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Abstract

We consider a non-cooperative constrained stochastic games with N players with the following special struc-

ture. With each player i there is an associated controlled Markov chain MDPi. The transition probabilities of

the ith Markov chain depend only on the state and actions of controller i. The information structure that we

consider is such that each player knows the state of its own MDP and its own actions. It does not know the

states of, and the actions taken by other players. Finally, each player wishes to minimize a time-average cost

function, and has constraints over other time-average cost functions. Both the cost that is minimized as well

as those defining the constraints depend on the state and actions of all players. We study in this paper the

existence of a Nash equilibrium. Examples in power control in wireless communications are given.

1 Introduction

Non-cooperative games deal with a situation of several decision makers (often called agents, users or players) where
the cost of each one of the players may be a function of not only its own decision but also of decisions of other
players. The choice of a decision by any player is done so as to minimize its own individual cost.

Non-cooperative games also allow to model sequential decision making by non-cooperating players. They allow
to model situations in which the parameters defining the games vary in time. The game is then said to be a dynamic
game and the parameters that may vary in time are the states of the game. At any given time (assumed to be
discrete) each player takes a decision (also called an action) according to some strategy. The vector of actions
chosen by players at a given time (called a multi-action may determine not only the cost for each player at that
time; it can also determine the state evolution. Each player is interested in minimizing some functions of all the
costs at different time instants. In particular, we shall consider here the expected time-average costs for the players.

We consider in this paper the class of stochastic decentralized games which we call “cost coupled constrained
stochastic games” and are characterized by the following:

1. We associate to each player a Markov chain, whose transition probabilities depend only on the action of that
player,

2. We assume that at any time, each player has information only on the current and past states of his own
Markov chain as well as of his previous actions. It does not know the state and actions of other players.
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3. Each player has constraints on its strategies (to be defined later). We consider the general situation in which
the constraints for a player depend on the strategies used by other players.

4. There are cost functions (one per player) that depend on the states and actions of all players, and each player
wishes to minimize its own cost.

We see that players “interact” only through the last two points above.
It is well known that identifying equilibrium policies (even in absence of constraints) is hard. Unlike the situation

in Markov Decision Processes (MDPs) in which stationary optimal strategies are known to exist (under suitable
conditions), and unlike the situation in constrained MDPs (CMDPs) with a multichain structure, in which optimal
Markov policies exist [15, 20], we know that equilibrium strategies in stochastic games need in general to depend
on the whole history (see e.g. [21] for the special case of zero-sum games). This difficulty has motivated researchers
to search for various possible structures of stochastic games in which saddle point policies exist among stationary
or Markov strategies and are easier to compute [13]. In line with this approach, we shall identify conditions under
which constrained equilibria exist for cost-coupled constrained stochastic games.

Related work. Several papers have already dealt with constrained stochastic games. In [7], the authors have
established the existence of a constrained equilibrium in a context of centralized stochastic games, in which all
players jointly control a single Markov chain and in which all players have full information on its state. Moreover,
when taking decision at time t, each player has information on all actions previously taken by all players.

The special cost-coupled structure (see Definition 2.1) has been investigated in [14, 2] in zero-sum games where
there is a single cost which one of the players wishes to minimize and which a second player wishes to maximize. A
highly non-stationary saddle-point was obtained in [24] for a zero-sum constrained stochastic games with expected
average costs.

Although the question of existence of an equilibrium in cost-coupled stochastic games has not been considered
before, some specific applications of such games have been formulated. Indeed, these games have been used ex-
tensively by Huang, Malhamé and Caines in a series of publications [18, 19]. Although they have not established
the existence of a Nash equilibrium, they have been able to obtain an ε-Nash equilibrium for the case of a large
population of players. Models concerning uplink power control, similar to the one studied in [18], have been inves-
tigated in [3], in which the structure of constrained equilibrium is established. We note however that in the models
considered in [3], the local Markovian states of each user are not controlled; the decisions of each user have an
impact only the costs and not the transition probabilities.

2 The model and main result

We consider a game with N players, labeled 1, . . . , N . Define for each player i the tuple {Xi,Ai,Pi, ci, Vi, βi} where

• Xi is a finite local state space of the ith player. Generic notation for states will be x, y or xi, yi. We let

X :=
∏N

j=1 Xj be the global state space, and we define X−i :=
∏

j 6=i Xi be the global to be the set of all

possible states of players other than i.

• Ai is a finite set of actions. We denote by Ai(xi) the set of actions available for player i at state x. A generic
notation for a vector of actions will be a = (a1, ..., aN ) where ai stands for the action chosen by player i.

• Define the local set of state-action pairs for player i as set Ki = {(xi, ai) : xi ∈ Xi, ai ∈ Ai(x)}. Denote the

set of all global state-action pairs by K =
∏N

i=j Kj , and let K−i =
∏N

j 6=Kj denote the set of state-action pairs

of all players other than i.

• Pi are the transition probabilities for player i; thus Pi
xiaiyi

is the probability that the state of player i moves
from xi to yi if she chooses action ai.

• c = {cj
i}, i = 1, ..., N , j = 0, 1, ..., Bi is a set of immediate costs, where cj

i : K → IR. Thus player i has a set of
Bi + 1 immediate costs; c0

i will correspond to the cost function that is to be minimized by that player, and

cj
i , j > 0 will correspond to cost functions on which some constraints are imposed.
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• V = {V j
i }, i = 1, ..., N , j = 1, ..., Bi are bounds defining the constraints (see (2) below).

• βi is a probability distribution for the initial state of the Markov chain of player i. The initial states of the
players are assumed to be independent.

Histories, Information and policies. Let M1(G) denote the set of probability measures over a set G. Define
a history of player i at time (or of length) t to be a sequence of her previous states and actions, as well as her current

local state: ht
i = (x1

i , a
1
i , ..., x

t−1
i , at−1

i , xt
i) where (xs

i , a
s
i ) ∈ Ki for all s = 1, ..., t. Let Ht

i be the set of all possible
histories of length t for player i. A policy (also called a strategy) ui for player i is a sequence ui = (u1

i , u
2
i , ...) where

ut
i : Ht

i → M1(Ai) is a function that assigns to any history of length t a probability measure over the set of actions
of player i.

At time t, each player i chooses an action ai, independently of the choice of actions of other players, with
probability ut

i(ai|ht
i) if the history ht

i was observed by player i. Denote a = (a1, ..., aN ).

The class of all policies defined as above for player i is denoted by U i. The collection U =
∏N

i=1 U i is called the
class of multi-policies (

∏
stands for the product space).

Stationary policies. A stationary policy for player i is a function ui : Xi → M1(Ai) so that ui(·|xi) ∈
M1(Ai(xi)). We denote the class of stationary policies of player i by US

i . The set US =
∏N

i=1 US
i is called the class

of stationary multi-policies. Under any stationary multi-policy u (where the ui are stationary for all the players),
at time t, the controllers, independently of each other, choose actions a = (a1, ..., aN ), where action ai is chosen by
player i with probability ui(ai|xt

i) if state xt
i was observed by player i at time t.

For u ∈ U we use the standard notation u−i to denote the vector of policies uk, k 6= i; moreover, for vi ∈ Ui,
we define [u−i|vi] to be the multi-policy where, for k 6= i, player k uses uk, while player i uses vi. Define U−i :=
∪u∈U{u−i}.

A distribution β for the initial state (at time 1) and a multi-policy u together define a probability measure
Pu

β which determines the distribution of the vector stochastic process {Xt, At} of states and actions, where

Xt = {Xt
i}i=1,...,N and At = {At

i}i=1,...,N . The expectation that corresponds to an initial distribution β and a
policy u is denoted by Eu

β .

Costs and constraints. For any multi-policy u and β, define the i, j-expected average cost is defined as

Ci,j(β, u) = lim
T→∞

1
T

T∑
t=1

Eu
βcj

i (X
t, At). (1)

A multi-policy u is called i-feasible if it satisfies:

Ci,j(β, u) ≤ V j
i , for all j = 1, ..., Bi. (2)

It is called feasible if it is i-feasible for all the players i = 1, ..., N . Let UV be the set of feasible policies.

Definition 2.1 (i) A multi-policy u ∈ Uv is called constrained Nash equilibrium if for each player i = 1, ..., N and
for any vi such that [u−i|vi] is i-feasible,

Ci,0(β, u) ≤ Ci,0(β, [u−i|vi]). (3)

Thus, any deviation of any player i will either violate the constraints of the ith player, or if it does not, it will result
in a cost Ci,0 for that player that is not lower than the one achieved by the feasible multi-policy u.
(ii) For any multi-policy u, ui is called an optimal response for player i against u−i if u is i-feasible, and if for any
vi such that [u−i|vi] is i-feasible, (3) holds.
(iii) A multi-policy v is called an optimal response against u if for every i = 1, ..., N , vi is an optimal response for
player i against u−i.
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Assumptions. We introduce the following assumptions

• (Π1) Ergodicity: For each player i and for any stationary policy ui of that player, the state process of that

player is an irreducible Markov chain with one ergodic class (and possibly some transient states).

• (Π2) Strong Slater condition: There exists some real number η > 0 such that the following holds. Every player

i has some policy vi such that for any multi-strategy u−i of the other players,

Ci,j(β, ([u−i|vi]) ≤ V j
i − η, for all j = 1, ..., Bi. (4)

• (Π3) Information: The players do not observe their costs. Hence the strategy chosen by any player does not

depend on the realization of the cost.

The last assumption is frequently encountered in game theory and in applications, see e.g. [9, 23, 25]. The
assumption is in fact directly implied by the definition of policies. If it were allowed to have policies depend on the
realization of the cost, then a player could use the costs to estimate the state and actions of the other player.

We are now ready to introduce the main result.

Theorem 2.1 Assume that Π1 and Π2 hold. Then there exists a stationary multi-policy u which is constrained-
Nash equilibrium.

Remark 2.1 If assumption Π2 does not hold, the upper semi-continuity which is needed for proving the existence
of an equilibrium (see Proposition 3.1) need not hold. This is true even for the case of a single player, see [4].

3 Proof of main result

We begin by describing the way an optimal stationary response for player i is computed for a given stationary
multi-policy u. Fix a stationary policy ui for player i. With some abuse of notation, we denote for any xi ∈ Xi

and any yi ∈ Xi,

Pi
xiuiyi

=
∑

ai∈Ai(xi)

ui(ai|xi)Pi
xiaiyi

.

Denote the immediate costs induced by players other than i, when player i uses action ai and the other players
use a stationary multi-policy u−i, by

cj,u
i (xi, ai) :=

∑

(x,a)−i∈K−i


∏

l 6=i

ul(al|xl)πu
l (xl)


 cj

i (x,a) a = [a−i|ai], x = [x−i|xi],

where πu
l is the steady state (invariant) probability of the Markov chain describing the state process of player l,

when the policy u is used.
Next we present a Linear Program (LP) for computing the set of all optimal responses for player i against a

stationary policy u−i.

LP(i, u) :
Find z∗i,u := {z∗i,u(y, a)}y,a, where (y, a) ∈ Ki, that minimizes

Ci,0
u (zi) :=

∑

(y,a)∈Ki

c0,u
i (y, a)zi,u(y, a) subject to: (5)

∑

(y,a)∈Ki

zi,u(y, a)
[
δr(y)− Pi

yar

]
= 0, ∀r ∈ Xi, (6)

Ci,j
u (zi,u) :=

∑

(y,a)∈Ki

cj,u
i (y, a)zi,u(y, a) ≤ V j

i 1 ≤ j ≤ Bi (7)
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zi,u(y, a) ≥ 0, ∀(y, a) ∈ Ki

∑

(y,a)∈Ki

zi,u(y, a) = 1 (8)

Define Γ(i, u) to be the set of optimal solutions of LP(i, u).
Given a set of nonnegative real numbers zi = {zi(y, a), (y, a) ∈ Ki(y)}, define the point to set mapping γ(i, zi)

as follows: If
∑

a zi(y, a) 6= 0 then γa
y (i, zi) := {zi(y, a)[

∑
a zi(y, a)]−1} is a singleton: for each y, we have that

γy(zi) = {γa
y (zi) : a ∈ Ai(y)} is a point in M1(Ai(y)). Otherwise, γy(i, z) := M1(Ai(y)), i.e. the (convex and

compact) set of all probability measures over Ai(y).
Define gi(zi) to be the set of stationary policies for player i that choose, at state yi, action a with probability

in γa
y (i, zi).
For any stationary multi-policy v define the occupation measures

f(β, v) := {fi(vi; yi, ai) : (yi, ai) ∈ Ki, i = 1, ..., N}

as follows:
fi(vi; yi, ai) := πvi

i (y)vi(ai|yi).

Note that a unique steady state probability exists by Assumption Π1 and it does not depend on β. We thus often
omit β from the notation.

Proposition 3.1 Assume Π1-Π3. Fix any stationary multi-policy u.
(i) If z∗i,u is an optimal solution for LP(i, u) then any element w in gi(z∗i,u) is an optimal stationary response of i

against the stationary policy u−i. Moreover, the multi-policy v = [u−i|w] satisfies fi(v) = z∗i,u (it does not depend

on β).
(ii) Assume that w is an optimal stationary response of player i against the stationary policy u−i, and let v :=
[u−i|w]. Then fi(v) does not depend on β and is optimal for LP(i, u).
(iii) The optimal sets Γ(i, u), i = 1, ..., N are convex, compact, and upper semi-continuous in u−i, where u is

identified with points in
∏N

i=1

∏
xi∈Xi

M1(Ai(xi)).

(iv) For each i, gi(z) is upper semi-continuous in z over the set of points which are feasible for LP(i, u) (i.e. the
points that satisfy constraints (6)-(8)).

Proof: When all players other than i use u−i, then player i is faced with a constrained Markov decision process
(with a single controller). The proof of (i) and (ii) then follows from [5] Theorems 2.6. The first part of (iii) follows
from standard properties of Linear Programs, whereas the second part follows from an application of the theory
of sensitivity analysis of Linear Programs by Dantzig, Folkman and Shapiro [10] in [5] Theorem 3.6 to LP(i, u).
Finally, (iv) follows from the definition of gi(z).

Define the point to set map

Ψ :
N∏

i=1

M1(Ki) → 2

{
N∏

i=1

M1(Ki)

}

by

Ψ(z) =
N∏

i=1

Γ(i, gi(z))

where z = (z1, . . . , zN ), each zi is interpreted as a point in M1(Ki) and g(z) = (g1(z1), . . . , gN (zN )).
Proof of Theorem 2.1: By Kakutani’s fixed point theorem, a fixed point z ∈ Ψ(z) exists. Proposition 3.1 (i)
implies that for any such fixed point, the stationary multi-policy g = {gi(zi); i = 1, ..., N} is a constrained Nash
equilibrium.
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Remark 3.1 (i) The Linear Program formulation LP(i, u) is not only a tool for proving the existence of a con-
strained Nash equilibrium; in fact, due to Proposition 3.1 (ii), it can be shown that any stationary constrained
Nash equilibrium w has the form w = {gi(zi); i = 1, ..., N} for some z which is a fixed point of Ψ.
(ii) It follows from [5] Theorems 2.4 and 2.5 that if z = (z1, ..., zN ) is a fixed point of Ψ, then any stationary

multi-policy g in
∏N

i=1 gi(zi) satisfies Ci,j(β, g) = Ci,j(z), i = 1, ..., N, j = 0, ..., Bi. Conversely, if w is a constrained
Nash equilibrium then

Ci,j(β, w) =
∑

y∈X

∑

a∈Ai(y)

fi(w; y, a)cj,w
i (y, a)

(and f(w) is a fixed point of Ψ).
(iii) Another way of proving Theorem 2.1 would be to regard the formulation (5)-(8) as a one-shot game with
continuous action space and constraints and use the existence theorem of [11, 12]. Both references make assumptions
on the continuity of the feasible regions; these can be shown to follow from our Slater conditions, see [10].
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