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Generalized Analysis of a Distributed
Energy Efficient Algorithm for Change Detection

Taposh Banerjee, Vinod Sharma, Veeraruna Kavitha, and A. K. JayaPrakasam

Abstract—We propose an energy efficient distributed cooper-
ative Change Detection scheme called DualCUSUM based on
Page’s CUSUM algorithm. In the algorithm, each sensor runs
a CUSUM and transmits only when the CUSUM is above
some threshold. The transmissions from the sensors are fused
at the physical layer. The channel is modeled as a Multiple
Access Channel (MAC) corrupted with noise. The fusion center
performs another CUSUM to detect the change. The algorithm
performs better than several existing schemes when energy is
at a premium. We generalize the algorithm to also include
nonparametric CUSUM and provide a unified analysis. Our
results show that while the false alarm probability is smaller for
observation distribution with a lighter tail, the detection delay is
asymptotically the same for any distribution. Consequently, we
provide a new viewpoint on why parametric CUSUM performs
better than nonparametric CUSUM. In the process, we also
develop new results on a reflected random walk which can be of
independent interest.

Index Terms—Nonparametric CUSUM, decentralized change
detection, reflected random walk.

I. INTRODUCTION

THE detection of an abrupt change in the distribution of
a sequence of random variables is a classical problem

in statistics. In this problem, a decision maker observes a se-
quence of random variables. At some point of time, unknown
to the decision maker, the distribution of these observations
changes. The decision maker has to detect this change of law
as soon as possible subject to some false alarm constraint. This
is also called the centralized version of the change detection
problem and has been well studied. When the observations
are independent and identically distributed (iid) conditioned
on the time of change and the distribution of the change time
T is known (this is called the Bayesian setting), the optimal
algorithm was obtained by Shiryaev ([29]). When distribution
of T is not known, the CUSUM algorithm, first proposed by
Page in [23], was shown by Lorden ([17]) and Moustakides
([22]) to minimize the worst case delay (Min-Max optimality).

In the distributed version of the change detection problem,
multiple geographically distributed sensors take observations
and send the processed information to a decision maker
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(fusion center) for the detection of change. This model finds
application in biomedical signal processing, intrusion detec-
tion in computer and sensor networks ([35], [33]), finance,
quality control engineering, and recently, distributed detection
of spectrum holes in cognitive radio networks ([16], [28]).
The distribution of the observations of all the sensors changes
simultaneously at some random point of time. While this
model is slightly restrictive, it is the most widely studied
model in the literature. As evident from the work in [3], [37]
and in this paper, even this model is not well explored.

In the absence of communication and resource constraints,
the sensors can send the raw observations to the fusion center
and the problem reduces to the centralized one discussed
above. However, in applications like sensor networks, the
sensors are low power, battery operated devices and thus there
are severe constraints on their communication and processing
capabilities. Therefore, it is suggested that sensors send pro-
cessed version (e.g., quantized) of their observations to the
fusion center and the fusion center fuses the information from
various sensors to make the decision (see [7], [33], [35], [36]
for various processing possibilities).

Several distributed algorithms have been proposed for de-
tection of change. When sensors send quantized version of
their observations to the fusion center, the author in [35] has
obtained asymptotically optimal algorithms in the Bayesian
setting. In [20], a CUSUM based algorithm is proposed which
is shown to be asymptotically Min-Max optimal. In this
algorithm, each sensor runs the CUSUM algorithm and sends
a ’1’ if it detects a change and a ’0’ otherwise. The fusion
center declares a change when all the sensors transmit a ’1’
simultaneously. In [33] and [34], various distributed change
detection algorithms are compared.

The above problem formulations do not explicitly take
energy consumption in to account. Furthermore, these algo-
rithms ignore the unreliability of the communication channel.
Recently, a Bayesian formulation of the decentralized change
detection problem with energy constraints was considered in
[37]. The problem is solved using dynamic programming by
restricting the solution to a class of algorithms.

In this paper we propose a CUSUM based algorithm called
DualCUSUM and show that, for given constraints on false
alarm probability and energy, its mean detection delay is much
less than that in [37]. Also, DualCUSUM is computationally
much less complex and requires no feedback from the fusion
node. We also provide the false alarm and delay analysis of
our algorithm.

DualCUSUM uses physical layer fusion to reduce transmis-
sion delays from different nodes. Physical layer fusion requires
phase, frequency and time synchronization of different nodes.
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This is feasible in sensor networks ([19], [30]). However, if
one does not provide for such synchronization, DualCUSUM
can be used without physical layer fusion (using other MAC
layer protocols, e.g., TDMA). Due to other features mentioned
above, it still provides good performance (compared to the
algorithms available in literature). Even in the absence of
an energy constraint, our preliminary investigations indicate
that DualCUSUM performs better than other distributed algo-
rithms, some of which have been identified to be asymptoti-
cally optimal ([20], [33], [35]).

DualCUSUM has been used for cooperative spectrum sens-
ing in Cognitive Radio Systems in [28] and shown to provide
better performance than other algorithms available in literature
not only in delay but also in saving energy.

Although this algorithm has many desirable features, there
is one practical limitation: to use CUSUM one needs the
distribution of observations before and after change at each
sensor node. This may not be a realistic assumption in many
cases. For example, there can be random time varying fading
in the wireless channels in sensor networks (see other articles
in [30]), and in the Cognitive Radio Systems ([16], [28]). See
also [7] for other practical examples. Thus in this paper we
also extend DualCUSUM to a nonparametric set up.

We analyze a generalized version of DualCUSUM of which
parametric and nonparametric versions are special cases. A
few interesting facts emerge from this analysis: mean detection
delay is insensitive to the distribution of the observations but
the false alarm probability crucially depends on the tail behav-
ior of the distributions at least for the nonparametric CUSUM.
The lighter the tail, the lower the false alarm probability. We
also show that the log likelihood function converts a heavy
tailed distribution to a light tail distribution. Since, parametric
CUSUM uses log likelihood and nonparametric CUSUM does
not, the former performs better than the latter for a given
distribution of observations.

Since CUSUM is, or will be a fundamental element of many
distributed algorithms for detection of change, the tools and
techniques used here can be of general interest. Also, since
the CUSUM algorithm is essentially a reflected random walk,
during our analysis, we obtain new results on passage times,
overshoot distribution and excursion above a level for reflected
random walks. Despite extensive studies on random walks,
there are comparatively few results on reflected random walks
([10]).

The paper is organized as follows. We explain the model
and introduce the algorithm in Section II. Section III analyzes
the performance of the algorithm and provides comparison
with simulations. Section IV concludes the paper.

II. MODEL AND ALGORITHM

Let there be L sensors in a sensor field, sensing observations
and transmitting to a fusion node. The transmissions from
the sensor nodes to the fusion node are over a MAC. In our
system we assume that all the sensor nodes can transmit at
the same time. There is physical layer fusion at the fusion
node (commonly studied Gaussian MAC is a special case).
The fusion node receives data over time and decides if there
is a change in distribution of the observations at the sensors.

Let Xk,l be the observation made at sensor l at time k. Sensor
l transmits Yk,l at time k after processing Xk,l and its past
observations. The fusion node receives Yk = ∑L

l=1 Yk,l + ZMAC,
where {ZMAC} is iid receiver noise. The distribution of the
observations at each sensor changes simultaneously at a ran-
dom time T , with a known distribution. The {Xk,l , l ≥ 1} are
independent and identically distributed (iid) over l and are
independent over k, conditioned on change time T . Before the
change Xk,l have density f0 and after the change the density
is f1. The expectation under fi will be denoted by Ei, i = 0,1,
and P∞ and P1 denote the probability measure under no change
and when change happens at time 1, respectively.

These assumptions are commonly made in the literature (see
e.g., [7], [35], [36]). Physical layer fusion is considered in [21]
and [37].

The objective of the fusion center is to detect this change as
soon as possible at time τ (say) using the messages transmitted
from all the L sensors, subject to an upper bound α on the

probability of False Alarm PFA
�
= P[τ < T ] and E0 on the

average energy used. Often the desired α is quite low, e.g.,
≤ 10−6 in intrusion detection in sensor networks. Then, the
general problem is:

minEDD
�
= E[(τ −T)+],

Subj to PFA ≤α and Eavg= E

[
τ

∑
k=1

Y 2
k,l

]
≤ E0,1 ≤ l ≤ L (1)

For this distributed optimization problem there is no opti-
mal solution available so far although asymptotically optimal
solution have been identified ([33] - [35]). In the following
instead of solving the optimization problem directly, we
develop an efficient parametric class of algorithms. We also
analyze its performance. This analysis can be used to optimize
its parameter. Our algorithm has several desirable features
to provide better performance than the algorithms we are
aware of (including the asymptotically optimal solutions). This
algorithm is called DualCUSUM and is as follows:

1) Sensor l uses CUSUM,

Wk,l = max
{

0,Wk−1,l + log
[

f1
(
Xk,l

)/
f0

(
Xk,l

)]}
, (2)

where, W0,l = 0,1 ≤ l ≤ L.
Remark: One can see that the CUSUM is a reflected
random walk.

2) Sensor l transmits Yk,l = b1{Wk,l>γ}. Here 1A denotes the
indicator function of set A.
Remark: This is the energy saving step. The parameter b
is chosen offline based on the energy constraint.

3) Physical layer fusion (as in [37]) is used to reduce
transmission delay, i.e., Yk = ∑L

l=1 Yk,l + ZMAC,k, where
ZMAC,k is the receiver noise.

4) Finally, Fusion center runs CUSUM:

Fk = max

{
0,Fk−1 + log

gI(Yk)
g0(Yk)

}
; F0 = 0, (3)

where g0 is the density of ZMAC,k, the MAC noise at the
fusion node, and gI is the density of ZMAC,k +bI, I being
a design parameter.
Remark: In the absence of MAC noise, it is Min-Max
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Fig. 1. ln(PFA) (x axis) vs EDD comparison with [37].

optimal for the fusion center to declare change when
Yk = Lb. In the presence of noise, such a decision is not
possible and hence we use another CUSUM to detect the
change. Before the change, sensors transmit rarely and
hence Yk can be approximated by N(0,σ2

M). Also, well
after the change has taken place, when all the sensors are
transmitting, Yk ∼ N(Lb,σ2

M). But the number of sensors
transmitting evolves from 1 to L after the change and
hence, we represent Yk, post change, by N(Ib,σ2

M) and
optimize over the choice of I (1 ≤ I ≤ L).

5) The fusion center declares a change at time τ(β ,γ,b, I)
when Fk crosses a threshold β :

τ(β ,γ,b, I) = inf{k : Fk > β}.
Remark: After the change, when the mean of Yk is Lb,
the drift of Fk will be positive (because 1 ≤ I ≤ L) and
change will be detected with probability 1.

Multiple values of (β ,γ,b, I) will satisfy both the false

alarm and the energy constraint. One can minimize EDD
�
=

E[(τ −T )+] over this parameter set. In Section III we obtain
the performance of DualCUSUM for given values (β ,γ,b, I)
which then can be used to solve the optimization problem:

(β ∗,γ∗,b∗, I∗) = arg min
(β ,γ,b,I)

EDD(β ,γ,b, I) (4)

subj to P[τ(β ,γ,b, I) < T ] ≤ α , energy Eavg(β ,γ,b, I) ≤ E0.
For the case of Gaussian distribution and Geometric T and
explicit optimization algorithm is provided in [3] to solve (4).

Figure (1) compares the optimal DualCUSUM (obtained via
the optimization algorithm in [3]) with the scheme in [37] and
the optimal centralized Shiryaev scheme via simulation. We
use the parameters: L = 2, I = 1, f0 ∼ N(0,1), f1 ∼ N(0.75,1),
ZMAC,k ∼N(0,1), T ∼Geom(ρ = 0.05) and E0 = 7.61. Clearly
DualCUSUM performs better than [37] and the performance
tends to improve as PFA decreases.

If the distribution of T is known, then for a single node,
Shiryaev algorithm is optimal ([15], [35]). One could possibly
use that also in our setup at the secondary or fusion nodes.
However, especially, in cooperative setup its performance
analysis may become intractable. DualCUSUM itself has been
difficult to analyze. Thus for cooperative Shiryaev algorithm
getting optimal parameters will be almost impossible except
via simulations. Furthermore, surprisingly DualCUSUM per-

forms as well as an algorithm where Shiryaev algorithm is
used at the local nodes and CUSUM at the fusion node. This
comparison is also shown in Figure 1. Surprisingly our initial
investigations also show that DualCUSUM may work better
than the algorithm which uses Shiryaev algorithm at both
the local nodes as well as at the fusion center. In addition,
DualCUSUM can be used in the non-Bayesian setup. Most of
the analysis remains the same.

More recently we have used DualCUSUM for spectrum
sensing and shown in [28] that it performs better than several
recently proposed algorithms. This motivates us to study
DualCUSUM further.

DualCUSUM, as the original CUSUM itself, has a strong
limitation. It requires exact knowledge of f0 and f1. This
information will be available apriori to varying degrees in a
practical scenario. Depending upon the type of uncertainty in
f0, f1, different algorithms/variations on CUSUM are available
([9], [15]). One common algorithm, called nonparametric
CUSUM is to replace (2) by

Wk+1,l = max{0,Wk,l + Xk+1,l −D}, (5)

where, D is an appropriate constant such that E[Xk,l −D] is
negative before change and positive after change. If the mean
of Xk,l is known before and after the change, D can be chosen
as the average of the two means. For Gaussian and exponential
distributions, nonparametric CUSUM becomes CUSUM for
some appropriate D and scaling. If at the fusion node g0 is
not known (in our CUSUM algorithm (3) at the fusion node,
gI(x) = Ib + g0(x)), then one can use (5) even at the fusion
node.

In the following we will compute PFA and EDD for a
generalized class of algorithms where at the sensor nodes and
at the fusion node we use the algorithm,

Wk+1 = max{0,Wk + Zk+1}, (6)

where, {Zk} is an iid sequence with different distributions
before and after the change. (At the fusion node the situation
is more complicated; we will comment on it as and when
needed). We will assume that E[Zk] < 0 before the change
and E[Zk] > 0 after the change. We will denote by fZ ,FZ and
PZ the density, cdf and probability measure for Zk.

Algorithm (6) contains CUSUM and nonparametric
CUSUM as special cases. In the next section we analyze the
generalized DualCUSUM with (6). We emphasize that unlike
DualCUSUM, this algorithm may not require knowledge of
f0 and f1, (e.g., we only need to choose D appropriately
for nonparametric CUSUM). But, the performance of this
algorithm, as we show in the next section, does depend on
the underlying distribution. This is typical of such algorithms.

III. ANALYSIS

In this section, we first compute the false alarm probability
PFA and then the delay EDD. The idea is to model the times
at which the CUSUM {Wk} at the local sensors, crosses the
threshold γ (we drop subscript l for convenience) and the local
nodes transmit to the fusion node (Fig. 2).

Computing PFA requires finding (when Zk has distribution
f0) the distribution of τγ , the first time Wk crosses γ , the
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Wk Sojourn time above γ

γ

τγ

Γ

τ0

Fig. 2. Excursions of Wk above γ can be approximated by a compound
Poisson process. A local node transmits to the fusion node during these
excursions.

amount of time it stays above γ (excursion time above γ), and
the probability that the fusion node declares a change during
an excursion time. These are computed in Sections III-A-III-E.
The delay EDD is computed in Section III-G.

We will need the following notations and definitions. Let X
be a random variable with distribution F . Then F∗n denotes
the n-fold convolution of F and F̄(x) = 1−F(x). A function
l is slowly varying if for all λ > 0, l(λ x)/l(x) → 1 as x → ∞.

Definition 1: ([1]) F is heavy tailed if for any ε > 0,
E[eε|X |] = ∞. F is subexponential if F̄∗2(x)/F̄(x) → 2 as x →
∞. If F is not heavy tailed, we call it light tailed. If 1−F(x) =
l(x)x−α ,α > 0 where l is slowly varying then F is regularly
varying with index −α .

Gaussian, Exponential and Laplace distributions are light
tailed. Pareto, Lognormal and Weibull distributions are subex-
ponential. Subexponential distributions are a subclass of heavy
tailed distributions and regularly varying distributions are a
subclass of subexponential distributions. We will also be con-
cerned with a sub family S ∗ of subexponential distributions
defined in [11] which contains all the above members of
subexponential family if they have a finite mean.

Often it is said that light tailed distributions may provide
better system behavior than the heavy tailed ([8]). We demon-
strate this for the probability of false alarm. In particular we
will show that if the positive tail of FZ is light then PFA is
much less than if it is heavy tailed. Interestingly, we will also
show that EDD is largely insensitive to the tail behavior of FZ .

CUSUM has the interesting property that it transforms a
large class of heavy tailed distributions into light tailed dis-
tributions. This important property of log likelihood seems to
have escaped the attention of investigators before. This makes
CUSUM perform better than the nonparametric CUSUM.
Lemma 1 (in Appendix A) states this property in reasonable
generality.

A. Behavior of Wk under P∞

The process {Wk} is a reflected random walk with negative
drift under P∞. Figure (2) shows a typical sample path for
{Wk}. The process visits 0 (regenerates) a finite number of
times before it crosses the threshold γ at,

τγ
�
= inf{k ≥ 1 : Wk ≥ γ}. (7)

We call τγ the First Passage Time (FPT). The overshoot Γ
is defined as Wτγ − γ . The time between two regenerations is

inter-regeneration time τ . Under P∞, E[τ] < ∞. Let

τ0
�
= inf{k : k > τγ ;Wk ≤ 0}− τγ and,

η = #{k : Wk ≥ γ;τγ ≤ k ≤ τγ + τ0}. (8)

During time η (called a batch) a local node transmits to
the fusion node. Thus, these are the times during which the
fusion node will most likely declare a change. The overshoot
Γ can have significant impact on η .

It has been shown in [24] that the point process of ex-
ceedances of γ by Wk, converges to a compound Poisson
process as γ → ∞. The points appear as clusters. The intervals
between the clusters have the same distribution as that of τγ
in (7) and the distribution of η in (8) gives the distribution of
the size of the cluster, i.e., the batch of the compound Poisson
process. Since, one has to choose large values of γ to keep PFA

small, a batch Poisson process provides a good approximation
in our scenario.

In the next few sections we give results on the distribution
of τγ , overshoot Γ, and the distribution of the batch η which
will be used in computing PFA.

B. First Passage Time under P∞

From the compound Poisson process approximation men-
tioned above,

lim
γ→∞

P∞[τγ > x] = exp(−λγx), x > 0, (9)

where, λγ a positive constant. In [3] a formula for λγ was used
which is computable for Gaussian distribution only. However,
by solving integral equations obtained via renewal arguments
([25]), one can obtain the mean of FPT for any distribution.
Epochs when Wk = 0 are renewal epochs for this process. Let
L(s) be the mean FPT with W0 = s ≥ 0. Hence λγ = 1/L(0).
Then from renewal arguments:

L(s) = FZ(−s)(L(0)+ 1)

+
∫ γ−s

−s
(L(s+ z)+ 1)dFZ(z)dz+ P[Z > γ − s]. (10)

This equation is obtained by conditioning on Z0 = z. If
Z0 ≤−s, then W1 = 0, providing the first term on the right. If
Z > γ − s, then the threshold is approached in one step only,
providing the last term.

Equation (10) can be shown to be a Fredholm integral equa-
tion of second kind ([26]). Theorem 1 shows that Equation
(10) has a unique continuous solution in our set up under
weak conditions.

Theorem 1: If FZ is continuous and FZ(γ) < 1 then (10) has
a unique continuous solution L.

Proof: See Appendix B.
Equation (10) can be solved recursively on L(s),0 ≤ s ≤ γ .

An efficient algorithm is provided in [18].
From (10) not only we can compute the E[τγ ] exactly, but

can also get some asymptotic rates. Taking s = 0 in (10), and
writing L(0) as Lγ (0) to make dependence on γ explicit, we
get (since Lγ (0) ≥ Lγ (y) for 0 ≤ y ≤ γ)

Lγ(0) = 1 + FZ(0)Lγ (0)+
∫ γ

0 Lγ (y) fZ(y)dy
≤ 1 + FZ(0)Lγ(0)+ Lγ(0)(FZ(γ)−FZ(0)).
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TABLE I
MEAN FPT E[τγ ] FOR PARETO (K = 2.1) AND GAUSSIAN WITH

EZk = −0.5.

γ E[τγ ] Gauss E[τγ ] Pareto
5 930 800
6 2551 1100
7 6950 1455
8 19020 1880

Thus,

Lγ (0) ≤ 1
1−FZ(γ)

. (11)

Equation (11) provides the dependence of E[τγ ] on the tail of
distribution of FZ . For example, if 1−FZ(γ)∼ γ−α ,α > 0, then
E[τγ ]≤ γα and if FZ is light tailed (∼ e−αγ ) then E[τγ ]∼ eαγ .

Although (11) only gives an upper bound on the growth of
E[τγ ] with γ , it turns out that this upper bound in fact gives
the exact rate of growth. This can be seen from the following
facts (due to lack of space we will be brief). Let pγ be the
probability of Wk exceeding γ in one regeneration length. Let
E[τ] be the mean regeneration length. From [14],

pγE[τγ ]
E[τ]

→ 1 as γ → ∞. (12)

From [1], if Z has subexponential distribution then for γ large,
pγ ≈ P[Z > γ]E[τ] and hence from (12), E[τγ ] ∼ 1/P[Z > γ].
If there exists an γ̄ > 0 with E[eγ̄Z ] = eγ̄ then from [27],
γ−1 log pγ →−γ̄ and hence from (12) we get γ−1 logE[τγ ]→ γ̄ .

Table I provides E[τγ ] for Pareto distribution with K = 2.1
and Gaussian distribution with E[Zk] = −0.5 and var(Zk) =
1. We see that as γ increases E[τγ ] for Gaussian distribution
becomes much larger than for the Pareto distribution. This
implies that PFA for the Gaussian distribution should be much
less than for Pareto, K = 2.1 if γ is large.

C. Distribution of overshoot

Next we consider the mean and the distribution of the
overshoot Γ. From renewal equations as in (10), we can
exactly compute E[Γ] for any distribution. If R(x) = E[Γ] with
W0 = x,

R(x) = E[Zk − (γ − x)|Zk > (γ − x)]PZ[Zk > γ − x]+∫ γ

y=0
R(y) fZ(y− x)dy + R(0)FZ(−x). (13)

The mean overshoot E[Γ] equals R(0). Similar to the equation
(10), this is also a Fredholm integral equation of second kind.
Thus, we can obtain existence of a unique continuous solution
of this equation as in Theorem 1 under the same conditions.
For light tails E[Γ] converges quickly to a constant value as
γ → ∞. Thus for light tails (13) can be evaluated for a much
smaller value of γ which can then be used for all higher values
of threshold as well.

As in case of (10), (13) also provides some asymptotic rates
and dependence of E[Γ] on the tails of Z. Taking x = 0 in (13)
and denoting R(0) as Rγ(0), we get

Rγ (0) = E[Z − γ|Z > γ]P[Z > γ]+ Rγ(0)FZ(0)

+
∫ γ

y=0
Rγ (y) fZ(y)dy,

and hence Rγ(0) ≥ E[Z−γ)|Z>γ]P[Z>γ]
1−FZ(0) .

If 1−FZ is of regular variation with index −α then

E[Z− γ)|Z > γ]P[Z > γ] =
∫ ∞

γ
zdPZ(z)− γP[Z > γ]

is of regular variation with index −α + 1 and hence Rγ(0) ≥
l(γ)γ−α+1 for slowly varying function l.

If Z is of exponential type, i.e., limx→∞
fZ(x+γ)

fZ(x) = e−λ γ for

all γ > 0 for some λ > 0, then Rγ(0) ≥ β e−λ γ for large γ .
This suggests that for heavy tailed Z mean overshoot will be
much more. The following results further strengthen this. Let
M(τ) = max{Wk,0 ≤ k ≤ τ −1}.

Theorem 2: The following hold:

(a) If Z ∈ S ∗ then for x > 0, P[Γ(γ) > x] ≤ P[M(τ) > γ +
x|M(τ) > γ] → 1 as γ → ∞ and M(τ) is subexponential.

(b) If Z is regular with index −α , α > 1, then M(τ) is regular

with index −α and for any ε > 0, Γ(γ)γ
−1

(α−ε) → 0 a.s. and

E[Γ(γ)]γ
−1

(α−ε) → 0 as γ → ∞.
(c) If there is an α > 0 such that E[eαZ] = 1 then Γ is light

tailed and E[Γ(γ)] � e−αγ .

Proof: See Appendix C.
Theorem 2(c) states that if Z is light tailed, E[Γ(γ)] decays

exponentially with γ . The following discussion suggests that
Γ(γ) has an exponential distribution as γ → ∞.

To express the results related to distribution of the over-
shoot, we need the concept of Maximum Domain of Attraction
(MDH). Let Mn = max{W1, . . . ,Wn}. Since, {Wk} is Harris er-

godic and hence strongly mixing, (see [1]), an(Mn −bn)
d→ H,

where
d→ denotes convergence in distribution and an,bn are

appropriate positive constants. Here H is either a Frechet
distribution, H(x) = exp(−x−α),x ≥ 0, for some α > 0 or
the Gumbel distribution, H(x) = exp(−e−x),−∞ < x < ∞. The
distribution of Wk is said to belong to the MDA of H. The MDA
of Subexponential distributions is a Frechet distribution, while
light tailed distributions belong to the MDA of the Gumbel
distribution.

For subexponential distributions, with Zk in MDA of an H
with parameter α , ([1]),

lim
x→∞

F̄ (γ)(ω(γ)y) = Pα(y), (14)

where, F̄ (γ)(x) = 1−(F0(x+γ)−F0(x))/F̄0(x), ω(γ) = E[Zk−
γ|Zk > γ] and Pα is the generalized Pareto distribution, with

Pα(y) =

⎧⎨
⎩

(1 + y/(α −1))−α , α < ∞,
y > 0.

e−y α = ∞,
(15)

Here, α < ∞ corresponds to the Frechet case and α = ∞ to
the Gumbel case.

We plot the distribution of overshoot for Pareto distribution
with K = 2.1 in Figure (3). The mean overshoot ω(γ) was
obtained using equation (13). We observe that equation (15)
gives a very good estimate of the overshoot distribution. We
have verified that (15) is a good approximation even when Zk

is Lognormal (with ω(γ) obtained from (13)).
The above arguments suggest that even for the light tailed

distributions, the overshoot converges to exponential distribu-
tion where the mean can be obtained from (13). We plot this
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Fig. 3. Complementary CDF of Γ for Pareto K = 2.1, EZk = −0.3 and
var(Zk) = 1 and γ = 8.
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Fig. 4. Complementary CDF of Γ for Zk ∼ N(−0.3,1) and γ ≥ 6.

approximation for Gaussian distribution in Figure (4) and find
an excellent match with simulations. We have verified this for
Laplace distribution also.

Comparing Figures (3) and (4), we see that the overshoot
for Pareto distribution is much more than for the Gaussian
distribution.

D. Distribution of the Batch

In this section we give the distribution of the batch. Al-
though the distribution of batch for sub-exponential tails is
given in [1], the one for light tails is not previously available
in the literature (for example, it is not explicitly provided in
[24]).

1) Distribution of batch for heavy tail: From Theorem
2.4 of [1], the batch size distribution for subexponential Z
(belonging to the MDA of a Frechet distribution H with
parameter α) satisfies

E[Z]
ω(γ)

η d→ Yα , (16)

as γ →∞, where ω(γ) = E[Z−γ|Z > γ] and Yα has distribution
Pα .

Figure (5) shows the plot of Batch complementary CDF for
Pareto distribution with parameters K = 2.1. One sees a good
match with simulations.

2) Distribution of batch for light tail: Let G j(x) be the
conditional batch distribution,

G j(x) = P[η ≤ j|Wτγ = γ + x],

0 40 80 120 160
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0.6

0.8

1
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Analysis

Fig. 5. Complementary CDF of Batch η for Pareto K = 2.1, EZk = −0.3
and var(Zk) = 1 and γ = 15.

when the overshoot is x. We now obtain G j(x) using Brownian
Motion (BM) approximation of {Wk}.

The reflected random walk
{

Wk+τγ

}τ0

k≥0
is given by an

ordinary random walk. Further, with large values of γ (needed
for large PFA), τ0 is sufficiently large. Thus, using Donsker’s
theorem [6] we approximate (with large N):{

Wk+τγ

}τ0

k≥0
∼ {

Wτγ + Sk,l
}τ0

k≥0

∼
{

Wτγ + σS

√
Nζ

(
k
N

)
+ kμ

}τ0

k≥0

where ζ (t), t ≥ 0 is a standard Brownian motion (BM), μ =
EZk and σS = var(Zk). Given Wτγ = γ +x, τ0 is approximated
by the time taken by the above BM to reach 0 starting with
γov = γ + x. This is given by ([13]):

P[τ0 > i] = Φ
(γov − μ i

σS
√

i

)
− e

2μγov
σ2

S Φ
(−γov − μ i

σS
√

i

)
, (17)

where Φ denotes the CDF of the standard Gaussian distribu-
tion.

We obtain the batch distribution using occupation measure,
above γ , of the BM till time τ0 ([32]). Choose time tB such
that for some small enough ε > 0, P[τ0 ≤ tB] > 1 − ε and
P[τγ ≥ tB] > 1− ε . This is possible if, P[τ0 << τγ 2] is close
to 1, which is true for small PFA (and hence large γ).

Define δ = (γ + x)
/
(σS

√
tB) , and m = μ

√
tB

/
σS The

conditional batch size distribution is approximated using, [32],
as

G j(x) = 2
∫ j

0

[ϕ(m
√

1−u)√
1−u

+ mΦ(m
√

1−u)
]

[
ϕ

(δ −mu√
u

) 1√
u
−me2mδ Φ

(−δ −m√
u

)]
du, (18)

where, ϕ represents the standard Gaussian pdf. Since the
overshoot distribution is exponential, for light tailed Zk,

P[η ≤ j] =
∫ ∞

0
G j(x)

1
E[Γ]

exp(− x
E[Γ]

)dx (19)

The mean overshoot E[Γ] = R(0), where R(0) is obtained from
equation (13). Figure (6) plots the distribution of η for Zk with
Laplace distribution via (19) and via simulations.

For Lognormal distribution, which can be approximated via
both heavy tailed and light tailed approximations provided
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Fig. 6. Complementary CDF of Batch η for Laplace Zk with EZk = −0.3
and var(Zk) = 1 and γ ≥ 7.

TABLE II
PFA FOR VARIOUS DISTRIBUTIONS USING (5) AT THE LOCAL NODE AND

(3) AT THE FUSION NODE: EZk = −0.3, var(Zk) = 1, ρ = 0.005 AND b = 1.

L I γ β PFA PFA

Anal. Sim.
×10−4 ×10−4

Gauss 5 2 15 18 1.22 1.1
10 2 15 18 2.43 2.28

Laplace 6 2 16 16 2.57 2.06
12 3 16 16 0.66 0.55

Log- 5 2 25 20 1.47 1.76
normal 10 2 25 20 2.97 3.5
Pareto 5 3 30 30 1.93 1.77
K=2.1 5 3 50 50 0.23 0.25

above, (19) provides a better approximation.
Comparing Figures (5) and (6) one sees that the batch size

for a Pareto distribution is larger than for a Laplace distribution
even when they have same mean and variance. This is a direct
consequence of having larger overshoots.

E. False Alarm Analysis

The false alarm in DualCUSUM can happen in two ways:
one within a batch (we denote its probability by p̃) and another
outside it, i.e., due to

{
ZMAC,k

}
. We will compute these later

on. First, we compute the PFA from these quantities.
From the assumptions made and the above approximation,

the inter-arrival time of the batches in the system (at the fusion
center) is exponentially distributed with rate Lλγ (because
the processes {Wk,l} are independent for different nodes each
generating batches as Poisson processes with rate λ ). Then,
the number of batches appearing before the time of change is a
Poisson random variable with parameter Lλγ i, when T = i. In
the following, we will show that the time to FA outside a batch
is exponentially distributed with parameter λ0 (to be defined
below). Therefore, if T ∼ Geom(ρ), then one can show that:

PFA = 1− e−(λ0+λγ Lp̃)ρ
1− e−(λ0+λγ Lp̃)(1−ρ)

. (20)

Similarly, one can obtain expression for PFA when T is not
geometric.

False Alarm within a Batch:

We have seen above that for light tailed Zk, the E[τγ ] is
large and the batch sizes are small. Thus, the batches by
different local nodes do not overlap. However, it is not true
for heavy tailed distributions. Thus we compute the p̃ for the
two cases separately.

Light Tailed
The false alarm probability p̃ within a batch, can be com-

puted as, p̃ ≈ ∑∞
i=1 P[η = i]P[FA |η = i], where P[FA |η = i]

represents the probability of FA (CUSUM at the fusion center
crossing β ) in i transmissions when one local node is already
transmitting, i.e., Yk = b+ZMAC,k. If τβ is the FPT variable at
the fusion center, then, P[FA |η = i] = P[τβ ≤ i]. Since η is
small for negative drift under f0 (since D in (5) is chosen that
way) we use integral equations to compute the distribution of
τβ for observations Yk given in this paragraph.

Table II gives the comparison of the PFA values obtained via
(20) and simulations for light tailed distributions (Gaussian
and Laplace). It turns out that the expression is also valid
for heavy tailed distributions like Lognormal (also shown in
Table II). One can see a good match.

Heavy Tailed
Now, we use different arguments to compute p̃ and then use

it in (20). For simplicity, in the following, the fusion center
is assumed to use (3) for detection and not nonparametric
CUSUM. From [3], the optimal choice of I is found to be
always greater than 1.

Let m be the minimum number of sensors required to make
drift of Fk positive. We denote by μm the drift with m nodes
transmitting. Then we approximate p̃ by the probability that
Fk will have positive drift during a batch and that the batch
lasts for β/μm time (the time needed for Fk to cross β when
the drift is μm) after m sensors start transmitting. We compute
this in the following.

Within a batch of size η , let T1 be the time at which one
out of the remaining L − 1 nodes transmit. Let the second
transmission (one out of L−2) happens at T1 +T2, and so on.
Since τγ is exponential, Ti are also exponential with parameter
(L− i)λγ if μi+1 < μm. Then,

p̃ ≈ P

[
T1 + T2 + . . .+ Tm−1 +

β
μm

< η
]
.

We use this approximation to compute PFA for Pareto K = 2.1
distribution. This is also provided in Table II. We see that the
approximation is indeed good for Pareto K = 2.1.

False Alarm outside a Batch

In the absence of any transmission from the sensors, Yk ∼
N(0,σ2

MAC) if ZMAC ∼ N(0,σ2
MAC), where N(0,σ2

MAC) denotes
Gaussian distribution with mean 0 and variance σ2

MAC. Hence,
Fk has negative drift. Thus the time to first reach β , i.e.,
time till FA, is approximately exponentially distributed with
parameter λ0 which can be obtained from Section III-B.

F. Comparative overall performance

The effect of tail of Zk on FPT, overshoot and batch size was
shown in the previous sections. This causes much larger PFA
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TABLE III
COMPARISON OF E∗

DD OF GAUSSIAN (I∗ = 3) AND PARETO (I∗ = 4) WITH

L = 5, E0 = 5, EZk = −0.5, var(Zk) = 1 AND ZMAC = N(0,1).

ρ PFA E∗
DD E∗

DD
Gauss Pareto

K=2.1

5e-4 e-2 29 36
5e-4 e-3 33 49
1e-4 e-3 41 95

TABLE IV
COMPARATIVE PERFORMANCE OF PARAMETRIC AND NONPARAMETRIC

DUALCUSUM FOR PFA = 0.01 WITH ρ = 0.05, E0 = 7.61, AND

ZMAC = N(0,1).

f0 → f1 L/I E∗
DD E∗

DD
nonparametric parametric

Pareto xm = 1 5/4 54.8 4.4
K = 7 to K = 3

Pareto xm = 1 5/4 69.1 24.9
K = 40 to K = 30

Gaussian σ = 1 5/3 10.1 10.1
EZk = 0 to EZk = 0.6

for heavy tailed Zk compared to the light tailed distributions
for same mean and variance. This gets reflected into large
EDD for heavy tailed distributions for a given PFA. Table III
confirms these conclusions as the EDD for a light tailed system
is much smaller as compared to the one from a heavy tailed
system. The individual systems are optimized to make sure
that each performs at its best.

Table IV shows the comparative performance of parametric
and nonparametric DualCUSUM’s for given f0 and f1. The
difference in performance is most pronounced when the tail
of f0 is heaviest, i.e. for K = 7, while the performance is same
for Gaussian distributions on which log likelihood function has
no effect.

Note that in Table IV, the variance of Zk is different for
parametric and nonparametric CUSUMs. The overall effect
is thus a combination of the effect of tails and that of the
variances. However, as can be seen from the table, the effect
of tail dominates and the general conclusion that light tailed
systems are better, still holds.

EDD in Tables III and IV is computed via simulations.
However in the next section we theoretically evaluate EDD

and then compare with the simulated values.

G. Computation of EDD

The mean detection delay, EDD, at the fusion node, after
the change has occurred, can be written as,

EDD = E
[
(τ −T )+

]
= E[τ −T |τ ≥ T ](1−PFA). (21)

When μ = E[Zk] > 0, the time τγ for Wk at a local node to
cross threshold γ satisfies E[τx]/x → 1/μ as x → ∞. Thus for
large γ , E[τγ ] ∼ γ/μ .

Let μl be the drift of fusion CUSUM Fk when l local nodes
are transmitting.

TABLE V
COMPARISON OF EDD FOR VARIOUS DISTRIBUTIONS: L = 10,I = 1,β = γ

EZk = −0.3, VAR(Zk)=1 AND b = 1.

EDD EDD

γ EDD EDD EDD Log− Pareto
Anal. Gauss Laplace normal K = 3

5 5.3 9.1 9.3 9.3 10.7
8 11.4 16.6 16.8 16.9 18.7

15 30.3 36.3 36.5 36.7 38.5
50 146.7 146.8 147.1 147.6 150.5

Let L = 1. Let the change take place at k = 0. After
approximately τγ slots the local node will start transmitting
signal level b to the fusion center. Hence, after τγ slots the drift
of Fk is μ1. Since L = 1, μ1 has to be positive for reasonable
system performance. Then, the mean time for fusion center
to touch threshold β , for large β is approximately β/μ1.
Therefore a reasonable asymptotic estimate of EDD, for large
γ and β is, EDD ≈ γ/μ + β/μ1. We have verified that this is
a good approximation even for small positive drifts μ ,μ1.

For L≥ 2, γ/μ +β/μ1 is not a good approximation for EDD.
This is because of three reasons. First, when there is more than
one node running CUSUM Wk, any one of them can cross γ ,
and the time for the first among them to cross is much less
than γ

μ , especially when L is large. Second, as the number of
nodes crossing γ increases, the drift at the fusion node changes
from μ0 through μL. Finally, depending on the choice of I or D
(based on whether (3) or (5) is used at the fusion center), some
of the μl’s can be negative or zero. Taking these factors into
account, we have developed an approximation for EDD which
works quite well for L > 1 (see [4]). However, in the following
we use a somewhat different approach which is useful in more
general scenario also.

Using the above approximation via LLN and via central
limit theorem approximation, we can show that for each node,
τγ ∼ N( γ

μ , σ 2γ
μ3 ). Thus, to compute the time τ(l) when l nodes

start transmitting one can compute the lth order statistics of L
i.i.d. random variables with the distribution of τγ . Let I nodes
need to transmit before the CUSUM at the fusion node has
drift μI positive. Then we approximate EDD by E[τ(I)]+β/μI

where β/μI approximate the time CUSUM at the fusion node
takes to cross β with drift μI .

Since, the strong law of large number and the central
limit theorem suffice to build the approximations, the EDD is
independent of the distribution of Zk but depends only on its
mean and variance. The results are shown in Table V for dif-
ferent distributions. The second column is our approximation
developed above and the rest are obtained via actual system
simulations. It can be seen that, as γ reaches 50, the EDD of
all the distributions considered is nearly 147.

IV. CONCLUSIONS

We have proposed an energy efficient distributed change de-
tection scheme which uses the physical layer fusion technique
and CUSUM at the sensors as well as at the fusion center. We
have shown that it performs better than various algorithms
available in literature. We also extended the algorithm to also
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include the nonparametric CUSUM. We have theoretically
computed the probability of false alarm and mean delay in
change detection for the general algorithm. The analytical
results provide good approximations for different distributions.
Our analysis provides interesting conclusions and insights.
One is that the tail of the distribution has significant effect
on the performance of nonparametric CUSUM. We also show
why parametric CUSUM is relatively insensitive to the tails.
In the process we obtain new results on the reflected random
walk which can be of independent interest.

APPENDIX A

This section states and proves Lemma 1 which shows that
log likelihood converts a large class of distributions into light
tailed distributions. Let Z = log f1(x)

f0(x) and g(x) = f1(x)
f0(x) . Then,

the following hold:
Lemma 1: (a) If g(x)≤ xβ for some β > 0, and all x large

enough and 1 − F0(x) ≤ x−α0 for all large x then the
positive tail of distribution of Z decays exponentially with
parameter α0/β .

(b) If g(x)≤ exp(αxβ ) for some α,β > 0 and all x large and
1−F0(x) ≤ exp(−α0xβ0) for α0,β0 > 0, then P[z > x] <
exp(−α0

x
α

β0/β ).
Proof: (a) For x > 0, P0[Z > x] = P0[g(X) > ex]≤P0[Xβ >

ex] ≤ e−xα0/β .
(b) For x > 0, P0[Z > x] = P0[g(X) > ex] ≤ P0[exp(αXβ ) >
ex] = P0[αXβ > x] ≤ exp(−α0

x
α

β0/β ).
The above Lemma covers a large number of cases as we

illustrate now. Part (a) of the theorem shows that if f0 and f1

are heavy tailed, Z can become light tailed. Part (b) of theorem
shows that light tailed f0, f1 will keep Z light tailed. For
example let F1 and F0 be of regular variation with parameters
−α0 and −α1, i.e., 1−Fi(x) = li(x)x−αi , i = 1,2 for x > 0,
where li are slowly varying functions, and αi > 0 with α0 �= α1.
Then, Theorem 1(a) applies. If α0 > α1, g(x) = l(x)xα0−α1 ≤
xα0−α1+β1 for any β1 > 0 for all large x. Also, 1−F0(x) ≤
xα0+β2 for any β2 > 0 for x large enough. Chose 0 < β2 < α0.
Hence, P0[Z > x] < exp(−x(−α0 +β2)/(α0 −α1 +β1)) for all
x large enough providing Z with light tail under P0. If α0 <
α1, then g(x) < xβ1 for any β1 > 0 and we get P0[Z > x] <

exp(−x(α0−β2)
β1

).
Next consider exponential distributions: fi(x) =

λi exp(−λix), λi > 0, x > 0, λ0 �= λ1. Then, g(x) ≤ e|λ1−λ0|x
and P0[Z > x] < e−λ0(x−logλ1/λ0)/|λ1−λ0|. Thus Z is light tailed
under P0.

Now we show the versatility of the above result by consider-
ing f1(x)= β1x−α1 and f0(x)= exp(−(x−μ0)2/2σ2)/

√
2πσ0.

Then, g(x) = β1x−α1 exp((x − μ0)2/2σ2)
√

2πσ0 ≤ exp(αx2)
for appropriately chosen α > 0 for all large x. Thus, since

1−F0(x) ≤ exp(−(x− μ0)2/4σ2
0 )

≤ exp(α0x2),

P0[Z > x] ≤ exp(
−α0x

α1
).

APPENDIX B

This appendix provides the proof of Theorem 1.

Proof: Obtain an equation for L(0) by substituting 0 for
s in (10) and then plug in the expression for L(0) in (10). We
obtain

L(s) =
(

1 +
FZ(−s)

1−FZ(0)

)
+

∫ γ

0
Lγ (y)

(
fZ(y− s)+

fZ(y)FZ(−s)
1−FZ(0)

)
dy (22)

which is Fredholm integral equation of second kind with
kernel k(s,y) = fZ(y − s) + fZ(y)FZ(−s)

1−FZ(0) and we consider the
mapping f �→ g defined by

g(s) =
∫ γ

0
k(s,y) f (y)dy (23)

on the space of functions L2([0,γ]). From [26] (pp. 269-270),
to show that (22) has a continuous solution, for FZ continuous
we need to show that φ(s) =

∫ γ
0 k(s,y)φ(y)dy has a unique

solution which then is the trivial solution φ(s) = 0.
For this we show that (23) is a contraction mapping on the

space of continuous functions on [0,γ] (with sup norm). We

have, for ‖ f‖ �
= sup0≤y≤γ | f (y)|,

‖g‖ = sup
0≤s≤γ

|
∫ γ

0
k(s,y) f (y)dy|

≤ ‖ f‖ sup
0≤s≤γ

[∫ γ

0
fZ(y− s)dy +

∫ γ

0
fZ(y)

FZ(−s)
1−FZ(0)

dy

]

= ‖ f‖ sup
0≤s≤γ

[
FZ(γ − s)−FZ(−s)+

FZ(−s)(FZ(γ)−FZ(0))
1−FZ(0)

]

= ‖ f‖ sup
0≤s≤γ

[
(FZ(γ − s)(1−FZ(0))+ FZ(−s)(FZ(γ)−1)

1−FZ(0)

]
< ‖ f‖ sup

0≤s≤γ
FZ(γ − s)

≤ ‖ f‖FZ(γ).

Thus if FZ(γ) < 0, this operator is a contractor and hence has
a unique fixed point which is the trivial function φ(s) = 0.

APPENDIX C

This appendix provides the proof of Theorem 2.
Proof: (a) If Z ∈ S ∗ then from [1], Theorem 2.1

P[M(τ) > x] ≈ E[τ]P[Z > x] (24)

for large x. Thus M(τ) is subexponential if Z is. Let {Yk} be
i.i.d. with the distribution of M(τ). Let N(γ) = inf{n : Yn > γ}.
Then Wτγ ≤st YN(γ) (X ≤st Y denotes P[X ≤ x] ≥ P[Y ≤ x] for
all x). Thus for x > 0,

P[Wτγ − γ > x] ≤ P[YN(γ) − γ > x]

=
∞

∑
n=1

P[Yn > γ + x,N(γ) = n]

=
∞

∑
n=1

P[Yn > γ + x, max
1≤k≤n−1

Yk ≤ γ]

= P[Y > γ + x]
∞

∑
n=1

(P[Y ≤ γ])n−1

=
P[Y > γ + x]

P[Y > γ]
. (25)
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Because Y is subexponential P[Y > γ + x]/P[Y > γ] → 1 as
Y → ∞. Also taking expectations in above inequality E[Γ] ≤
E[Y − γ|Y > γ].
(b) From (24), if Z is of regular variation with index −α ,
α > 1 then M(τ) is of regular variation with index −α . Also
then E[Z] < ∞ and E[M(τ)] < ∞. Therefore, E[Y α−ε ] < ∞
for any ε > 0. Hence, from Gut [12], Chapter 1, Th.2.3,

(Γ(γ))γ
−1

(α−ε) ≤ YN(γ)γ
−1

(α−ε) → 0 a.s. because N(γ) → ∞ a.s.
as γ → ∞ and N(γ)/γ → 1/E[γ] a.s. Also since {N(γ)/γ} is
uniformly integrable (Gut [12], P.54), we get from Gut [12],
Chapter 1, Thm.7.2, limγ→∞

E[Γ(γ)]
γ1/(α−ε) = 0.

(c) From [2], Chapter 7, P[M(τ) > x] ≈ ce−uα for u > 0 for
some c > 0. Thus from (25)

P[Γ(γ) > x] = P[Wτγ − γ > x]

≤ P[Y > γ + x]
P[Y > γ]

≈ e−αx as γ → ∞. (26)
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