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Abstract— We consider a time varying wireless fading chan-
nel, equalized by an LMS Decision Feedback equalizer (DFE).
We study how well this equalizer tracks the optimal MMSE-
DFE (Wiener) equalizer. We model the channel by an Auto-
regressive (AR) process. Then the LMS equalizer and the AR
process are jointly approximated by the solution of a system of
ODEs (ordinary differential equations). Using these ODEs, we
show via some examples that the LMS equalizer moves close to
the instantaneous Wiener filter after initial transience. We also
compare the LMS equalizer with the instantaneous optimal
DFE (the commonly used Wiener filter) designed assuming
perfect previous decisions and computed using perfect channel
estimate (we will call it as IDFE). We show that the LMS
equalizer outperforms the IDFE almost all the time after initial
transience.
Keywords : LMS-DFE, ODE approximation, Wiener filter,
Convergence analysis, Tracking performance.

I. I NTRODUCTION

A channel equalizer is an important component of a
communication system and is used to mitigate the ISI (inter
symbol interference) introduced by the channel. The equal-
izer depends upon the channel characteristics. In a wireless
channel, due to multipath fading, the channel characteristics
change with time. Thus it may be necessary for the channel
equalizer to track the time varying channel in order to
provide reasonable performance.

Least Mean Square linear equalizer (LMS-LE) is a simple
equalizer and is extensively used ([2], [5]). For a fixed
channel its convergence to the Wiener filter has been studied
in [2], [14] (see also the references therein). Its performance
on a wireless (time varying) channel has been studied the-
oretically in [7] (see also [5], [10] where the performance
has been studied via simulations, approximations and upper
bounds on probability of error etc).

Decision feedback equalizers (DFE) are nonlinear equaliz-
ers, which can provide significantly better performance than
LE ([1], [15], [16]). A DFE feeds back the previous decisions
of the transmitted symbols, to nullify the ISI due to them and
makes a better decision about the current symbol. Although
these equalizers have also been used for quite sometime, due
to feedback their behavior is much more complex than that
of the LEs. Hence their performance is not well understood.
Existence of a hard decoder inside the feedback loop, due
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to its nonlinearity, makes the study all the more difficult. A
DFE mainly exploits the finite alphabet structure of the hard
decoder output ([4], [12]) and hence the hard decoder cannot
be ignored (i.e., its performance is better than a system with
a soft decoder).

For a DFE, statistics of the previous decisions are not
known. Hence till recently, there was no known technique
which provides an MMSE DFE (we will call is as DFE-WF
for the rest of the paper) even for a fixed channel ([3], [12],
[15]). We addressed this issue in [8] (see details below). Prior
to [8], one usually designed an MMSE DFE by assuming
perfect decisions (see, e.g., [12], [17]). For convenience, for
the rest of the paper, we will call such a DFE as IDFE (Ideal
DFE). In this paper IDFE is also computedusing perfect
channel estimates. The IDFE often outperforms the Linear
Wiener filter significantly ([1], [15], [16]). But it is generally
believed that DFE-WF, the true MSE optimal DFE (designed
considering the decision errors), can outperform even this.

Another way to obtain an optimal filter is to replace the
feedback filter at the receiver by a precoder at the transmitter
([3], [15]). This way one can indeed obtain the optimal
filter but this requires the knowledge of the channel at the
transmitter. For wireless channels, which are time varying,
this is often not an attractive solution ([12], [15]).

Some research has been done to deal with the decision
errors. Either the distribution of the decisions errors were
approximated in designing an MSE optimal filter (IDFE
being one such example) or some other appropriate criterion
was used to get the optimal filter considering the errors
in decisions. For example, in [19], authors approximated
the errors in decisions with an AWGN (Additive White
Gaussian Noise) independent of the input sequence and
obtained a DFE Wiener filter. But as is stated in the paper
this approximation is not realistic. In [4], the authors obtain
anH∞ optimal DFE taking into account the decision errors.
However no comparison to DFE-WF was provided.

One possibility of obtaining DFE-WF is via LMS-DFE.
However, convergence of LMS-DFE is not well understood
even for a fixed channel. Trajectory of the LMS-DFE al-
gorithm, on a fixed channel, with asoft decoderin the
feedback loop has been approximated by an ODE in [11].
But this ODE does not approximate the LMS-DFE with a
hard decoder. Beneveniste et al. ([2]) have shown the ODE
approximation of an LMS-DFE with a hard decoder. But the



ODE obtained by them is not explicit enough. Furthermore,
they do not relate the attractors of this ODE to the DFE-WF.

In [8] we showed that the LMS-DFE asymptotically comes
close to the DFE-WF at high SNRs. We also showed that,
it can outperform the commonly used Wiener filter IDFE, at
all practical SNRs. We thus concluded that the LMS-DFE
can be used to obtain an equalizer close to the DFE-WF.

In this paper we study the behavior of an LMS-DFE while
tracking a wireless channel. To study the tracking behavior
theoretically, one needs to have a theoretical model of the
fading channel. Auto Regressive (AR) processes have been
shown to model such channels quite satisfactorily ([10], [13],
[18]). We will model our channel by an AR(2) process as in
[7]. The class of AR(2) processes includes the Random Walk
model and the Filtered Random Walk model ([13]). Thus it
is a very useful model for many wireless channels.

In this paper, we approximate the trajectory of the LMS-
DFE tracking an AR(2) process by a set of ODEs. Using
these ODEs we demonstrate via examples that an LMS-
DFE in fact comes close to the instantaneous DFE-WF after
some initial transience. We also show that it significantly
outperforms the commonly used IDFE (even when designed
using perfect channel estimates) at all practical SNRs. An
interesting observation is that, the improvement is significant
even at high SNRs where an IDFE does not suffer from error
propagation.

The paper is organized as follows. Our system model,
notations and assumptions are discussed in Section II. In
Section III, we obtain an ODE approximation for the tracking
trajectory of an LMS-DFE. Section IV provides some exam-
ples verifying our claims, while Section V concludes the
section. Some of the proofs are provided in the Appendices.

II. SYSTEM MODEL AND NOTATIONS

Decoder
+

+θf

θb

ukZ
sk

nk

sk̂Channel

Q(.)

Fig. 1. Block diagram of a Wireless channel followed by a DFE.

We consider a system with a wireless channel and a DFE (see
Figure 1). Inputs{sk} enter a time varying finite impulse
response channel{zk,l}L−1

l=0 , and are corrupted by additive
white Gaussian noise{nk} with varianceσ2. The channel
output,uk, at any timek, is given by,

uk =
L−1∑
l=0

sk−lzk,l + nk.

The time variations of the channel are modeled by an AR(2)
process,

Zk = d1Zk−1 + d2Zk−2 + µWk (1)

where Wk is an IID vector sequence of Gaussian random
variables (Gaussian assumption is not really needed) and

Zk =
[

zk,0, zk,1 · · · zk,L−1

]
. The channel outputs

uk pass through a DFE with a hard decoder. The details
about the equalizer are given below. We use the following
notations and assumptions.

• We assume BPSK modulation, i.e.,sk ∈ {+1,−1}.
• Sequences{sk} and {nk} are IID (independent, iden-

tically distributed) and independent of each other.
• The equalizer forward filter is given by{θfl

}Nf−1
l=0 ,

while the feedback filter is given by{θbl
}Nb

l=1.

• NL
4
=Nf+L−1.

• The decisions are obtained after hard decoding. Hence
decisionŝk is given by,

ŝk = Q

Nf−1∑
l=0

θf luk−l +
Nb∑
l=1

θblŝk−l

 where

Q(x) :=
{

+1 if x ≥ 0,
−1 if x < 0.

(2)

• For any vector, x, we use xl to represent its
lth component.xk

l , l ≤ k, represents the vector[
xk xk−1 · · · xl

]T
.

• The following vector notations are used throughout.

Sk
4
= sk

k−NL+1, Nk
4
= nk

k−Nf +1

Uk
4
= uk

k−Nf +1, Ŝk
4
= ŝk

k−Nb+1,

Xk
4
= [ UT

k ŜT
k−1 ]T, Gk

4
= [ ST

k XT
k ]T,

θf
4
= θf

Nf−1
0 , θb

4
= θb

Nb
1 ,

θ
4
= [ θf

T θb
T ]T .

• θk represent the time varying equalizer at timek.
• Let S := {+1,−1}. For a fixed(θ, Z), Gk is a Markov

chain made of the channel inputSk, channel outputUk

and the decoder output̂Sk−1 when the channel is the
fixed vectorZ and the equalizer is fixed atθ. Gk takes
values inSNL × SNb × RNf , whereR is the set of
real numbers. We represent throughout this paper the
current and previous state values of this Markov chain
by the ordered pairs(i, y), (j, y′) respectively. Herei, j
take values from the discrete part of the state space,
SNL × SNb , while y, y′ take values inRNf .

• Zθ = {zθl}NL−1
l=0 represents the convolution of the

channel{zl}and forward filterθf .
• B(θ, δ), B̄(θ, δ) are the open and closed balls respec-

tively with centerθ and radiusδ.
• K(ε,M) :=

{
(θ1, θ2) ∈ RNf ×RNb :

ε < |θ1| ≤ M, |θ2| ≤ M}.
• Eθ,Z

j,y′ represents the expectation of the Markov chain
Gk for fixed channel, equalizer pair(θ, Z) when the
initial condition is j, y′.

• Ej,y′;θ,Z represents the expectation of the Markov chain
{Gk, θk, Zk, Zk−1} with initial condition (j, y′, θ, Z).

• Eθ,Z;θ′,Z′

(j,y′);(i,y) represents the expectation of the Markov
chain pair {(Gk, G′k)} under the initial condition
j, y′, i, y. HereGk is the Markov chain for fixed chan-
nel, equalizer pair(θ, Z) with initial condition j, y′



while G′k is the one for channel, equalizer pair(θ′, Z ′)
with initial condition i, y. When both the initial condi-
tions are same it is simply represented by,Eθ,Z;θ′,Z′

i,y .

• P θ,Zk(.|.), Πθ,Z , Eθ,Z respectively represent the
k−step transition function, the stationary distribution,
and the expectation wrt to the stationary measure (exis-
tence will be shown) for a fixed channel, equalizer pair
(θ, Z).

• We use a DFE,θ, to track the wireless channel modeled
by an AR(2) process,{Zk}. The LMS algorithm is used
to continuously update the equalizerθ to cater to the
time varying channel.

θk+1 = θk − µH1θk
(Gk) where (3)

H1θ(G)
4
= X

(
Xtθ − s

)
.

III. ODE A PPROXIMATION

We can rewrite the channel AR(2) process (1) as,

Zk+1 = (1− d2)Zk + d2Zk−1 + µ(Wk + ηZk). (4)

We will show below that the trajectory(θk, Zk) given by
equations (4), (3) can be approximated by the solution of the
following system of ODEs,

(1 + d2)
�
Z (t) = h(Z(t)), if d2 ∈ (−1, 1],

d2Z(t)
dt2

= h(Z(t)), if d2 = −1,

d2Z(t)
dt2

+ η1

�
Z (t) = h(Z(t)),

if d2 is close to− 1, (5)

�
θ (t) = h1(θ(t), Z(t)), (6)

where

h(Z)
4
= E(Wk + ηZ) = E(W1) + ηZ,

h1(θ, Z)
4
= Eθ,Z

[
Xk

(
Xt

kθ − sk

)]
= −Rxx(θ, Z)θ + Rxs(θ, Z),

η =
d1 + d2 − 1

µ
,

Rxx(θ, Z) = Eθ,Z
(
XXt

)
,

Rxs(θ, Z) = Eθ,Z(Xs).

In (5), whend2 is close but not equal to−1, two ODEs ap-
proximate the same AR(2) process. This is an important case
and results when a second order AR process approximates
a fading channel with a U-shaped band limited spectrum.
It is obtained for small values offdT where fd is the
maximum Doppler frequency shift andT is the symbol
transmission time. For example iffdT equals0.04, 0.01
or 0.005 the channel is approximated by an AR(2) pro-
cess with(d1, d2, µ) equal to (1.9707,−0.9916, 0.00035),
(1.9982,−0.9995, 1.38e−6) and(1.9995,−0.9999, 8.66e−8)
respectively (see e.g., [10])). One could approximate such
an AR(2) process with the first order ODE of (5). However
this approximation will not be very accurate and will require

µ to be very small. In this case, the second order ODE
approximates the channel trajectory better. We will plot these
approximations in Section IV.

One can easily see that the above system of ODEs have
unique global solutions that are bounded for any finite time
(more details are in the technical report [9] ).

Let Z(t, t0, Z), θ(t, t0, θ) represent the solutions of the
ODEs (5), (6) with initial conditionsZ(t0) = Z, θ(t0) = θ,

and
�
Z (t0) = 0 whenever the channel is approximated by a

second order ODE.
Let Vk

4
=(Zk, θk) and V (k)

4
=(Z(µαk, 0, Z), θ(µk, 0, θ)),

whereα = 1 if Z(., ., .) is the solution of a first order ODE
and= 1/2 otherwise. We prove Theorem 1, as in [7].

Theorem 1: For any finiteT > 0, for all δ > 0 and for
any initial condition (G, θ, Z), with d2Z−1 + d1Z0 = Z,
�
Z (t0) = 0 whenever the channel is approximated by a
second order ODE andθ0 = θ,

PG,Z,θ

 sup
{1≤k≤ T

µα }
|Vk − V (k)| ≥ δ

 → 0,

as µ → 0, uniformly for all (Z, θ) ∈ Q, if Q is contained
in the bounded set containing the solution of the ODEs (5),
(6) till time T .
Proof : Please see the Appendix A.

Thus we obtain the ODE approximation for the LMS-
DFE tracking an AR(2) process. The approximating ODE
(6) suggests that, its instantaneous attractors will be same
as the LMS-DFE attractors when the channel is fixed at the
instantaneous value of the channel ODE (5) (as in [8]). We
have shown in [8] that these LMS-DFE attractors are close
to the DFE-WF at high SNRs. Hence the ODE suggests that
the LMS-DFE may move close to the instantaneous DFE-
WFs. We will in fact see that this is true for the examples
we study in the next section.

One can easily see that the solution of the channel (AR(2)
process) ODE is,

Z(t):=



C1e
η

1+d2
t − E(W )

η ,

η 6= 0, d2 ∈ (−1, 1],
E(W )
1+d2

t + C1,

η = 0, d2 ∈ (−1, 1],
C1cosh(

√
η t)− E(W )

η ,

η > 0, d2 = −1,

C1cos(
√
|η| t)− E(W )

η ,

η < 0, d2 = −1,
E(W )

2 t2 + C1,
η = 0, d2 = −1,

C1e
−2at + E(W )

2a t,
η = 0, d2 close to − 1,

C1e
−atcos(

√
|η| − a2 t)− E(W )

η ,

η < −a2, d2 close to − 1,

C1e
−atcosh(

√
η + a2 t)− E(W )

η ,

otherwise,

(7)



where the constantC1 is chosen appropriately to match the
initial condition of the approximated AR(2) process.

One of the uses of the above ODE approximation is that
we can approximately obtain the performance (e.g., BER,
MSE) of our LMS-DFE at any time by using the trajectory
of this ODE. Of course, obtaining BER theoretically is still
a problem because the BER of a system with a fixed known
channel and a fixed DFE is still not available. But our ODE
approximation is still useful because one can obtain the
performance (transient as well as stationary) of the LMS-
DFE with only one simulation, which would not be possible
otherwise.

IV. EXAMPLES

We use the ODE approximation of the previous section to
obtain some interesting conclusions. The ODE approxima-
tion gives accurate deterministic approximation of the LMS-
DFE and the channel trajectory for practical values of step
sizes. Hence as commented above, using these ODEs one can
get good estimates of instantaneous performance measures
like, Bit Error Rate (BER) and Mean Square Error (MSE)
for almost all realizations of the LMS-DFE and the channel
trajectory. Using the channel ODE, one can also obtain the
same performance measures for instantaneous IDFE. Then
one can compare the IDFE and the LMS-DFE along the
entire time axis.

In all the examples below, we estimate the DFE-WF as
in [8] (directly using steepest descent algorithm by approxi-
mating the gradient of the MSE with difference of estimated
MSEs at two close points divided by the distance between the
same two points). In the figures solid line, dash dot line, dash
dash line respectively represent the true coefficient trajectory,
the ODE approximation and the IDFE trajectory respectively
while the stars represent the DFE-WFs.

To begin with we consider a stable channel (for which all
the poles are inside the unit circle),

Zk = .4995Zk−1 + 0.5Zk−2 + 0.0001Wk.

HereWk is a Gaussian IID random vector with independent
components of unit variance and its mean given by,[

0.26 0.34 0.25 0.064 −0.13 −0.19 −0.16
0 0.064 0.064

]
.

We consider a five tap feed-forward filter and a five tap
feed-back filter. The LMS step-size equalsµ = 0.001. (In
theory it is assumed that the step-sizeµ of LMS is also
equal to the channel step-size. However one can absorb the
difference into one of theH1(), H() functions.) The noise
varianceσ2 = 0.05. We plot some of the channel and
the equalizer filter coefficient trajectories along with their
ODE approximations in Figure 2 (the trajectories for the
other co-efficients behave in the same way but we do not
present due to lack of space. These are provided in [9],
which also contains additional examples). We start the LMS
and the ODEs at timet = 0 with the instantaneous IDFE.
We also plot the instantaneous DFE-WF and the IDFEs in

the same figure. We can see that the ODE approximation is
quite accurate for all the co-efficients. The approximation for
the feed-forward coefficients is better than for the feed-back
coefficients. We also see that the LMS-DFE is very close
to the instantaneous DFE-WF after some initial transience.
Furthermore, the IDFE trajectory is away from the DFE-WF
in most of the cases. We also plot the instantaneous BER
and MSE of the IDFE and the LMS-DFE (both calculated
from the corresponding ODE approximations) in last two sub
figures of Figure 2. One can see a huge improvement (upto
35%) of LMS-DFE (also of DFE-WF) over the IDFE both
in terms of BER, MSE after the initial transience (Figure 2).
On the other hand, performance of the LMS-DFE is quite
close to that of the DFE-WF.
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Fig. 2. A Stable channel with d1 = 0.4995,
d2 = 0.5, µ = 1e−4 and mean a constant multiple of
[0.26, 0.34, 0.25, 0.064, −0.13, −0.19, −0.16, 0, 0.064, 0.064].

Next, we consider a marginally stable channel in Figure 3.
Zk = 1.9999998Zk−1−Zk−2 +0.0000001Wk (One can see

from (7) that
√

d1+d2−1
µ gives the period of oscillations).Wk

is generated as before. Again there are five taps in the feed-
forward filter and five in the feed-back filter. The step size
of the LMS equals,µ = 0.001. Here the channel trajectory
is approximated by a cosine waveform. From Figure 3 we
can make the same observations as in the stable case. In
particular we see that the LMS-DFE has BER and MSE upto



50% less than for the IDFE. We also see that the LMS-DFE
is always (after initial transience) very close to the DFE-WF
while the IDFE stays quite away. This again explains the
poor performance of the IDFE (in terms of BER, MSE) over
the LMS-DFE after initial transience.
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Fig. 3. A Marginally stable channel with µ = 1e−7,
d1 = 1.9999998, d2 = −1 and mean a constant multiple of
[0.26, 0.34, 0.25, 0.064, −0.13, −0.19, −0.16, 0, 0.064, 0.064].

Finally, in Figure 4, we consider a stable channel with
d2 close to−1 (from the Figure, it actually looks like a
marginally stable channel but its magnitude is reducing at
a very small rate,1+d2√

µ , as d2 is very close to -1). In this
case, as is shown theoretically, a better ODE approximation
is obtained by a second order ODE. Here, the channel
trajectory is approximated by an exponentially reducing
cosine waveform. We considered the AR(2) process, which
approximates the fading channel with band limited and U-
shaped spectrum and received withfdT = 0.001. One can
see that, the LMS-DFE once again tracks the instantaneous
DFE-WF after initial transience (in this case more than half
of the first cycle, as this is a fast varying channel) and that
the IDFE performs poorly in comparison with the LMS-DFE
and the DFE-WF.
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Fig. 4. A Stable channel with mean a constant multiple of[0.41, .82, .41].
It is obtained forfdT = 0.001, i.e., d1 = 1.999982, d2 = −.9999947
andµ = 1.3997e− 010 .

V. CONCLUSIONS

We study an LMS-DFE tracking a wireless channel, ap-
proximated by an AR(2) process. We considered a long-
standing problem of tracking the true MSE optimal DFE.
We approximated the LMS-DFE trajectory with the solution
of a system of ODEs. Using this ODE approximation, we
showed that the LMS-DFE comes close to the instantaneous
DFE-WF after the initial transience. We also saw that the
performance measures BER and MSE of the LMS-DFE are
quite close to that of the DFE-WF after the transient period.
We thus, conclude that the LMS-DFE can be used to track
the DFE-WF.

Furthermore, we also compared the LMS-DFE with IDFE,
the popular WF designed assuming perfect past decisions
(also designed from perfect channel estimate). IDFE is shown
to be far away from the DFE-WF (also from the LMS-DFE)
trajectory throughout the entire time axis. Its performance
(BER, MSE) is substantially worse than that of the DFE-
WF and the LMS-DFE.



APPENDIX A

Proof of Theorem 1 : We consider a general system (13)-
(14) in Appendix B and prove the ODE approximation for
this in Theorem 2. The channel, equalizer pair,(θk, Zk) given
by equations (4), (3), is a specific example of the general
system (13), (14). Thus Theorem 1 is proved if we show
that (θk, Zk) given by (4), (3) satisfies the assumptionsA.1-
A.3 andB.1-B.4 of Theorem 2 in Appendix B.

The AR(2) process{Zk} in (4) clearly satisfies the as-
sumptionsA.1 - A.3 as is shown in [7]. If(θk, Zk) stay
constant and equal(θ, Z), then {Gk} is a Markov chain
whose transition probabilitiesP θ,Z(G,A) are a function of
(θ, Z) alone. Thus conditionB.1 is satisfied. One can easily
see that conditionsB.2, B.4 are satisfied by the LMS-DFE
(the details are in [9]). Next we verifyB.3 (More details of
this proof are in [9]).

Verification of Assumptions B.3(b) and B.3(c)i :

One can clearly see that for all initial conditionsj, y′, i, y
and all equalizersθ,

Eθ,Z
j,y′ (|Un|p) ≤

{
C if p > Nf

C ′ |y′|p if p ≤ Nf ,
(8)

Eθ,Z
(j,y′);(i,y)

(
|Un − U ′n|

p) ≤
{

C if p > Nf

C ′ |y − y′|p if p ≤ Nf ,
(9)

whenever the channelZ ∈ B(0, ε′) for any ε′. Using (8),
(9) and Lemma 1, 2 of the Appendix C we show that all
the hypothesis required for the Proposition 2, p.253, [2] are
satisfied in [9]. By this Proposition (which is reproduced in
Appendix D of [9]),

h1(θ, Z) = lim
k→∞

P θ,Zk
H1θ(j, y′), (10)

exists for every channel, equalizer pair(θ, Z), and for
any initial condition j, y′. Please note here thatP θ,Zk

as
mentioned in Section II represents thek-step transition
function of the Markov chain{Gk}, with the channel and
the equalizer fixed atθ, Z. Also, by the same Proposition,
for some constantsC < ∞, q > 0 andρ < 1,∣∣∣h1(θ, Z)− P θ,Zk

H1θ(i, y)
∣∣∣ ≤ Cρk(1 + |y|q). (11)

We also get the existence of,

νθ,Z(G)
4
=

∑
k≥0

P θ,Zk
(H1(θ, G)− h1(θ, Z)),

for all channel, equalizer pairs(θ, Z), which satisfy the
assumptionB.3b. Finally, by uniformity of all the inequalities
for any θ ∈ K(ε,M), Z ∈ B(0, ε′), assumptionB.3(c)i is
satisfied, i.e.,

|νθ,Z(i, y)| ≤ C6(1 + |y|q), with C6 < ∞.

In [9], we showed that for every fixed(θ, Z), a unique
stationary measure of the Markov chainGk exists and is
continuous in(θ, Z). Henceh1(θ, Z) = Eθ,ZH1θ.

Verification of Assumption B.3a :

One can easily see that for(θ, Z), (θ′, Z ′) from a compact
set,Q, there exists a constantC depending uponQ such that,
for all k > Nf ,

|H1θ(Gk(θ, Z))−H1θ′(Gk(θ′, Z ′))| (12)

≤ C |(θ, Z)− (θ′, Z ′)| (1 + |Nk|).

Using limit (10) and the upper bound (12) we get,

|h1(θ, Z)− h1(θ′, Z ′)|

=
∣∣∣∣ lim
k→∞

(
P θ,Zk

H1θ(j, y′)− P θ′,Z′k
H1θ′(j, y′)

)∣∣∣∣
=

∣∣∣∣ lim
k→∞

Eθ,Z;θ′,Z′

(i,y);(j,y′){H1θ(Gk(θ, Z))−H1θ′(Gk(θ′, Z ′))}
∣∣∣∣

≤ C ′ |(θ, Z)− (θ′, Z ′)| ,

whenever(θ, Z), (θ′, Z ′) are in a compact setQ.

Verification of Assumption B.3(c)ii :

Note that,

P θ,Zνθ,Z(j, y′) =
∑
k≥1

{
P θ,Zk

H1θ(j, y′)− h(θ, Z)
}

.

Hence, for any(θ, Z), (θ′, Z ′) pair and anyj, y′,∣∣∣P θ,Zνθ,Z(j, y′)− P θ′,Z′
νθ′,Z′(j, y′)

∣∣∣
≤

∣∣∣∣∣
n∑

k=1

(
P θ,Zk

H1θ(j, y′)− P θ′,Z′k
H1θ(i, y)

)∣∣∣∣∣
+(n− 1) |h1(θ, Z)− h1(θ′, Z ′)|

+

∣∣∣∣∣
n∑

k=1

(
P θ′,Z′k

H1θ(j, y′)− P θ′,Z′k
H1θ′(j, y′)

)∣∣∣∣∣
+

∣∣∣∣∣∣
∑
k≥n

{
P θ,Zk

H1θ(j, y′)− h(θ, Z)
}∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑
k≥n

{
P θ′,Z′k

H1θ′(j, y′)− h(θ′, Z ′)
}∣∣∣∣∣∣ .

The second term is bounded by a constant multiple of the
term,n |(θ, Z)− (θ′, Z ′)|, ash1 is locally Lipschitz (proved
in the previous para). Using the upper bound (11), one can
see that the fourth and fifth terms are bounded by a constant
multiple of the termρn(1+|y′|q). Without loss of generality,
we can further chooseq ≥ 2. The third term can be bounded
because|H1θ(i, y)−H1θ′(i, y)| ≤ C |y|2 |θ − θ′| whenever

θ, θ′ come from a compact set and becauseP θ′,Z′

j,y′

k
|y|4 ≤

C ′
(
1 + |y′|4

)
for any k. Hence we get,∣∣∣P θ,Zνθ,Z(j, y′)− P θ′,Z′

νθ′,Z′(j, y′)
∣∣∣2

≤ B1n
n∑

k=1

∣∣∣P θ,Zk
H1θ(j, y′)− P θ′,Z′k

H1θ(j, y′)
∣∣∣2

+
(
B2n

2 |(θ, Z)− (θ′, Z ′)|2 + B3ρ
2n

)
(1 + |y′|2q).



Fix ε > 0, M > 0, ε′ > 0. Define
τ
4
= infn

{
(θn, Zn) /∈ K̄(ε,M)× B̄(0, ε′)

}
. By Lemma

3 and 4 for anym,

Ei,y,θ0,Z0

{
I(m + 1 ≤ τ)

∣∣P θm+1,Zm+1νθm+1,Zm+1(Gm+1)

−P θm,Zmνθm,Zm
(Gm+1)

∣∣2}
≤ B1n

2C5µ
0.5

(
1 + |y|4

)
+ B2n

2C6µ
0.5

(
1 + |y|2q

)
+B3ρ

2n
(
1 + |y|2q

)
≤ B

(
n2µ0.5 + ρ2n

) (
1 + |y|2q

)
.

Now, we choosen =
⌈
logµ0.5.

(
logρ2

)−1
⌉
, where dxe

represents the smallest integer≥ x. Then,

logρ2n ≥ logµ0.5.

Hence we have for some constantC depending uponρ,

n2µ0.5 + ρ2n ≤ C
(
1 +

∣∣logµ0.5
∣∣2) µ0.5 + µ0.5.

Then for anyλ < 0.5 (aslimx→0 xα(log(x))2 = 0 whenever
α > 0, by applying L’Hospital’s rule twice),

Ei,y,θ0,Z0

{
I(m + 1 ≤ τ)

∣∣P θm+1,Zm+1νθm+1,Zm+1(Gm+1)

−P θm,Zmνθm,Zm(Gm+1)
∣∣2}

≤ B′(λ)µλ
(
1 + |y|2q

)
.

We have shown in the technical report [9] that the ODEs
(5), (6) have unique bounded solution for any finite time
interval. Hence the condition (17) given below is satisfied
for any finite timeT for some pair of compact setsQ1, Q2.
Thus all the hypothesis of Theorem 1 are satisfied.�

APPENDIX B : ODE APPROXIMATION OF A GENERAL

SYSTEM

We consider the following general system,

Zk+1 = (1− d2)Zk + d2Zk−1 + µH(Zk,Wk), (13)

θk+1 = θk + µH1(Zk, θk, Gk+1), (14)

where equation (13) satisfies all the conditions inA.1–A.3
and the equation (14) satisfies the assumptionsB.1–B.4, both
given in the next para. We will show that the above equations
can be approximated by the solution of the ODE’s,

(1 + d2)
�
Z (t) = h(Z(t)), if d2 ∈ (−1, 1],

d2Z(t)
dt2

= h(Z(t)), if d2 = −1,

d2Z(t)
dt2

+ η1

�
Z (t) = h(Z(t)), if d2 is close to− 1,

(15)

�
θ (t) = h1(Z(t), θ(t)), (16)

where the functionh1 is defined in the assumptions given
below andh(Z) = E[H(Z,W )], with η1 = 1+d2√

µ .

We make the following assumptions for the system (13) :

A.1 {Wk} is an IID sequence.
A.2 h(Z) = E [H (Wk, Z)] is a C1 function.
A.3 For any compact setQ, there exists a constantC(Q),

such thatE|H(Z,W )|2 ≤ C(Q) for all Z ∈ Q,
where the expectation is taken wrtW .

We make the following assumptions for (14), which are
similar to that in [2]. LetD ⊂ Rd be an open subset.

B.1 There exists a family{PZ,θ} of transition probabilities
PZ,θ(G,A) such that, for any Borel subsetA,

P [Gn+1 ∈ A|Fn] = PZn,θn(Gn,A)

whereFk
4
=σ(θ0, Z0, Z1,W1,W2, · · · ,Wk, G0, G1, · · · , Gk).

This in turn implies that the tuple(Gk, θk, Zk, Zk−1)
forms a Markov chain.

B.2 For any compact subsetQ of D, there exist constants
C1, q1 such that for all(Z, θ) ∈ D we have

|H1(Z, θ, G)| ≤ C1(1 + |G|q1).

B.3 There exists a functionh1 on D, and for eachZ, θ ∈ D
a functionνZ,θ(.) such that

a) h1 is locally Lipschitz onD.
b) (I − PZ,θ)νZ,θ(G) = H1(Z, θ, G)− h1(Z, θ).
c) For all compact subsets Q of D, there exist constants

C3, C4, q3, q4 and λ ∈ [0.5, 1], such that for all
Z, θ, Z

′
, θ

′ ∈ Q

i) |νZ,θ(G)| ≤ C3(1 + |G|q3),
ii) EG,A{

∣∣PZk,θk
νZk,θk

(Gk)− PZk,θk
νZk−1,θk−1(Gk)

∣∣2
I(k < τ(Q))} ≤ C4 (1 + |G|q4)µλ.

B.4 For any compact setQ in D and for any q > 0,
there exists aµq(Q) < ∞, such that for alln, G,
A = (Z, θ) ∈ Rd

EG,A {I(Zk, θk ∈ Q, k ≤ n) (1 + |Gn+1|q)}
≤ µq(Q) (1 + |G|q) ,

where EG,A represents the expectation taken with
G0, Z0, θ0 = G, Z, θ.

Let Z(t, t0, Z), θ(t, t0, θ) represent the solutions of the
ODEs (15), (16) with initial conditionsZ(t0) = Z, θ(t0) =
θ. For second order ODEs the additional initial condition is
given by

�
Z (t0) = 0. Let Q1 and Q2 be any two compact

subsets ofD, such thatQ1 ⊂ Q2 and we can choose aT > 0
such that there exists anδ0 > 0 satisfying

d ((Z(t, 0, Z), θ(t, 0, θ)), Qc
2) ≥ δ0, (17)

for all (Z, θ) ∈ Q1 and all t, 0 ≤ t ≤ T. We prove
Theorem 2, following the approach used in [2]. Parts of

this theorem are presented in [7]. LetVk
4
=(Zk, θk) and

V (k)
4
=(Z(µαk, 0, Z), θ(µk, 0, θ)), whereα = 1 if Z(., ., .)

is solution of a first order ODE and1/2 otherwise.
Theorem 2: Assume,E|H(Z,W )|4 ≤ C1(Q) for all Z

in any given compact setQ of D. Also assumeA.1–A.3
and B.1–B.4. Furthermore, pick compact setsQ1, Q2, and
positive constantsT , δ0 satisfying (17). Then for allδ ≤ δ0



and for any initial conditionG, with Z−1 = Z0 = Z,
�
Z

(t0) = 0 (wheneverZ(., ., .) is solution of a second order
ODE), andθ0 = θ,

PG,Z,θ

 sup
1≤k≤b T

µα c
|Vk,−V (k)| ≥ δ

 → 0 asµ → 0

uniformly for all Z, θ ∈ Q1.
Proof : The proof is given in the Technical Report [6].

APPENDIX C

In this Appendix we state the Lemmas used in Appendix
A. Their proofs are provided in [9].

Lemma 1: Let A(n) =
{

Ŝk 6= Ŝ′k; k = 1, 2, · · · , n
}

.

Given ε,M, ε′, there exist positiveC2 < ∞, and ρ < 1
such that, for allZ ∈ B̄(0, ε′), θ ∈ K̄(ε,M) and alln,

P θ,Z
(i,y);(j,y′)(A(n)) ≤ C2ρ

n.

Lemma 2: For anyθ, Z, for any pair of initial conditions
(j, y′), (i, y) and for anyn > Nf + NL + Nb,

P θ,Z
(j,y′);(i,y)

({
Ŝn−1 = Ŝ′n−1, Ŝn 6= Ŝ′n

})
= 0.

Lemma 3: There exists a constantC5 such that for alln,
for all initial conditions(i, y), (θ0, Z0) ∈ K̄(ε,M)×B(0, ε′),

Ei,y;θ0,Z0

{
I(m + 1 ≤ τ)

∣∣∣P θm+1,Zm+1
n
H1θm+1(Gm+1)

−P θm,Zm
n
H1θm+1(Gm+1)

∣∣∣2} ≤ C5µ
0.5

(
1 + |y|4

)
.

Lemma 4: For any givenε, ε′,M , there exists a constant
C6 > 0 such that for all initial conditions(i, y), (θ0, Z0) ∈
(K̄(ε,M)× B̄(0, ε′)) and for anyq > 0,

Ei,y;θ0,Z0

{
I(m + 1 ≤ τ) |(θm+1, Zm+1)− (θm, Zm)|2

(1 + |Um+1|q)} ≤ C6µ
0.5 (1 + |y|q)
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