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Setting, Assumptions and Objectives

Setting

• Long TCP connection (Elephant).

• Network is a black box rejecting some packets.

• Analysis of the successive congestion window sizes (Wn) when loss
rate α is small.

Assumptions

• Model for packet losses.

Objectives

• Prove rigourous convergence results.

• Give explicit expressions of the distributions involved.
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Congestion avoidance:
The additive increase and multiplicative decrease scheme

Wn is the size of the nth congestion window.
If Wn = x ∈ N,

Wn+1 =

{
bδxc if one of the x packets is lost,

x+ 1 otherwise
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Stochastic models for packet losses: I

An elementary model: the non correlated case

• Each packet has a probability α of being lost.

• Packet losses are independent.

The independence assumption

Reasonable: the network evolves rapidly.

Not realistic: losses occur by groups.



2. Non correlated case: Convergence results

(W α
n ): sequence of successive window sizes.

Transitions of the Markov chain.

If W α
0 = x

— W α
1 = bδxc, with probability 1− exp(−αx).

— W α
1 = x+ 1, with probability exp(−αx).

The invariant probability is πα = (παn), W α
∞ is some random variable with

distribution πα.
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The congestion window size is ∼ 1/
√
α.

Theorem. If limα→0
√
αW α

0 = x, and

W α(t) =
√
αW α

bt/
√
αc,

then (W α(t)) converges in distribution to the Markov process
(W (t)) whose infinitesimal generator is given by

Ω(f)(x) = f ′(x) + x
(
f(δx)− f(x)

)
and W (0) = x.
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V α
n is the window size after the nth loss.

Theorem. If limα→0
√
αV α

0 = v, then (
√
αV α

n ) converges in distri-
bution to the Markov chain (V n), with V 0 = v and the transi-
tions

V n+1
dist.
= δ

(
V n +GV n

)
,

where for x ≥ 0,
P

(
Gx ≥ y

)
= e−(xy+y2/2).
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Convergence diagrams(
√
αW α

bt/
√
αc

)
t→+∞−−−−→

√
αW α

∞

α→0

y y(
W (t)

)
−−−→ W (∞)

(√
αV α

n

) n→+∞−−−−→
√
αV α
∞

α→0

y y(
V n

)
−−−→ V ∞.

Theorem. The above diagrams commute.
Proof: Exponential estimates of hittings times.



3. Non correlated case: The equilibrium
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Proposition. The following equality in distribution holds

(x+Gx)
2 dist.

= 2E1 + x2,

for x ≥ 0, where E1 is an exponentially distributed random
variable with parameter 1.

Consequence for the embedded chain:

V
2
n+1 = δ2

(
V n +GV n

)2

dist.
= δ2

(
V

2
n + 2En

)
Proposition. The sequence

(
V

2
n

)
is AR (Auto-Regressive):

V
2
n+1 = δ2

(
V

2
n + 2En

)
(En) i.i.d. exponential variables with parameter 1.



Invariant measure of the AR process

Theorem. The distribution of the random variable V ∞ is given
by

V
2
∞/2

dist.
=
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n=1

δ2nEn
dist.
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∫ +∞

0

δ2N(s) ds.

where (Ei) are i.i.d. exp. random variables with parameter 1;
N Poisson process with parameter 1.



Invariant measure of the AR process

Theorem. The distribution of the random variable V ∞ is given
by

V
2
∞/2

dist.
=

+∞∑
n=1

δ2nEn
dist.
=

∫ +∞

0

δ2N(s) ds.

where (Ei) are i.i.d. exp. random variables with parameter 1;
N Poisson process with parameter 1.

Its density hδ given by

hδ(x) =
1∏+∞

n=1(1− δn)

+∞∑
n=1

1∏n−1
k=1(1− δ−2k)

δ−2nxe−δ
−2nx2/2,

for x ≥ 0.



Corollary. The throughput of the TCP model is given by
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√
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√
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Corollary. The throughput of the TCP model is given by

lim
α→0

√
αE (W α

∞)
def.
= ρ(δ) =

1

E

(
V ∞

) =

√
2

π

+∞∏
n=1

(1− δ2n)

(1− δ2n−1)
.

ρ(1/2) ∼ 1.3098,

Tail distribution: P
(
W∞ ≥ x

)
∼ C exp

(
−x2/δ2

)
.



4. General loss processes
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Non correlated model:

loss instants

0 1E /α E /α

“Real” loss process (Paxson 1997):

0 1

0 1 2

E E/α /α

X X X
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Dynamic of congestion window size

V
2
n+1 = δ2Xn

(
V

2
n + 2En

)
(En) i.i.d. exponential variables with parameter 1,

(Xn) i.i.d. integer valued random variables.

Equilibrium

V
2
∞/2

dist.
= βX0

(
V

2
∞/2 + E1

)
V

2
∞/2

dist.
= I =

∫ +∞

0

βX(s) ds,

with β = δ2,

X(t) =
N(t)∑
k=0

Xi,

N Poisson process with parameter 1.



I is an integral exponential functional of a Lévy process

I =

∫ +∞

0

eY (s) ds.

with Y (t) = (X1 + · · ·+XN(t)) logβ, N is a Poisson process with param-
eter 1.



I is an integral exponential functional of a Lévy process

I =

∫ +∞

0

eY (s) ds.

with Y (t) = (X1 + · · ·+XN(t)) logβ, N is a Poisson process with param-
eter 1.

When Y (t) = B(t)− µt, (B(t)) Brownian motion and µ > 0, I plays
a role in mathematical finance models and statistical physics.

Work by Bertoin, Carmona, Monthus, Petit, Yor (and many others).



The distribution of I

The Laplace transform of I is given by,
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e−λI
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(−λ)m∏m
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The distribution of I

The Laplace transform of I is given by,

E

(
e−λI

)
=

∞∑
m=0

(−λ)m∏m
k=1 (1− E(βkX1))

,

If X1 ∈ {1, . . . , n+ 1},

1− E
(
uX1

)
= (1− u)(1− a1u) . . .)(1− anu),
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1 ≤ m ≤ +∞.



The distribution of I

The Laplace transform of I is given by,

E

(
e−λI

)
=

∞∑
m=0

(−λ)m∏m
k=1 (1− E(βkX1))

,

If X1 ∈ {1, . . . , n+ 1},

1− E
(
uX1

)
= (1− u)(1− a1u) . . .)(1− anu),

E

(
e−λI

)
=

∞∑
m=0

(−λ)m

(a1β;β)m . . . (anβ;β)m(β;β)m

with the q-factorial (a; q)m = (1− a)(1− aq) . . . (1− aqm−1)
1 ≤ m ≤ +∞.

The Laplace transform of I is related to a q-hypergeometric function.
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Applications

The density of I is given by

+∞∑
k=0

rkβ
−ke−β

−kx,

1. P(X1 = 1) = p = 1− P(X1 = 2).

rk =
1

(−β(1− p);β)∞(β;β)∞(1/β; 1/β)k
k∑

m=0

(1/β; 1/β)k
(1/β; 1/β)m(1/β; 1/β)k−m

(−(1− p))m.

2. P(X1 = n) = pn−1(1− p), n ≥ 1.

rk =
1

(β;β)∞

(βk+1p;β)∞
(β;β)k−1



The fractional moments of I

Proposition. For any s ∈ R, −s 6∈ N− {0}, if E
(
β(s+1)X1

)
< +∞,

E (Is) = Γ(s+ 1)
+∞∏
k=1

1− E
(
β(s+k)X1

)
1− E (βkX1)

,

for u ≥ min(s+ 1,0).



Proposition. The asymptotic throughput of an AIMD algo-
rithm with multiplicative decrease factor δ in a correlated loss
model is given by

ρX = lim
α→0

√
αE(X1)E

(
W

α

∞
)

=

√
2E(X1)

π

+∞∏
n=1

1− E
(
δ2nX1

)
1− E

(
δ(2n−1)X1

) .

Question: What are the properties of the mapping

X → ρX(δ)?



Impact of correlation of the loss process

Definition.[Concave ordering of random variables]
The inequality X ≤cv Y holds when

E(f(X)) ≤ E(f(Y ))

is true for any non-decreasing concave function on R.
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Proposition. The asymptotic throughput X → ρX/
√
E(X) is a

non-increasing function for the concave order,

X ≤cv Y implies
ρX√
E(X)

≥
ρY√
E(Y )

. (1)

In particular, when E(X) = E(Y ), X ≤cv Y implies ρX ≥ ρY .



Impact of correlation of the loss process

Proposition. The asymptotic throughput X → ρX/
√
E(X) is a

non-increasing function for the concave order,

X ≤cv Y implies
ρX√
E(X)

≥
ρY√
E(Y )

. (1)

In particular, when E(X) = E(Y ), X ≤cv Y implies ρX ≥ ρY .

Corollary. For a fixed loss rate

• The more variable the loss process, the better the through-
put.

• The non correlated model is worst than any loss model.



Discussion

• Analogous results for Finite Maximum Window size.

• Slow start period. Duration − log2(α): negligible at the time scale
1/
√
α.

• Variable RTT’s. Under weak assumptions, formulas are still valid
even with dependence.

• Occurences of timeouts: P(X1 = +∞) > 0.
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