i = 1, 2, denote the steady state probabilities of the system state. Then,

the sets of balance equations, for I = 1 are given bellow. For I = 2 the equations are symmetrical.

I = 1.

k = 0 :

n = 0 : (λ1 + λ2)P00(1) = µ1P10(1)

1 ≤ n ≤ K2 − 1 : (λ1 + λ2)P0n(1) = λ2P0,n−1(1) + µ1P1n(1) (2.1)

1 ≤ k ≤ K1 − 1 :

n = 0 : (λ1 + λ2 + µ1)Pk0(1) = λ1Pk−1,0(1) + µ1Pk+1,0(1)

1 ≤ n ≤ K2 − 1 : (λ1 + λ2 + µ1)Pkn(1) = λ1Pk−1,n(1) + λ2Pk,n−1(1) + µ1Pk+1,n(1) (2.2)
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Figure 2.1: Transition rate diagram of (L1, L2, I) for Scenario 1.

k = K1 :

n = 0 : (λ2 + µ1)PK10(1) = λ1PK1−1,0(1) + λ1PK1−1,0(2)

1 ≤ n ≤ K2 − 2 : (λ2 + µ1)PK1n(1) = λ1PK1−1,n(1) + λ1PK1−1,n(2) + λ2PK1,n−1(1)

n = K2 − 1 : (λ2 + µ1)PK1,K2−1(1) = λ1PK1−1,K2−1(1) + λ1PK1−1,K2−1(2)

+ λ2PK1,K2−2(1) + µ2PK1K2(2)

n = K2 : µ1PK1K2(1) = λ2PK1,K2−1(1) (2.3)

Define the following marginal probabilities

P(L1 = k, I = i) ≡ Pk•(i) =
∑
n

Pkn(i) , for 0 ≤ k ≤ K1, i = 1, 2,

P(L2 = n, I = i) ≡ P•n(i) =
∑
k

Pkn(i) , for 0 ≤ n ≤ K2, i = 1, 2,
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Summing equations (2.1) – (2.3) we arrive at

µ1PK1K2(1) + λ2 (P•K2−1(1)− PK1,K2−1(1)) = µ2PK1K2(2) + λ1 (PK1−1•(2)− PK1−1,K2(2)). (2.4)

Indeed, equation (2.4) states that the average switching rate from state I = 1 to state I = 2 (left hand side

of (2.4)) is equal to the average switching rate from state I = 2 to state I = 1 (right hand side of (2.4)).

2.2 Idleness and Carried Loads

Summing over n each equation for k in the set (2.1) – (2.3) for I = 1, together with the corresponding set

for I = 2, we get, after rearranging terms,

λ1P (L1 = k) = µ1Pk+1•(1), 0 ≤ k ≤ K1 − 1 (2.5)

Similarly, for every n, 0 ≤ n ≤ K2 − 1, we have

λ2P (L2 = n) = µ2P•n+1(2), 0 ≤ n ≤ K2 − 1 (2.6)

Now, summing (2.5) over all k, 0 ≤ k ≤ K1 − 1, and rearranging terms we obtain

P0•(1) = P (I = 1)− λeff1

µ1
= P (I = 1)− ρeff1 . (2.7)

Similarly,

P•0(2) = P (I = 2)− λeff2

µ2
= P (I = 2)− ρeff2 , (2.8)

where, for every i = 1, 2, λeffi = λi (1− P (Li = Ki)) = λi (1− P (arriving customer is lost in Qi)) and

ρeffi =
λeff
i

µi
. Notice that ρeffi is exactly the mean carried load at Qi, i = 1, 2.

Summing (2.7) and (2.8) we obtain

P0•(1) + P•0(2) = 1−
(
ρeff1 + ρeff2

)
. (2.9)

Equation (2.9) states that the proportion of time the server is idle, i.e. resides in an empty queue (LHS of

(2.9)) equals one minus the proportion of time the server is busy (RHS of (2.9)).

2.3 Generating Functions

Define, for each 0 ≤ k ≤ K1, and 0 ≤ n ≤ K2, the probability generating functions (PGFs) for states

I = 1 and I = 2, respectively: Gk(z) =
∑K2

n=0 Pkn(1)zn, Fn(w) =
∑K1

k=0 Pkn(2)wk. Multiplying by zn each

equation for n in the sets (2.1) – (2.3), summing over n, and rearranging terms we get

k = 0 :

(λ1 + λ2(1− z))G0(z) = µ1G1(z)− λ2P0,K2−1(1)zK2 (2.10)
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1 ≤ k ≤ K1 − 2 :

(λ1 + µ1 + λ2(1− z))Gk(z) = λ1Gk−1(z) + µ1Gk+1(z)− λ2Pk,K2−1(1)zK2 (2.11)

k = K1 − 1 :

(λ1 + µ1 + λ2(1− z))GK1−1(z) = λ1GK1−2(z) + µ1GK1(z)− λ2PK1−1,K2−1(1)zK2

− µ1PK1K2(1)zK2 (2.12)

k = K1 :

(µ1 + λ2(1− z))GK1(z) = λ1GK1−1(z) + λ1

K2−1∑
n=0

PK1−1,n(2)zn + λ2PK1K2(1)(1− z)zK2

+ µ2PK1K2
(2)zK2−1 (2.13)

The sets (2.10) – (2.13), and the corresponding set for Fn(w), 0 ≤ n ≤ K2, comprise two systems of linear

equations of the form

A(z)~G(z) = ~P (z) , B(w)~F (w) = ~Π(w),

where the column vectors ~G(z), ~P (z), ~F (w) and ~Π(w), and the matrices A(z) and B(w) are defined as

follows:

~G(z) = (G0(z), G1(z), ..., GK1
(z))

t
, ~P (z) = (P0(z), P1(z), ..., PK1

(z))
t
,

~F (w) = (F0(w), F1(w), ..., FK2
(w))

t
, ~Π(w) = (Π0(w),Π1(w), ...,ΠK2

(w))
t
,

with

Pk(z) =


−λ2Pk,K2−1(1)zK2 , 0 ≤ k ≤ K1 − 2

−λ2PK1−1,K2−1(1)zK2 − µ1PK1K2(1)zK2 , k = K1 − 1

λ1
∑K2−1
n=0 PK1−1,n(2)zn + λ2PK1K2

(1)(1− z)zK2 + µ2PK1K2
(2)zK2−1, k = K1

Πn(w) =


−λ1PK1−1,n(2)wK1 , 0 ≤ n ≤ K2 − 2

−λ1PK1−1,K2−1(2)wK1 − µ2PK1K2
(2)wK1 , n = K2 − 1

λ2
∑K1−1
k=0 Pk,K2−1(1)wk + λ1PK1K2

(2)(1− w)wK1 + µ1PK1K2
(1)wK1−1, n = K2

A(z) =



α0(z) −µ1 0 · · · · · · 0

−λ1 α(z) −µ1 0 · · · 0

0 −λ1 α(z) −µ1 0
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −λ1 α(z) −µ1

0 · · · · · · 0 −λ1 αK1
(z)


,
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where α0(z) = λ1 + λ2(1− z); α(z) = λ1 + µ1 + λ2(1− z); αK1
(z) = µ1 + λ2(1− z).

B(w) =



β0(w) −µ2 0 · · · · · · 0

−λ2 β(w) −µ2 0 · · · 0

0 −λ2 β(w) −µ2 0
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −λ2 β(w) −µ2

0 · · · · · · 0 −λ2 βK2
(w)


,

where β0(w) = λ2 + λ1(1− w); β(w) = λ2 + µ2 + λ1(1− w); βK2
(w) = µ2 + λ1(1− w).

To obtain Gk(z) and Fn(w) we use Cramer’s rule. I.e., for every 0 ≤ k ≤ K1, Gk(z) = |Ak(z)|
|A(z)| , where

|A| is the determinant of the matrix A and Ak(z) is the matrix obtained from A(z) by replacing its k-th

column by ~P (z). Similarly, Fn(w) = |Bn(w)|
|B(w)| , for every 0 ≤ n ≤ K2. Thus, each PGF Gk(z) and Fn(w) is

expressed in terms of the K1 + K2 + 2 unknown probabilities, P0,K2−1(1); P1,K2−1(1), ..., PK1−1,K2−1(1),

PK1K2
(1); PK1−1,0(2), PK1−1,1(2), ..., PK1−1,K2−1(2) and PK1K2

(2) appearing in ~P (z) and ~Π(w). In order

to find ~P (z) and ~Π(w) we need to find K1 + K2 + 2 equations relating those K1 + K2 + 2 unknowns. We

do that in the next subsection by characterizing and using the roots of |A(z)| and |B(w)|. Since Gk(z) and

Fn(w) are probability generating functions, defined in our finite state space model for all reals z and w, each

root of |A(z)| (respectively of |B(w)|) is a root of |Ak(z)| (respectively of |Bn(w)|), for every 0 ≤ k ≤ K1

(respectively for every 0 ≤ n ≤ K2).

Remark 2.1. It should be noted that, in our specific model, the matrix A(z) can be presented as A(z) =

A−λAI, where λA = λ2z and A is a tridiagonal Jacobi matrix (see e.g., Da Fonseca (2006)) with a constant

element along the upper diagonal and another constant along the lower diagonal. A is given by

A =



λ1 + λ2 −µ1 0 · · · · · · 0

−λ1 λ1 + µ1 + λ2 −µ1 0 · · · 0

0 −λ1 λ1 + µ1 + λ2 −µ1 0
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −λ1 λ1 + µ1 + λ2 −µ1

0 · · · · · · 0 −λ1 µ1 + λ2


.

Clearly, the roots of the equation |A(z)| = 0 coincide with the roots of |A − λAI| = 0. Thus, the various

eigenvalues of the matrix A (divided by λ2) are the roots of the polynomial |A(z)| = 0. The same holds for

the matrix B(w). Note that this relation to eigenvalues does not occur in other studies where roots of the

polynomial |A(z)| = 0 are sought (see e.g., Litvak and Yechiali (2003); Perel E. and Yechiali (2008, 2013)).

9



Derivation of the Boundary Probabilities

Theorem 2.1. For any λ1 > 0, µ1 > 0, λ2 > 0 and K1 ≥ 1, |A(z)| is a polynomial of degree K1 + 1

possessing a single root z∗ = 1 and K1 distinct roots in the open interval (1,∞).

Proof. Let q0(z) = 1. Define the minors of the diagonal of A(z), starting from the higher left side corner, as

follows (see also Usmani (1994)):

q1(z) = α0(z), q2(z) =

∣∣∣∣∣∣ α0(z) −µ1

−λ1 α(z)

∣∣∣∣∣∣ , ..., qK1+1(z) = |A(z)|. (2.14)

The polynomials qk(z), 1 ≤ k ≤ K1 + 1, satisfy the following recursions:

q1(z) = α0(z)q0(z),

qk(z) = α(z)qk−1(z)− λ1µ1qk−2(z) , for 2 ≤ k ≤ K1,

qK1+1(z) = αK(z)qK1(z)− λ1µ1qK1−1(z). (2.15)

From (2.14) and (2.15) we conclude that

1. By definition, q0(z) = 1 and therefore has no roots.

2. qk(z) and qk+1(z) have no joint roots in (0,∞). Otherwise, suppose they have a joint root, then it

would also be a root for qk−1(z), qk−2(z), ..., q0(z) which contradicts the above conclusion.

3. Sign(qk(∞)) = (−1)k, for all k.

4. qk(1) = λk1 > 0, for all 0 ≤ k ≤ K1.

5. qK1+1(1) = 0.

6. Given z̃ a root of qk(z), then sign(qk−1(z̃)qk+1(z̃)) = −1.

7. qk(z) is a polynomial of degree k for all 0 ≤ k ≤ K1 + 1.

From the above we conclude that q1(z) has only one root, z1,1 = 1 + λ1

λ2
> 1. q2(1) = λ21 > 0, q2(z1,1) < 0,

q2(∞) > 0. Therefore, the 2 roots of q2(z) satisfy: z2,1 ∈ (1, z1,1), z2,2 ∈ (z1,1,∞). Similarly, q3(z) is of

degree 3 and therefore can have no more than 3 distinct roots. Also q3(1) = λ31 > 0, q3(z2,1) < 0, q3(z2,2) > 0,

q3(∞) < 0. This implies that q3(z) has exactly 3 distinct roots satisfying: z3,1 ∈ (1, z2,1), z3,2 ∈ (z2,1, z2,2),

z3,3 ∈ (z2,2,∞).

In general, for 2 ≤ k ≤ K1, given k− 1 distinct roots of qk−1(z), the roots of qk(z) satisfy: zk,1 ∈ (1, zk−1,1),

zk,2 ∈ (zk−1,1, zk−1,2), ..., zk,k ∈ (zk−1,k−1,∞).

qK1+1(z) has K1 + 1 roots, where zK1+1,1 = z∗ = 1 is one of them. From the above we have another K1

distinct roots in the open interval (1,∞), satisfying zK1+1,2 ∈ (zK1,1, zK1,2), zK1+1,3 ∈ (zK1,2, zK1,3), ...,

zK1+1,K1 ∈ (zK1,K1−1, zK1,K1), zK1+1,K1+1 ∈ (zK1,K1 ,∞).

This completes the proof of Theorem 2.1.
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Theorem 2.2. For any λ2 > 0, µ2 > 0, λ1 > 0 and K2 ≥ 1, |B(w)| is a polynomial of degree K2 + 1

possessing a single root w∗ = 1 and K2 distinct roots in the open interval (1,∞).

Proof. The proof is identical to the proof of Theorem 2.1.

To find the K1 + K2 + 2 unknown probabilities appearing in ~P (z) and ~Π(w), we use the K1 distinct

roots in the open interval (1,∞) of the polynomial |A(z)| and the K2 distinct roots in the open interval

(1,∞) of the polynomial |B(w)|, which provide us with K1 +K2 equations for those probabilities. Another

equation is (2.4), and the last one is provided by using the fact that
∑K1

k=0Gk(1) +
∑K2

n=0 Fn(1) = 1. Thus,

we have a set of K1 +K2 + 2 linearly independent equations in the K1 +K2 + 2 unknown probabilities (see

e.g. Litvak and Yechiali (2003); Perel E. and Yechiali (2008, 2013); Perel N. and Yechiali (2013)). Once the

above K1 +K2 + 2 probabilities are calculated, the PGFs are completely determined.

Remark 2.2. We note that the polynomials qk(z), 1 ≤ k ≤ K1 + 1, are usually used to show that the roots of

the determinant of the matrix A(z) exist, and are inside or outside the (0, 1) interval. We are not aware of a

case where the polynomials were explicitly calculated. In our case we are able to derive explicit closed-form

expressions for these polynomials.

Theorem 2.3. For every 1 ≤ k ≤ K1, qk(z) is of the form

qk(z) =

b k2 c∑
l=0

(−λ1µ1)
l

((
k − l − 1

l

)
αk−2l−1(z)α0(z) +

(
k − l − 1

l − 1

)
αk−2l(z)

)
, (2.16)

where, for all k ≥ 0,
(
k
l

)
= 0 for every l < 0, and l > k.

Proof. The proof is given in the Appendix.

Corollary 2.1. The polynomial qK1+1(z) = |A(z)| is given by

|A(z)| =
bK1+1

2 c∑
l=0

(−λ1µ1)
l

((
K1 − l
l

)
αK1−2l(z)α0(z) +

(
K1 − l
l − 1

)
αK1+1−2l(z)

)

− λ1
bK1

2 c∑
l=0

(−λ1µ1)
l

((
K1 − l − 1

l

)
αK1−2l−1(z)α0(z) +

(
K1 − 1− l − 1

l − 1

)
αK1−2l(z)

)
. (2.17)

Proof. By substituting equation (2.16) in equation (2.15) once for k = K1, and then for k = K1 − 1.

By symmetry we have the following:

Corollary 2.2.

|B(w)| =
bK2+1

2 c∑
l=0

(−λ2µ2)
l

((
K2 − l
l

)
βK2−2l(w)β0(w) +

(
K2 − l
l − 1

)
βK2+1−2l(w)

)

− λ2
bK2

2 c∑
l=0

(−λ2µ2)
l

((
K2 − l − 1

l

)
βK2−2l−1(w)β0(w) +

(
K2 − l − 1

l − 1

)
βK2−2l(w)

)
. (2.18)
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The mean total number of customers in Qi, i = 1, 2 is obtained by

E[L1] =

K1∑
k=0

kPk•(1) +

K1∑
k=0

kPk•(2) =

K1∑
k=0

kGk(1) +

K2∑
n=0

F ′n(1), (2.19)

E[L2] =

K2∑
n=0

nFn(1) +

K1∑
k=0

G′k(1). (2.20)

Clearly, by Little’s Law, E[Wi] = E[Li]/λ
eff
i , where

λeffi = λi (1− P (Li = Ki)) = λi (1− P (arriving customer is lost in Qi)).

P(I = 1) and P(I = 2) are obtained by

P(I = 1) =

K1∑
k=0

Gk(1), (2.21)

P(I = 2) =

K2∑
n=0

Fn(1). (2.22)

The above performance measures, E[Li], E[Wi], P (arriving customer is lost in Qi), and P(I = i), i = 1, 2,

are calculated numerically in Section 4.

2.4 Matrix Analysis

We define a non-reducible Markov chain (I(t), L1(t), L2(t)) with a finite state space S = {(i, k, n)| i = 1, 2;

0 ≤ k ≤ K1; 0 ≤ n ≤ K2} under the order S = {(1, 0, 0), (1, 0, 1), ...,(1, 0,K2 − 1); ...; (1,K1 − 1, 0),

..., (1,K1 − 1,K2 − 1); (1,K1, 0), ..., (1,K1,K2 − 1), (1,K1,K2); (2, 0, 0), (2, 1, 0),..., (2,K1 − 1, 0); ...;

(2, 0,K2 − 1), ..., (2,K1 − 1,K2 − 1); (2, 0,K2), ..., (2,K1 − 1,K2), (2,K1,K2)} and a generator matrix Q

given by

Q =



A0
1 A0 0 · · · · · · · · · · · · · · · · · · A0

3

A2 A1 A0 0 · · · · · · · · · · · · · · · A1
3

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

... 0 A2 A1 A0 0 · · · · · · · · · AK1−1
3

...
... 0 AK1

2 AK1
1 0 · · · · · · · · · AK1

3

...
. . .

. . . 0 B0
3 B0

1 B0 0 · · · 0
...

. . .
. . . 0 B1

3 B2 B1 B0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . . 0 BK2−1
3 0 · · · B2 B1 B0

...
. . .

. . . 0 BK2
3 0 · · · · · · BK2

2 BK2
1



=

A 01
~A3

02
~B3 B

 , (2.23)

where, 0 is a matrix of zeros, and the sub-matrices in Q are the following: A0
1, A0, A2 and A1 are each of
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size K2×K2; AK1
1 is of size (K2 + 1)× (K2 + 1); AK1

2 is of size (K2 + 1)×K2; A0
3, A1

3, ..., AK1−1
3 are each of

size K2× (K1 + 1); AK1
3 is of size (K2 + 1)× (K1 + 1); B0

1 , B0, B2 and B1 are each of size K1×K1; BK2
1 is

of size (K1 + 1)× (K1 + 1); BK2
2 is of size (K1 + 1)×K1; B0

3 , B1
3 , ..., BK2−1

3 are each of size K1 × (K2 + 1)

and BK2
3 is of size (K1 + 1)× (K2 + 1). They are given by

A0 = diag(λ1), A2 = diag(µ1),

A0
1 =



−β0 λ2 0 · · · 0

0 −β0 λ2 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . −β0 λ2

...
. . .

. . . 0 −β0


, A1 =



−β1 λ2 0 · · · 0

0 −β1 λ2 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . −β1 λ2

...
. . .

. . . 0 −β1


,

where, β0 = λ1 + λ2, β1 = λ1 + λ2 + µ1 and β2 = λ1 + λ2 + µ2.

AK1
1 =



−(µ1 + λ2) λ2 0 · · · 0

0 −(µ1 + λ2) λ2 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . −(µ1 + λ2) λ2

...
. . .

. . . 0 −µ1


, AK1

2 =



µ1 0 · · · · · · 0

0 µ1 0 · · ·
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . µ1

0 · · · · · · · · · 0


.

For all 0 ≤ k ≤ K1 − 1,

(
Ak3
)
(st),(lm)

=

 λ2 (st) = (k,K2 − 1), (lm) = (kK2),

0 otherwise

(
AK1

3

)
(st),(lm)

=

 µ1 (st) = (K1,K2), (lm) = (K1 − 1,K2),

0 otherwise

The matrices B0, B0
1 , B1, BK2

1 , B2, and BK2
2 are similar to A0, A0

1, A1, AK1
1 , A2, and AK1

2 , respectively,

where λ2, µ2, β2, and K2 change role with λ1, µ1, β1, and K1, respectively. Finally, for all 0 ≤ n ≤ K2 − 1,

(Bn3 )(st),(lm) =

 λ1 (st) = (K1 − 1, n), (lm) = (K1n),

0 otherwise

(
BK2

3

)
(st),(lm)

=

 µ2 (st) = (K1,K2), (lm) = (K1,K2 − 1),

0 otherwise

We emphasize that the structure of the matrix Q is different from the structure of a classical QBD process

generator matrix. Usually the generator matrix of a QBD process has at most 3 non zero block-diagonals

and all other entries are zero. In this case, the matrix Q has 3 non zero block-diagonals (appearing in the
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matrices A and B) and in addition two non zero columns, ~A3 and ~B3 as in (2.23).

Define the steady state probability vector ~P =
(
~P 1
0 ,
~P 1
1 , ...,

~P 1
K1
, ~P 2

0 ,
~P 2
1 , ...,

~P 2
K2

)
, where

~P 1
k = (Pk0(1), Pk1(1), ..., Pk,K2−1(1)), 0 ≤ k ≤ K1 − 1,

~P 1
K1

= (PK10(1), ..., PK1,K2−1(1), PK1K2
(1)),

~P 2
n = (P0n(2), P1n(2), ..., PK1−1,n(2)), 0 ≤ n ≤ K2 − 1,

~P 2
K2

= (P0K2
(2), ..., PK1−1,K2

(2), PK1K2
(2)).

Then the steady state probability vector satisfies ~PQ = ~0. Specifically, we have

~P 1
0A

0
1 + ~P 1

1A2 = ~0,

~P 1
0A0 + ~P 1

1A1 + ~P 1
2A2 = ~0,

...

~P 1
K1−2A0 + ~P 1

K1−1A1 + ~P 1
K1
AK1

2 = ~0,

~P 1
K1−1A0 + ~P 1

K1−1A
K1
1 +

K2∑
n=0

~P 2
nB

n
3 = ~0,

~P 2
0B

0
1 + ~P 2

1B2 = ~0,

~P 2
0B0 + ~P 2

1B1 + ~P 2
2B2 = ~0,

...

~P 2
K2−2B0 + ~P 2

K2−1B1 + ~P 2
K2
BK2

2 = ~0,

K1∑
k=0

~P 1
kA

k
3 + ~P 2

K2−1B0 + ~P 2
K2
BK2

1 = ~0. (2.24)

Clearly, one can solve directly (numerically) the set (2.24) (including the normalization equation,
∑K1

k=0
~P 1
k · ~e+∑K2

n=0
~P 2
n · ~e = 1, where ~e is a vector of 1’s). This requires some computational effort. We indicate again that

in contrast to most analytic methods in Queueing Theory that treat cases where at least one of the process

dimension is infinite, our case is finite in all its dimensions. Thus traditional Matrix Geometric methods are

not directly applicable here. In addition, truncation methods seem unnecessary here. Therefore, we present

an alternative algorithmic-type method to ease the required computational effort. For this aim we borrow

from the ideas presented by De Nitto Personè and Grassi (1996) and modify them to our purposes due to

the special structure of the matrix Q. We claim:

Theorem 2.4. The following equation holds:

~P 1
k = ~P 1

0Ck, 1 ≤ k ≤ K1 − 1, (2.25)

where for all 1 ≤ k ≤ K1 − 1, Ck is a matrix of size K2 ×K2 satisfying C0 = IK2
, C1 = − 1

µ1
A0

1 and for all

2 ≤ k ≤ K1 − 1, Ck = − 1
µ1

(λ1Ck−2 + Ck−1A1).
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Proof. The proof is given in the Appendix.

Theorem 2.5. The following equation holds:

~P 2
n = ~P 2

0Dn, 1 ≤ n ≤ K2 − 1, (2.26)

where for all 1 ≤ n ≤ K2 − 1, Dn is a matrix of size K1 ×K1 satisfying D0 = IK2
, D1 = − 1

µ2
B0

1 and for

all 2 ≤ n ≤ K2 − 1, Dn = − 1
µ2

(λ2Dn−2 +Dn−1B1).

Proof. The proof is identical to the proof of Theorem 2.4.

From Theorem 2.4 we have that ~P 1
k , 1 ≤ k ≤ K1−1, are expressed in terms of the probability vector ~P 1

0 ,

and from Theorem 2.5 we have that ~P 2
n , 1 ≤ n ≤ K2 − 1, are expressed in terms of the probability vector

~P 2
0 . Therefore, the solution of (2.24) can be calculated by solving only the following reduced linear system:

~P 1
0 (λ1CK1−2 + CK−1A1) + ~P 1

K1
AK1

2 = ~0,

~P 1
0 λ1CK1−1 + ~P 1

K1
AK1

1 + ~P 2
0

K2−1∑
n=0

DnB
n
3 + ~P 2

K2
BK2

3 = ~0,

~P 2
0 (λ2DK2−2 +DK2−1B1) + ~P 2

K2
BK2

2 = ~0,

~P 1
0

K1−1∑
k=0

CkA
k
3 + ~P 1

K1
AK1

3 + ~P 2
0 λ2DK2−1 + ~P 2

K2
BK2

1 = ~0. (2.27)

Therefore, instead of solving tediously the set of linear equations (2.24), it is enough to calculate the

matrices Ck, 1 ≤ k ≤ K1 − 1 and Dn, 1 ≤ n ≤ K2 − 1, and solve the set of linear equations (2.27) with

the normalization equation, ~P 1
0

∑K1−1
k=0 Ck~e + ~P 1

K1
~e + ~P 2

0

∑K2−1
n=0 Dn~e + ~P 2

K2
~e = 1, which yields the set of

sought-for probability vectors ~P 1
0 , ..., ~P 1

K1−1, ~P 1
K1

, ~P 2
0 , ..., ~P 2

K2−1, ~P 2
K2

.

Theorem 2.6. For every 0 ≤ k ≤ K1 − 1, Ck is of the form

Ck =

(
−1

µ1

)k b k2 c∑
l=0

(−λ1µ1)
l

((
k − 1− l

l

)
A0

1 (A1)
k−2l−1

+

(
k − 1− l
l − 1

)
(A1)

k−2l
)
. (2.28)

where, for all k ≥ 0,
(
k
l

)
= 0 for every l < 0, and l > k.

Proof. The proof is given in the Appendix.

Remark 2.3. Notice the similarity in structure of equations (2.16) and (2.28).

Theorem 2.7. For every 0 ≤ n ≤ K2 − 1, Dn is of the form

Dn =

(
−1

µ2

)n bn2 c∑
l=0

(−λ2µ2)
l

((
n− 1− l

l

)
B0

1 (B1)
n−2l−1

+

(
n− 1− l
l − 1

)
(B1)

n−2l
)
. (2.29)

Proof. The proof is similar to the proof of Theorem 2.6
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Figure 3.1: Transition rate diagram of (L1, L2, I) for Scenario 2.

3 Scenario 2: Work-Conserving Policy

We now briefly present the work-conserving switching scenario: if a served Qi becomes empty, the server

immediately switches to Qj if the latter is not empty. The transition-rate diagram of the triple (L1, L2, I)

for this scenario is depicted in Figure 3.1. The balance equations here are similar to those of Scenario 1,

and therefore the details are omitted from the presentation. Equation (2.4), equating the switching rates

between the queues, becomes

µ1 (P1•(1)− P10(1) + PK1K2
(1)) + λ2 (P00(1) + P•K2−1(1)− PK1,K2−1(1)) =

µ2 (P•1(2)− P01(2) + PK1K2
(2)) + λ1 (P00(2) + PK1−1•(2)− PK1−1,K2

(2)) . (3.1)
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Notice that in this case a switch occurs also when the served queue becomes empty and the non served

queue is not empty.

Repeating the algebra in Subsection 2.2, we arrive at

P00(1) + P00(2) =
(
P (I = 1)− ρeff1

)
+
(
P (I = 2)− ρeff2

)
= 1−

(
ρeff1 + ρeff2

)
, (3.2)

3.1 Matrix Analysis for Scenario 2

We define a non-reducible Markov chain (L1(t), L2(t), I(t)) with a finite state space S = {(k, n, i)| 0 ≤ k ≤
K1; 0 ≤ n ≤ K2; i = 1, 2} under a different order S = {(0, 0, 1),(0, 0, 2),(1, 0, 1), (2, 0, 1), ..., (K1, 0, 1) ;

(0, 1, 2), (1, 1, 1), (1, 1, 2),..., (K1 − 1, 1, 1), (K1 − 1, 1, 2), (K1, 1, 1); ...; (0,K2 − 1, 2),..., (K1 − 1,K2 − 1, 1),

(K1 − 1,K2 − 1, 2), (K1,K2 − 1, 1); (0,K2, 2), (1,K2, 2),..., (K1 − 1,K2, 2), (K1,K2, 1), (K1,K2, 2)}. This

lexicographic order leads to a different generator matrix Q from which all steady state probability vectors

can be calculated (details are omitted). The two scenarios are compared numerically in the next sections.

4 Numerical Examples

Define Ploss(i) = P(arriving customer is lost in Qi), i = 1, 2, and SR ≡ average switching rate between the

queues. Tables 4.1 – 4.4 exhibit numerical results when K1 = 10 for different values of λ1, λ2, µ1, and µ2.

In Tables 4.1 – 4.2, K2 = 3, while in Tables 4.3 – 4.4, K2 = 8. Tables 4.1 and 4.3 relate to Scenario 1, while

Tables 4.2 and 4.4 relate to Scenario 2. Tables 4.1 – 4.4 are constructed as follows: the first row gives a

set of basic values of the four parameters λ1 = 1, λ2 = 1, µ1 = 5 and µ2 = 5, and the calculations of the

resulting performance measures. The second, third, fourth, and fifth rows give, respectively, the values of

the measures when in each row only one of the parameters is changed. Row six gives another set of basic

parameters, λ1 = 4, λ2 = 4, µ1 = 2 and µ2 = 2, and the following rows give the corresponding results.

Table 4.1: Numerical Results for K1 = 10 and K2 = 3. Non-Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic parameters 1 4.92 0.5853 0.2678 0.7322 0.0247 0.0289 5.0447 0.6028 0.0573

λ1 = 10 9.2883 2.0230 0.8354 0.1646 0.5824 0.2033 2.2241 2.5393 0.6366

λ2 = 10 8.9856 2.4148 0.1590 0.8410 0.2050 0.5996 11.3025 0.6032 0.6369

µ1 = 10 4.1234 0.5350 0.2307 0.7693 0.0095 0.0252 4.1629 0.5488 0.0206

µ2 = 10 4.8464 0.4200 0.2713 0.7287 0.0234 0.0114 4.9626 0.4248 0.0520

Basic parameters 2 9.7206 2.7247 0.4995 0.5005 0.7502 0.7508 9.7300 2.7339 0.7654

λ1 = 40 9.9699 2.7952 0.5912 0.4088 0.9704 0.7956 8.4312 3.4192 0.8123

λ2 = 40 9.7952 2.9700 0.4087 0.5913 0.7956 0.9704 11.9820 2.5117 0.8123

µ1 = 20 6.8523 2.4698 0.1776 0.8224 0.2271 0.6001 2.2163 1.5442 0.5168

µ2 = 20 9.5333 1.7123 0.7499 0.2501 0.6251 0.3415 6.3566 0.6501 0.8539
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Table 4.2: Numerical Results for K1 = 10 and K2 = 3. Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic parameters 1 0.3495 0.3110 0.5025 0.4975 0.0001 0.0096 0.3495 0.3140 0.4566

λ1 = 10 9.2747 2.0258 0.8407 0.1593 0.5797 0.2036 2.2065 2.5435 0.6383

λ2 = 10 7.3468 2.4167 0.1777 0.8223 0.1136 0.5895 8.2886 0.5887 0.6589

µ1 = 10 0.1795 0.2587 0.4834 0.5266 2.2·10−7 0.0070 0.1795 0.2605 0.4721

µ2 = 10 0.2717 0.1690 0.5197 0.4803 2.3·10−7 0.0021 0.2717 0.1694 0.4756

Basic parameters 2 9.7161 2.7259 0.5021 0.4979 0.7489 0.7511 9.6749 2.7376 0.7676

λ1 = 40 9.9699 2.7952 0.5913 0.4087 0.9704 0.7956 8.4312 3.4192 0.8123

λ2 = 40 9.7951 2.9700 0.4088 0.5912 0.7956 0.9704 11.9809 2.5117 0.8129

µ1 = 20 6.4101 2.4296 0.1700 0.8300 0.2078 0.5867 2.0230 1.4695 0.6386

µ2 = 20 9.2975 1.8312 0.8692 0.1308 0.5654 0.3460 5.3487 0.7000 1.0043

Table 4.3: Numerical Results for K1 = 10 and K2 = 8. Non-Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic parameters 1 3.3738 2.2050 0.4431 0.5569 0.0131 0.0132 3.4186 2.2346 0.0567

λ1 = 10 9.3124 6.9699 0.8279 0.1721 0.5897 0.2106 2.2698 8.8290 0.6361

λ2 = 10 8.9427 7.2870 0.1608 0.8391 0.1998 0.5815 11.1756 1.7412 0.6222

µ1 = 10 2.9203 2.1956 0.4395 0.5605 0.0060 0.0138 2.9380 2.2262 0.0566

µ2 = 10 3.3729 1.8686 0.4457 0.5543 0.0134 0.0060 3.4188 1.8798 0.0570

Basic parameters 2 9.7225 7.7217 0.4994 0.5006 0.7509 0.7509 9.7580 7.7498 0.7638

λ1 = 40 9.9700 7.7952 0.5912 0.4088 0.9704 0.7956 8.4316 9.5359 0.8123

λ2 = 40 9.7952 7.9700 0.4087 0.5913 0.7956 0.9704 11.9820 6.7399 0.8123

µ1 = 20 6.9507 7.4388 0.1770 0.8230 0.2387 0.6037 2.2826 4.6922 0.5951

µ2 = 20 9.4382 5.2031 0.8076 0.1924 0.5986 0.2364 5.8778 1.7035 0.6185

Remarks on the Numerical Results

• In all cases presented, E[W1] and Ploss(1) under Non-Work-Conserving scenario are each larger than

their corresponding values under Work-Conserving scenario. This is clearly a consequence of the

difference between the scenarios

• The above observation is true for E[W2] and Ploss(2), for almost all cases, unless µ2 becomes relatively

large.

In Section 6 we will further discuss the above numerical results together with those presented in the following

Section 5 that analyzes extreme cases. In addition, in Section 6 we exhibit graphically the oscillation

phenomenon occurring in this two-dimensional stochastic process.
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Table 4.4: Numerical Results for K1 = 10 and K2 = 8. Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic parameters 1 0.3334 0.3332 0.5000 0.5000 1.7·10−6 1.6·10−5 0.3334 0.3332 0.4518

λ1 = 10 9.2822 6.9192 0.8395 0.1605 0.5802 0.1977 2.2113 8.6239 0.6197

λ2 = 10 8.8860 7.2884 0.1608 0.8392 0.1959 0.5804 11.0515 1.7370 0.6168

µ1 = 10 0.1814 0.2664 0.4825 0.5175 3.6·10−7 2.4·10−6 0.1814 0.2664 0.4711

µ2 = 10 0.2665 0.1814 0.5177 0.4825 1.1·10−7 3.2·10−6 0.2665 0.1814 0.4711

Basic parameters 2 9.7201 7.7201 0.5000 0.5000 0.7500 0.7509 9.7201 7.7201 0.7648

λ1 = 40 9.9699 7.7952 0.5913 0.4087 0.9704 0.7956 8.4312 9.5354 0.8123

λ2 = 40 9.7952 7.9700 0.4087 0.5913 0.7956 0.9704 11.9819 6.7399 0.8123

µ1 = 20 6.9360 7.3484 0.1550 0.8450 0.2258 0.5775 2.2398 4.3482 0.6012

µ2 = 20 9.3398 5.3813 0.8482 0.1518 0.5759 0.2411 5.5057 1.7728 0.6434

5 Extreme Cases

Due to the symmetry between the queues, we investigate only the influence of extreme values of λ1 and µ1,

as they reach 0 or ∞, on the system’s performance measures E[Li], E[Wi], P(I = i), Ploss(i), i = 1, 2, and

SR. We first address extreme cases which lead to identical system structure in the two scenarios, and then

we address extreme cases which lead to different system structures.

Numerical results for the case where K1 = 10 are presented in Tables 5.1, 5.2, 5.5 and 5.6 (change in λ1),

and in Tables 5.3, 5.4, 5.7 and 5.8 (change in µ1). In Tables 5.1– 5.4 we set K2 = 3, while in Tables 5.5 –

5.8, K2 = 8.

Table 5.1: The impact of λ1 (when λ2 = 4, µ1 = 7, µ2 = 7, K1 = 10 and K2 = 3). Non-Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 0.8559 0 1 0 0.0895 0 0.2350 0

λ1 = 0.1 6.5305 0.8797 0.0149 0.9851 0.0041 0.0937 65.5725 0.2426 0.0239

λ1 = 0.5 6.6867 0.9733 0.0727 0.9273 0.0214 0.1098 13.6666 0.2733 0.1206

λ1 = 5 8.4174 1.8150 0.5011 0.4989 0.3008 0.2849 2.4078 0.6345 1.1267

λ1 = 50 9.8891 2.5030 0.7209 0.2791 0.8991 0.5117 1.9596 1.2816 1.9054

λ1 = 500 9.9897 2.5314 0.7323 0.2677 0.9897 0.5315 1.9488 1.3501 1.8733

λ1 = 5000000 10 2.5333 0.7333 0.2667 0.999999 0.5333 1.9480 1.3571 1.8667
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Table 5.2: The impact of λ1 (when λ2 = 4, µ1 = 7, µ2 = 7, K1 = 10 and K2 = 3). Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 0.8559 0 1 0 0.08951 0 0.2350 0

λ1 = 0.1 0.0394 0.8644 0.0298 0.9702 0.2.8·10−14 0.0906 0.3937 0.2376 0.1000

λ1 = 0.5 0.2190 0.9027 0.1305 0.8695 0.7.8·10−8 0.0959 0.4380 0.2496 0.4155

λ1 = 5 7.0230 1.7853 0.5745 0.4255 0.2069 0.2669 1.7711 0.6089 1.1676

λ1 = 50 9.8891 2.5030 0.7210 0.2790 0.8991 0.5117 1.9594 1.2816 1.9054

λ1 = 500 9.9897 2.5314 0.7323 0.2677 0.9897 0.5315 1.9488 1.3509 1.8733

λ1 = 5000000 10 2.5333 0.7333 0.2667 0.999999 0.5333 1.9480 1.3571 1.8667

Table 5.3: The impact of µ1 (when λ1 = 4, λ2 = 4, µ2 = 7, K1 = 10 and K2 = 3). Non-Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

µ1 = 0 10 3 1 0 1 1 ∞ ∞ 0

µ1 = 0.1 9.9757 2.9298 0.9700 0.0300 0.99757 0.9532 101.837 15.6572 0.0950

µ1 = 0.5 9.8893 2.7068 0.8750 0.1250 0.8906 0.8048 22.6050 3.4674 0.3952

µ1 = 5 8.7921 1.8486 0.5163 0.4837 0.3551 0.3101 3.4083 0.6699 1.0642

µ1 = 50 4.2667 1.1740 0.2000 0.8000 0.0141 0.1398 1.0820 0.3412 0.1123

µ1 = 500 3.7556 1.1431 0.1830 0.8170 0.0050 0.1346 0.9436 0.3302 0.0093

µ1 = 5000000 3.7060 1.1406 0.1816 0.8184 0.0042 0.1342 0.9304 0.3293 9.1·10−7

Table 5.4: The impact of µ1 (when λ1 = 4, λ2 = 4, µ2 = 7, K1 = 10 and K2 = 3). Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

µ1 = 0 10 3 1 0 1 1 ∞ ∞ 0

µ1 = 0.1 9.9755 2.9348 0.9741 0.0259 0.9756 0.9547 102.409 16.1805 0.0976

µ1 = 0.5 9.8847 2.7254 0.8911 0.1089 0.8886 0.8094 22.1859 3.5745 0.4085

µ1 = 5 7.7191 1.8548 0.5941 0.4059 0.2612 0.2959 2.6119 0.6586 1.1080

µ1 = 50 0.9603 0.8777 0.3536 0.6464 0.0011 0.0924 0.2404 0.2418 1.3796

µ1 = 500 0.7955 0.8566 0.3476 0.6524 0.0006 0.0896 0.1990 0.2352 1.4022

µ1 = 5000000 0.7797 0.8559 0.3474 0.6526 0.0006 0.0895 0.1950 0.2350 1.4027
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Table 5.5: The impact of λ1 (when λ2 = 4, µ1 = 7, µ2 = 7, K1 = 10 and K2 = 8). Non-Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 1.2745 0 1 0 0.0049 0 0.3202 0

λ1 = 0.1 4.9287 1.4117 0.0196 0.9704 0.0017 0.0084 49.3692 0.3559 0.0119

λ1 = 0.5 4.9678 1.9274 0.0931 0.9069 0.0084 0.0214 10.0196 0.4924 0.0566

λ1 = 5 8.0553 6.0533 0.5363 0.4637 0.2716 0.2418 2.2117 1.9960 0.9348

λ1 = 50 9.8894 7.5042 0.7203 0.2797 0.8992 0.5124 1.9626 3.8475 1.9058

λ1 = 500 9.9897 7.5314 0.7323 0.2677 0.9897 0.5315 1.9488 4.0192 1.8733

λ1 = 5000000 10 7.5333 0.7333 0.2667 0.999999 0.5333 1.9480 4.0357 1.8667

Table 5.6: The impact of λ1 (when λ2 = 4, µ1 = 7, µ2 = 7, K1 = 10 and K2 = 8). Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 1.2745 0 1 0 0.0049 0 0.3202 0

λ1 = 0.1 0.0565 1.2932 0.0288 0.9712 8.9·10−12 0.0050 0.5654 0.3249 0.0934

λ1 = 0.5 0.3109 1.3937 0.1229 0.8771 3.2·10−6 0.0059 0.6218 0.3505 0.3672

λ1 = 5 7.5747 5.8061 0.5490 0.4510 0.2343 0.2139 1.9786 1.8465 0.9147

λ1 = 50 9.8891 7.5026 0.7210 0.2790 0.8910 0.5117 1.9595 3.8411 1.9051

λ1 = 500 9.9897 7.5314 0.7323 0.2677 0.9897 0.5315 1.9488 4.0192 1.8733

λ1 = 5000000 10 7.5333 0.7333 0.2667 0.999999 0.5333 1.9480 4.0357 1.8667

Table 5.7: The impact of µ1 (when λ1 = 4, λ2 = 4, µ2 = 7, K1 = 10 and K2 = 8). Non-Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

µ1 = 0 10 8 1 0 1 1 ∞ ∞ 0

µ1 = 0.1 9.9757 7.9010 0.9702 0.0298 0.9757 0.9482 102.8220 38.1134 0.0945

µ1 = 0.5 9.8888 7.5920 0.8775 0.1225 0.8904 0.7870 22.5556 8.9111 0.3871

µ1 = 5 8.5254 6.0910 0.5514 0.4486 0.3255 0.2618 3.1599 2.0628 0.8900

µ1 = 50 3.1548 4.0234 0.3785 0.6215 0.0056 0.0768 0.7932 1.0895 0.2568

µ1 = 500 2.8346 3.9967 0.3753 0.6247 0.0007 0.0759 0.7091 1.0812 0.2513

µ1 = 5000000 2.8020 3.9945 0.3750 0.6250 0.0002 0.0758 0.7006 1.0805 0.2509
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Table 5.8: The impact of µ1 (when λ1 = 4, λ2 = 4, µ2 = 7, K1 = 10 and K2 = 8). Work-Conserving

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

µ1 = 0 10 8 1 0 1 1 ∞ ∞ 0

µ1 = 0.1 9.9757 7.9019 0.9704 0.0296 0.9757 0.9483 102.7950 38.2017 0.0946

µ1 = 0.5 9.8884 7.5955 0.8785 0.1215 0.8902 0.7873 22.5132 8.9272 0.3875

µ1 = 5 8.1645 5.9921 0.5667 0.4333 0.2926 0.2432 2.8853 1.9794 0.8749

µ1 = 50 1.3769 1.3715 0.3200 0.6800 0.0014 0.0066 0.3447 0.3452 1.2496

µ1 = 500 1.1681 1.2806 0.3129 0.6871 0.0003 0.0050 0.2921 0.3218 1.2912

µ1 = 5000000 1.1483 1.2745 0.3125 0.6875 0.0002 0.0049 0.2872 0.3202 1.2933

λ1 → 0

In this case it is clear that, in both scenarios, P(L1 = 0) = 1; Hence, P(I = 1) = 0 and P(I = 2) = 1.

Therefore, Q2 operates as an M(λ2)/M(µ2)/1/K2 system for which Ploss(2) =
ρ
K2
2 (1−ρ2)
1−ρK2+1

2

, and E[L2] =

ρ2
1−ρ2 −

(K2+1)ρ
K2+1
2

1−ρK2+1
2

, where ρ2 = λ2

µ2
.

µ1 → 0

This case is also straightforward and identical in both scenarios: P(I = 1) = 1 and P(I = 2) = 0. Therefore,

P(L1 = K1) = 1 and P(L2 = K2) = 1, Ploss(1) = 1, and Ploss(2) = 1.

λ1 →∞
In both scenarios, whenever λ1 → ∞, Q1 is always at it’s maximum capacity, meaning L1 ≡ K1 and

Ploss(1) = 1. In such a case the server serves the customers of Q1 until the number of customers in Q2

reaches it’s maximum value, K2. Then, once the server completes the service of a customer at Q1, it

immediately switches to Q2. Before service completion there, an arrival to Q1 will occur, causing a switch

back toQ1, once service atQ2 ends. Hence, the only possible states with nonzero probabilities are (K1,K2, 1),

(K1,K2 − 1, 1), and (K1,K2, 2). Therefore, P(I = 1) = PK1K2(1) + PK1,K2−1(1), P(I = 2) = PK1K2(2), and

Ploss(2) = PK1K2(1) + PK1K2(2). The sets of balance equations are reduced to

λ2PK1,K2−1(1) = µ2PK1K2(2)

µ1PK1K2(1) = λ2PK1,K2−1(1)

µ2PK1K2(2) = µ1PK1K2(1). (5.1)

Solving (5.1) we arrive at

PK1,K2−1(1) =
µ1µ2

λ2µ2 + µ1λ2 + µ1µ2
, PK1K2(1) =

λ2µ2

λ2µ2 + µ1λ2 + µ1µ2
, PK1K2(2) =

µ1λ2
λ2µ2 + µ1λ2 + µ1µ2

.

Hence, P(I = 1) = µ1µ2+λ2µ2

λ2µ2+µ1λ2+µ1µ2
, P(I = 2) = µ1λ2

λ2µ2+µ1λ2+µ1µ2
, E[L2] = K2 − µ1µ2

λ2µ2+µ1λ2+µ1µ2
, and

Ploss(2) = λ2µ2+λ2µ1

λ2µ2+µ1λ2+µ1µ2
. Note that the capacity of Q1, K1, does not affect the results.

The next extreme case leads to a different system structure in each of the switching scenarios.
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µ1 →∞
In Scenario 1, if µ1 →∞ then, whenever the server is at Q1, it immediately reduces the number of customers

there to 0, and will remain at Q1 until the first moment when the number of customers in Q2 reaches the

threshold K2. The server stays in the latter queue until the number of customers in Q1 reaches the value

K1. Then, when Q2 reduces below its threshold, K2, the server will switch to Q1 and immediately reduce

the occupancy there to 0. Hence, P(I = 1) = P0•(1) =
∑K2−1
n=0 P0n(1).

In Scenario 2, if µ1 →∞ the server empties Q1 instantaneously and switches to Q2, given that the latter is

not empty. Therefore, P(I = 1) = P00(1). The server stays in Q2 until Q1 reaches its threshold and Q2 is

below the threshold K2. Still, in both switching scenarios the proportion of time the server resides in Q1 is

not 0 (see Tables 5.3, 5.4, 5.7 and 5.8), and in both scenarios Ploss(1) = PK1K2
(2), and Ploss(2) = P•K2

(2).

The two-queue process is subject to an oscillation phenomenon: when the occupancy of Qi decreases, the

occupancy of the other queue increases. This feature is illustrated in Figure 5.1, were we simulate a rather

typical case presented in Table 5.7 with µ1 = 50. The periodicity pattern revealed in Figure 5.1 is further

discussed in Section 6.
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Figure 5.1: The case µ1 = 50 from Table 5.7.

6 Oscillations and Comparison Between the Scenarios

6.1 Oscillations

In Figures 6.1 and 6.2, we plot simulation results for the set of parameters of Figure 5.1, but with larger

threshold values. It is seen that with increasing threshold levels, the system exhibits periodicity. We
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conjecture that the two-queue process converges to a periodic process as the threshold values increase.

There is another important observation in the case of large thresholds. When the thresholds are large, there

is practically no difference between the cases Ki = Ci and Ki < Ci. Yet, the limiting case Ci →∞, resulting

in an unbounded two-dimensional process, is further being investigated by the authors.
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Figure 6.1: The case µ1 = 50 from Table 5.7 with K1 = 100 and K2 = 80.
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Figure 6.2: The case µ1 = 50 from Table 5.7 with K1 = 1000 and K2 = 800.
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6.2 Comparison Between the Scenarios

Assume that every time unit a customer resides in the system (whether in Q1 or in Q2) costs CRES units of

money, and that every server switch-over from Qi to Qj , i 6= j, costs CSR units of money. Then, we define

the mean cost per unit of time

E[C] ≡ CRES (E[L1] + E[L2]) + CSR · SR. (6.1)

We now exhibit cases where Scenario 1 is economically preferable than Scenario 2. Figures 6.3 and 6.4 depict

two graphs presenting the change in E[C] as a function of λ1 and as a function of µ1, respectively, for both

scenarios. In Figure 6.3 all other parameters assume the following values: K1 = 4, K2 = 3, CRES = 1,

CSR = 5, λ2 = 4, µ1 = 7, µ2 = 7, while in Figure 6.4 all other parameters assume the following values:

K1 = 4, K2 = 3, CRES = 1, CSR = 5, λ1 = 4, λ2 = 4, µ2 = 7. It is seen that, for the above set of parameters,

the non-work-conserving switching policy is more economical than the work-conserving switching policy.

  

  

  

  

  

  

5 10 15 20
1

5

10

15

20

25
EC

Scenario 2

Scenario 1

20 40 60 80 100
1

5

10

15

EC

Scenario 2

Scenario 1

10 20 30 40 50 60
1

5

10

15

EC

Scenario 2

Scenario 1

Figure 6.3: E[C] as a function of λ1 for both scenarios.
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Figure 6.4: E[C] as a function of µ1 for both scenarios.

Discussion

1. In all numerical calculations presented in Sections 4 and 5, the average switching rate between the

queues (the parameter SR) is always smaller in the Non-Work-Conserving scenario than in the Work-
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Conserving scenario, and when µ1 → ∞ this phenomenon becomes highly significant. See Tables 5.3

and 5.7, as opposed to Tables 5.4 and 5.8, respectively.

2. When λi is larger than µi the performance measures of both scenarios coincide, independently of all

other parameters. See the 6-th row in Tables 4.1, 4.2, 4.3, and 4.4. This result is also exhibited in

Tables 5.1, 5.2, 5.5, and 5.6, for λ1 ≥ 50.

3. In most of the presented calculations the performance measures related to the Work-Conserving sce-

nario are better than those of the Non-Work-Conserving scenario, i.e., shorter queue lengths, smaller

waiting times, and smaller loss probabilities. However, when high switching costs are involved (see

Figures 6.3 and 6.4) the Non-Work-Conserving scenario is more economical than the Work-Conserving

scenario.

4. When the service rates are sufficiently greater than the input rates, the system tends to a periodic

behavior when the threshold levels are large.

7 Conclusions

In this paper we studied a two-queue finite-buffer polling-type system with a threshold switching policy. In

contrast to other threshold-policy studies, the server determines its switching instants according to the size

of the queue which is not being served. Employing both PGFs and matrix analytic approach we derived

the joint and marginal steady state probabilities of the system’s state. The solution of the PGFs was

obtained by solving two finite sets of linear systems of the form A(z)~G(z) = ~P (z) and B(w)~F (w) = ~Π(w),

respectively, where ~G(z) and ~F (w) are each a vector whose entries are the sought-for PGFs. A(z) and B(w)

are finite square matrices with entries constructed from the parameters of the system. ~P (z) and ~Π(w) are

finite-dimensional vectors consisting of unknown boundary probabilities. We constructed a procedure to

calculate the boundary probabilities determining the PGFs by deriving explicit closed-form combinatorial

expressions for the determinants of A(z) and B(w). We are not aware of any previous relevant study

that obtained such explicit expressions. Using the matrix analytic approach revealed that the generator

matrix defining the process differs from the classical generators of QBD processes, and therefore the analysis

required the calculation of certain matrices defined by combinatorial expressions resembling the combinatorial

expressions derived for the determinants of A(z) and B(w), appearing in the analysis via PGFs. In addition,

we considered two switching scenarios: work-conserving and non-work-conserving. For each scenario we

calculated the mean number of customers present in each queue and the mean sojourn time; the proportion

of time the server spends in each queue; the proportion of lost customers; and the server’s average switching

rate between the queues. A comparison between the two scenarios was presented, and it was shown that

the non-work-conserving scenario may be economically better when high switching costs are involved. We

also observed that the dynamics of the system converges to a periodic behavior when the threshold levels

are large. A formal justification of this observed phenomenon is possibly a future research direction. Other
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future research directions are the limiting cases when the buffer capacities tend to infinity and the presence

of non-zero switching times. It is expected that non-zero switching times can have similar effect as switching

costs and provide one more raison d’être for the non-work-conserving policy.
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A Appendix

Proof of Theorem 2.3

Proof. By induction over k.

For k = 1,

q1(z) = α0(z) = (−λ1µ1)0
((

0

0

)
α0(z)α0(z) +

(
0

−1

)
α1(z)

)
.

For k = 2,

q2(z) = α(z)α0(z)− λ1µ1 =

1∑
l=0

(−λ1µ1)
l

((
1− l
l

)
α1−2l(z)α0(z) +

(
1− l
l − 1

)
α2−2l(z)

)
.
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We now show that the proposition is valid for any k. Suppose k = 2i (the case where k = 2i+1 is similar and

hence omitted from the presentation), and notice that for all k ≥ 0,
(
k
0

)
=
(
k
k

)
= 1, and

(
k
l

)
=
(
k−1
l

)
+
(
k−1
l−1
)
,

for every 0 ≤ l ≤ k,

qk(z) =α(z)qk−1(z)− λ1µ1qk−2(z)

=α(z)

i−1∑
l=0

(−λ1µ1)
l

((
2i− 1− l − 1

l

)
α2i−1−2l−1(z)α0(z) +

(
2i− 1− l − 1

l − 1

)
α2i−1−2l(z)

)

− λ1µ1

i−1∑
l=0

(−λ1µ1)
l

((
2i− 2− l − 1

l

)
α2i−2−2l−1(z)α0(z) +

(
2i− 2− l − 1

l − 1

)
α2i−2−2l(z)

)

=

i−1∑
l=0

(−λ1µ1)
l

((
2i− 1− l − 1

l

)
α2i−1−2l(z)α0(z) +

(
2i− 1− l − 1

l − 1

)
α2i−2l(z)

)

+

i−1∑
l=0

(−λ1µ1)
l+1

((
2i− 2− l − 1

l

)
α2i−2−2l−1(z)α0(z) +

(
2i− 2− l − 1

l − 1

)
α2i−2−2l(z)

)

=

i−1∑
l=0

(−λ1µ1)
l

((
2i− 1− l − 1

l

)
α2i−1−2l(z)α0(z) +

(
2i− 1− l − 1

l − 1

)
α2i−2l(z)

)

+

i∑
l=1

(−λ1µ1)
l

((
2i− 2− l
l − 1

)
α2i−2l−1(z)α0(z) +

(
2i− 2− l
l − 2

)
α2i−2l(z)

)
=(−λ1µ1)0

((
2i− 2

0

)
α2i−1(z)α0(z) +

(
2i− 2

−1

)
α2i(z)

)
+

i−1∑
l=1

(−λ1µ1)
l

((
2i− 2− l

l

)
+

(
2i− 2− l
l − 1

))
α2i−2l−1(z)α0(z)

+

i−1∑
l=1

(−λ1µ1)
l

((
2i− 2− l
l − 1

)
+

(
2i− 2− l
l − 2

))
α2i−2l(z)

+ (−λ1µ1)
i

((
2i− 2− i
i− 1

)
α2i−2i−1(z)α0(z) +

(
2i− 2− i
i− 2

)
α2i−2i(z)

)
=

i∑
l=0

(−λ1µ1)
l

((
2i− l − 1

l

)
α2i−2l−1(z)α0(z) +

(
2i− l − 1

l − 1

)
α2i−2l(z)

)

=

b k2 c∑
l=0

(−λ1µ1)
l

((
k − l − 1

l

)
αk−2l−1(z)α0(z) +

(
k − l − 1

l − 1

)
αk−2l(z)

)
.

This completes the proof.

Proof of Theorem 2.4

Proof. We will proceed by induction over k. First we note that A2 = diag (µ1), so that, A−12 = diag
(

1
µ1

)
.

In addition, A0 = diag (λ1) = λ1IK2
. Now, from (2.24) we have

~P 1
1 = − 1

µ1

~P 1
0A

0
1 = ~P 1

0C1.
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Suppose that the proposition holds for all values up to some k− 1, where 1 ≤ k− 1 ≤ K1 − 2. We will show

that it holds for k ≤ K1 − 1. From (2.24) we have

~P 1
k = −

(
~P 1
k−2A0 + ~P 1

k−1A1

)
A−12 .

Using the induction assumption with regard to the values of ~P 1
k−2 and ~P 1

k−1 we get

~P 1
k = −

(
~P 1
0Ck−2A0 + ~P 1

0Ck−1A1

)
A−12

= −~P 1
0 (Ck−2A0 + Ck−1A1)A−12

= − 1

µ1

~P 1
0 (λ1Ck−2 + Ck−1A1) .

Therefore ~P 1
k = ~P 1

0Ck, where Ck = − 1
µ1

(λ1Ck−2 + Ck−1A1).

This completes the proof.

Proof of Theorem 2.6

Proof. Similarly to the proof of Theorem 2.3, we proceed by induction over k.

For k = 1,

C1 =
−1

µ1
A0

1 =

(
−1

µ1

)1

(−λ1µ1)0
((

0

0

)
A0

1 (A1)
0

+

(
0

−1

)
(A1)

1

)
.

For k = 2,

C2 =
−1

µ1

(
λ1IK2

+

(
−1

µ1

)
A0

1A1

)
=

(
−1

µ1

)2 1∑
l=0

(−λ1µ1)
l

((
1− l
l

)
A0

1 (A1)
1−2l

+

(
1− l
l − 1

)
(A1)

2−2l
)
.

We now prove that the proposition holds for any k. Suppose k = 2i+ 1 (the case for even values, k = 2i, is

presented in the proof of Theorem 2.3),

Ck =
−1

µ1
(Ck−1A1 + λ1Ck−2)

=
−1

µ1

((
−1

µ1

)2i i∑
l=0

(−λ1µ1)
l

((
2i− 1− l

l

)
A0

1 (A1)
2i−2l−1

+

(
2i− 1− l
l − 1

)
(A1)

2i−2l
)
A1

+ λ1

(
−1

µ1

)2i−1 i−1∑
l=0

(−λ1µ1)
l

((
2i− 1− 1− l

l

)
A0

1 (A1)
2i−1−2l−1

+

(
2i− 1− 1− l

l − 1

)
(A1)

2i−1−2l
))

=

(
−1

µ1

)2i+1
(

i∑
l=0

(−λ1µ1)
l

((
2i− 1− l

l

)
A0

1 (A1)
2i−2l

+

(
2i− 1− l
l − 1

)
(A1)

2i+1−2l
)

+

i−1∑
l=0

(−λ1µ1)
l+1

((
2i− 2− l

l

)
A0

1 (A1)
2i−2−2l

+

(
2i− 2− l
l − 1

)
(A1)

2i−1−2l
))

=

(
−1

µ1

)2i+1
(

k∑
l=0

(−λ1µ1)
l

((
2i− 1− l

l

)
A0

1 (A1)
2i−2l

+

(
2i− 1− l
l − 1

)
(A1)

2i+1−2l
)

+

i∑
l=1

(−λ1µ1)
l

((
2i− 1− l
l − 1

)
A0

1 (A1)
2i−2l

+

(
2i− 1− l
l − 2

)
(A1)

2i+1−2l
))
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=

(
−1

µ1

)2i+1
(

(−λ1µ1)0
((

2i− 1

0

)
A0

1 (A1)
2i

+

(
2i− 1

−1

)
(A1)

2i+1

)

+

i∑
l=1

(−λ1µ1)
l

((
2i− 1− l

l

)
+

(
2i− 1− l
l − 1

))
A0

1 (A1)
2i−2l

+

i∑
l=1

(−λ1µ1)
l

((
2i− 1− l
l − 1

)
+

(
2i− 1− l
l − 2

))
(A1)

2i+1−2l

)

=

(
−1

µ1

)2i+1 i∑
l=0

(−λ1µ1)
l

((
2i− l
l

)
A0

1 (A1)
2i−2l

+

(
2i− l
l − 1

)
(A1)

2i+1−2l
)

=

(
−1

µ1

)k b k2 c∑
l=0

(−λ1µ1)
l

((
k − l − 1

l

)
A0

1 (A1)
k−2l−1

+

(
k − l − 1

l − 1

)
(A1)

k−2l
)
.

This completes the proof.
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