
Inter-protocol fairness between
TCP New Reno andTCP Westwood+

Niels Möller∗, Chadi Barakat†, Konstantin Avrachenkov†, and Eitan Altman†
∗KTH, School of Electrical Engineering

SE-100 44, Sweden
Email: niels@ee.kth.se

†INRIA
2004 route des Lucioles, 06902 Sophia Antipolis, France

Email: {Chadi.Barakat|k.avrachenkov|Eitan.Altman}@sophia.inria.fr

Abstract— In this paper we investigate the effect of introducing
TCP Westwood+ on regular TCP New Reno. By means of
analytical modeling and ns-2 simulations, we demonstrate that
the two protocols get different shares of the available bandwidth
in the network. Our main result is that the bandwidth sharing
between the two protocols depends on one crucial parameter: the
ratio between the bottleneck router buffer size and the bandwidth
delay product. If the ratio is smaller than one, TCP Westwood+
takes more bandwidth. On the contrary, if the ratio is greater
than one, it is TCP New Reno which gets the larger part. Inspired
by our results, we propose a simple modification to the window
decrease algorithm inTCP Westwood+ that solves the unfairness
problem for large buffer sizes. For small buffers, the unfairness
problem is still open.

I. I NTRODUCTION

In recent years, several new proposals and implementations
of TCP congestion control algorithms have been developed,
motivated by a growing heterogeneity of networks such as
wireless networks, high speed networks, ad-hoc and sensor
networks. In all these types of networks, the transmission is
subject to losses due to unreliable links (transmission losses) in
addition to losses due to congestion (congestion losses). The
Westwood+TCP version [1] has appeared to be particularly
useful when transmission losses cannot be neglected.TCP

Westwood+ is novel with respect toTCP Westwood because
of a new, simpler and unbiased estimator of the available
bandwidth. It behaves exactly asTCP New Reno version
in increasing its window when there are no packet losses.
However when a loss occurs, the behavior is different: instead
of employing the classicTCP by half window decrease, West-
wood+ decreases the window size to a new value that exactly
matches the bandwidth available at the time of congestion.
In particular, the window size is set equal to the available
bandwidth times the smallestRTT it has been observed so far.
The rationale for this choice is to keep full the “available pipe”,
where the available pipe is the available bandwidth times the
minimum round trip time.

When evaluating proposedTCP improvements, one impor-
tant issue is that of fairness, and in particular fairness in
a mixed environment where the old and newTCP versions

The work was supported by the France Telecom R&D Grant “Modélisation
et Gestion du Trafic Ŕeseaux Internet” no. 42937433.

coexist and share the same resources. The major goal of the
present work is to study the inter-protocol fairness between
TCP Westwood+ andTCP New Reno. AsTCP Westwood+ can
reduce the congestion window less thanTCP New Reno, one
might suspect thatTCP Westwood+ takes a larger share of the
available resources. On the other hand, it is known thatTCP

New Reno under-utilizes the bandwidth in the case of small
buffer sizes. So doesTCP Westwood+ just take this un-used
part of the bandwidth?

In [2], the impact of the buffer size on the performance of
TCP Westwood+ was studied, and it was shown that unlike
TCP New Reno, Westwood+ can achieve full link utilization
with arbitrarily small link buffers. Thus, one can expect that
the buffer size at the bottleneck will be one of the most
important parameters in the analysis. Moreover, the problem of
the choice of the buffer size for regularTCP traffic has drawn
a significant attention [3]–[7]. Here we show that the router
buffer size has a significant influence not only on the efficiency
of the network but also on the fairness between differentTCP

versions. In particular, we show that in orderTCP Westwood+
to take a fair share of the available bandwidth one needs to
choose the buffer size of the bottleneck router not smaller than
half of the bandwidth-delay product.

We provide a model that describes the interaction ofTCP

Westwood+ with the bottleneck router buffer as well as with
the conventionalTCP New Reno. Since queueing delays and
packet losses due to congestion are coupled to the queue and
window sizes, it becomes necessary to take queue and buffer
size into account. The evolution of the window sizes of both
flows is modeled as a hybrid system [8], with a continuous
increase between congestion events, and discontinuous reduc-
tions at the congestion event. This model lets us calculate
analytically the throughput for the flows for any buffer size.
The results are also validated usingns2 simulations.

Both the analytical model and simulations give the same
results: If the buffer size equals the bandwidth-delay product,
TCP Westwood+ andTCP New Reno will share available
capacity almost equally. For smaller buffers, Westwood+ wins
the battle for capacity, and for larger buffers,TCP New Reno
wins. Furthermore, we show that the results are only sensitive
to a single parameter: the ratio between the buffer size and

C Capacity of bottleneck link [bytes/s]
B Buffer size [bytes]
Ti Round trip time of flowi, excluding

queueing delay at the bottleneck
[s]

mi Segment size of flowi [bytes]
q(t) Queue size [bytes]

wi(t) Window size of flowi [bytes]
ri(t) Sending rate of flowi [bytes/s]

TABLE I

NOTATION

the bandwidth delay product. Finally, we propose a simple
modification toTCP Westwood+ that makesTCP Westwood+
efficient even in the case of large buffers.

The paper is organized as follows. In the next Section II
we describe the system model and in the ensuing Section III
we provide its mathematical analysis. Then, in Section IV
we provide the numerical as well as simulation results and
discussion. We conclude the paper with Section V.

II. SYSTEM MODEL

We use a hybrid fluid flow model for a network with two
competingTCP sources:TCP New Reno andTCP Westwood+.
They share a single bottleneck router with a drop-tail buffer of
sizeB and with transmission capacityC. The state variables
of interest are the queue sizeq(t) at the bottleneck router
and the congestion window sizeswi(t), i = 1, 2, of eachTCP

source. We assign index1 to the TCP New Reno flow and
index 2 to the TCP Westwood+ flow. The variableq(t) is
regarded as continuous andwi(t) as piece-wise continuous,
and the sending rate of each sources is one full window of
data per round trip time, where the round trip time consists of
a constant propagation delayTi and a queueing delayq(t)/C
that is determined by the current queue size. The window
size corresponds to the amount of data that a source has
transmitted, but not yet received any acknowledgment (ACK)
for. The notations are summarized in Table I.

For the window dynamics, we focus on the congestion
avoidance mode ofTCP. In TCP New Reno, congestion avoid-
ance is based on Additive increase / Multiplicative decrease:
The window is increased by one packet per round trip time
as long asACKs are received. When a packet loss is detected,
the window size is set to one half of the value before the loss.

In TCP Westwood+ [1], the additive increase is the same.
The difference is that the multiplicative decrease is replaced
by a different mechanism based on estimation of the available
bandwidth and of the propagation delay. The original motiva-
tion was to improveTCP performance over wireless links, with
a significant rate of losses that are due to transmission errors
rather than congestion. When Westwood+ detects a packet
loss, it sets its window size to the product of the estimated
bandwidth before the loss, and the end-to-end propagation
delay. The idea is that this window size is sufficiently small
to allow queues on the path to drain, but not smaller.

The propagation delay estimate is simple: it is just the
minimum observed round trip time. As long as at least one
packet has been sent when the queue is close to empty,
this estimate is accurate. The bandwidth estimation is more

complex. We have to refer to the Westwood literature for the
details [1], but the main idea is to obtain “bandwidth samples”
from the stream ofACKs, and form the estimate by low-
pass filtering of these samples. The first proposed version of
Westwood formed a bandwidth sample for eachACK, while
Westwood+ collects a round trip time worth ofACKs before
forming a bandwidth sample.

Thus, according to the fluid flow approximation of window
based congestion control schemes such asTCP New Reno and
TCP Westwood+, the sending rate of a flow is one full window
per RTT:

ri(t) =
wi(t)

Ti + q(t)/C
. (1)

The queue size is related to the sending rates bydq(t)/dt =
∑

ri(t) − C, or, substituting (1),

dq(t)

dt
=

∑

i

wi(t)

Ti + q(t)/C
− C. (2)

The above two equations ignore signaling delays, but it
includes the dependence on the queue size, via theRTT

Ti + q(t)/C. Since the queue size must be non-negative, (2)
is valid only whenq(t) > 0 or the right hand side is positive;
otherwisedq/dt = 0.

The evolution of the window sizes is governed by the
additive increase ofTCP’s congestion avoidance mode, which
is the same for both New Reno and Westwood+. The window
is increased by one packet,mi bytes, eachRTT.

dwi(t)

dt
=

mi

Ti + q(t)/C
. (3)

At the congestion event, the flow or flows that lose packets
make a discontinuous change in its window size. ForTCP

New Reno,w1(t
∗ + 0) = w1(t

∗ − 0)/2. For TCP Westwood+,
w2(t

∗ +0) = RTTminĉ2, whereĉ2 is the estimate of the flow’s
bandwidth, andRTTmin is the smallest observedRTT.

For TCP Westwood+, there are several issues with how this
should be modeled.

• RTTmin: This is intended to be the round trip delay,
excluding queueing delay. So it makes sense to put
RTTmin = T . But on the other hand, if the Westwood+
flow is started when the bottleneck is already loaded,
Westwood cannot observeT , and it may be more accurate
to setRTTmin = T + min q(t)/C.

• ĉ2: The bandwidth is “sampled” once per round trip time,
and then these samples are low-pass filtered to form a
smoother estimate. The simplest model is to putĉ2 =
r2(t

∗−0) = w2(t
∗−0)/(T+B/C). This is an assumption

of optimistic estimation, and it neglects the delay and the
bias which are present in the real filter.

With RTTmin = T and ĉ2 = w2(t
∗ − 0)/(T + B/C), it

follows that w2(t
∗ + 0) = βw2(t

∗ − 0), with the constant
β = CT/(CT + B).

III. A NALYSIS

To analyze the system evolution, we use separate models
for the evolution between congestion events, and for the
congestion events. Acongestion event is a short period of
time when the router queue is full, and one or more packets
are dropped. Finally, we put these two models together to find
the stationary behavior, and the corresponding throughput.

A. System evolution between congestion events

Assume that a congestion event ends at timet = 0. At this
time q(0) = B, i.e., the buffer is full, and the window sizes
are given by the initial conditionswi(0) = w0

i .
After a congestion event, the evolution of the rates and the

queue can be divided into three phases.

• Phase 1: During the first phase, the total rate,r1 + r2, is
smaller thanC, and increasing. In this phase, the queue
is shrinking, and it may even become empty.

• Phase 2: During the second phase (which is present only
for small buffer sizes), the queue is empty, and sending
rates are increasing. During the second phase, the link is
under-utilized, and the phase ends when the total sending
rate reaches the link capacity,r1 + r2 = C.

• Phase 3: During the third phase, theACK-clock mech-
anism forces the total sending rate to stay essentially
constant, barely larger thanC, and the growing windows
result in a growing queue, not increasing sending rates.
The third phase is terminated by the next congestion
event, which happens when the queue size reaches the
buffer size,q(t) = B.

The objective of the analysis in this section is to find the
smallestt∗ > 0 such thatq(t∗) = B, and to expresst∗ and the
corresponding window sizeswi(t

∗) as functions of the initial
window sizesw0

i . These functions are needed in Sec. III-B,
when deriving the evolution over a large number of congestion
events.

When investigating fairness between two flows, usingT1 6=
T2 would introduce a prejudice, favoring one of the flows
against the other. To give the two flow equal opportunities, we
assumeT1 = T2 = T . This assumption lets us to introduce
a virtual time, which can be thought of as measuring time
in number of round trips. This tool makes it possible to find
explicit solutions to the differential equations.

Virtual time s is defined bydt = (T + q(t)/C)ds. This
change of variables transforms Equations (2) and (3) into

dwi(s)

ds
= mi (4)

dq(s)

ds
= −q(s) − CT +

∑

i

wi(s) (5)

The second equation is still valid only whenq(s) > 0 or the
right hand side is positive.

Let s∗ denote the virtual time corresponding tot∗, i.e., the
next congestion event. Givens∗, the amount of data that is
transmitted up to timet∗ can be computed as follows. First

solve (4), which gives,

wi(s) = w0
i + smi (6)

Then the volume of data transmitted up to times∗ is

Di =

∫ t∗

0

r(t)dt =

∫ s∗

0

w(s)ds = s∗
(

w0
i +

mis
∗

2

)

(7)

This says simply that the amount of data is the number of
round trips, s∗, times the average window size. Here, the
“average” is not a proper time average, but an average with
respect to the virtual times. We will compute the throughput
asDi/t∗. The calculation ofs∗ and t∗ depends on the buffer
size.

In general,t∗ can computed givenq(s) ands∗, by integrat-
ing

t∗ =

∫ t∗

0

dt =

∫ s∗

0

dt

ds
ds = Ts∗ +

1

C

∫ s∗

0

q(s)ds (8)

The calculations in absolute time,t, are simplified by the
remarkable fact that (3) and (2) can be solved forq in terms
of w. Substitution of (3) into (2) gives

dq(t)

dt
= −C +

∑

i

wi(t)

mi

dwi(t)

dt

=
d

dt

{

−Ct +
∑

i

1

2mi
(wi(t))

2

} (9)

Integrating, we get

q(t2) − q(t1) = −C(t2 − t1) +
1

2

∑

i

(wi(t2))
2 − (wi(t1))

2

mi

(10)
For any time interval, during which the queue stays non-empty,
this allows us to compute the length of the interval given only
the initial and final state,

t2 − t1 =
1

C

{

q(t1) − q(t2) +
1

2

∑

i

(wi(t2))
2 − (wi(t1))

2

mi

}

(11)
1) Full utilization: The link will be fully utilized if and only

if q(t) > 0 for all time (except possible for an isolated instant).
In other words, the second phase is empty. This section derives
conditions on the initial conditions for this to happen.

Introduce the notationW = w0
1 + w0

2 andM = m1 + m2.
Substitutingwi(s) = w0

i + smi into (5) gives

dq(s)

ds
= −CT − q(s) + W + sM (12)

which together with the initial conditionq(0) = B can be
solved explicitly,

q(s) = Be−s +(W −CT)(1− e−s)+ (e−s − 1+ s)M (13)

This equation is valid only as long asq > 0, since the
differential equation doesn’t model queue underflow. Looking
more closely at this equation, it can be divided into a transient,
related to the initial bufferB and a new “equilibrium size”
W − CT , and a linear growth with rateM . Asymptotically,

Fig. 1. The two real branches of Lambert’sW function. W0 (solid) is
defined for allx ≥ −1/e, while W

−1 (dotted) is defined on the interval
−1/e ≤ x < 0.

for large s, we haveq(s) ≈ W + (s − 1)M − CT , i.e., the
queue is the difference between the total window size oneRTT

earlier, and the bandwidth-delay productCT .
Proposition 1: The link is fully utilized if and only if either

of these two inequalities is satisfied:

W ≥ CT (14)

B

M
≥ exp

(

CT − W

M

)

− 1 − CT − W

M
(15)

Proof: First observe that ifW ≥ CT , thenq(s) > 0 for
all s (note thate−s − 1 + s > 0). So assume thatW < CT .
Then the functionq(s), defined by (13), is initially decreasing,
and has a single minimum ats0 = log(1+(CT +B−W)/M).
We have full utilization if and only this minimum valueq(s0)
is non-negative. By substitutings0 into (13), we see that
q(s0) ≥ 0 is equivalent (15), which concludes the proof.

2) Large buffer: If the buffer is “large”, i.e., the condition
in Prop. 1 is satisfied, then the queue never underflows, and
we can finds∗ by puttingq(s) = B in (13). The solution can
be expressed in terms of Lambert’s function [9], defined as the
inverse ofz 7→ zez. We use the two real branches, denoted
W0 andW−1, and illustrated in Fig. 1.

Proposition 2: When the full-utilization condition of
Prop. 1 is satisfied, the values ofs∗ and t∗ are given by

s∗ = s̃ + 1 + W0

(

−(1 + s̃)e−(1+s̃)
)

(16)

t∗ =
s∗

C

(

W +
Ms∗

2

)

(17)

wheres̃ is defined by

s̃ = (CT + B − W)/M (18)
Proof: Putq(s) = B in (13). After some simplifications,

this equality implies

1 + s̃ = (1 + s̃)e−s + s

This equation has two solutions, the trivial ones = 0, and a
second solution which can be expressed using theW0 function,
resulting in (16).

With this value fors∗, (17) follows from (11).

The throughput can be computed from (7),

Di

t∗
= C

w0
i + mis

∗/2

W + Ms∗/2
(19)

As expected, with full utilization, the total throughput,(D1 +
D2)/t∗, equalsC.

3) Small buffers: When computing the throughput for a
small buffer, we must handle the three phases separately, since
neither the differential equation forq, nor the time interval
equation (11), is valid during the second phase, when the
queue is empty and the link is under-utilized.

Proposition 3: When the full-utilization condition of
Prop. 1 isnot satisfied, the values ofs∗ and t∗ are given
by

s∗ = s̃ + 1 + W0

{

−e−1−B/M
}

(20)

t∗ =
Ws1 + CT (s3 − s1) + M(s2

1 + s2
3)/2

C
(21)

wheres1 ands2 are defined by

s1 = 1 +
CT − W

M
+ W−1

(

−(1 + s̃)e−1−(CT−W)/M
)

s3 = 1 +
B

M
+ W0

(

−e−1−B/M
)

Proof: Denote the duration of the three phases, in
absolute time and virtual time, byt1, t2, t3, s1, s2, and s3.
We handle one phase at a time.

The first phase: We finds1 by putting q(s1) = 0 in (13)
and solving fors1. Thent1 is found by substituting initial and
final state in (11). This procedure gives:

s1 = 1 +
CT − W

M
+ W−1

(

−(1 + s̃)e−1−(CT−W)/M
)

t1 =
B + Ws1 + Ms2

1/2

C
The second phase: Throughout this phase,q(0) = 0. The

phase starts with
∑

wi(t) < CT , and ends when
∑

wi(t) =
CT . Initially, the total window size isW +s1M , so it follows
that

s2 =
CT − W

M
− s1

t2 = Ts2

The third phase: This is similar to the first phase, but with
different start and stop conditions. Initially,

∑

wi(s1 + s2) =
CT and q(s1 + s2) = 0. With these initial condition, the
differential equations (4) and (5) have the solution

q(s) =
(

e−(s−s1−s2) + (s − s1 − s2) − 1
)

M (22)

The phase ends whenq(s) = B. The solution of this equation,
which is found using the same method as for the first phase,
gives the value ofs3. t3 is found by substituting initial and
final state in (11). The result is

s3 = 1 +
B

M
+ W0

(

−e−1−B/M
)

t3 =
−B + CTs3 + Ms2

3/2

C

Finally, addition of the values for each phase,s∗ = s1+s2+s3

and t∗ = t1 + t2 + t3, results in (20) and (21).
4) Throughput: Propositions 1–3 let as computet∗ ands∗

as functions of the initial window sizes. With these values,the
data volumeDi follows from (7), and the throughputDi/t∗ for
each flow can be computed. For reference in the next section,
we define the functions̃s(W) ands∗(W) as follows:

s̃(W) =
CT + B − W

M
(23)

s∗(W) = s̃ + 1 +

{

W0

(

−(1 + s̃)e−(1+s̃)
)

full utilization

W0

(

−e−1−B/M
)

otherwise
(24)

B. System evolution at congestion events

The previous section analyzed the queue evolution between
congestion events. To find the average throughput over a longer
time, we need to know the stationary behavior that results from
a large number of congestion events. We first consider what
happens at the single congestion event at timet = t∗.

As shown at the end of Section II, at the congestion event
if TCP New Reno loses a packet:w1(t

∗ +0) = 0.5w1(t
∗−0),

and if TCP Westwood+ source loses a packet:w2(t
∗ + 0) =

βw2(t
∗ − 0), with the constantβ = CT/(CT + B).

Then, an important issue iswhich flow loses packets at a
congestion event. It could be one of the flows, or both. In
the TCP fairness literature, it is common to use stochastic
modeling for this (see e.g., [10], [11]).

Under the fairly general assumption that the probabilitiesof
the different possible outcomes at a congestion event depends
only on the window sizes of the involved flows just prior to
the congestion, the evolution can be described as a Markov
chain. LetXk denote the vector of the two window sizes just
after a congestion event. If the first flow usesTCP New Reno
and the second usesTCP Westwood+, the evolution can be
described as

Xk+1 = Dℓk
G(Xk) (25)

In this equation

G

(

w1

w2

)

=

(

w1

w2

)

+ s∗(w1 + w2)

(

m1

m2

)

(26)

represents the window growth between congestion events, and
the functions∗(W) is defined by (24). The actual packet loss
is represented by the random variableℓk, with three possible
values 0, 1, and 2. The window reduction is represented by
the constant diagonal matricesDi,

D0 =

(

1/2 0
0 β

)

D1 =

(

1/2 0
0 1

)

D2 =

(

1 0
0 β

)

(27)

Of the three outcomes,D0 represents a loss event where each
flow loses a packet,D1 represents an event where only the
first flow loses a packet, andD2 represents an event where
only the second flow loses a packet.

If we make the further assumption that the probability that
ℓk = j depends only on the stateXk, i.e.,

P(ℓk = j|Xk, ℓk−1, ℓk−2, . . .) = pj(X
k) (28)

then (25) clearly describes a Markov chain.
To gain insight into the problem, and to be able to solve it

analytically, we have to make a few simplifying assumptions
and approximations. Our first assumption is that flows are fully
synchronized, i.e., that at every congestion event, both flows
lose packets. This means thatℓk = 0 for all k, and it actually
makes the process fully deterministic.

The second simplification is dropping the non-linear terms
of the functions∗(w1, w2). In both expressions fors∗, (16)
and (20) are of the forms∗ = s̃ + 1 + W0(· · ·), where the
final term is non-linear, and bounded between -1 and 0. So by
replacings∗ by s̃ + 1/2, the error inG(Xk) is at most half a
packet.

To give both flows equal opportunities, we also putm1 =
m2 = m. The result is the following approximation of the
evolution of the stateXk.

Xk+1 = D0

(

Xk + (s̃(Xk
1 ,Xk

2) + 1/2)m

(

1
1

))

=

(

1/4 −1/4
−β/2 β/2

)

Xk + (CT + B + m)

(

1/4
β/2

)

(29)
Sinceβ < 1, the matrix has all eigenvalues within the unit

circle. Then, for any initial values, theXk sequence converges
to

X∗ =

(

I −
(

1/4 −1/4
−β/2 β/2

))

−1

(CT + B + 1)

(

1/4
β/2

)

=
CT + B + m

3 − 2β

(

1 − β
β

)

(30)
To find the throughput for both flows in the stationary regime,
we plug in the window sizesX∗ as the initial window sizes
in the procedure of Sec. III-A.4.

C. Limits

Let us study the fairness in the limiting cases when buffers
are very small or very large. Of particular interest is the
throughput ratio

D2

D1
=

2w0
2 + ms∗

2w0
1 + ms∗

(31)

Proposition 4: In the limit asB → ∞, Westwood+ gets one
quarter of the capacity, while New Reno gets three quarters.
In the limit asB → 0, Westwood+ gets all the capacity, and
New Reno gets 0.

Proof: For the large buffer case, note thatCT + B =
CT/β. We parameterize the expressions in terms ofβ, and
let β → 0. We have from (30) that

(

w0
1

w0
2

)

= X∗ =
1

3

(

CT/β + O(1)
CT + O(β)

)

(32)

and W = CT/(3β) + O(1). It is clear that we have full
utilization, and we get

s∗ =
2CT

3Mβ
+ O(1) (33)

Finally, D2/D1 = (1 + O(β))/(3 + O(β)) → 1/3.

D
10 Mbit/s

50 ms
R

100 Mbit/s

10 ms
S1

100 Mbit/s

10 ms
S2

Fig. 2. Experimental setup. Parameter values correspond to scenario #1.

For the small buffer case, first note that (30) implies that
W − CT → m > 0 as B → 0, so by Prop. 1, we have full
utilization for all sufficiently smallB. Taking limits in Prop 2,
we find thats∗ → 0 as B → 0. Furthermore, Eq. (30) also
implies thatw0

1 → 0 and w0
2 → CT + m as B → 0 and

β → 1. It follows that D2/D1 → ∞ asB → 0.
This result is different from what one could obtain by using

the throughput formulas forTCP New Reno and Westwood+
in [12]:

T Reno=
1

RTT

√

2(1 − p)

p
, T Westwood=

√

1 − p

pTqRTT
. (34)

In these equations,Tq is the average queueing time andRTT =
T+Tq is the average round-trip time. Let’s form the throughput
ratio:

T Westwood

T Reno
=

1√
2

√

1 +
T

Tq
(35)

We see that this ratio predicts fairness whenTq = T , i.e.,
when theaverage queuing delay equals the propagation delay.
This is slightly different from our model, which predicts
fairness when themaximum queuing delay,B/C, equals the
propagation delay.

In the small buffer limit,Tq → 0, the ratio tends to infinity.
So here we have perfect agreement. In the large buffer limit,
Tq → ∞, the ratio tends to1/

√
2, significantly higher than

the prediction1/3 from our analysis. The simulation results
presented in the next section will support our analysis in
predicting the trend of the throughput ratio for large buffers.
Our explanation for this discrepancy is in the random loss
assumption made by the square root formula, which does not
hold in our setting.

IV. RESULTS AND DISCUSSION

We use the network topology illustrated in Fig. 2. There
are two source nodes,S1 (New Reno) andS2 (Westwood+),
sending data to a single destination node,D. There is one
intermediate router,R, and the link between the router and the
destination is the network’s bottleneck. For the bottleneck link,
we use two values for the capacityC, 1 Mbit/s and 10 Mbit/s,
and two different values of the propagation delay, correspond-
ing to round trip propagation delayT of 50 and 200 ms.
Table II shows the parameter values for the four scenarios,
and the corresponding bandwidth-delay product. Both sources
use a packet size of 1500 bytes. For all scenarios, we vary the
buffer size of the router between 2 packets and roughly twice
the bandwidth-delay product,2CT .

Scenario # C [Mbit/s] T [ms] CT [packets]
0 1 50 4.2
1 10 50 42
2 1 200 16.7
3 10 200 167

TABLE II

NETWORK PARAMETERS FOR FOUR DIFFERENT SCENARIOS

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size

T
hr

ou
gh

pu
t

Fig. 3. Normalized throughput vs. buffer size (in packets) for scenario #1.

The resulting throughputs according to the analysis of
Sec. III, are shown in Figs. 3 and 4.

In Fig. 3, we plot the normalized throughput (a fraction of
the capacity of the bottleneck link) for scenario #1. The solid
line representsTCP New Reno, and the dashed line represents
TCP Westwood+. The topmost dotted curve is the sum of the
normalized throughputs, i.e, the link utilization. In [2] it was
shown that Westwood+ achieves almost full utilization for
arbitrary small buffer sizes, so it is not surprising thatTCP

Westwood+ dominates over New Reno for small buffer sizes.
When the buffer size equals the bandwidth-delay product,
42 packets in scenario #1, both flows get the same throughput.
This is expected from the model, since for this buffer size,
β = 1/2, both flows use the same decrease factor after a loss,
and both elements ofX∗ are equal.

For larger buffer sizes, Westwood+ suffers from its estima-
tion of RTTmin. It uses the smallest observedRTT, 50 ms, even
though in stationarity, the buffer never gets empty, and the
actualRTT stays significantly higher than Westwood’sRTTmin

at all times. This forces Westwood+ to reduce its window size,
after a packet loss, even more than New Reno does.

In Fig. 4, the corresponding curves for all four scenarios
are shown in the same figure. To aid the comparison, the
horizontal axis has been scaled so that for each scenario, 1
corresponds to the bandwidth-delay product. The theoretical
throughput curves for all four scenarios are plotted on top
of each other, the increasing curve represents New Reno, the
decreasing curve represents Westwood+, and the uppermost
curve close to one is the utilization. The curves for the four
scenarios are barely distinguishable. Scenario #3, with the
largest bandwidth-delay product, is shown with solid curves,
and for this we see that the link is slightly under-utilized
for buffer sizes significantly smaller than the bandwidth-delay
product. We can conclude that the single variable defined
by B/(CT) determines the bandwidth sharing betweenTCP

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized buffer size

T
hr

ou
gh

pu
t

Fig. 4. Normalized throughput vs. normalized buffer sizeB/(CT). The
theoretical throughput curves for all four scenarios are plotted together.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size

T
hr

ou
gh

pu
t

Fig. 5. Validation for scenario #1 - Normalized throughput vs. buffer size
(in packets).

Westwood+ andTCP New Reno.

To validate the present model and the assumptions (such as
fluid flow approach and full synchronization), we simulate the
same scenarios usingns2, and compare these results to the
theoretically computed values. We assign random start times
to the two flows, measure the actual throughput for a long
transmission, excluding transients at flow startup, and average
over several realizations. For lack of space we only show the
throughputs for scenario #1 in Fig. 5 with 95% confidence
intervals. The results for the other three scenarios lead tothe
same conclusions. In Figure 5, the vertical axis corresponds
to the normalized throughput and the horizontal axis corre-
sponds to the buffer size in packets. Thens2 simulations
are displayed for New Reno with marks×, Westwood+ with
marks+, and their sum with marks◦. The curves show the
theoretical results.

Thens2 simulation and the analysis give throughput values
that match remarkably well, except for very small buffer sizes
(B < 5). The most likely cause of the mismatch for small
values ofB is the fluid model approach.

Consider the ratio between Westwood+ and New Reno
throughput. As can be seen in the figure, the ratio decreases
as the buffer size is increased and it tends to 1/3 rather than
the 1/

√
2 that one obtains by application of the ”square root

formula” in [12].

For TCP Westwood+ to function properly, it needs to es-

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size

T
hr

ou
gh

pu
t

Fig. 6. This figure shows the result for scenario #1, (c.f., Fig. 5), but with
the start of the Westwood+ flow delayed around 50 s.

timate RTTmin. It shares this requirement with delay based
congestion control methods such asTCP Vegas and FastTCP.
If a Westwood+ flow is started at a time when the bottleneck
link is highly loaded, the buffer may stay close to full for the
whole duration of the flow. Then, in effect, part of the queueing
delay will be erroneously accounted for as propagation delay,
which results in an overestimation of the real bandwidth
delay product and hence in a less dramatic reduction of
the congestion window. In this case, the disadvantage that
Westwood+ has when competing with New Reno over large
buffer, is actually reduced. This is illustrated in Fig. 6, which
shows the result of a simulation of scenario #1 (c.f., Fig. 5),
with the only difference being that the start of the Westwood+
flow is delayed around 50 seconds so that theTCP New Reno
flow gets enough time to fill the buffer. For the larger buffer
sizes, Westwood’sRTTmin estimate has values up to 80ms, to
be compared to the true round trip propagation delay of 50ms.

Furthermore, when the number of flows over the bottleneck
links is increased, it becomes less probable that the router
buffer empties. Thus, also in this case, one can expect the
RTTmin estimate to include some of the queueing delay. And
consequently, the disadvantage of Westwood+ can be expected
to be reduced when more flows are multiplexed.

To improve fairness in the large buffer case, the window
decrease of Westwood+ in response to a packet loss could
be modified, so that the new window is never set to a value
smaller than half of the previous value. In other words, modify
Westwood+ to never decrease its window more than New Reno
would have done. To validate this claim, we modified the
Westwood+ code in ns-2 accordingly and rerun the simulation
for scenario #1. The results are presented in Fig. 7. Clearly,
for buffers larger than the bandwidth delay product when it
is very probable thatTCP Westwood+ divides its window by
more than 2, our modification solves the unfairness problem.
At the same time, the performance of both protocols for buffers
smaller than the bandwidth delay product stays the same.

For successful deployment ofTCP Westwood+ as a gen-
eral purpose congestion control mechanism over the Internet
without significant negative effects on New Reno flows, it
seems prudent not to set the size of buffers in routers to
small values. It is known (see e.g., [3], [7]) that for small

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NewReno
Westwood+
Link utilization

Fig. 7. The performance ofTCP Westwood+ in scenario #1 after our
modification - Normalized throughput vs. normalized buffer size (B/(CT)).

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regular TCP vs TCP WestWood

Regular TCP vs Regular TCP

Regular TCP vs Regular TCP

Regular TCP vs TCP WestWood

Fig. 8. The normalized throughput ofTCP New Reno when competing with
either TCP New Reno orTCP Westwood+ as a function of the normalized
buffer size.

buffers,TCP New Reno under-utilizes the available bandwidth
at the bottleneck link. In contrast,TCP Westwood+ is able
to utilize all available bandwidth even when the buffers are
small. One could ask a question ifTCP Westwood+ takes only
un-used bandwidth when it competes withTCP New Reno,
or it steals this bandwidth fromTCP New Reno. To answer
this question, we consider twoTCP New Reno flows instead
of the mix of TCP Westwood+ andTCP New Reno and we
vary the ratio between the buffer size and the bandwidth
delay product. The results are depicted in Fig. 8. In this
figure, we plot normalized throughput ofTCP New Reno when
the competingTCP connection is eitherTCP New Reno or
TCP Westwood+. The two topmost curves correspond to link
utilization. We can read in this figure that when twoTCP

New Reno flows compete for the available bandwidth and
the bottleneck buffer is small, the link is not fully utilized,
as expected. The figure demonstrates thatTCP New Reno
does suffer from the presence ofTCP Westwood+ flow when
the buffer size is smaller than the bandwidth-delay product.
For buffers larger than the bandwidth delay product, regular
TCP realizes better performances after the introduction ofTCP

Westwood+. Note that our modification toTCP Westwood+
introduced earlier can prohibit regularTCP from stealing
bandwidth fromTCP Westwood+ when buffers are large and
hence, solve the unfairness problem in this region.

V. CONCLUSIONS

In this paper, we studied analytically and by the means
of ns-2 simulations, the inter-protocol fairness betweenTCP

Westwood+ andTCP New Reno. Until the present, the effect
of the introduction ofTCP Westwood+ onTCP New Reno
was not thoroughly investigated. We explained why these
protocols when they compete for available bandwidth get
different shares. Our main conclusion is that the bandwidth
sharing only depends on the ratio between the buffer size
at the bottleneck router and the bandwidth delay product. In
particular, if the ratio is smaller than one,TCP Westwood+
takes more bandwidth. On the contrary, if the ratio is greater
than one, it isTCP New Reno which gets the larger part.

The introduction ofTCP Westwood+ allows to solve the
well known problem of network under-utilization by regular
TCP when buffer sizes in routers are set to small values.
Unfortunately, this gain in the utilization comes at the expense
of regularTCP which loses some of its throughput.

Inspired by our results, we proposed a simple modification
to TCP Westwood+ that solves the unfairness problem for large
buffer sizes. For small buffers, the unfairness problem is still
open.

REFERENCES

[1] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: bandwidth estimation for enhanced transport over wireless
links,” in MobiCom, Rome, Italy, 2001.

[2] S. Mascolo and F. Vacirca, “Congestion control and sizing router buffers
in the internet,” in IEEE Conference on Decision and Control and
European Control Conference. Seville: IEEE CSS, 2005, pp. 6750–
6755.

[3] K. Avrachenkov, U. Ayesta, E. Altman, P. Nain, and C. Barakat, “The
effect of router buffer size on the TCP performance,” inProceedings of
LONIIS workshop, 2002.

[4] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in SIGCOMM. Portland: ACM, September 2004.

[5] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer sizing for congested
internet links,” inProceedings of IEEE INFOCOM, 2005.

[6] S. Gorinsky, A. Kantawala, and J. Turner, “Link buffer sizing: A
new look at the old problem,” inProceedings of IEEE Symposium on
Computers and Communications, June 2005, pp. 507–514.

[7] K. Avrachenkov, U. Ayesta, and A. Piunovskiy, “Optimal choice of the
buffer size in the internet routers,” inIEEE Conference on Decision and
Control and European Control Conference. Seville: IEEE CSS, 2005.

[8] J. P. Hespanha, S. Bohacek, K. Obraczka, and J. Lee, “Hybrid modeling
of TCP congestion control,” inHybrid Systems: Computation and
Control, ser. Lecture Notes in Computer Science, M. Di Benedetto and
A. Sangiovanni-Vincentelli, Eds. Berlin, Germany: Springer-Verlag,
2001, vol. 2034, pp. 291–304.

[9] R. M. Corless, G. H. Gonnet, D. E. H. Hare, D. J. Jeffrey, and D. E.
Knuth, “On the Lambert W function,”Advances in Computational
Mathematics, vol. 5, pp. 329–359, 1996.

[10] F. Baccelli and D. Hong, “AIMD, fairness and fractal scaling of TCP
traffic,” in Proceedings of IEEE INFOCOM, New York, June 2002, pp.
229–238.

[11] A. Leizarowitz, R. Stanojevic, and R. Shorten, “Tools for the analysis
and design of communication networks with markovian dynamics,”to
appear in Proceedings of IEE, Control Theory and Applications, 2005.

[12] L. A. Grieco and S. Mascolo, “Performance evaluation andcomparison
of Westwood+, New Reno and Vegas TCP congestion control,”ACM
Computer Communication Review, vol. 34, no. 2, April 2004.

