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Abstract—The eigenvalue spectrum of the adjacency matrix
of Stochastic Block Model (SBM) consists of two parts: a finite
discrete set of dominant eigenvalues and a continuous bulk
of eigenvalues. We characterize analytically the eigenvectors
corresponding to the continuous part: the bulk eigenvectors. For
symmetric SBM adjacency matrices, the eigenvectors are shown
to satisfy two key properties. A modified spectral function of
the eigenvalues, depending on the eigenvectors, converges to the
eigenvalue spectrum. Its fluctuations around this limit converge to
a Gaussian process different from a Brownian bridge. This latter
fact disproves that the bulk eigenvectors are Haar distributed.

I. INTRODUCTION

Large graphs have become an important area of research
in recent times, owing to burgeoning interest in the analysis
of Facebook™ , Twitter™ and other social graphs. A host of
interesting problems exists in this field such as those related
to community detection and subgraph detection, which in turn
find a lot of real-world applications in large social networks.
Random graphs (RG) provide an effective and viable way
of modeling these large networks. a random graph model
proposed to model several observed properties of real internet
graphs such as the small-world property, and the scale-free
property. Random graphs and algorithms for RGs can be
effectively analyzed through the spectral properties of the
various random matrices used to represent these RGs, such
as the distributions of eigenvalues and eigenvectors of the
adjacency matrix or the Laplacian matrix. As an example,
for the anomalous subgraph detection problem discussed in
[13], and consisting in detecting the presence of an subgraph
embedded in a random graph background, Miller et al. [13]
propose an algorithm based on the L1 norm of the centered
adjacency matrix eigenvectors.

In this work, we deal with a class of random graphs called
the Stochastic Block Model (SBM). It is a class that is espe-
cially useful because it models networks with communities.
It can be thought of as a generalization of the well-studied
Erdős-Rényi random graphs. In an SBM graph with n nodes
and M communities, each community has n/M nodes, and
the probability of links between any pair of nodes within a
given community is uniform and is pi, 1 ≤ i ≤ M. The
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probability of links between nodes belonging to different
communities is p0, pi > p0. In [3], the authors derive results
about the limiting properties of the eigenvalue distribution of
these matrices. It was shown that the eigenvalue spectrum has
two important features - a continuous bulk of eigenvalues, and
a discrete number of dominant eigenvalues that fall outside
the bulk. The dominant eigenvectors are useful in establishing
the consistency of the spectral clustering algorithm, which
is employed in varied fields to detect underlying community
structure in a graph. The analysis of these have spawned a
string of works including [6], [8] and the references therein.

In this work, we look at the eigenvectors and eigenvalues
of the centered adjacency matrix of SBM. To the best of
our knowledge, this area is as yet completely unexplored.
Most existing works deal with the eigenvectors of Wigner
matrices made up of symmetric random variable entries. At
best they can be used to describe the eigenvectors of the Erdős-
Rényi graphs, which is a degenerate case of the SBM. The
eigenvectors of Wigner matrices are studied in detail in [2]
and [11], and the references therein. In the latter, in proving
a universality property of the distribution of eigenvectors of
hermitian random matrices, the authors show that the eigen-
vectors of a Wigner matrix are approximately Haar distributed.
Their method is to show that a property that holds for or-
thonormal matrices drawn from a Haar distribution also holds
approximately for the normalized eigenvectors of a Wigner
matrix under some moment conditions. This partially extends
the property of Haar distribution of eigenvectors known to hold
for Gaussian Wigner Ensembles such as the Gaussian Unitary
Ensemble (GUE) and the Gaussian Orthogonal Ensemble
(GOE) [12], to Wigner matrices with general distributions
under certain moment conditions.

In [5], by way of showing the convergence of a weighted
distribution function of the eigenvalues, with weights depend-
ing on eigenvectors, the authors show that the eigenvectors are
approximately Haar distributed for a covariance matrix. This
was extended to Wigner matrices in [2]. They use familiar
tools of random matrix theory such as the Stieltjes transform
in their analyzes.

Our contribution is to study the properties analyzed in [2]
in the case of centered SBM adjacency matrices. We consider
Q(x,y), a modified empirical spectral density function of



the eigenvalues, where the contribution of each eigenvalue is
weighted by the magnitude of the projection of the correspond-
ing eigenvector to an arbitrary, non-random unit vector y. First
we show that when the link probabilities within communities
are different, i.e., the case of asymmetric SBM, the weighted
spectral function Q(x,y) has different limits depending on
the unit vector y, and we determine the asymptotic limits.
From this we conclude that the eigenvectors of the asymmetric
SBM are not Haar distributed. In contrast, when the link
probabilities within all the communities are the same, the
modified empirical spectral distribution Q(x,y) has the same
asymptotic limit as the empirical spectral distribution (e.s.d.)
of eigenvalues, irrespective of the chosen unit vector. This is
a necessary condition for Haar distribution of eigenvectors.
We also show that for a specially chosen unit vector, the fluc-
tuations around its mean form a Gaussian process. However,
we also prove that this Gaussian process is not a Brownian
bridge, disproving in this way that the bulk eigenvectors of
the symmetric SBM are Haar distributed.

Remark: Due to space constraints, we state the results
without proofs. The proofs will appear in an extended version
of this paper.

II. MODEL, NOTATION AND DEFINITIONS AND
ASSUMPTIONS

Let us consider a graph with n nodes. The adjacency matrix
A of an undirected graph is an n×n symmetric matrix whose
(i, j) element Aij is 1, if a link exists between node i and
node j, else it is 0. For an SBM graph, Aij is a Bernoulli
variable with parameter p1(p2), if the corresponding nodes
i and j both belong to community 1, i.e., Ω1(community
2, i.e., Ω2) and with parameter p0 if nodes i, j belong to
different communities. Let ai be the ith column of A. Since
the graph is undirected, or equivalently, the adjacency matrix is
symmetric, the ith row is aTi , where the superscript T denotes
transpose. Without loss of generality, we restrict ourselves to
the case where the number of communities in the SBM is 2,
the number of nodes is even and the nodes are evenly split
between the two communities. Additionally, we assume that
the nodes are indexed such that node i belongs to community 1
if 1 ≤ i ≤ n/2, otherwise it belongs to the second community.
Let us denote by B(pm) a Bernoulli probability distribution
with parameter pm,m = 0, 1, 2; then,

Aij = Aji ∼ B(pm), if i, j ∈ Ωm

Aij = Aji ∼ B(p0), if i ∈ Ω` and j ∈ Ωm, ` 6= m.
(1)

In the following, unless explicitly mentioned, p1 6= p2. We
consider graphs without self-loops, therefore, Aii = 0. In this
work we consider the centered and scaled adjacency matrix
Ã = γ(n)(A − A), where γ(n) is a scaling factor meant
to make sure the asymptotic eigenvalue distribution has finite
support, and A is the mean of A which can be expressed as

A = P⊗ Jn/2 (2)

where P is a 2× 2 matrix given as:

P =

(
p1 p0
p0 p2

)
. (3)

and Jn/2 is a n/2 × n/2 matrix of ones. Let γ(n) =√
np1(1− p1). It can be shown that this constant suffices to

ensure that limn→∞‖Ã‖2 is finite [3]. We use σ2
ij to denote

the variance of Ãij . It is easy to see that σ2
ij = 1/n, for i, j

belonging to community 1,

σ2
ij =

p2(1− p2)

n(p1(1− p1))

for i, j in community 2, and

σ2
ij =

p0(1− p0)

n(p1(1− p1))

otherwise. In this work we consider only dense graphs, i.e.,
the probabilities are constant functions of n.

For the real symmetric matrix Ã, by the Spectral Decom-
position Theorem we have:

Ã = UΛUT ,

where Λ is a diagonal matrix of eigenvalues such that λ1 ≥
λ2 ≥ . . . λn and U is the matrix whose columns are the
corresponding eigenvectors ui, such that UUT = I, I being
the identity matrix.

Let ek denote a unit vector in Rn whose kth element is 1.
We define R̃ ≡ Ã−zI. Let Ãk to denote the matrix obtained
from Ã, by setting the kth row and column to 0, and define
Rk ≡ Ãk−zI. Hence we have: R̃ = Ã−zI = Ãk+ ãke

T
k +

ekã
T
k−zI = R̃k+ãke

T
k +ekã

T
k . We denote a complex variable

by z such that z = u+
√
−1v, v > 0, u, v ∈ R. Let χ{A} be

the indicator function for the set A.
We define the empirical spectral distribution (e.s.d.) of Ã

as

FÃ(x) =
1

n

n∑
k=1

χ{λk≤x}, (4)

and the Stieltjes transform of FÃ(x) for z ∈ C,=z > 0, as

sÃ(z) =

∫
dFÃ(x)

x− z
= trace(Ã− zI)−1 = trace(R̃−1)

In addition, we specify here sσ(z), the Stieltjes transform
of the semicircle distribution [12] with parameter σ as:

sσ(z) =
−1

z + σ2sσ(z)
(5)

III. PRELIMINARY RESULTS ON THE SBM

We have the following result for FÃ(x).

LEMMA 1 [3] Let Ã be the normalized centered SBM
adjacency matrix with γ(n) = (np1(1 − p1))−1. If for
m = 0, 1, 2, pm are independent of n, then almost surely, the



eigenvalue e.d.f. converges weakly to a distribution function
whose Stieltjes transform is given by

s(z) = c1(z) + c2(z) (6)

c1(z), c2(z) being the unique solution to the system of equa-
tions:

c1(z) =
−1/2

z + ς1c1(z) + ς0c2(z)
,

c2(z) =
−1/2

z + ς0c1(z) + ς2c2(z)
,

that satisfies the conditions

=(ci(z))=(z) > 0 for =z > 0, (7)

for each i = 1, 2, and ςi =
pi(1− pi)
p1(1− p1)

, i = 1, 2.

IV. ASYMPTOTIC RESULTS ON EIGENVECTORS OF SBM

In this section we analyze the asymptotic properties of the
eigenvectors of Ã. Following the ideas in [4] we consider the
following spectral function

Q(x,y) =

n∑
i=1

|uTi y|2χ{λi≤x}, x ∈ (−∞,∞), (8)

where y ∈ Rn is an arbitrary deterministic unit vector.
Notice that Q(x,y) ≥ 0,∀x, and limx→−∞Q(x,y) = 0, and
limx→∞Q(x,y) = 1. Therefore Q(x,y) can be thought of
as a cumulative distribution function (cdf) of the eigenvalues,
with weights determined by the corresponding eigenvectors.
In [5], the authors study the above function and observe that
if the eigenvectors are Haar-distributed Q(x,y) satisfies the
following two properties:

• Property I

lim
n→∞

|Q(x,y)− FÃ(x)|= 0

This property has to be satisfied if ui are uniformly
distributed on the unit sphere in Rn. Notice that this
implies |uTi y|2≈ 1

n ,∀ i.
• Property II

√
n
2 (Q(x,y)−FÃ(x)) converges to a Brow-

nian Bridge [5].
Indeed, a vector uniformly distributed on the unit sphere
in Rn is equivalent in distribution to a vector z ∈ Rn with
independent standard Gaussian components normalized
such that ‖z‖2= 1.

Instead of analyzing directly Q(x,y), we can analyze its
Stieltjes transform given as [5]

sQ(z,y) = yT (Ã− zI)−1y. (9)

By the Stieltjes inversion formula, the convergence of the
Stieltjes transform of a sequence of functions, implies the
convergence of the original sequence [12].

A. Asymptotic Limit of Q(x,y) for general SBM

In this section we present a result about Q(x,y) for the
special case when y = ei. The analysis adopts the same
method as the one followed in [1]. In this case sQ(z,y) =

(Ã− zI)−1ii , the diagonal component of the resolvent. Let us
denote Ψ = (Ã− zI)−1 and the diagonal component as ψii.

It is easy to verify that, for the SBM, the following holds
true:

∀i ∃c such that
∑
j

σ2
ij ≤ c. (10)

In addition, for 1 ≤ i, j ≤ n/2,∑
k

σ2
jk =

∑
k

σ2
ik, (11)

and similarly for n/2 + 1 ≤ i, j ≤ n.
We have the following result.

PROPOSITION 1 For a centered adjacency matrix Ã of SBM
with constant probabilities p0, p1, p2, independent of n, and
y = ei, sQ(z, ei), the Stieltjes transform of the spectral
function Q(x,y), converges in probability as follows.

lim
n→∞

sQ(z, ei) =

{
d1, if i ≤ n

2

d2, if n
2 + 1 ≤ n,

(12)

where d1, d2 are unique solutions to the following set of fixed
point equations

d1 =
1

−z − d1
2 ς1 −

d2
2 ς0

,

d2 =
1

−z − d1
2 ς0 −

d2
2 ς2

,

and ςi are defined as in Lemma 1.

From the above result, we see that the eigenvectors of a
general SBM are not Haar distributed, because the asymptotic
limit is a function of the vector y. In fact, y = ei, the
asymptotic limit of the spectral function is different when
i ≤ n/2 and i > n/2.

We make the following observation as a corollary to Lemma
1 and Proposition 1.

COROLLARY 1 For an asymmetric SBM with p1 6= p2,

lim
n→∞

1

2
(sQ(z, ek1) + sQ(x, ek2))→ s(z),

in probability.

In the following Proposition 2 we present a result for sym-
metric SBM that holds for any unit vector y. More specifically,
we show the convergence of the Stieltjes transform sQ(z,y)
to sσ(z), the Stieltjes transform of the semicircle distribution.
Ancillary to this proposition is the following lemma.



LEMMA 2 For the centered SBM adjacency matrix Ã, with
probabilities p0, p1, p2,

max
1≤k≤n/2

E|αk + 2zc1(z)|4→ 0,

max
n/2≤k≤n

E|αk + 2zc2(z)|4→ 0;

where
αk =

1

1 + z−1ãTk R̃−1k ãk
. (13)

For the symmetric case, we recall that c1(z) = c2(z) =
sσ(z)/2. Also when p1 = p2,

max
1≤k≤n

|ωk + zsσ(z)|→ 0.

By invoking the above lemma, we can prove the following
proposition.

PROPOSITION 2 (Symmetric SBM) Let us consider the cen-
tered adjacency matrix Ã of SBM, with p1 = p2. For any unit
vector y, the spectral function Q(x,y) converges to the cdf
of the semicircle law.

B. Gaussianity of the fluctuations

In this section we focus on the symmetric SBM and verify
whether and if not, to what extent Property II is satisfied.
The convergence of the process

√
n
(
yT R̃−1y − sσ(z)

)
to a

Brownian Bridge in distribution is usually shown in two steps:

• The process Yn(z) =
√
n
(
yT R̃−1y − yTE(R̃)−1y

)
is

shown to converge to a Gaussian process of mean zero
in distribution;

•
√
n
(
yTE(R̃)−1y − sσ(z)

)
→ 0.

In the following proposition we show the convergence of√
n
(
yT R̃−1y − yTE(R̃)−1y

)
to a Gaussian process for the

special case of y = 1√
n
1, where 1 is a vector of all ones. Note

that this should hold for any unit y, in order to satisfy Property
II.

PROPOSITION 3 For y = 1√
n
1, and p1 = p2, the process

Yn(z) converges to a Gaussian process in distribution.

The proof of the above proposition uses Martingale Conver-
gence theorem [14].

In the following proposition we show that even though the
process Yn(z) is Gaussian, its mean does not converge to
sσ(z), but instead, there is a bias term which is a function of z.
This shows that the process does not converge to a Brownian
bridge, and consequently the eigenvectors of the adjacency
matrix of the symmetric SBM are not Haar distributed, even
though they display some of the required properties.

PROPOSITION 4 For the centered adjacency matrix Ã of a
symmetric SBM with probabilities p0, p1, the fluctuation of

the mean,
√
n
(
yTER̃−1y − sσ(z)

)
does not converge to 0,

but it is bounded as follows∣∣∣√n(yTER̃−1y − sσ(z)
)∣∣∣ ≤ C|sσ(z)|+o(1),

where C is a constant that depends on the third moment of
the elements of Ã.

V. SIMULATIONS

In this section we perform simulations to corroborate our
theoretical results. First, we consider a realization of a random
symmetric SBM of size n = 103, with p0 = 10−2 and
p1 = p2 = 10−1. In Figure 1, we set y = e1 and we plot
two histograms of the eigenvalues: the first one denoted by
dFÃ(x) is obtained giving a unit weight to each eigenvalue
falling in a histogram bin [x, x+ ∆); the second one, denoted
by dQ(x,y) is obtained by giving the weight |uTi y|2 to an
eigenvalue λi ∈ [x, x+∆). In other words, let λi, λi+1, . . . λj
be the j − i + 1 eigenvalues in the bin [x, x + ∆). Then
dFÃ(x) = j−i+1

n , and dQ(x,y) =
∑j
k=i|uTk y|2. From

Figure 1, it can be seen that both dFÃ(x) and dQ(x,y)
approximate the semicircle law very well, consistent with
Lemma 1 and Proposition 2, respectively. In Figure 2 we
repeat the same experiment as in Figure 1, but for a slightly
different setting. In this case n = 104, and y = 1√

n
1.

Although the size of the matrix is an order of magnitude
higher, the histogram dQ(x,y) approximate the semicircle
law quite roughly, suggesting a much slower convergence of
dQ(x,y) compared to the case where y = ei.

Next, we consider an asymmetric SBM with n = 103, p0 =
10−2, p1 = 0.1, and p2 = 0.05. In Figure 3, we plot dFÃ(x)
and 1

2 (dQ(x, e1) + dQ(x, en
2 +1)). They match very well,

consistently with Corollary 1.
Finally, we aim at validating our theoretical results on the

Gaussianity of the eigenvector fluctuations. Then, we generate
4000 independent realizations of a symmetric SBM centered
adjacency matrix Ã with p0 = 0.01, and p1 = p2 = 0.1.
Using these realizations, we calculate the empirical cdf of√
ndQ(x, 1√

n
1), for x1 = −1.0538 and x2 = 1.0489. In both

Figure 4 and Figure 5, the solid red line show the cdf of the
centered variables,

√
n(dQ(xi,

1√
n
1) − EdQ(x, 1√

n
1)), i =

1, 2. We compare them to the cdfs of a zero mean gaussian
variable with variance properly adapted to the empirical vari-
ance of our processes. These are plotted with solid line with
crosses as marker. The perfect match between the solid line
and the solid lines with markers confirms the Gaussianity of
the perturbations of Q(x, 1√

n
1). The dashed lines in Figures 4

and 5, correspond to the function
√
n(dQ(x, 1√

n
1)−dFÃ(x)).

The shift of these lines w.r.t the solid lines confirms the
presence of the bias pointed out in Proposition 4.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the bulk eigenvectors of the cen-
tered adjacency matrix of SBM graphs. Following a classical
approach we studied the spectral function Q(x,y), which de-
pends on the eigenvectors and its fluctuations around the e.s.d.
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Fig. 5. Gaussianity of the fluctuations of Q(x,y)

FÃ(x). We show that for the centered adjacency matrix Ã of
symmetric SBM, Q(x,y) converges almost surely to FÃ(x)
for any y. This suggests that |uTi y|≈ 1√

n
, for any y. Addi-

tionally we show that the fluctuations
√
n
(
Q(x,y)− FÃ(x)

)
converge in distribution to a Gaussian process. However, this
process has non-zero mean, and hence is not a Brownian
bridge. Therefore, the eigenvectors of the centered SBM

adjacency matrix violates a property required for them to be
Haar distributed.

We also consider the eigenvectors of the centered adjacency
matrix of the asymmetric SBM, and show that the asymptotic
limit of the spectral function Q(x,y) depends on y, as
opposed to a matrix with Haar distributed eigenvectors.

In the future, we aim to extend the above result on the
fluctuations of Q(x,y) of centered adjacency matrix Ã of the
symmetric SBM to any general y.
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