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Setting
e Long TCP connection (Elephant).
e Network is a black box rejecting some packets.

e Analysis of the successive congestion window sizes (W,,) when loss
rate « is small.

Assumptions
e Model for packet losses.
Objectives

e Prove rigourous convergence results.

e Give explicit expressions of the distributions involved.




Congestion avoidance:
The additive increase and multiplicative decrease scheme




Congestion avoidance:
The additive increase and multiplicative decrease scheme

W, is the size of the nth congestion window.
If W, =z €N,

Wt = |6 | if one of the x packets is lost,
T L 41 otherwise
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Stochastic models for packet losses: I

An elementary model: the non correlated case

e Each packet has a probability o of being lost.

e Packet losses are independent.

The independence assumption

Reasonable: the network evolves rapidly.

Not realistic: losses occur by groups.



2. Non correlated case: Convergence results

(W): sequence of successive window sizes.

Transitions of the Markov chain.
IfW§=c«
— W = |éz], with probability 1 — exp(—ax).
— W =z + 1, with probability exp(—ax).

The invariant probability is 7@ = (7%), W< is some random variable with
distribution 7.



The congestion window size is ~ 1/4/a.




The congestion window size is ~ 1/4/a.

Theorem. If lim, oaW§ =z, and

We @) = vVaWg, &)




The congestion window size is ~ 1/4/a.

Theorem. If lim, .ovaWg ==z, and

then (W<a(t)) converges in distribution to the Markov process
(W (t)) whose infinitesimal generator is given by

Q) () = f(2) + = (£(62) - f(2))

and W(0) = x.



The embedded Markov chain (V%)

Ve is the window size after the nth loss.




The embedded Markov chain (V%)

Ve is the window size after the nth loss.

Theorem. If lim, o+/aV§ =, then (\/aV®) converges in distri-
bution to the Markov chain (V,), with Vo =v and the transi-
tions

dist.

Vn—l—l = 5 (Vn + éV”) 3
where for = > 0,

P (Gl > y) — e*(wy+y2/2)_
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Convergence diagrams
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Theorem. The above diagrams commute.



Convergence diagrams
t——o00
we — we
(vaw, /o) Vaws

s !

(W (D)) —— W(oo0)

(Vave) 2= Jave

- | l

(Vo) — Ve

Theorem. The above diagrams commute.
Proof: Exponential estimates of hittings times.



3. Non correlated case: The equilibrium
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Proposition. The following equality in distribution holds

list.

(z 4+ G,)? = 2F; + 22,

for « > 0, where E, is an exponentially distributed random
variable with parameter 1.

Consequence for the embedded chain:

Vi1 =0 (Va+Gr,)°
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Proposition. The following equality in distribution holds
(37 + éx)z dlg‘ 2E‘l + 5527

for « > 0, where E, is an exponentially distributed random
variable with parameter 1.

Consequence for the embedded chain:

Vf‘f'l = 62 (Vn + évn)z
el g2 (Vf + 2E>

Proposition. The sequence (72> is AR (Auto-Regressive):

Vi =0 (V. +28,)

(E,) i.i.d. exponential variables with parameter 1.



Invariant measure of the AR process

Theorem. The distribution of the random variable V.. is given
by

. T L +o00
7020/2 dZ:St' Z 5277,En d'Lzbt' / 52N(s) ds.

n=1 0

where (E;) are i.i.d. exp. random variables with parameter 1;
N Poisson process with parameter 1.



Invariant measure of the AR process

Theorem. The distribution of the random variable V.. is given
by

 Hoo oo
Ve /28 Y 6E, & / 52N g,

n=1 0

where (E;) are i.i.d. exp. random variables with parameter 1;
N Poisson process with parameter 1.
Its density hs given by

hg(x) . 1 f 1 72nx€7572”:c2/2
- 00 ; n—1 _ ’
::l(l - 5”) n=1 k=1 1-9 2k)

for x > 0.



Corollary. The throughput of the TCP model is given by

too _ S2n
(Iliggx/aE(Wg)dg-ﬁ(é)zE(; )z\/g H%



Corollary. The throughput of the TCP model is given by
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Corollary. The throughput of the TCP model is given by
1 \/? ﬁ (1 —§27)
E(Vs) Va2t (1—4201)

5(1/2) ~ 1.3098,
Tail distribution: P (W > ) ~ Cexp (—z2/62).

lim v/aE (W2) < 5(8) =




4. General loss processes
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Dynamic of congestion window size

=2 ==2
Vn—i—l - 52XTL <Vn + 2En)
(E,) i.i.d. exponential variables with parameter 1,

(X,) i.i.d. integer valued random variables.

Equilibrium
Va/2E g% (Vi/2+ Br)
1S Foo
Va/2=T :/ BX© gs,
0
with 8 = §2,
N(t)
X(t) - Z Xi7
k=0

N Poisson process with parameter 1.



I is an integral exponential functional of a Lévy process
+oo
I =/ e’ ®) ds.
0

with Y () = (X1 4 -4+ Xy) l0g 8, N is a Poisson process with param-
eter 1.



I is an integral exponential functional of a Lévy process
+oo
I =/ e’ ®) ds.
0

with Y () = (X1 4 -4+ Xy) l0g 8, N is a Poisson process with param-
eter 1.

When Y (t) = B(t) — ut, (B(t)) Brownian motion and px > 0, I plays
a role in mathematical finance models and statistical physics.

Work by Bertoin, Carmona, Monthus, Petit, Yor (and many others).
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The distribution of [

The Laplace transform of [ is given by,

BV (—A)"
B =2 sy

If X €{1,...,n+ 1},
1-E (qu) =(1-uw)(1—-au)...)(1-ayu),
_= i
) N mZ:O (alﬁ; /B)m, . (anﬁ; 5)m(6; ﬁ)m

with the g¢-factorial (a;¢)m = (1 —a)(1 —aq)...(1 —ag™?!)
1<m< +4c0.

E (67/\1




The distribution of [

The Laplace transform of [ is given by,

IV (=)™
E (™) —2 " (1 —E(81))’

If X, e{1,....,n+ 1},
1-E (qu) =(1-uw)(1-au)...)(1—-ayu),

=AY\ < (_A)m
E (6 ) - 7;) (a18; B)m - - - (anfB; B)m(B: B)m

with the g¢-factorial (a;¢)m = (1 —a)(1 —aq)...(1 —ag™ ')
1<m< +4oco.

The Laplace transform of [ is related to a ¢-hypergeometric function.
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The density of I is given by

+o0 .
Z Tk/B_ke_ﬁ * )
k=0

1. P(X1=1)=p=1-P(X; = 2).
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Applications

The density of I is given by
+o0 .
Zrkﬁikeiﬁ x’
k=0

1. P(X1=1)=p=1-P(X; = 2).

1
(=B =p); B)e(B; B)c(1/B: 1/BDk

- (1/8;1/B)s VPR
2 W Bns Up P

Tk

2. P(X; =n)=p" (1 —-p), n>1.

_ 1 ("B
(B; 8 (BB

Tk



The fractional moments of 1

Proposition. For any seR, —s ¢ N— {0}, if E (B¢TD%1) < 400,

+oo 1—F (s+k)Xq
E(I) =T(s+1) ] (8 )
k=1

1—E(F)

for u > min(s + 1,0).




Proposition. The asymptotic throughput of an AIMD algo-
rithm with multiplicative decrease factor § in a correlated loss
model is given by

2E(X E (621
s = I|m \/ME F (2n 1))21)

Question: What are the properties of the mapping

X —px(0)7



Impact of correlation of the loss process

Definition.[Concave ordering of random variables]
The inequality X <., Y holds when

E(f(X)) <E(f(Y))

is true for any non-decreasing concave function on R.
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Impact of correlation of the loss process

Proposition. The asymptotic throughput X — p//E(X) is a
non-increasing function for the concave order,

Px > Py (1)
VE(X) ~ VEQY)

In particular, when E(X) =E(Y), X <. Y implies o > py.

A oy W implies

Corollary. For a fixed loss rate

e T he more variable the loss process, the better the through-
put.

e T he non correlated model is worst than any loss model.



Discussion

Analogous results for Finite Maximum Window size.

Slow start period. Duration —log,(«): negligible at the time scale

1/va.

Variable RTT's. Under weak assumptions, formulas are still valid
even with dependence.

Occurences of timeouts: P(X; = +o00) > 0.
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