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Abstract

In this paper, we develop a framework to analyze pico cells with randomly walking users. We model the user
movements by a random walk with exponential wandering times. We partition each pico cell into disjoint regions
based on the transmission rates allocated and model each rate region as an equivalent step in the random walk model.
We further use queuing theoretic tools to obtain explicit expressions for the expected service time, call busy and
drop probabilities. We obtain approximate closed form expressions for optimal cell size for the case of non-elastic
traffic (for some asymptotic cases) and show that these values closely match the cell sizes obtained via numerical
simulations. We also obtain analysis of users moving at high speeds and in a fixed direction (ex., those traveling
in a car) using the theory developed in this paper. We study the influence of system parameters like, the path loss
factor, speed of user movement, power budget etc, on these optimizers. We show that the optimal cell size increases
with the increase in the speed of the users, decreases with increase in path loss factor, increases with increase in
power budget.
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I. INTRODUCTION

Recent trends in mobile broadband access and services is paving the way for dense deployment of base stations,
popularly known as small cell networks (SCNs) [1]. Typically small cell networks, comprising of portable pico and
femto base stations serve dense urban areas, commercial and office spaces, hot-spots, etc. The design and deployment
of such networks pose many a new challenges to the optimal system design. One of the key challenges for managing
mobile users is handling handovers. As the cell size decreases, on one hand the frequency of the handovers increases
resulting in losses and on the other hand the cell edge users obtain services at better communication rates. As the
handovers increase the calls get dropped before completing the service with higher probabilities, while with better
communication rates the amount of time taken for the same service reduces. Thus the performance of the system
depends upon these contrasting phenomenon and one needs to address this trade-off while designing optimal
systems. Virtual cells and fast base station switching [2] are some of the ideas proposed to reduce the handover
losses. However, they can not completely prevent the same. In this paper we study this trade-off.

In a recent work ([4]), we used spatial queuing theory to study user mobility in small cell networks. Important
system performance metrics like expected waiting time, service time, call busy and drop probabilities for various
traffic types are derived and the cell sizes, which optimizes these metrics for a given user velocity profile, are
computed. We dealt with high speed users moving in a fixed direction in that paper. The speed can be random but
is assumed to be constant during the course of the service. This model gives an understanding of cell dimensioning
with users traversing on well structured streets in urban areas and deriving service from the base stations (BS)
located on street infrastructure. However, there can be many example scenarios in which the users move randomly.
Typically, this happens in commercial centers, hot-spots and office spaces. The idea of the current work is to obtain
optimal dimensioning rules when users move in a random manner. The analysis of the system with randomly
wandering users would be way different from that of the users that traverse in a fixed direction and we use random
walk model techniques to obtain these results.

Further, in [4], we considered ”maximal” rates of service, i.e., we assume that the service rates can be changed
continually based on the distance between the user and the serving BS and that too, to the maximum possible one
(i.e., capacity). In this paper we consider a more practical scenario. We assume that the system can support one of
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the finite number of transmission (or service) rates and that a user derives his service at one of these rates based
on his distance from the serving BS. The finite set of all possible transmission rates can further depend upon the
cell dimension. Thus a cell is partitioned into as many disjoint regions as the number of possible transmission rates
and we only need to know in which rate region the user is currently located. Hence we model user movements by a
random walk model, in which each step represents a rate region. The wandering times in each region can depend
upon the region itself as well as the cell dimension. We obtain performance measures like expected service time,
call busy and drop probabilities, etc, further using queuing theoretic tools. We also obtain initial results for users
moving in fixed directions, as in [4], but served with finite number of transmission rates.

Mathematical models that can capture the dynamics of stocks, animals, humans, traffic, etc., has been a well
studied subject over the past decades. Random walks serve as a fundamental model that can explain the observed
behavior of the stochastic processes in many such cases. Often, these dynamics exhibit Markovian behavior and
hence random walks can be analyzed via Markov chains. The notion of time associated with random walks can be
discrete or continuous. Also, the step sizes can follow a distribution (for e.g. Gaussian etc.), while the direction of
the walk can be uniform over the interval (0, 2π). Further, the steps need not be independent, but, can be correlated.
Another important aspect is that, if the step sizes are very small, the dynamics can be well represented by a Wiener
process, also popularly known as Brownian motion. The theory of random walks has a long history which goes
back to the beginning of the last century by Karl Pearson. Feller’s and Spitzer’s books [9], [10] contain preliminary
material on this topic.

Random walk and other mobility models are often used to study user movement in cellular networks in various
contexts. In the following we list a few. An excellent survey of mobility models used in the simulations of wireless
networks, is provided in [8] and the references therein. The authors in [5] develop a two dimensional random
walk model to study mobility in wireless networks and use the underlying Markov chain property of this random
walk to derive the cumulative distribution function of the dwell time. They present preliminary results for the
case of rectangle and circular cell shapes. Their approach provides modeling mainly for distance-based criterion
of boundary crossing, which can be extended to take into account the radio link propagation effects. In [6], an
enhanced random mobility model to simulate user movement in wireless networks is introduced. The authors assume
correlated movement and derive the model considering speed and direction change events as random processes with
specific emphasis to the users border behavior. The authors in [7] define a generic mobility model: the random
trip model for independent mobiles that contains random waypoint, random walk and other models. They study the
necessary and sufficient condition for a stationary regime. This framework provides a rich set of well understood
models that can be used to simulate mobile networks with independent node movements. While random walk and
other such models have been a popular choice to simulate user movement for cellular systems, in this work, we
use the random walk model to analyze wandering users in small cell networks. Assuming that at each step, the
user is served by one of the transmission rates available at the base station for a duration that is exponential, we
derive derive important system performance metrics using queuing theoretic tools and further use them to derive
dimensioning rules in such networks.

Section II describes the system model while in Section III, theoretical analysis is presented for generic case.
Section IV studies the case of random walk with exponential wandering times. The case of high speed users is
discussed in section V.

II. SYSTEM MODEL

We have a network with small cells, each of dimension L. In the case of one dimensional networks (see Figure
1), the entire network spans over a line segment say [−D,D] which is divided into cells of length 2L while in
the case of two dimensional networks (see Figure 2), each cell is a circle of radius L. Our aim is to find optimal
dimension, L∗, while the network caters to moving users. Let η := 1{1D}+21{2D}. We assume that the neighboring
cells do not interfere each other.
Rate Regions: The cell is divided into 2N (or N for 2D) disjoint segments (based on the distance from Base
station1) such that the users in a segment are served with the same transmission rate. Let {An}n∈N represent these

1In small cell networks (transmission at small distances), distance based propagation losses would be sufficient for deciding the theoretical
rate limits as well as the practical transmission rates.
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Fig. 1. One dimensional cell, rate partitioning and user’s
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Fig. 2. Two dimensional cell, rate partitioning and user’s
movement

rate regions (see figures 1 and 2) where with |.| representing the norm or the absolute value,

An :=


[

(n−1)L
N , nLN

]
1{n>0} +

[
nL
N , (n+1)L

N

]
1{n<0} if 1D{

x ∈ R2 : (n−1)L
N ≤ |x| ≤ nL

N

}
if 2D

(1)

and N :=
{
{−N, · · · ,−1, 1, · · · , N} if 1D
{1, · · · , N} if 2D.

(2)

User in region n receives service at rate r|n|. Let R := {r1, . . . , rN} represent the ensemble of all possible
transmission rates. Note that this set is arranged in the decreasing order. For example in a two dimensional (circular)
cell of Figure 2, each annular ring is served with a common rate and these common rates decrease as the distance
from the center (where BS is located) increases. The rate at which the service is offered changes once the user
switches from one region to another.
Embedded (Rate) Markov Chain: The users can be located any where in one of the rate regions {A}n. We
represent the user location at time step k by Φk . When Φk = n, it implies that the user is wandering in segment

An and is receiving service at rate r|n| at time k. Let Wn represent the time for which the user remains in nth

region, An. This represents (for any k), the actual time for which the kth step lasts, given that Φk = n. Note here,
we are inherently assuming that the consequent times, the user spends in the same rate region, are identically and
independently distributed (IID). However these times can depend upon the region in which the user is wandering.
After wandering in a certain rate region n for time Wn the user either moves to region n+ 1 with probability pn
or to region n− 1 with probability 1− pn. Note that p1 = 1 always for 2D. That is, {pn} represent the transition
probabilities of the embedded Markov chain {Φk}.

All the quantities {pn}, {Wn} {rn} can depend upon the dimension L (which we are trying to optimize) and
the dependence is shown explicitly only if required by adding L as a parameter in the usual way, for example like,
pn;L.
Arrivals: There are two types of arrivals: 1) arrivals from external world (represented explicitly by subscript e
and this is done only when there is ambiguity) modeled as Poisson arrivals with parameter λ; 2) handover arrivals
(always indicated using subscript h) modeled again as Poisson arrivals2, but this stream is derived from a fraction
of the stream (1) whose service is not completed at a cross over. The rate of arrivals into the cell of interest depends

2This is a commonly made assumption, for example see [11], [12].
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upon the cell dimension L and this is shown by either λL (for external arrivals) or λh;L (for handover arrivals).
For external arrivals, we assume3 λL = λLη while λh;L will be calculated in later sections.

Every arrival, brings along with it the marks (Φ, S), where Φ ∈ N is the position of arrival with distribution
Π := {πn} and S the number of bytes to be transmitted is exponentially distributed, i.e., S ∼ µexp−µtdt for some
µ > 0.
Resources: A cell can attend to K parallel calls. The power per transmission, PL, depends upon the cell dimension
and this dependency will be discussed later.
An example of R: One can choose the set of possible transmission rates, R and N based on the practical channel
coding schemes that are going to be used in the network design. The analysis presented can be utilized to study
a system with any given R and N . However, in this paper, we consider a specific example. This specific R is
obtained using low SNR approximation of the following theoretical (capacity) rate4:

r(d) := PL

(
1{d≤d0} + r0 |d|−β 1{d>d0}

)
with r0 = dβ0 ,

where r(d) is the rate at distance d, d0 is a small lossless distance5 while β is the propagation co-efficient. We
consider a specific system which supports transmission at the maximum possible rate for the entire region. For
example in An the farthest user will be at distance |n|L/N and hence maximal transmission rate, that can be
allocated, equals

rn = r(|n|L/N) = r0PLN
βL−β|n|−β. (3)

Alternatively, if the system under consideration can design modulation and or channel coding schemes so as to
achieve (almost) ν percent of the theoretical rates where ν < 1 is a fixed coefficient, then again the above rate
structure is applicable (after absorbing ν into r0 of (3)).
Handovers: Whenever the user reaches the boundary {|x| = L} the call is handed over to the neighboring cell.
The random walk pattern of the users can result in multiple hand-overs and one can avoid such situation by again
using latency, i.e. for example for 1D, by assuming that the handover occurs only when the user jumps either
to (N + δn)L/(2N) or to −(N + δn)L/(2N) so that there is an overlap of δn steps on either direction. The
old BS continues to serve the user till these overlap steps are also crossed. Similarly when a call is handed over
from the cell, say [L, 3L], the call is handed over to the cell under consideration [−L,L] when its user crosses
(N − δ)L/(2N). We right now present the analysis with δn = 0 however the analysis goes through in a similar
way for δn > 0.
Information to initiate handover: Every new connection requires sh extra bytes to be exchanged to initiate it.
The effect of these bytes (on the system performance) for a new call will be negligible (as it would be once),
however one needs to consider their effect on handover calls. These bytes are usually very small in proportion to
the actual bytes to be transmitted, i.e., sh << S with high probability. We assume that these sh bytes are exchanged
with probability one, while the user is wandering in the last rate region (e.g., rN ) itself.
Notations: Let the flag, η, represent 1 for 1D and 2 for 2D. We denote the transpose by t. Calligraphic letters
represent matrices. Mathbb letters represent sets (e.g., N - set of segment numbers R - set of all possible transmission
rates, An - rate region n). The contents inside two flower brackets represent either a set or an ordered tuple (as
according to convenience): for example {rn} represents the set R while {πn} represents the ordered tuple Π. Lower
case letters represent time index (k) or the segment index (n). Lower case bold letters represent the vectors.

Upper case letters either represent system parameters (e.g., D - dimension of Macrocell, L - dimension of small
cell, P - Power per transmission, K - Number of servers, N - Total number of possible transmission rates (number
of elements in R) , Π = {πn}n = {Prob( Arrival in segment n)}n - Vector of arrival probabilities etc.) or represent

3If the arrivals in the entire line segment [−D,D] occur at rate λ′ those in segment [−L,L] occur at a smaller rate λL =

λ′Prob(arrival in [−L,L]). For the special case of uniform arrivals (i.e., arrivals landing uniformly in [−D,D]) λL = λL. Similarly
for 2D, λL = λL2 for some λ ≥ 0.

4For unit noise variance, capacity equals log(1 + SNR), where signal to noise ratio SNR = PLA, attenuation A = 1{d≤d0} +

(d/d0)−β1{d>d0}. For low SNRs, log(1 + SNR) ≈ SNR and hence capacity equals PLA.
5Typically d0 is very small and in this paper we consider optimizing over cell sizes L > d0N so that r(d) = r0PLd

−β always.
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Fig. 3. Transitions of the embedded Markov chain {Φk} for 1D.

random variables (W - wandering time, S - number of bytes to be transferred, Φ - the segment in which the user
is wandering etc.). When any of the above have to be indexed by n or k and further the dependency on parameter
L has to be shown, then we use notation like πn;L, Wn;L, PL, Φk etc.

We study such small cells using queuing theoretic tools and obtain relevant performance metrics like, the expected
service time, call busy and or drop probability etc. We also derive ”Capacity per cell”, a notion that gives the
maximum number of bytes that can be transfered while the user traverses in a cell divided by the cell size.

III. ANALYSIS

The aim of this section is to obtain performance analysis of the network under consideration and then to obtain
optimal cell dimension using the performances derived. We start with analysis of the embedded Markov chain
{Φk}, whose transitions are as depicted in Figure 3. We obtain most of the analysis using conditional expectation
techniques and the transition properties.

A. Expected service time

Let Be represent the total amount of time for which an user derives service from the cell (in which the call
originated), either before finishing his call or before being handed over to a neighboring cell. Let b̄e represent
its expected value while let bn represent the same given that the call originated in region n (which happens with
probability πn). Then b̄e =

∑
n πnbn.

The time taken to transfer S bytes at a rate rn equals S/rn and hence a user wandering in region n completes
his service if Wn > S/rn. Thus, the probability of completing the service while the user is in region n equals,

qn = E[Wn > S/rn] = EWn
[1− exp−µWnrn ]

= −E
[
exp−µWnrn

]
, (4)

and the expected time for which the user receives the service, while moving in region n will be

tn = E

[
min

{
Wn,

S

rn

}]
= E

[
1− exp−µWnrn

µrn

]
=

qn
µrn

. (5)

We assume S is exponentially distributed and hence the bytes remaining after receiving the service in the previous
rate region will again be exponentially distributed with the same parameter, by memoryless property.

Now, {bn} can be computed by conditioning on appropriate events. While in region n, it derives service on
average for tn time and then it moves to region n + 1 with probability pn or to region n − 1 with probability
1− pn−1. If the service is not completed in region n (which happens with probability 1− qn) then the remaining
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bytes (note S is exponential) will be served in a similar manner, in the new region entered albeit with new rate.
This repeats either till the service is completed or till the user exits the cell. Thus, {bn} satisfy the linear equations
(note p1 = 1 and negative indices are not applicable for 2D):

bn = tn + (qn0 + (1− qn)pnbn+1 + (1− qn)(1− pn)bn−1) ,

bn = 0 when n = N + 1 or − (N + 1). (6)

The last equation indicates when the user moves out of the last rate region(s) (e.g., N ) it no more derives service
from the cell under consideration. In other words, Zb = t where,

with zn := −(1− qn)pn and z̄n := −(1− qn)(1− pn), (7)

Z :=



1 z−N 0 · · · 0
z̄−(N−1) 1 z−(N−1) · · · 0

...
0 0 · · · z̄1 1 z1 0 · · · 0

...
0 0 · · · · · · z̄N 1


b = [b−N , b−N−1, · · · , b−1, b1, · · · , bN ]t

t = [t−N , t−N−1, · · · , t−1, t1, · · · , tN ]t .

For 1D Z is a 2N×2N matrix, while the same for 2D is the right lower N×N matrix. For maintaining consistency
in notations we represent the 2D matrix also by Z . In other words Z is the 2N × 2N size matrix as shown above
for 1D while for 2D the same is the right lower N ×N part of the matrix given above. In a similar way for 2D, b
and t contain only the lower N elements. Matrix Z is invertible and hence, one can solve for {bn}. The expected
service time equals

b̄e = ΠtZ−1t with Π := [π−N , π−N+1 · · · , πN ]t. (8)

B. Hand-overs (HO)

A call that crossed over to a neighboring cell before completing its service is termed as an handover call. We
assume, the hand-overs can also be modeled by Poisson arrivals (see for e.g., [11], [12]). These handovers, just
like the external or new calls, are picked up whenever the neighboring cell has free resources and require sh bytes
of information to be exchanged for initiating the call.
Stochastic equivalence, HO-SE: Due to stationarity, the handovers into the cell of interest (cell 0, [−L,L]) are
stochastically same as those that go out of the same cell, cell 0, because, for example in 1D: 1) by symmetry, the
handovers from cell 0 ([−L,L]) to cell 1 ([L, 3L]) are stochastically same as those from cell -1 ([−3L,−L]) to cell
0; 2) the same is true for handovers when an user travels from right to left. The same is true even for 2D networks.
Using this stochastic equivalence (which we will refer henceforth as HO-SE) we calculate all the quantities related
to handovers (that are required for further analysis) via fixed point equations.
HO arrival positions: Let πh,n represent the probability that a handover call arrives at n. For 2D the handover
can occur only at N and hence,

πh,n = 0 for all 1 ≤ n < N and πh,N = 1.

For 1D handover can occur either at N or at −N and hence

πh,n = 0 for all −Nn < N and πh,N 6= 0, πh,−N 6= 0.
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For 1D networks, we assume symmetry in either direction. That is we assume that pn = 1−p−n and that Wn
d= W−n

(stochastically equivalent). Thus, πh,N = πh,−N = 1/2.

Let Πh :=
{

[0.5, 0, · · · , 0, 0.5]t for 1D
[0, 0 · · · , 0, 1]t for 2D.

(9)

HO Arrival rate: The probability of a (possible) handover is one minus the probability of service being completed
within the cell and this has to be calculated by solving linear equations as in the case of b̄e. Let hn represent the
overall probability of completing the service in cell 0, given the call is originated in the region n. Then {hn} solves
(by conditioning as explained for {bn}, see equation (6))

hn = qn + (1− qn)pnhn+1 + (1− qn)(1− pn)hn−1 and

hn = 0 when n = N + 1 or − (N + 1).

That is, Zh = q where h := [h−N , · · · , hN ]t and q := [q−N , · · · , qN ]t. Again for 2D, the vectors h and q have
only the lower N elements. And so, the probability of a new arrival not completing the service before moving out
of the current cell (which results in a handover) equals

Pe,ho = 1−
∑
n

πnhn = 1−ΠtZ−1q. (10)

In other words, out of all the new or external arrivals that arrived in cell 0, Pe,ho portion of them get handed over
to a neighboring cell. Some of these handovers get converted to a handover again. The probability of this event
can be calculated in a similar way and it equals (see equation (9)),

Ph,ho = 1−Πh
tZ−1q.

Because of memory less property (as S is exponential) there is no difference in this probability (or any other
quantity that we calculate further) for the first handover and for the subsequent handovers. The expected service
time of a handover call (irrespective of the number of times it is already handed over) can be calculated in a similar
way as done while obtaining (8) and equals:

b̄h = Πt
hZ−1t.

A handover can result in further handovers and so on. Thus (by conditioning on appropriate events) we notice
that this rate λh;L by stochastic equivalence (HO-SE), satisfies:

λh;L = λLPe,ho + λh;LPh,ho and hence λh;L =
λLPe,ho

1− Ph,ho
.

C. Overall service time and stability factor

Let b̄ represent the average of the service times demanded by external as well as handover arrivals. This service
time also includes, th := sh/rN (note these bytes are exchanged in the exterior most rate region), defined as the
time taken to serve the handover bytes sh. Calculation of th depends upon the specific example and we deal with
it in the subsequent sections. Further this time has to be added to the service time only if the call is a handover
call and also in general th can effect b̄h. We discuss these issues subsequently. It is easy to see that b̄ is given by,

b̄ =
λLb̄e + λh;L(b̄h + th)

λL + λh;L
=

(λLΠt + λh;LΠt
h)Z−1t + λh;Lth

λL + λh;L
.

Then the stability factor is ρL =
b̄(λL + λh;L)

K
.
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D. Busy and Drop Probability for Non elastic traffic

Non elastic traffic comprises of users demanding immediate service. These users (e.g., voice calls) drop the call if
it is not picked up immediately, i.e., if all the servers are busy. The probability that a call is not picked immediately
is called the Busy probability and the probability that a call that was picked up is ever dropped before completing
its service is called the Drop probability. We compute both these quantities. A small cell catering to non elastic
traffic can be modeled by a M/G/K/K queue (as we have done in [4]). Then using Erlang loss formula the busy
probability can be calculated as,

PBusy(L) :=
ρKL /K!∑K
k=0 ρ

k
L/k!

.

Busy probability, PBusy, depends upon L only via ρ and both are differentiable in L (see [4] for similar details)
and by differentiating twice one can immediately obtain the following:

Lemma 1: The optimizers of ρ and PBusy are same, i.e.,

L∗ρ := min
L
ρ = min

L
PBusy(L) =: L∗PBusy .

Drop probability (probability that a call that is picked up will ever be dropped) can now be calculated by
conditioning.

PDrop = Pe,ho(PBusy + (1− PBusy)Ph,hoPh,Drop)

where Ph,ho and Pe,ho are defined in previous section and where Ph,Drop is the drop probability given that the call
is a handover call, which satisfies by HO-SE:

Ph,Drop = PBusy + (1− PBusy)Ph,hoPh,Drop

and so Ph,Drop =
PBusy

1− (1− PBusy)Ph,ho
. Substituting,

PDrop =
Pe,hoPBusy

1− (1− PBusy)Ph,ho
. (11)

E. Expected waiting time for Elastic Traffic

One can follow the approach as in ([4]) to derive the corresponding performance, the average waiting time of a
call. However this is not considered in this paper.

F. Capacity per cell

We define capacity of a cell as the average number of the ”maximum”6 bytes that can be transferred when a call
originates in the cell. Let cn represent the maximum number of bytes that can be transmitted when a call originates
in An. While staying in region n a maximum of Wnrn number of bytes can be transferred and hence cn can be
obtained using the following iteration (by same procedure as used for (6))

cn = E[Wn]rn + pncn+1 + (1− pn)cn−1.

Thus the capacity of the cell and the capacity per cell equals (for 1D the length of a cell ∝ L while for 2D the
area of the cell is ∝ L2)

Ccap = ΠtP−1rw and Ccell :=
Ccap
Lη

=
1
Lη

ΠtP−1rw (12)

6By ”maximum” we mean the theoretical maximum possible rate, given the rate partitioning. The rates given by (3) exactly represent this
”maximum” rates when ν = 1.
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where with p̄n := pn − 1 and p̂n := −p−n,

P :=



1 p̂N 0 · · · 0
p̄−(N−1) 1 p̂N−1 · · · 0

...
0 0 · · · p̄1 1 p̂1 · · · 0

...
0 0 · · · · · · p̄N 1


c := [c−N , c−N−1, · · · , c−1, b1, · · · , cN ]t

rw := [r−NE[W−N ], · · · , r−1E[W−1], r1E[W1], · · · , rNE[WN ]]t .

Again for 2D the quantities are reduced matrices/vectors as explained before.

G. Time to reach boundary

Expected time to reach boundary can be calculated in a similar way and it equals (w is a column vector of made
up of {E[Wn]})

τL := E[TL] = ΠtP−1w. (13)

We summarize all the expressions derived in the Table I. From this table, it is clear that analysis can be carried
out and performance measures can be obtained for any system (i.e., given N , K, the set of possible transmission
rates R etc.,) for which {pn} (the transition probabilities w.r.t. the rate regions) and {qn} (the Laplace transform
of the wandering times Wn;L) can be calculated. We next consider two example user movement models and apply
the analysis of this section to obtain expressions for various performance measures. We also obtain the closed form
expressions for the optimizers (optimal cell dimension) of these performance measures in some cases.

TABLE I
THE VARIOUS EXPRESSIONS

qn = 1− E
[
exp−µWnrn

]
tn = qn

µrn

b̄e = ΠtZ−1t b̄h = Πt
hZ−1t

Pe,ho = 1−ΠtZ−1q Ph,ho = 1−Πt
hZ−1q

λh;L = λL
Pe,ho

1−Ph,ho
ρ = (λLΠt+λh;LΠth)Z−1t+λh;Lth

K

PBusy(L) =
ρKL /K!∑K
k=0 ρ

k
L
/k!

PDrop =
Pe,hoPBusy

1−(1−PBusy)Ph,ho

Ccell = L−ηΠtP−1rw Example, rn = r0PLN
βL−β |n|−β

IV. RANDOM WALK WITH EXPONENTIAL WANDERING TIMES

The users arrive in one of the rate regions n, wander in that region for time Wn;L which is exponentially
distributed (whose distribution is independent of every other process) and then switches to one of its neighboring
rate regions or moves over to the next cell if region n was in the edge of the cell. The mean of the wandering time
Wn;L is proportional to the measure (length in case of 1D, area in case of 2D) of the region in which it is moving.
The area of 2D annular ring n equals π(L/N(n+ 1))2− π(L/Nn)2 = πL2/N2(2n− 1). That is (recall η = 1 for
1D and 2 for 2D),

E[Wn;L] =
1
ωL

=
Lη(2nη−1 − 1)

ω
for some ω > 0.



10

This dependence upon the cell size L ensures that the mean variations of the mobility model remains (almost) same
irrespective of the cell size. In this case (from (4), (5) and (7)),

qn =
µrn

ωL + µrn
, tn =

1
ωL + µrn

, (14)

zn = − ωL
ωL + µrn

pn, and z̄n = − ωL
ωL + µrn

(1− pn).

We assume that the arrivals position themselves uniformly across the entire system and hence πn = 1/((3− η)N).
We further assume that the rates used depend upon the distance from the BS. In particular we choose the theoretical
rates (in low SNR regime) as in equation (3), reduced by a ν factor (which is absorbed into r0) as explained in
section II.

A. Capacity per cell

In this case, the capacity per cell (12) simplifies to,

Ccell =
r0PLL

−β

N−βω
ΠtP−1nβ with (15)

ntβ :=
{ [

N−β, · · · , 2−β, 1, 1, 2−β, · · · , N−β
]

if 1D[
1, 3 ∗ 2−β, · · · , (2N − 1)N−β

]
if 2D

The capacity per cell represents the maximum information per cell size that can be transfered while an user moves in
the cell which can support N distinct rates. If the total power in the system has to remain constant7 then PL = PLη.
With PL scaling as PLη, we notice from equation (15) that Ccell decreases with L (note practical values of β ≥ 2,
even β = 2 is not considered as a very practical value of path loss coefficient). This implies that the optimal cell
size (optimizing the fundamental limit Ccell) is Nd0, which is a practically infeasible cell dimension. To put it
in the other way, the total power budget has to be increased with L, to design cells with practical values of cell
dimension. The necessary growth rate can easily be read from (15) and hence we have,

Lemma 2 (β+-scaling): Capacity per cell increases with L only if the power per transmission scales with L
according to

PL = PLβ+γ for some γ > 0.

To obtain this result we used low SNR approximation of the capacity formula log(1 + PLrn) ≈ PLrn. However
one can easily see that Lemma 2 is true, even without this approximation. This approximation is used only for
simplifying further analysis.

The above lemma only says that the fundamental capacity can improve monotonically with cell size once you
use PL = PLβ+γ . We call this henceforth as β+-scaling. However, this fundamental limit does not consider the
losses due to handovers.

B. Drop and Busy probability:

The handover losses become significant for small cell sizes and metrics like drop probability (PDrop) or busy
probability (PBusy) capture these losses. The rest of the section focuses on obtaining the optimal cell size for these
metrics, when the power scales as in Lemma 2. We also show in some cases that the optimal cell size (for PBusy)
is Nd0, if this scaling is not done. Towards the end we also consider/propose an optimal cell size that optimizes a
cost combining the busy probability and the total power used.

For exponential wandering times, from (3) and (14):

qn =
µr0PLL

η−β|n|−β

µr0PLLη−β|n|−β +N−β(2nη−1 − 1)−1ω
. (16)

7The number of pico cells, when each is of dimension L, is proportional to L−η and hence total power would be proportional to PLL−η .
Thus to maintain the total power constant, PL = PLη for some constant P > 0.
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We obtain further analysis in the two asymptotic limits of ω. The intermediate values of ω are studied via numerical
examples. The cell sizes obtained in Lemmas 4 and 5 approximate well the optimal cell size obtained via the
exhaustive search in numerical examples.

1) Low speeds (as ω → 0): From (13), the average time to reach the boundary of the cell, for exponential
wandering times, equals:

τL =
L

ω
ΠtP−11, with 1t := [1, · · · , 1, · · · , 1]. (17)

Thus, as ω → 0 the user covers the cell with large average times and hence this corresponds to the case of users
moving with low speeds. In this limit, from equation (16) qn ≈ 1. This in turn implies Z is close to identity matrix
and that

tn ≈
1
µrn

=
N−β

µr0PLL−β|n|−β
, Pe,ho ≈ 0 ≈ Ph,ho.

When the users wander in the same cell for considerable amount of time, its service gets completed within one
cell itself and this is the reason for no handovers (i.e, Pe,ho = Ph,ho = λh;L ≈ 0). With no handovers the drop
probability is zero. And further with β+-power scaling, one can expect an improvement in busy probability as the
cell size increases. Substituting the power scaling ( PL = PLβ+γ) and with n−1

β := [Nβ, · · · , 1, 1, · · · , Nβ]t (note
λL = λLη),

ρ =
λLη

(
Πtn−1

β

)
Kµr0PLL−βNβ

=
λLη−γ

(
Πtn−1

β

)
Kµr0PNβ

and PDrop ≈ 0.

From the above equation it is clear that the busy probability improves only if γ > η. We notice that as γ increases,
the performance (ρ) improves for the same cell size. Hence the busy probability, PBusy, also reduces with γ.
However this requires the power to be boosted. One can consider a joint cost, which combines power cost, for a
given γ and for an appropriate weight a > 0:

arg min
L

(
Lη−γ + aLβ+γ

)
. (18)

Lemma 3: In the limit ω → 0, the optimizer for the joint cost (18) combing the power spent and a factor
proportional to PBusy is given by (when γ > η),

L∗ρ(γ) =
(
β + γ − η
a(β + γ)

)1/(β+2γ−η)
.

2) High speeds (as ω → ∞): From (17), as ω → ∞ the average time to reach the boundary decreases to 0,
which implies the users are moving at high speeds. With these,

qn ≈
µrn
ωL

= Lη−β
µPLr0|n|−β(2nη−1 − 1)

N−βω
,
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(1− qn) with 1, tn with 1/ωL and Z with P . Then,

b̄e ≈ Lη

ω
ΠtP−1nω, b̄h ≈

Lη

ω
Πt
hP−1nω with

nω := 11{η=1} + [1, 3, · · · , 2N − 1]t1{η=2}

Pe,ho ≈ 1− µPLr0L
η−β

ωN−β
ΠtP−1nβ ,

Ph,ho ≈ 1− µPLr0L
η−β

ωN−β
Πt
hP−1nβ ,

ρL =
λN−β

KΠt
hP−1nβµr0

(
ρ̌1L

β+ηP−1
L + ρ̌2L

2η
)

where

ρ̌1 = Πt
hP−1nω and

ρ̌2 =
µr0
ωN−β

ntβP−1
(
ΠhΠt −ΠΠt

h

)
P−1nω.

The above calculations did not consider th = sh/rN the time required for handovers. By exponential nature of
the wandering times, the left over time in the last region will once again be exponential and hence the remaining
calculations are unchanged. With β+- power scaling we have,

ρL =
λN−β

(
ρ̌1L

β+ηP−1
L + ρ̌2L

2η
)

KΠt
hP−1nβµr0

+
shλh;L
KrN

(19)

=
λN−β

KΠt
hP−1nβµr0

(
ρ̃1L

η−γ + ρ̃2L
−2γ + ρ̌2L

2η
)

ρ̃1 = P−1ρ̌1 −
shµΠtP−1nβ

N−β
, ρ̃2 =

shω

P 2r0
.

For large values of ω, ρ̌2 is small and hence we have

ρL ≈
λN−β

KΠt
hP−1nβµr0

(
ρ̃1L

η−γ + ρ̃2L
−2γ
)
.

We see that Lemma 2 is affirmed again, i.e., the optimizer of ρ (and hence that of PBusy) equals trivial one Nd0 if
γ ≤ 0. When γ > 0, by differentiating twice (first derivative is zero and second derivative is positive at minimizer)
we obtain:

Lemma 4: For large values of ω, cell size optimizing busy probability, L∗PBusy = Nd0 if γ ≤ 0. Whenever
0 < γ < η,

L∗ρ = L∗PBusy =
(

2γρ̃2

(η − γ)ρ̃1

)1/(η+γ)

.

If sh, the handover bytes are negligible, then (since ρ̌2 is very small for large ω) the load factor ρ varies with L
predominantly via the term Lη−γ . This again implies that load factor decreases with cell size, only when γ > η
and so again one can optimize a joint cost combining the power cost as in Lemma 3. Cell size optimizing the
drop probability, can be obtained similarly (proof in Appendix A):

Lemma 5: In the limit ω →∞, the cell dimension that optimizes the drop probability is (whenever K(η− γ) >
η + γ)

L∗PDrop =
(

((2K + 1)γ + η)ρ̃2

(K(η − γ)− (η + γ))ρ̃1

)1/(η+γ)

.

Properties of the optimizers: We observe from Lemmas 4 and 5 that the optimal cell size: 1) decreases with
increase in pathloss factor β (ρ̃1 ↑ with β ↑); 2) increases with γ, the power scaling factor; 3) increases with
increase in ω (from (17), when ω ↑ ”speed” of user ↑).
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Joint Cost: One can optimize the following joint cost comprising of ρ and the power spent:

min
L

(
ρ̃1L

η−γ + ρ̃2L
−2γ + aPLβ+γ

)
.

3) Numerical examples: We obtain the optimizers for the general case of ω via numerical examples. We estimate
the optimizers for the performance metrics given in Table I, after substituting the values of qn, tn etc., with equations
(14), via grid search method. We compare the estimated optimizers (shown in figures with ∗̂ symbols) with that of
the Lemmas 4 and 5 (shown in figures as ∗). From figure 4, we see that the computed optimizers are close to the
numerically estimated ones for both the values of β (2.2 and 2.8), for both PDrop as well as PBusy and for large
values of ω. For small values of ω (ω < 70 for β = 2.8 and ω < 25 for β = 2.2) we notice the approximation is
no more good. In this example we set, P = 0.0001, γ = 0.5, K = 10, µ = 0.5, d0 = 5, sh = 0.01, N = 2, η = 1
and λ = 10−6.

In figure 5 we plot the high speed approximation for ρ given by (19) and the actual value of ρ as given in
Table I after substituting (16). In this example we set γ = 0.5, µ = 10, ω = 0600, sh = 0.00001, P = .00000001,
λ = .000001, K = 20, η = 1 and N . We notice that the approximation is very close to the actual value, however the
approximation error increases with increase in β the path loss coefficient, which once again confirms the closeness
of the two sets of the optimizers of Figure 4 for large values of ω.

From these numerical examples, we again see that, the optimal cell size decreases with increase in path loss
factor as well as with decrease in speed of the user given in terms of ω.

V. HIGH SPEED USERS (CARS) MOVING IN ONE DIRECTION

In this section we depart from randomly wandering users and study the case of users moving in a fixed direction.
Interestingly the analysis of the previous section can still be used for this case and we obtain some initial results for
this scenario, using the theory already developed. The users are moving in one direction (in a 1D cell) and at high
speeds, which can vary slightly. This example arises when a user driving in a car derives his service from portable
base stations which are installed on street infrastructure (like lamp posts). This scenario is exactly similar to the case
in our previous work ([4]), but for one major difference. In [4], it is assumed that the rate of communication can be
changed continually. This in some sense gives a ”maximal” performance: if one can change rate of communication
continually and that too, to the maximum possible one (i.e., capacity) then one obtains the best performance. But



14

in reality this is not possible and we now consider similar situation but with maximum N different possible rates
of communication as in the previous sections.

The users can move in one of the two directions with equal probability, i.e., with half probability. We assume
symmetry in both the directions and hence any performance (e.g., busy probability, drop probability etc.), conditioned
on the direction of the user, will be equal for both the directions. Thus, unconditional performance would be the
same as the performance given a direction, say left to right. Without loss of generality we assume the users are
moving from left to right. In every segment (say n), the user moves with constant speed Vn;L and we assume that
Vn;L is independent of Vn′;L whenever n 6= n′. We also assume that the distribution of Vn;L is same for all n and
L. We assume uniform arrivals. Thus the wandering time in each segment equals,

Wn;L =
L

NVn;L
for all n.

The user is always moving from right to left (without loss of generality). Thus pn = 1 for all n. It is easy to see
that,

qn = Prob

(
S

rn
<

L

NVn;L

)
= 1− E

[
e
− µrnL

NVn;L

]
.

The users are moving in high speeds (which are more or less constant) and so it is appropriate to assume that
V is uniform between Vmax and Vmin (with Vmax close to Vmin and both away from 0). It is difficult to obtain
the Laplace transform and hence qn for such cases. However, with high values of V (for all realizations) one can
approximate, 1− qn ≈ 1,

qn ≈
µrnL

N
E[1/V ] and tn ≈ E[Wn;L] =

L

N
E[1/V ].

Thus, this case will be same as that in section IV-B2 (High speeds with exponential wandering times) with

ω =
N

E[1/V ]
and P =


1 −1 0 · · · 0
0 1 −1 · · · 0

...
0 0 · · · · · · 0 1

 .
By substituting these into the previous analysis (see Table I):

bn =
N∑
k≥n

tn, b̄e =
N∑

n=−N
πnbn, b̄h = b−N ,

Pe,ho = 1−
∑
n

πn
∑
k≥n

qk and Ph,ho = 1−
∑
k≥−N

qk.

There will however be a difference because of handover bytes sh, as the wandering times are no more memory
less. We assume L/(NVmax) > th so that the handover gets completed in the exterior rate region (e.g., r−N )
itself. Under this assumption, the analysis would still be applicable if we reduce the wandering time in the A−N
rate region, to W−N ;L = L/(NV )− th for handover calls. This results in only the following changes,

b̄h = b−N−1 + E

[
L

NV
− th

]
+ th = b−N and

q−N = 1− E
[
e−µr−N( L

NV −th)
]
≈ µr−NL

N
E[1/V ]− µsh,

i.e., the average service time is not changed, however the possibility of service being completed, q−N is reduced.
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We can complete the analysis as in the previous section and obtain the following (with πn = 1/2N for all n),

Pe,ho = 1− a1L
1+γ

∑
n

πn
∑
k≥n
|k|−β

 , with

a1 =
µE[1/V ]r0P
N−β+1

Ph,ho = 1− a1L
1+γ

(∑
n

|n|−β
)

+ µsh

b̄e =
LE[1/V ]

N

∑
n

πn(N − n) = LE[1/V ]

b̄h = 2LE[1/V ].

We can easily show (with πn = 1/2N for all n) that,

∑
k≥−N

|k|−β − 2
∑
n

πn
∑
k≥n
|k|−β =

−1
N

∑
k≥−N

|k|−β.

Then (with a2 := a1
∑

n |n|−β),

ρ =
λL2E[1/V ]

(
2− µsh − a1L

1+γ 1
N

∑
n |n|−β

)
K(1− Ph,ho)

=
λL2E[1/V ]N

(
2N −Nµsh − a2L

1+γ
)
K−1

a2L1+γ − µsh
.

Therefore,

dρ

dL
=

λE[1/V ]K−1N

(a2L1+γ − µsh)2[(
a2L

1+γ − µsh
) (

2(2N −Nµsh)L− a2(3 + γ)Lγ+2
)
− L2

(
2N −Nµsh − a2L

1+γ
)
a2(1 + γ)Lγ

]
Thus dρ/dL is zero if and only if

(1− γ)a2(2N −Nµsh)L3+γ − 2a2
2L

3+2γ − 2µsh(2N −Nµsh)L+ µsha2(3 + γ)Lγ+2 = 0

and so for large file sizes, i.e., with µ very small, one can neglect the terms with µ2 (i.e., the second and the
fourth terms)

Lemma 6: For cars moving on streets, whenever γ < 1 and with µ small,

L∗PBusy =
(

2µshNβ−1

(1− γ)µE[1/V ]r0P
∑

n |n|−β

) 1
γ+2

.

In [4] while dealing with a similar situation, but with continuum of rates, we showed that the optimal cell size is
larger when the system has to support users with larger velocities. Here again, we notice that as E[1/V ] decreases,
the optimal cell size increases. These are preliminary results and we plan to study this scenario in depth (the effects
of β+ scaling, L∗PDrop , expected waiting times in the case of elastic traffic etc.,) in future and obtain a complete
comparison with the results of [4].



16

CONCLUSIONS

We obtained the performance analysis of small cell networks catering to randomly wandering users. We modeled
the user movements by a random walk, in which each step corresponds to a rate region, where the rate regions are
obtaining by partitioning the cell based on the service rates. With exponential wandering times, in each rate region,
we obtained important performance measures like capacity per cell, busy and drop probabilities etc. We showed
that the fundamental capacity per cell decreases monotonically with cell size, unless the power budget is increased
(by a factor greater than the path loss factor, β) with cell size. We also showed that without β+ power scaling, the
optimal cell size, optimizing the busy probability, would be trivial (equal to the lossless distance).

We obtain closed form expressions for optimal cell sizes, with β+ power scaling, in the two asymptotic regimes
of the user speeds (speed tending to zero and infinity). We also obtained the optimizers for intermediate values of
speeds via numerical simulations and established the following: 1) Optimal cell size increases with speed, ω; 2)
decrease with path loss factor β and 3) increases with the power scaling factor γ.

We then obtained some initial results for high speed users moving in fixed direction as in [4], but receiving
service at one among a finite number of service rates. We then proposed a further optimization of a joint cost
comprising of total power budget and the busy probability.

These are initial results and the theory developed in this paper can be used for studying many more example
scenarios. One can also extend the analysis of this paper to more complicated and accurate user movement models.

APPENDIX A

Proof of Lemma 5: By differentiating and simplifying (as K/ρ >> 1),

dPBusy
dρ

= PBusy
K

ρ
− PBusy

∑K−1
m=0

ρm

m!∑K
m=0

ρm

m!

≈ PBusy
K

ρ
.

From table I, since Ph,hoPBusy << 1− Ph,ho (these probabilities are small usually of the orders 10−3 or lesser):

PDrop ≈ PBusy
Pe,ho

1− Ph,ho
.

Hence (for large ω ) ,

dPDrop
dL

≈ PBusy

d
(

Pe,ho
1−Ph,ho

)
dL

+
Pe,ho

1− Ph,ho
K

ρ

dρ

dL


−≈ PBusy

µPr0
ωN−β

Πt
hP−1nβ

(− (η + γ)L−η−γ−1

+L−η−γK
(η − γ)ρ̃1L

η−γ−1 − 2γρ̃2L
−2γ−1

ρ̃1Lη−γ + ρ̃2L−2γ
)

=
PBusyL

−η−γ−1

µPr0
ωN−β

Πt
hP−1nβ (ρ̃1Lη−γ + ρ̃2L−2γ)(

(K(η − γ)− (η + γ))ρ̃1L
η−γ − (2Kγ + η + γ)ρ̃2L

−2γ
)

=
λPBusyL

−η−γ−1ωN−2β

µ2Pr20 (Πt
hP−1nβ)2 ρ(

(K(η − γ)− (η + γ))ρ̃1L
η−γ − (2Kγ + η + γ)ρ̃2L

−2γ
)
.

The first term in the last equation is always non zero and so the derivative is zero if and only if the second term
is zero. Further, the second derivative is positive at that zero.
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