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Abstract— In this paper we investigate the effect of introducing coexist and share the same resources. The major goal of the
TCP Westwood+ on regular TcP New Reno. By means of present work is to study the inter-protocol fairness betwee
analytical modeling and ns-2 simulations, we demonstrate that Tcp Westwood+ andcp New Reno. Astcp Westwood+ can
the two protocols get different shares of the available bandwidth . .
in the network. Our main result is that the bandwidth sharing re_duce the congestion window less thexP New Reno, one
between the two protocols depends on one crucial parameter: én Might suspect thatcp Westwood+ takes a larger share of the
ratio between the bottleneck router buffer size and the bandwidh  available resources. On the other hand, it is known ticat
delay product. If the ratio is smaller than one, TCP Westwood+ New Reno under-utilizes the bandwidth in the case of small

takes more bandwidth. On the contrary, if the ratio is greater buffer sizes. So doescP Westwood+ just take this un-used
than one, it isTCP New Reno which gets the larger part. Inspired ) .
part of the bandwidth?

by our results, we propose a simple modification to the window - )
decrease algorithm inTcP Westwood+ that solves the unfaimess 1N [2], the impact of the buffer size on the performance of
problem for large buffer sizes. For small buffers, the unfairness TCcP Westwood+ was studied, and it was shown that unlike

problem is still open. TcP New Reno, Westwood+ can achieve full link utilization
with arbitrarily small link buffers. Thus, one can expecath
the buffer size at the bottleneck will be one of the most
In recent years, several new proposals and implementatiga$ortant parameters in the analysis. Moreover, the prolale
of TCP congestion control algorithms have been developeghe choice of the buffer size for regulace traffic has drawn
motivated by a growing heterogeneity of networks such @ssignificant attention [3]-[7]. Here we show that the router
wireless networks, high speed networks, ad-hoc and senggffer size has a significant influence not only on the efficjen
networks. In all these types of networks, the transmissson df the network but also on the fairness between diffemar®
subject to losses due to unreliable links (transmissiosE®kin  yersions. In particular, we show that in ordezP Westwood+
addition to losses due to congestion (congestion lossé®). o take a fair share of the available bandwidth one needs to

Westwood+TcP version [1] has appeared to be particularlihoose the buffer size of the bottleneck router not smatilen t
useful when transmission losses cannot be neglectee. hgif of the bandwidth-delay product.

Westwood+ is novel with respect tocp Westwood because e provide a model that describes the interactionrof
of a new, simpler and unbiased estimator of the availablgestwood+ with the bottleneck router buffer as well as with
bandwidth. It behaves exactly ascP New Reno version the conventionalrce New Reno. Since queueing delays and
in increasing its window when there are no packet 10SS§scket losses due to congestion are coupled to the queue and
However when a loss occurs, the behavior is different: atte\yindow sizes, it becomes necessary to take queue and buffer
of employing the classiccp by half window decrease, West-sjze into account. The evolution of the window sizes of both
wood+ decreases the window size to a new value that exaq{lyys is modeled as a hybrid system [8], with a continuous
matches the bandwidth available at the time of congestiqAcrease between congestion events, and discontinuous-red
In particular, the window size is set equal to the availablgyns at the congestion event. This model lets us calculate
bandwidth times the smallestrT it has been observed so faranalytically the throughput for the flows for any buffer size
The rationale for this choice is to keep full the “availabiped, The results are also validated using2 simulations.
where the available pipe is the available bandwidth times th Both the analytical model and simulations give the same
minimum round trip time. results: If the buffer size equals the bandwidth-delay pobd
When evaluating proposetcp improvements, one impor- rcp Westwood+ andtcP New Reno will share available
tant issue is that of fairness, and in particular fairness ¥ypacity almost equally. For smaller buffers, Westwoodrswi
a mixed environment where the old and n@wp versions the pattle for capacity, and for larger buffers;p New Reno
The work was supported by the France Telecom R&D Grant “dlisdtion wins. Furthermore, we show that the results are Only seasi
et Gestion du Trafic Bseaux Internet” no. 42937433, to a single parameter: the ratio between the buffer size and

I. INTRODUCTION



Capacity of bottleneck link [bytes/s]

g Buffer size [bytes] complex. We have to_re_fer to the Wes_twood Iitgrature for the
T;  Round trip time of flowi, excluding [s] details [1], but the main idea is to obtain “bandwidth saraple
queueing delay at the bottleneck from the stream ofacks, and form the estimate by low-
m;  Segment size of flow [bytes] filteri f th | The first d . f
4(t) Queue size [bytes] pass filtering of these samples. The first proposed version o
w;(t)  Window size of flowi [bytes] Westwood formed a bandwidth sample for eagtk, while
ri(t) ~ Sending rate of flow [bytes/s] Westwood+ collects a round trip time worth atks before
TABLE | forming a bandwidth sample.
NOTATION Thus, according to the fluid flow approximation of window

based congestion control schemes sucin@sNew Reno and

the bandwidth delay product. Finally, we propose a Simppg:PWestwoodt the sending rate of a flow is one full window
modification toTcp Westwood+ that makescp Westwood+ PErRTT:
efficient even in the case of large buffers. w; (t)

The paper is organized as follows. In the next Section Il ri(t) = T; + q(t)/C" @
we describe the system model and in the ensuing Section llI
we provide its mathematical analysis. Then, in Section IVhe queue size is related to the sending ratesldqy)/dt =
we provide the numerical as well as simulation results and r;(t) — C, or, substituting (1),
discussion. We conclude the paper with Section V. aa(t)

q

[l. SYSTEM MODEL = Z

dt
We use a hybrid fluid flow model for a network with two

competingTCP sourcesTCP New Reno and'cp Westwood+. The above two equations ignore signaling delays, but it
They share a single bottleneck router with a drop-tail busfe jncludes the dependence on the queue size, viaRte
size B and with transmission capacity. The state variables 7, q(t)/C. Since the queue size must be non-negative, (2)

of interest are the queue sizgt) at the bottieneck router js valid only wheng(t) > 0 or the right hand side is positive;
and the congestion window sizes(t),: = 1,2, of eachTcp otherwisedg/dt = 0.

source. We assign indek to the TCP New Reno flow and  The evolution of the window sizes is governed by the

index 2 to the TCP Westwood+ flow. The variablg(t) is  aqgitive increase ofcP's congestion avoidance mode, which

regarded as continuous and (/) as piece-wise continuous,js the same for both New Reno and Westwood-+. The window
and the sending rate of each sources is one full window Qf;reased by one packety; bytes, eactrTT.

data per round trip time, where the round trip time consiéts o

a constant propagation deldy and a queueing delay(t)/C dw; (t) m;

that is determined by the current queue size. The window a T +q(t)/C ©)
size corresponds to the amount of data that a source has

transmitted, but not yet received any acknowledgmeut{ At the congestion event, the flow or flows that lose packets
for. The notations are summarized in Table I. make a discontinuous change in its window size. Fap

For the window dynamics, we focus on the congestiogew Renow, (t* + 0) = w1 (t* — 0)/2. For TCP Westwood+,
avoidance mode afcp. In TCP New Reno, congestion avoid- ), (t* +0) = RTTminé2, Whereé, is the estimate of the flow's

ance is based on Additive increase / Multiplicative deaeashandwidth, andrTT,,;, is the smallest observerirT.

The window is increased by one packet per round trip time For Tcp Westwood+, there are several issues with how this
as long asacks are received. When a packet loss is detecteghgyld be modeled.

the window size is set to one half of the value before the loss.

In TcP Westwood+ [1], the additive increase is the same. *
The difference is that the multiplicative decrease is regda
by a different mechanism based on estimation of the availabl
bandwidth and of the propagation delay. The original metiva
tion was to improvercp performance over wireless links, with
a significant rate of losses that are due to transmissionmserro
rather than congestion. When Westwood+ detects a packet
loss, it sets its window size to the product of the estimated
bandwidth before the loss, and the end-to-end propagation
delay. The idea is that this window size is sufficiently small
to allow queues on the path to drain, but not smaller.

The propagation delay estimate is simple: it is just the
minimum observed round trip time. As long as at least orWith RTT,;, = T and é; = we(t* — 0)/(T + B/C), it
packet has been sent when the queue is close to emfjlows that wo(t* + 0) = PBwe(t* — 0), with the constant
this estimate is accurate. The bandwidth estimation is mase= CT/(CT + B).

w; (t)

T, +q(t)/C @

i

RTTmin: This is intended to be the round trip delay,
excluding queueing delay. So it makes sense to put
RTTmin = 7. But on the other hand, if the Westwood+
flow is started when the bottleneck is already loaded,
Westwood cannot obser#é and it may be more accurate
to SetRTTyin = T + ming(t)/C.

¢o: The bandwidth is “sampled” once per round trip time,
and then these samples are low-pass filtered to form a
smoother estimate. The simplest model is to put=
ro(t*—0) = wa(t*—0)/(T+B/C). This is an assumption

of optimistic estimation, and it neglects the delay and the
bias which are present in the real filter.



I1l. ANALYSIS solve (4), which gives,

To analyze the system evolution, we use separate models w;(s) = wd + sm; (6)
for the evolution between congestion events, and for t
congestion events. Aongestion event is a short period of
time when the router queue is full, and one or more packets " s . 0 s
are dropped. Finally, we put these two models together to find?i = / r(t)dt = /O w(s)ds = s (wz + 2) ()

the stationary behavior, and the corresponding throughput __ . : .
y P g gnp This says simply that the amount of data is the number of

round trips, s*, times the average window size. Here, the
_ _ ~ “average” is not a proper time average, but an average with
~ Assume that a congestion event ends at time0. At this  regpect to the virtual time. We will compute the throughput
time ¢(0) = B, i.e., the buffer is full, and the window sizeSys P, /t*. The calculation ofs* andt* depends on the buffer

r1’?1en the volume of data transmitted up to tirteis

A. System evolution between congestion events

are given by the initial conditions; (0) = w?. -
After a congestion event, the evolution of the rates and the|, generalt* can computed given(s) ands*, by integrat-
queue can be divided into three phases. ing

o Phase 1: During the first phase, the total ratet -, is -~ S Lo
smaller thanC, and increasing. In this phase, the queue * = / dt :/ —ds=Ts* + — q(s)ds  (8)
is shrinking, and it may even become empty. 0 o ds CJo

« Phase 2: During the second phase (which is present ofllge calculations in absolute time, are simplified by the
for small buffer sizes), the queue is empty, and sendimgmarkable fact that (3) and (2) can be solvedddn terms
rates are increasing. During the second phase, the linkofsw. Substitution of (3) into (2) gives

under-utilized, anq the phas_e ends when the total sending dq(t) w;i(t) dw;(t)
rate reaches the link capacity, + ro = C. T —-C+ Z e dt
o Phase 3: During the third phase, thek-clock mech- i ! 9)
anism forces the total sending rate to stay essentially d 1 )
constant, barely larger thati, and the growing windows ~at —Ct+ Z om; (wi(t))
result in a growing queue, not increasing sending rates. . t
The third phase is terminated by the next congestiditegrating, we get
event, which happens when the queue size reaches the 1 w;(t2))% — (wi(t1))?
buffer size,q(t) = B. q(t2) —q(t) = =Clt2 —t1) + 5 > (wi(t2) m,( (
The objective of the analysis in this section is to find the ’ (10)

smallest™ > 0 such thay(t*) = B, and to express” and the For any time interval, during which the queue stays non-gmpt

corresponding window sizes;(t*) as functions of the initial this allows us to compute the length of the interval giveryonl
window sizesw{. These functions are needed in Sec. Ill-Bhe initial and final state,

when deriving the evolution over a large number of congastio ) )
events. _ 1 1 (wilt2))® — (wi(th))
. o ty—t1 == < qlt) —qlta) + 5
When investigating fairness between two flows, usihg# C 2 ; m;
T, would introduce a prejudice, favoring one of the flows (11)

against the other. To give the two flow equal opportunities, w 1) Full utilization: The link will be fully utilized if and only
assumel; = T, = T. This assumption lets us to introducdf ¢(t) > 0 for all time (except possible for an isolated instant).
a virtual time, which can be thought of as measuring timi@ other words, the second phase is empty. This sectionegeriv
in number of round trips. This tool makes it possible to fingonditions on the initial conditions for this to happen.

explicit solutions to the differential equations. Introduce the notatioV = w{ + w) and M = m; + ma.
Virtual time s is defined bydt = (T + q(t)/C)ds. This Substitutingw;(s) = w{ + sm; into (5) gives
change of variables transforms Equations (2) and (3) into dq(s)
dws(s) P —CT —q(s) + W +sM (12)
ds ) which together with the initial conditio(0) = B can be
dg(s) solved explicitly,

s —q(s) _CT+Zwi(5) ) B B B
i g(s)=Be*+(W-CT)1—e*)+(e*=1+s)M (13)

The second equation is still valid only wheiis) > 0 or the This equation is valid only as long ag > 0, since the

right hand side is positive. differential equation doesn’'t model queue underflow. Lagki
Let s* denote the virtual time correspondingg i.e., the more closely at this equation, it can be divided into a tramisi

next congestion event. Givest, the amount of data that isrelated to the initial bufferB and a new “equilibrium size”

transmitted up to timeé* can be computed as follows. FirstiV — C'T, and a linear growth with rat@/. Asymptotically,



The throughput can be computed from (7),

r ] D; 0 is*/2
‘ Di_ g witms/ (19)

t* W + Ms*/2
° | As expected, with full utilization, the total throughpf); +
Al ] Dy)/t*, equalsC.

3) Small buffers: When computing the throughput for a

o} ] small buffer, we must handle the three phases separatetg si
neither the differential equation fay, nor the time interval

-af ] equation (11), is valid during the second phase, when the
queue is empty and the link is under-utilized.

B R 5 S VR v—— f Proposition 3: When the full-utilization condition of

Prop. 1 isnot satisfied, the values of* and t* are given
Fig. 1. The two real branches of Lamber?® function. Wy (solid) is by
defined for allz > —1/e, while W_; (dotted) is defined on the interval

—1l/e<z<0. s* =§—|—1+W0{—67178/1w} (20)
for large s, we haveq(s) ~ W + (s — 1)M — CT, i.e., the . Wsy+CT(s3— s1) + M(s2 + s2)/2
gueue is the difference between the total window sizerore = C (21)

earlier, and the bandwidth-delay product'.

i L L : L wheres; ands, are defined by
Proposition 1: The link is fully utilized if and only if either

of these two inequalities is satisfied: s1 =1+ CTT_W + W, (f(l + g)eflf(CTfW)/M)
W >CT (14) 53 =1+ % A (_e—l—B/M>
B CT-WwW CT-WwW
—>exp|l—— )| -1 — —— (15)
M M M Proof: Denote the duration of the three phases, in

Proof: First observe that itV > CT', theng(s) > 0 for absolute time and virtual time, by, fs, fs, 1, 52, and ss.
all s (note thate™® — 1 + s > 0). So assume thdl” < CT. We handle one phase at a time.
Then the functiony(s), defined by (13), is initially decreasing, " thg first phase: We find, by putting g(s1) — 0 in (13)
and has a single minimum &§ = log(1-+(CT+B-W)/M). a4 solving fors,. Thent, is found by substituting initial and
We have full utilization if and only this minimum valugso)  final state in (11). This procedure gives:
is non-negative. By substituting, into (13), we see that CT — W
q(so) > 0 is equivalent (15), which concludes the proofm s1=1+ =+ Wy (—(1 + é)e‘l‘(CT‘W)/M)

2) Large buffer: If the buffer is “large”, i.e., the condition B+ Wsi + Ms2/2

in Prop. 1 is satisfied, then the queue never underflows, andt; = 10 L
we can finds* by puttingq(s) = B in (13). The solution can )
be expressed in terms of La>mbert’s function [9], defined as th 1€ Second phase: Throughout this phage) = 0. The
inverse ofz — ze*. We use the two real branches, denote@hase starts withy w;(t) < CT, and ends whep_ w;(t) =

W, andW_,, and illustrated in Fig. 1. (,r“]T. Initially, the total window size i$V + s; M, so it follows
Proposition 22 When the full-utilization condition of that OT — W
Prop. 1 is satisfied, the values gf and¢* are given by Sy = T_ — 5
s =5+1+W, (—(1 + g)e—<1+§>) (16) ty = T'sy
5" Ms* The third phase: This is similar to the first phase, but with
t* = Yol (W + 3 ) (17)  different start and stop conditions. Initially, w;(s; 4 s2) =
CT and q(s1 + s2) = 0. With these initial condition, the
wheres is defined by differential equations (4) and (5) have the solution
§=(CT+B-W)/M (18) q(s) = (e*(Hl*S?) + (5 =81 —82) — 1) M (22)
~ Proof: Putg(s) = B in (13). After some simplifications, The phase ends wherts) = B. The solution of this equation,
this equality implies which is found using the same method as for the first phase,

gives the value ofj3. t3 is found by substituting initial and
final state in (11). The result is

This equation has two solutions, the trivial one= 0, and a 50— 14 B LW (—e‘l‘B/M)
second solution which can be expressed usingithéunction, s M 0

resulting in (16). ; —~B+ CTs3 + Ms%/2

3 =

With this value fors*, (17) follows from (11). ] C

1+5=(1+35e " +s




Finally, addition of the values for each phase= s;+s2+s3 then (25) clearly describes a Markov chain.

andt* =ty + to + t3, results in (20) and (21). [ ] To gain insight into the problem, and to be able to solve it
4) Throughput: Propositions 1-3 let as compute ands* analytically, we have to make a few simplifying assumptions

as functions of the initial window sizes. With these valuég, and approximations. Our first assumption is that flows afg ful

data volumeD; follows from (7), and the throughpu®, /t* for ~ synchronized, i.e., that at every congestion event, bothisflo

each flow can be computed. For reference in the next sectitose packets. This means that= 0 for all £, and it actually

we define the functions(W) and s*(1W) as follows: makes the process fully deterministic.
~ CT+B-W The second simplification is dropping the non-linear terms
SW) = ——— (23)  of the functions*(wy,ws). In both expressions fos*, (16)

and (20) are of the forms* = 5+ 1 + Wy(---), where the

_ 3= (143) ilizati
Wo (—(1 +3)e ) full utilization final term is non-linear, and bounded between -1 and 0. So by
—e

s*(W)zé—i—l-i-{

Wy (—e~1=B/M) otherwise replacings* by 5+ 1/2, the error inG(X*) is at most half a
(24)  packet.
B. System evolution at congestion events To give both flows equal opportunities, we also puf =

The previous section analyzed the queue evolution betwe&d —. """ The result 'f the following approximation of the
volution of the stateX™.

congestion events. To find the average throughput over aarong

. : : ) 1
time, we need to know the stationary behawqr that re§Mfr Xk — p, (Xk +(BXE, XY £ 1/2)m ( ))
a large number of congestion events. We first consider what 1

happens at the single congestion event at timet*. 1/4 -—1/4 k 1/4
As shown at the end of Section II, at the congestion event = <_g//2 5/2 > X*+(CT + B +m) (ﬁ§2)
if TcP New Reno loses a packet; (t* +0) = 0.5w; (t* —0), (29)
and if Tcp Westwood+ source loses a packeti(t* + 0) = Since < 1, the matrix has all eigenvalues within the unit
Sws(t* — 0), with the constantt = CT/(CT + B). circle. Then, for any initial values, th&* sequence converges
Then, an important issue ishich flow loses packets at ato
congestion event. It could be one of the flows, or both. In 14 —1/4 -1 1/4
the TcP fairness literature, it is common to use stochastic X* = (I - <—ﬁ/2 3/2 )) (CT+B+1) (6/2)
modeling for this (see e.g., [10], [11]).
Under the fairly general assumption that the probabilities — CT+B+m (1 - 5)
the different possible outcomes at a congestion event dispen 3-25 g (30)

the congeston, thé evolion oan be described 2 & Mark 0 he throughput or both flows in the stationary regime,
chain. LetX* denote the vector of the two window sizes jus?fve plug in the window sizes™ as the initial window sizes
after a congestion event. If the first flow usesP New Reno in the procedure of Sec. lll-A.4.

and the second usescP Westwood+, the evolution can beC. Limits

described as Let us study the fairness in the limiting cases when buffers

k+1 __ k
X =Dy, G(XT) (25) are very small or very large. Of particular interest is the
In this equation throughput ratio
Do 2wg + ms*

6(5) = (1) +swrun () o T T oy

wo w2
. . Proposition 4: In the limit asB — oo, Westwood+ gets one
represents the window growth between congestion everds, an . )
the functions* () is defined by (24). The actual packet IOSquarter of the capacity, while New Reno gets three quarters.

is represented by the random varialle with three possible Tn the limit as B — 0, Westwood+ gets all the capacity, and

values 0, 1, and 2. The window reduction is represented BIfWPF:c?;f gFe;f t%e large buffer case, note that’ + B —

the constant diagonal matrices, CT/B3. We parameterize the expressions in termsipfnd

_(1/2 0 (120 _ (10 let 3 — 0. We have from (30) that
o= (07 5) 2= (0 0) 2= 5) @ 0
wi _ * 1 CT/ﬁ'f'O(l) 32

Of the three outcomeq), represents a loss event where each wy ) “ 3\ CT+0(B) (32)
flow loses a packetD; represents an event where only the i
first flow loses a packet, an®, represents an event where@"d W = CT/(30) + O(1). It is clear that we have full
only the second flow loses a packet. utilization, and we get

If we make the further assumption that the probability that

20T
(, = j depends only on the staf€”, i.e.,

~3MB
P(ly = jI1X* 1, bk s, .) = pj(XF) (28) Finally, D2/Dy = (14 0(8))/(3+ O(8)) — 1/3.

*

S

+0(1) (33)



100 Mbit/s Scenario #| C [Mbit's] T [ms] CT [packets]
s, 0 1 50 72
- 1 10 50 42
10 Mbit/s 10 ms 2 1 200 16.7
D _ 3 10 200 167
100 Mbit/s TABLE Il
52 NETWORK PARAMETERS FOR FOUR DIFFERENT SCENARIOS
10 ms

Fig. 2. Experimental setup. Parameter values corresponcettaso #1.

For the small buffer case, first note that (30) implies that
W —-CT — m > 0asB — 0, so by Prop. 1, we have full
utilization for all sufficiently smallB. Taking limits in Prop 2,
we find thats* — 0 as B — 0. Furthermore, Eq. (30) also
implies thatw{ — 0 andw) — CT 4+ m as B — 0 and
3 — 1. It follows that Dy /D; — oo as B — 0. [ |

This result is different from what one could obtain by using
the throughput formulas forcp New Reno and Westwood+

in [12]: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100

1 /21— [ 1—
TReno RTT M, \Westwood _ T RfT' (34) Fig. 3. Normalized throughput vs. buffer size (in packets)dcenario #1.
p plg

In these equationdf, is the average queueing time ardr — The resulting throughputs according to the analysis of

. o . ec. lll, are shown in Figs. 3 and 4.
z;ggq is the average round-trip time. Let's form the throughpu% In Fig. 3, we plot the normalized throughput (a fraction of

Westwood | T t_he capacity of the bottleneck link) for scenario_ #1. Thedsol
—JReno” = 75 [1+ 7 (35) line representscp New Reno, and the dashe_d line represents
q TCcP Westwood+. The topmost dotted curve is the sum of the
We see that this ratio predicts fairmess when= T, i.e., normalized throughputs, i.e, the link utilization. In [2]was
when theaverage queuing delay equals the propagation delaghown that Westwood+ achieves almost full utilization for
This is slightly different from our model, which predictsarbitrary small buffer sizes, so it is not surprising thatp
fairness when thenaximum queuing delay,B/C, equals the Westwood+ dominates over New Reno for small buffer sizes.
propagation delay. When the buffer size equals the bandwidth-delay product,
In the small buffer limit,7,, — 0, the ratio tends to infinity. 42 packets in scenario #1, both flows get the same throughput.
So here we have perfect agreement. In the large buffer limlthis is expected from the model, since for this buffer size,
T, — oo, the ratio tends td //2, significantly higher than 8 =1/2, both flows use the same decrease factor after a loss,
the prediction1/3 from our analysis. The simulation resultsand both elements ok™ are equal.
presented in the next section will support our analysis in For larger buffer sizes, Westwood+ suffers from its estima-
predicting the trend of the throughput ratio for |arge brdfe tion of RTTin. It USES the smallest ObserVRdT, 50 ms, even
Our explanation for this discrepancy is in the random lodgough in stationarity, the buffer never gets empty, and the

assumption made by the square root formula, which does @6tualRTT stays significantly higher than Westwoo®S T i,
hold in our setting. at all times. This forces Westwood+ to reduce its window,size

after a packet loss, even more than New Reno does.

In Fig. 4, the corresponding curves for all four scenarios

We use the network topology illustrated in Fig. 2. Therare shown in the same figure. To aid the comparison, the
are two source nodes); (New Reno) andS, (Westwood+), horizontal axis has been scaled so that for each scenario, 1
sending data to a single destination nodg, There is one corresponds to the bandwidth-delay product. The thealetic
intermediate routerz, and the link between the router and théhroughput curves for all four scenarios are plotted on top
destination is the network’s bottleneck. For the bottlérletk, of each other, the increasing curve represents New Reno, the
we use two values for the capacity, 1 Mbit/s and 10 Mbit/s, decreasing curve represents Westwood+, and the uppermost
and two different values of the propagation delay, corradpo curve close to one is the utilization. The curves for the four
ing to round trip propagation delay’ of 50 and 200 ms. scenarios are barely distinguishable. Scenario #3, with th
Table 1l shows the parameter values for the four scenaridargest bandwidth-delay product, is shown with solid csrve
and the corresponding bandwidth-delay product. Both ssur@and for this we see that the link is slightly under-utilized
use a packet size of 1500 bytes. For all scenarios, we vary tbebuffer sizes significantly smaller than the bandwidiiay
buffer size of the router between 2 packets and roughly twipeoduct. We can conclude that the single variable defined
the bandwidth-delay produc2C'T. by B/(CT) determines the bandwidth sharing betwewsp

IV. RESULTS AND DISCUSSION
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Fig. 4. Normalized throughput vs. normalized buffer si2¢(CT). The Fig. 6. This figure shows the result for scenario #1, (c.fg. B), but with

theoretical throughput curves for all four scenarios adgtet together. the start of the Westwood+ flow delayed around 50 s.
R A AT R R timate RTTy,;,. It shares this requirement with delay based
1 congestion control methods such B3P Vegas and FastcCP.
osl 1 If a Westwood+ flow is started at a time when the bottleneck

link is highly loaded, the buffer may stay close to full foreth
whole duration of the flow. Then, in effect, part of the quewgei
delay will be erroneously accounted for as propagationytela
which results in an overestimation of the real bandwidth
delay product and hence in a less dramatic reduction of
the congestion window. In this case, the disadvantage that
Westwood+ has when competing with New Reno over large
S buffer, is actually reduced. This is illustrated in Fig. éhiah
ST T et shows the result of a simulation of scenario #1 (c.f., Fig. 5)
with the only difference being that the start of the Westwood
flow is delayed around 50 seconds so thattbe New Reno
flow gets enough time to fill the buffer. For the larger buffer
Westwood+ andrcp New Reno. sizes, Westwood'®TT,,;,, estimate has values up to 80ms, to
To validate the present model and the assumptions (suchbascompared to the true round trip propagation delay of 50ms.
fluid flow approach and full synchronization), we simulate th  Furthermore, when the number of flows over the bottleneck
same scenarios usings2, and compare these results to th@inks is increased, it becomes less probable that the router
theoretically computed values. We assign random startstimguffer empties. Thus, also in this case, one can expect the
to the two flows, measure the actual throughput for a longrr,;, estimate to include some of the queueing delay. And
transmission, excluding transients at flow startup, anda@ee consequently, the disadvantage of Westwood+ can be exbecte
over several realizations. For lack of space we only show thg be reduced when more flows are multiplexed.
throughputs for scenario #1 in Fig. 5 with 95% confidence improve fairmess in the large buffer case, the window
intervals. The results for the other three scenarios leatigo decrease of Westwood+ in response to a packet loss could
same conclusions. In Figure 5, the vertical axis correspongly mqgified, so that the new window is never set to a value
to the normalized throughput and the horizontal axis corrgpajier than half of the previous value. In other words, yodi
Spo”‘?'s to the buffer size in packets. The2 S|mulat|o_ns Westwood+ to never decrease its window more than New Reno
are displayed for New Reno with marks Westwood+ with 5,14 have done. To validate this claim, we modified the
marks -+, and their sum with marks. The curves show the \yesnyood+ code in ns-2 accordingly and rerun the simulation
theoretical results. for scenario #1. The results are presented in Fig. 7. Clearly
Thens2 simulation and the analysis give throughput valug®r buffers larger than the bandwidth delay product when it
that match remarkably well, except for very small bufferesiz is very probab|e thatcp Westwood+ divides its window by
(B < 5). The most likely cause of the mismatch for smalinore than 2, our modification solves the unfairness problem.
values ofB is the fluid model approach. At the same time, the performance of both protocols for bsffe
Consider the ratio between Westwood+ and New Remsmaller than the bandwidth delay product stays the same.
throughput. As can be seen in the figure, the ratio decreasegor successful deployment afcP Westwood+ as a gen-
as the buffer size is increased and it tends to 1/3 rather ﬂ'%| purpose Congestion control mechanism over the Interne
the 1/v/2 that one obtains by application of the "square rogkithout significant negative effects on New Reno flows, it
formula” in [12]. seems prudent not to set the size of buffers in routers to
For Tcp Westwood+ to function properly, it needs to essmall values. It is known (see e.g., [3], [7]) that for small

Throughput

Fig. 5. Validation for scenario #1 - Normalized throughput beffer size
(in packets).
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Fig. 8. The normalized throughput o£P New Reno when competing with
either Tcp New Reno ortcp Westwood+ as a function of the normalized

buffer size.

buffers,TcP New Reno under-utilizes the available bandwidt
at the bottleneck link. In contrast,cp Westwood+ is able

to utilize all available bandwidth even when the buffers aré’

small. One could ask a questiontiEp Westwood+ takes only
un-used bandwidth when it competes witkP New Reno,

or it steals this bandwidth fromcp New Reno. To answer
this question, we consider twocP New Reno flows instead
of the mix of Tcp Westwood+ andrcp New Reno and we

vary the ratio between the buffer size and the bandwidth

delay product. The results are depicted in Fig. 8. In th
figure, we plot normalized throughput o€pP New Reno when
the competingTCcP connection is eithemrcP New Reno or

TCcP Westwood+. The two topmost curves correspond to link

utilization. We can read in this figure that when twapP

New Reno flows compete for the available bandwidth and

the bottleneck buffer is small, the link is not fully utilide
as expected. The figure demonstrates thab New Reno
does suffer from the presence ofr Westwood+ flow when

the buffer size is smaller than the bandwidth-delay praduct

For buffers larger than the bandwidth delay product, regul
TcPrealizes better performances after the introductioma#$
Westwood+. Note that our modification tocp Westwood+
introduced earlier can prohibit regularcp from stealing

V. CONCLUSIONS

In this paper, we studied analytically and by the means
of ns-2 simulations, the inter-protocol fairness betweemw
Westwood+ andrcp New Reno. Until the present, the effect
of the introduction ofTcP Westwood+ onTcP New Reno
was not thoroughly investigated. We explained why these
protocols when they compete for available bandwidth get
different shares. Our main conclusion is that the bandwidth
sharing only depends on the ratio between the buffer size
at the bottleneck router and the bandwidth delay product. In
particular, if the ratio is smaller than ongcp Westwood+
takes more bandwidth. On the contrary, if the ratio is greate
than one, it isTcP New Reno which gets the larger part.

The introduction ofTcp Westwood+ allows to solve the
well known problem of network under-utilization by regular
TCcP when buffer sizes in routers are set to small values.
Unfortunately, this gain in the utilization comes at the exge
of regularTcp which loses some of its throughput.

Inspired by our results, we proposed a simple modification
to TcP Westwood+ that solves the unfairness problem for large
buffer sizes. For small buffers, the unfairness problentiis s
open.
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bandwidth fromTcp Westwood+ when buffers are large and

hence, solve the unfairness problem in this region.



