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Abstract—We consider the problem of centrally controlled
’fair’ scheduling of resources to one of the many mobile stations
connected to a base station (BS). The BS is the only entity making
decisions in this framework based on truthful information from
the mobiles on their radio channel. We study the well-known
family of parametric α-fair scheduling problems from a game-
theoretic perspective in which some of the mobiles may be
noncooperative. We first show that if the BS is unaware of the
noncooperative behavior from the mobiles, the noncooperative
mobiles become successful in snatching the resources from the
other cooperative mobiles, resulting in unfair allocations. If
the BS is aware of the noncooperative mobiles, a new game
arises with BS as an additional player. It can then do better
by neglecting the signals from the noncooperative mobiles. The
BS, however, becomes successful in eliciting the truthful signals
from the mobiles only when it uses additional information (signal
statistics). This new policy along with the truthful signals from
mobiles forms a Nash Equilibrium (NE) called a Truth Revealing
Equilibrium. Finally, we propose new iterative algorithms to
implement fair scheduling policies that robustify the otherwise
non-robust (in presence of noncooperation) α-fair scheduling
algorithms.

I. INTRODUCTION

Short-term fading arises in a mobile wireless radio com-
munication system in the presence of scatterers, resulting in
time-varying channel gains. Various cellular networks have
downlink shared data channels that use scheduling mecha-
nisms to exploit the fluctuations of the radio conditions (e.g.
3GPP HSDPA [2] and CDMA/HDR [8] or 1xEV-DO [1]).
A central scheduling problem in wireless communications is
that of allocating resources to one of many mobile stations that
have a common radio channel. Much attention has been given
to the design of efficient and fair scheduling schemes that are
centrally controlled by a base station (BS) whose decisions
depend on the channel conditions of each mobile. The BS is
the only entity taking decisions based on truthful information
from the mobiles on their radio channel. These networks use
various fairness criteria ([6], [4]), called generalized α-fair
criteria, to design a class of parametric scheduling algorithms
(which we henceforth call as α-fair scheduling algorithms or
α-FSA). One special case, proportional fair sharing (PFS),
has been intensely analyzed as applied to the CDMA/HDR
system. See [10], [8], [7], [19], [3], [9], [16]. These results
are applicable to the 3GPP HSDPA system as well. Kushner
& Whiting [14] analyzed the PFS algorithm using stochastic
approximation techniques and showed that the asymptotic

averaged throughput can be driven to optimize a certain system
utility function (sum of logarithms of offset-rates). See also
Stolyar [20]. All the above methods depend crucially on truth-
ful reporting by the mobiles. For example, in the frequency-
division duplex system, the BS has no direct information on
the channel gains, but transmits downlink pilots, and relies
on the mobiles’ reported values of gains on these pilots for
scheduling. A cooperative mobile will truthfully report this
information to the BS. A noncooperative mobile will however
send a signal that is likely to induce the scheduler to behave
in a manner beneficial to the mobile.

In [11] we analyzed efficient scheduling in the presence of
noncooperation using a signaling game approach ([21]). On
the other hand, for α-fair scheduler , the BS utility is not
expected utility, but is a concave combination of the users’
expected utilities and hence cannot be modeled by a signaling
game. Further, α-fair scheduler has an inherent feedback in its
structure (more details in section II) and this feedback makes
the study difficult and different from the above paper. This
paper has contributions to three main areas:
Networking Aspects: (1) We identify cases where noncoop-
eration results in an unfair bias in the channel assignments
in favor of noncooperative mobiles, if the base station is
unaware of the noncooperative behavior. (2) We characterize
the limitation of the base station, and obtain conditions under
which even when it is aware of noncooperation, it is not able
to share fairly the resources. (3) We show that the ability
to achieve fair sharing, in the presence of noncooperation,
depends on the parameter α. (4) We design robust iterative
algorithms that, under suitable conditions, fairly share the
resources even in the presence of noncooperative signaling.
Game theoretical modeling: (1) We model a noncooper-
ative mobile as a rational player that wishes to maximize
its throughput. Since the α-fair assignment is related to the
maximization of a related utility function, one can view the
BS as yet another player. We thus have a game model even
if there is a single noncooperative mobile. (2) We formulate
three games of which one is a concave game. The formulation
of the games turn out to be surprisingly complex. Except for
the special case of α = 0 (where the game can be shown to be
equivalent to a matrix game), the games are defined over an
infinite set of actions. We are able however to prove existence
and characterize equilibrium policies for two games. (3) The
third game arises when the BS is unaware of noncooperation.



The BS merely responds to mobiles’ signals, but in an optimal
way. We could model this as a hierarchical game where the
mobiles are involved in a game played at the higher level and
the BS optimizes some utility at the lower level, unaware of the
rationality of the mobiles. (4) To analyze iterative algorithms,
we consider a stochastic game with asymptotic time limits of
the iterative algorithm as cost criteria.
Design of the networking protocols based on stochastic
approximation techniques. (1) We analyze the parametric
α-fair scheduling algorithm (α-FSA) of [14] in presence
of noncooperation. We identify its robustness properties as
a function of α. (2) Using the knowledge of channel and
signal statistics, one can control the excess utilities that the
mobiles would have otherwise obtained by noncooperation.
This is the basic idea behind robust policies. We then use
a stochastic approximation approach to combine estimation
(which replaces the knowledge required) and control in order
to design robust fair scheduling algorithms.

A Motivating example

We consider two users sharing a common channel. User 1
has two channel states with utilities 7 and 3 occurring with
probabilities 0.33 and 0.67 respectively. User 2 has constant
channel with utility 4. The BS has to assign the channel to
one of the two users for every realization of the channel state.
Every such assignment rule results in a pair of users’s average
utilities. The BS uses an α-fair scheduler (described in the next
section) to fair share these average utilities. First we assume
that both users cooperate and report their individual channel
states correctly. In figures 2 and 1 we plot the average utilities
obtained by users under α-fair scheduler as a function of the
fairness parameter α. We make the following observations: (1)
For every α, the BS always allocates the channel to user 1 if
he is in good state. (2) For α = 0, the expected share of user
1 (7 ∗ 0.33) is less than that of the user 2 ((1 − 0.33) ∗ 4).
This corresponds to efficient scheduling point. (3) For small
values of α, BS allocates the channel to user 1 only when he
is in good state. (4) The expected share of user 1 increases
while that of the user 2 decreases as α increases and eventually
become equal. To achieve this, the BS starts allocating channel
to user 1 even when in bad state with increasing probability.

The above scenario depends crucially on the truthful report-
ing of channel by the user 1. Now, we consider the scenario
when user 1 is noncooperative and tries to increase his utility.
He declares to be in good state 7 when actually in bad state
3 with probability δ. BS now observes the user 1 to have
good channel with better probability 0.33 + 0.67δ and will
schedule as before but based on reported channel conditions.
In figures 1 and 2 we plot the resulting expected utilities of
both the users as a function of fairness α for δ = 0.1 and
δ = 0.5, respectively. We observe that the utility of user 1 for
small values of α is improved in comparison with cooperative
utility. This also reduces the utility of the user 2 below its
cooperative share, resulting in unfair allocations. This effect
is seen for all values of α less than α = 1.75, α = 6.85
respectively for δ = 0.5, δ = 0.1. However, for α greater than
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the above values, user 1 loses; in fact its utility gets below
its cooperative share, while that of the user 2 is much above
the latter’s cooperative share. The above example indicates the
α-fair scheduler: (1) might be robust against noncooperation
for large values of α; (2) fails for smaller values of α; (3)
the larger the δ the larger the amount of gain at α = 0;
(4) the larger the δ the smaller the α until which the mobile
gains. As α increases, the two user utilities converge towards
equal values at a rate that directly depends upon the difference
at α = 0. This is the reason for the above observation. An
important point to note here is that, there is no threshold of
α beyond which the scheduler will be robust to all types of
noncooperation, i.e., for all values of δ. However one can
guess that for max-min fairness (α = ∞) the scheduler will
be robust. The study of this noncooperation and design of
robust policies will be the focus of this paper.

II. THE PROBLEM SETTING AND α-FAIR SCHEDULER

The Downlink: We consider the downlink of a wireless
network with one base station (BS). There are M mobiles
competing for the downlink data channel. Time is divided into
small intervals or slots. In each slot, one of the M mobiles
is allocated the channel. Each mobile m can be in one of
the states hm ∈ Hm, where Hm is finite valued. We assume
fading characteristics to be independent across the mobiles.
Let h := [h1, h2, · · · , hM ]t be the vector of channel gains in a
particular slot. The channel gains are distributed according to:
ph(h) =

∏M
i=1 phi(hi), where {phm ;m ≤ M} represents the

statistics of the mobile channels. When the mobile’s channel
state is hm, it can achieve a maximum utility given by f(hm).
An example is the rate f(hm) = r(m) = log(1 + hmSNR)
where SNR captures the nominal received signal-to-noise ratio
under no channel variation, and hm is the channel power gain.
We assume f > 0.

The decision rule: In every slot, the BS has to make
scheduling decisions, i.e., allocate the downlink slot to one of
the M users, based on the current realization of the channel
state vector h. For any set C, let P(C) be the set of probability
measures on C. With that definition, a BS’s decision variable
is a function β that assigns to any given h an element in
P({1, 2, · · · ,M}), the probability distribution over the set of



users. Thus, β(m|h) is the probability that the BS schedules
transmission to mobile m given h.

The α-fairness criterion and scheduler: We introduce
the well known generalized α-fair criterion1 ([4]) where the
quantity that we wish to share fairly is the expectation of the
random (instantaneous) utilities corresponding to the assign-
ment by the scheduler to the mobiles:

Gα(β) :=
M∑
m=1

Γα(θm(β)) (1)

where θm(β) := Eh [f(hm)β(m|h)] is the expected share of
mobile m under policy β and where the α-fair function is

Γα(u) :=
{

log(u), for α = 1
u1−α

1−α , for α 6= 1.

One can view the scheduler β(·|·), as a vector in RB space
with B := M |H|, where |H| is the cardinality of product
space H = ΠM

m=1Hm. The domain of optimization is

D :=

{
β(·|·) :

M∑
m=1

β(m|h) = 1, β(m|h) ≥ 0 for all h,m

}
.

The objective function Gα given by (1) is concave and
continuous in β for each fixed α, while the domain D is
compact and convex. Hence there always exists a cooperative
α-fair scheduling BS strategy β∗:

β∗(·|·) ∈ arg max
β∈D

Gα(β). (2)

Remarks II-1: We may view the BS’s schedule as a static
optimization problem that corresponds to a single choice of β.
Notice that the optimal schedule β∗ maximizes some function
of the expected shares of utilities. This expected share depends
on assignments at all channel states, and is therefore a joint
optimization problem. This feature arises when α > 0. When
α = 0 the problem is separable, and the solution β∗(· | h)
for a given h depends only on that h. However, for α > 0,
the implicit equation (3) below highlights a certain ’feedback’
that is absent when α = 0. This makes the present study
significantly different from our previous work on efficient
scheduling with strategic mobiles ([11]).

We now show a key (feedback) property of α-fair sched-
ulers. Define β∗ as the vector fixed point, if it exists, that
satisfies the following:

β∗(m|h) =
1{m∈arg maxj dΓα(θj(β))f(hj)}

|arg maxj dΓα(θj(β))f(hj)|
, (3)

where dΓα(θj(β)) := dΓα

du

∣∣
u=θj(β)

is the derivative of Γα

with respect to (w.r.t.) u, evaluated at θj(β).
Lemma 1: If there is a β∗ satisfying (3), then β∗ is a

global maximizer of the objective function in (2) over domain
D and hence is an α-fair solution.

Let Θ := [θ1, · · · , θM ]T , Θ(β) := [θ1(β), · · · , θM (β)]T

and Θ(D) := {Θ(β) : β ∈ D} . The map Θ 7→
∑
m Γα(θm)

1Each α defines a scheduler. The system designer chooses an appropriate
α based on his his desired tradeoff between system efficiency and fairness.

is strictly concave. Hence, there exists an unique maximizer
(of the expected assigned shares) over the convex set Θ(D):

Θ∗ = max
Θ∈Θ(D)

∑
m

Γα(θm). (4)

Hence, if there is a β∗ satisfying (3), then Θ∗ = Θ(β∗). Fur-
ther, any β̄∗ which is a global maximum of the objective func-
tion (2) satisfies the ’efficiency’ property : whenever f(hm) >
f(h′m), either β̄∗(m|hm,h−m) = β̄∗(m|h′m,h−m) ∈ {0, 1}

or β̄∗(m|hm,h−m) > β̄∗(m|h′m,h−m) (5)

for all h−m ∈ Πj 6=mHj and for all m. �
Proof : Please refer to Appendix B in the full version [13].

The above Lemma 1 gives the exact characterization of
an optimal solution for the α-fairness problem (3). It further
talks about the efficiency of every possible α-fair solution (5):
the assignment for particular state (hm) for any mobile m
increases with increase in the utility (f(hm)) of the state.
This property is used in the analysis under noncooperation.
A part of Lemma 1, regarding the possible solution (3), when
restricted to proportional fairness, is already stated in [15].

Remarks II-2: The solution (3) explicitly shows the feed-
back we mentioned in Remark II-1. This solution has al-
ready been used in practical scenarios ([15]) to achieve ’fair’
scheduling: The α-fair solution for the dynamic setting with
ergodic channel states is the optimal β that fair shares the
time average utilities over a single realization of a whole
sample path.2. In fact, the solution (3) under ergodicity can be
implemented by the following procedure : 1) At any time slot
k, obtain the scheduling decision using the current channel
vector hk and using the time averaged assigned utilities
obtained until the last step, {θm,k−1}, in place of {θm(β∗)} in
(3); 2) Update (in the obvious way) the time averaged assigned
utilities up to step k, {θm,k}, using the current decision.

III. PROBLEM FORMULATION UNDER NON COOPERATION

In every slot, the BS needs to know h for optimal schedul-
ing. In practice, mobile m estimates channel hm using the pilot
signals sent by BS. We assume perfect channel estimation.
The mobiles send signals {sm} to BS as indications of the
channel gains. Thus BS does not have direct access to channel
state h, but instead relies on the mobiles for this information.
If the mobiles are strategic, they can signal a better channel
condition to grab the channel even when their channel is bad.
The main purpose of this paper is to study the effect of this
noncooperation on α-fair scheduler (2). We assume that signals
are chosen from the channel space itself, i.e., sm ∈ Hm for
all mobiles. We consider two types of scenarios :

Hierarchical game G1: The BS is unaware of the possible
noncooperative behavior from the mobiles and applies the
α-fair scheduler (2) to the signals s = [s1, · · · , sM ]t (as
if they were the true channel values). The mobiles, being
aware of BS’s scheduler, signal to optimize their own goals.

2For stationary and ergodic channels with finite Eh[g(h)],
limK→∞

1
K

∑K
k=1 g(hk) = Eh [g(h)] . We are interested in a particular

function g(h) = f(hm)β(m|h) whose average is exactly θm(β).



When the base station is unaware of this strategic behavior,
we model this game as a hierarchical game with two levels:
where leaders, the noncooperative mobiles, are involved in a
game problem, while BS, the follower does the optimization.
In this game, there is no common knowledge: the base
station does not know the rationality of the mobiles. This
game is related to that discussed by Aumann in [5] through
many examples. For several years it has been thought that
the assumption of common knowledge of rationality for the
players in the game was fundamental. It turns out that, in N -
player games, common knowledge of rationality is not needed
as an epistemic condition for equilibrium strategies (see [5]).

A game approach: The BS is modeled as an additional
player in a one-shot game. When the BS becomes aware of the
possible noncooperation, it would implement better policies
(Section V-A). However when the BS has to base its decision
only on the signals from the mobiles it will not be successful in
compelling the mobiles to reveal the truthful signals (Section
V-A). We model this as M1 + 1 player game G2. In Section
V-B we construct more intelligent BS policies that are robust to
noncooperation, but require more information. The new robust
BS policies and the mobile policy of truthful signaling form
a Nash Equilibrium. We refer to this game as game G3.

We introduce important concepts and definitions that are
used in the paper. These are specific to the second scenario.
Corresponding definitions and concepts may vary for the other
scenario and the differences are explained in Section IV.

Common Knowledge: Channel statistics {phm ;m ≤M}
and the information about which mobiles are noncooperative
is common knowledge (i.e., known to all the mobiles and the
BS, and further, every one knows that every one else knows
this, and so on). If the BS does not know which mobiles are
cooperative, it will treat every mobile as noncooperative. When
BS uses more intelligent policies (as in game G3) it can also
detect the mobiles that are noncooperative.

Mobile Policies: Some mobiles (with indices 1 ≤ m ≤M1

where 0 ≤ M1 ≤ M ) are assumed to be noncooperative. A
policy of mobile m is a function {µm(·|hm)} that maps a state
hm to an element in P(Hm).

BS Policies: A policy of the BS is a function which maps
every signal vector s to a scheduler β ∈ P({1, 2, · · · ,M}).
These policies are used in a major part of the paper, while
more complicated policies are considered in section V-B.

Utilities for a given set of strategies: The instanta-
neous/sample utility of the mobile m depends only upon the
true channel hm and the BS decision β and is given by :
Um(sm, hm, β) = 1{β=m} min{f(hm), f(sm)}3.

Define the following to exclude mobile m:

h−m := [h1, · · · , hm−1, hm+1, · · · , hM ] ,
ph−m(h−m) := Πj 6=m phj (hj),

µ−m(s−m|h−m) :=
Πj 6=m;j≤M1µj(sj | hj)Πj 6=m;j>M1δ(hj = sj).

3The mobile achieves rate f(hm) even if the BS allocates it a higher rate
f(sm) because of the inflated signal sm sent by the noncooperative mobile.
The justification for this is provided in detail in Appendix C of [13], [11].

Also define, µ = {µm;m ≤M1} to represent strategy profile:

µ(s|h) := Π1≤j≤M1µj(sj | hj)Πj>M1δ(hj = sj).

With the above definitions, each noncooperative user chooses
its strategy µm so as to maximize its own utility:

Uαm(µ, β) = Eh

[∑
s

Um(sm, hm,m)β(m | s)µ(s | h)

]
. (6)

Under the α-fair criterion (1), the natural selection of utility
for BS is:

UαBS(µ, β) =
∑
m

Γα(Uαm(µ, β)). (7)

Throughout we write i = arg maxS to mean i ∈ arg maxS.
By j := arg maxS we mean that j is a chosen element of
arg maxS.
ASA, ATA Utilities: When mobile signals do not match the
true channel values, the game under consideration will have
two important average utilities for any given strategy profile
(µ, β) : (1) average signaled utilities under assignment β
(ASA) utility, which a (more intelligent) BS can observe, and
(2) average true and assigned (ATA) utility, which is the true
average utility gained by the mobile and whose value cannot
be estimated (as long as the mobile is noncooperative) at the
BS. These are defined by

UASAm (µ, β) := Eh

[∑
s

f(sm)µ(s|h)β(m|s)

]
(8)

UATAm (µ, β) := Eh

[∑
s

min{f(hm), f(sm)}µ(s|h)β(m|s)

]
..

Indeed, the utility of mobile m is ATA utility, Uαm = UATAm .
Truth Revealing Strategy: In the following, by truth reveal-
ing strategy at mobile m we mean the strategy

µTm(sm|hm) = 1{sm=hm}, for all hm, sm ∈ Hm,

which reflects the true channel state. Define µT :=
(µT1 , · · · , µTM ). Under truthful strategies µT , ATA and ASA
utilities coincide. For any BS policy β, if the strategy profile
(µT , β) forms a Nash Equilibrium (NE), then the NE is called
a Truth Revealing Equilibrium (TRE).
Cooperative Shares: Best response of BS to truthful signals
µT is any maximizer β∗ of Gα (1). By Lemma 1, the best
response results in unique maximum average ATA utilities,

θαcm := θm(β∗) = Uαm(µT , β∗), (9)

which will be referred as Cooperative Shares.
Contrast between hierarchical optimization and the

game perspective: Recall that computing a fair assignment
by the BS involves maximization of (1). Thus in the first
scenario, when mobiles choose profile µ, the unaware BS fair
shares ASA utilities under µ by maximizing (11). However,
what needs fair sharing is the ATA utilities. This is achieved
via the game perspective, wherein the rational BS tries to fair
share the ATA utilities gained by the mobiles.



IV. SCHEDULING UNDER NONCOOPERATION :
HIERARCHICAL GAME PROBLEM G1

We consider the scenario in which the BS is unaware of
the presence of noncooperative mobiles. As in the cooperative
setting, the BS schedules (using optimal scheduler (2)) the
channel to one of the mobiles using the mobile signals,
assuming them to reflect the channel state perfectly. The
mobiles, aware of BS’s scheduler, send signals to maximize
their utilities.

Utilities of G1: For any given mobile strategy profile µ,
let the induced signal probabilities be represented by ps, i.e.,
ps(s) =

∑
h ph(h)µ(s|h). Since the BS observes ps (instead

of ph), it assumes the expected shares of mobile m to be
θm(µ, β) := Eps [f(sm)β(m|s)] and hence maximizes,

UASABS (β, µ) =
∑
m

Γα(θm(µ, β))). (10)

Obviously, θm(µ, β) are the ASA utilities.
Stackelberg Equilibrium for G1 is a profile (β∗, µ∗) with

β∗µ = arg max
β

UASABS (β, µ) (11)

µ∗m = arg max
µm

UATAm ((µm, µ∗−m), β∗(µm,µ∗−m)) for all m.

We now present some examples in which a user m devi-
ates unilaterally from µT and increases its utility above its
cooperative share, thus resulting in unfair allocations. These
examples do not have TRE for G1. In particular we consider
α-fair scheduler given by (3). This scheduler is a widely used
practical solution (see Remark II-2), α-FSA being one of them.

A. Asymmetric Case : Proportional fair scheduler (α = 1)

We continue with the motivating example given in Section
I. User 1 has a single state with utility a. User 2 has 2 states
with respective utilities given by rb, b and with r > 1. The
respective probabilities to be in one of these states are p, (1−p)
with p ∈ (1/(1 + r), 1/2).

Using (3), one can easily estimate β∗ and {θm(β∗)} to
be: β∗(2|a, rb) = 1, β∗(1|a, b) = 1, θ1(β∗) = a(1 − p) and
θ2(β∗) = rbp. It is important to note here that β∗ satisfying
(3) exists only if p ∈ (1/(1 + r), 1/2) as in this case :

dΓα(θ2(β∗))rb = rb
rbp > a

a(1−p) = dΓα(θ1(β∗))a
dΓα(θ2(β∗))b = b

rbp < a
a(1−p) = dΓα(θ1(β∗))a.

Suppose user 2 signals rb (when actually in state b) with
probability q, i.e., µ2(rb|b) = q. Then user’s maximum ASA
rates (with β∗δ = β∗) are UASA1 (q, β∗q ) = (1 − p − q)a,
UATA2 (q, β∗q ) = rb(p+ q) respectively whenever

rb

(p+ q)rb
>

a

a(1− p− q)
>

b

rb(p+ q)
.

With this, the mobile 2 obtains an improved ATA utility
UATA2 (q, β∗q ) = rbp + bq > θ2(β∗). The maximum possible
value of q is q = (0.5− p) . �

Extension to general α: One can extend the above to gen-
eral α, an α-fair scheduler satisfying (3) exists if,

(rb)α−1pα < aα−1(1− p)α < r(rb)α−1pα.

From above, as α increases, p for which (3) exists reduces and
thus given (a, r, b, p), there exists a maximum αmax, beyond
which there does not exist α-fair scheduler of the type (3).
However another type of α-fair scheduler exists. For example,
under max-min fairness (when α = ∞, θ∗1 = θ∗2), an α-fair
scheduler {β∗(1|rb, a), β∗(1|b, a)} is given by:

β∗(1|rb, a) =
a

rbp+ ap
; β∗(1|b, a) = 0, if a(1− p) < rbp,

β∗(1|b, a) =
a(1− p)− rbp
(b+ a)(1− p)

; β∗(1|rb, a) = 0, otherwise.

When α-fair scheduler (3) exists the noncooperative mobile
benefits: the maximum q(α) satisfies:

(p+ q(α))α(rb)α−1 = aα−1(1− p− q(α))α.

For example with a = 4, r = 3, b = 3, p = 0.33 the
maximum α for which α-fair scheduler (3) exists is 7.9 and
user 1 can benefit by signaling with q = .05 for all α ≤ 4.
Generalization to more states and general α: Consider two

asymmetric users under the following assumptions :
N.1 The cooperative α-fair solution β∗ (3) exists and without

loss of generality let 1 = arg maxm θαcm .
N.2 There exists an i > 1 such that

η := inf
j>1,hj∈Hj

dΓα(θαc1 )f(h1,i−1)− dΓα(θαcj )f(hj) > 0,

where H1 = {h1,1, · · · , h1,N1} are arranged such that
f(h1,1) > f(h1,2) > · · · > f(h1,N1).

Lemma 2: Under N.1-N.2, there exist a policy µδ1 for
mobile 1 that is not truth revealing, such that its ATA utility
UATA1 (µδ1, (f, β

∗
µδ1

)) is larger than its cooperative share θαc1 .
Proof : The policy for mobile 1 is given by

µδ1(h1,i|h1,i′) =

 1{i=i′} if i′ 6= i∗

δ if i′ = i∗ − 1 and i = i∗

1− δ if i′ = i = i∗,

where i∗ is the largest i satisfying N.2. That this policy is not
truth revealing is verified in Appendix B of [13]. �

B. Symmetric Case

We consider a simple symmetric two mobile example.
The mobiles have two states with utilities a1, a2 occurring
respectively with probabilities p1, p2. Let a1 = ra2, p1 = pp2

with r > 1, p > 0. Under truthful signaling, by Lemma
1, an α-fair optimal BS policy (for any α) is given by:
β∗(1|a1, a1) = 1/2 = β∗(1|a2, a2), β∗(1|a1, a2) = 1,
β∗(1|a2, a1) = 0 with equal cooperative shares θ1(β∗) =
θ2(β∗) =

(
p21
2 + p1p2

)
a1 + p2

2
a2
2 . Without loss of generality

say mobile 1 deviates unilaterally from his truthful strategy
with µ1(a1|a2) = t. If mobile 1 was successful, his reported
rate would be greater than θ1(β∗); he would obtain this rate
only when his declared state is a1 while that of mobile 2 is
a2. Thus, mobile 1 will be successful with maximum ASA
utilities (α = 1):

UASA1 = (p1a1 + p2ta1)p2 = (p+ t)p2
2a1 and

UASA2 = 1p1a1 + p2(1− t)p2a2 = (pr + (1− t)p2)p2a2



and the corresponding ATA utility

UATA1 = (p1a1 + p2ta2)p2 = (pr + t)p2
2a2

if the following conditions are met:

a1

UASA1

>
a2

UASA2

and θ1(β∗) < UATA1 , i.e., if t satisfies:

1
(p+ t)p2

>
1

(pr + (1− t)p2)
and

p2r + 1
2

< t �

C. Robustness at large α

For small values of α the α-fair scheduler fails. However
we see a different phenomenon at higher α. As α increases
to infinity, the ’fairness’ increases and the expected shares,
i.e., ATA utilities of all the mobiles tend to become equal
([17]), provided all the mobiles signal truthfully. However,
in presence of noncooperation, it will be the ASA utilities
that tend to become equal for higher values of α. This
results in all the cooperative mobiles (for whom ATA and
ASA utilities are equal) getting equal ATA shares that are
bigger than those for the noncooperative (for whom ATA
are strictly less than ASA utilities) mobiles. Thus the α-fair
scheduler (2) tends to become robust towards noncooperation
as fairness factor α increases, inspite of the BS’s unawareness
of the noncooperation.4 This effect is seen in the motivating
example as well as in Figure 3 given in a later section.
The noncooperative mobile’s ATA utility diminishes as α
increases and goes below its cooperative share beyond α = 1.2
and further, the cooperative mobile gets more share than its
cooperative share for these large values of α.

V. SCHEDULING UNDER NONCOOPERATION : GAME
THEORETIC STUDY

In this section the BS knows about noncooperative behavior
of mobiles and is considered as an additional player which
results in an M1 + 1 player game.

A. BS Scheduling policies of section IV : Game G2

In contrast to section IV, the BS knows the mobiles that
are noncooperative. The resulting game is a one-shot concave
game: the utility of mobile m (6) is linear in its policy µm
while that of the BS (7) is continuous and concave in its
policy β. By [18], this game always has a NE5 (µ∗, β∗) which
satisfies, for all m, µ∗m = arg maxµm U

α
m((µm, µ∗−m), β∗)

and β∗ = arg maxβ UαBS(µ∗, β). We obtain a ’babbling’
equilibrium. This game does not have a TRE.

4However, we could only establish that max-min fairness is robust. Whether
there is a finite threshold for α beyond which the α-fair scheduler is robust
to strategic behavior is not known.

5Note that when adding further concave constraints the game remains
concave even if the constraints are coupled [18]. We thus obtain equilibrium
also for constrained versions of the game. An example constraint is one where
the (possible weighted) sum of throughputs is bounded by a constant.

1) G2 has Babbling NE : We will now show that this game
has a Nash equilibrium where the BS neglects the signals from
the noncooperative users. Let h>M1 := [hM1+1, · · · , hM ]t

represent the channel states of the cooperative mobiles. With
θ>M1
m (β) := Eh

[
f(hm)β

(
m|h>M1

)]
, the BS maximizes:∑

m

Γα
(
θ>M1
m (β)

)
. (12)

Note that θ>M1
m (β) = E[f(hm)]Eh>M1

[
β
(
m|h>M1

)]
for

any noncooperative mobile. As in Lemma 1, there always
exists a β maximizing (12). Denote one such β as β>M1∗.
Choose any mobile profile µ = ((µ1(.|h1), · · · , µM1(.|hM1))
which satisfies for all m ≤ M1, µm(sm|hm) = 0 for all
hm, sm with f(sm) < f(hm). It is easy to see that this
(µ, β>M1∗) forms a Nash Equilibrium. Note that a noncooper-
ative mobile m can obtain the utility θ>M1

m (β>M1∗) only if it
signals better than its channel true value (only then do we have
min{f(hm), f(sm)} = f(hm)) and hence the requirement of
above condition on the set of mobile strategies.

This is a NE at which the BS ignores the signals from
the noncooperative mobiles and is similar to the Babbling
equilibrium defined in the context of signaling games ([21]).

2) G2 has No TRE : We now examine the existence of
the desired TRE. If the M1 + 1 player game were to have
a TRE, the corresponding (equilibrium) strategy of the BS
should be the best response to mobile’s truthful strategies µT

and hence will be a maximizer of UαBS(µT , β) = Gα(β).
This best response indeed equals one of the maximizers of
Lemma 1, which satisfies the efficiency property (5). Using
this property one can show that the game G2 has no TRE
(details in [13]). �

Thus the BS, even when aware of the noncooperation, is
not successful in eliciting truthful signals. In the following we
construct more intelligent policies which induce a TRE.

B. Robust BS Policies : Game G3 has TRE

BS can estimate statistics ps after sufficient observation of
the mobile signals. We use ps to build robust policies for BS
which give us the desired TRE. The policy of BS now maps
every ordered pair of signal and signal statistics (s, ps) to an
ordered pair (Φ, β) = {(φm(s, ps), β(.|s, ps))} with allocation
φm(s) ≤ f(sm) for all m. All the utilities will change
appropriately to include Φ; for example, Uαm(µ, (Φ, β)) =
Eh [

∑
s min{φm(s), f(hm)}µ(s|h)β(m|s)]

A profile (µ∗1, · · · , µ∗M1
, (Φ∗, β∗)) is a NE for G3 if,

µ∗m = arg max
µm

Uαm((µm, µ∗−m), (Φ∗, β∗)) for all m,

(Φ∗, β∗) = arg max
(Φ,β)

UαBS(µ∗, (Φ, β)). (13)

BS can then estimate the ASA utilities for any scheduling
policy and for any mobile profile µ as:

UASAm (µ, (Φ, β)) = UASAm (ps, (Φ, β)) := Es [φ(s)β(m|s)] .

In the above the expectation is w.r.t. ps. It can also estimate
their cooperative shares {θαcm } of (9) using its prior knowledge:
the channel statistics. We now propose a robust policy at the



BS which uses both these average utilities. The key idea is
to design a policy at BS which does not allow the (average)
utility of any mobile m to be greater than θαcm .

When a noncooperative mobile uses a signaling strategy to
improve its ATA utility UATAm , even its ASA utility UASAm im-
proves. The BS can estimate UASAm of each of the mobiles and
hence can sense the increase in the noncooperative mobile’s
ASA utility in comparison to its cooperative share. Hence,
BS can detect the mobiles that are noncooperative. The BS
can further ensure that none of the mobiles is allocated more
than its corresponding cooperative share by allocating only a
fraction and not the total signaled utility at every sample. The
fraction to be allocated is set based on the present excess over
the cooperative share, as follows:

φm(sm, ps, β) :=
(
f(sm)−

(
UASAm (ps, (Φ, β))− θαcm

)
∆
)

1{(f(sm)−(UASAm (ps,(Φ,β))−θαcm )∆)>0} (14)

for some large value of ∆. Hence, to ensure that none of the
mobiles get more ASA utility than its cooperative share, BS
needs to choose Φ = {φm} that satisfies

UASAm (ps, (Φ, β)) = Es [φm(sm, ps, β)β(m|s)] . (15)

Both (15) and (14) are satisfied if there exists a fixed point
UASAm = UASAm (ps, β) that satisfies

UASAm = Es

[
φmβ(m|s)1{φm>0}

]
;

φm := f(sm)−
(
UASAm − θαcm

)
∆. (16)

For all sm and UASAm , φmβ(m|s)1{φm>0} ≤ Cf + θαcm ∆.
where Cf represents the upper bound on f . Hence the right
hand side of the first equation in (16) is bounded and con-
tinuous w.r.t. UASAm by bounded convergence theorem. Thus
there exists an UASAm satisfying the fixed point equation (16)
by Brouwer fixed point theorem6.

With the above allocation, ATA utility of mobile m is

UATAm (µ, (Φ, β)) = Eh,s

[
fgainm (hm, sm, ps, β)β(m|s)

]
(17)

where fgainm (hm, sm, ps, β) := min{f(hm), φm(sm, ps, β)}.
It can be shown from (16) that for any strategy profile (µ, β)
UASAm (ps, (Φ, β))−θαcm ≤

Cf
∆ ≤ o(1/∆), see [13] for a proof

of this fact, and hence,

UATAm (µ, (Φ, β)) ≤ UASAm (µ, (Φ, β)) ≤ θαcm + o(1/∆).

The above holds as fgainm (hm, sm, µ, β) ≤ φm(sm, µ, β). In
other words, with new allocation (16) at BS, no mobile can
gain o(1/∆) more than its cooperative share for any (µ, β).

Further, if BS uses any α-fair scheduler β∗ of (2) along
with allocation policy (16), it is easy to check that the truthful
strategies’ UASAm (µT , β∗1) = UATAm (µT , β∗1) = θαcm for all m.
Also there exists only one fixed point, θαcm , with (µT , β∗)
(details in [13]). We have thus proved:

Theorem 1: If BS knows cooperative shares {θαcm } and
the signal statistics {ps}, the M1 +1 player strategic game has
an ε−NE, i.e., TRE:

(
µT , ({φm(sm, ps, β∗)} , β∗(m|s))

)
.�

6Brouwer fixed point theorem: Any continuous function f from a closed
ball of a Rn to itself has a fixed point, i.e., an x∗ such that x∗ = f(x∗).

In the coming sections, we will turn our attention to iterative
algorithms which can achieve a desired level of ’fairness’ even
in the presence of some noncooperative mobiles. We begin this
task by first studying α-FSA ([14]).

VI. FAIR SCHEDULER ALGORITHM (α-FSA)

From this section onwards the channel states h are con-
tinuous random variables with stationary rates across time,
{rm,k}k≥1 = {f(hm,k)}k≥1 for all m, satisfying the assump-
tions of Appendix A of [13]7.

The α-fair scheduler (3) always exists for continuous and
integrable rates by Brouwer’s fixed point theorem (see [13]).
We outlined an algorithm to implement α-fair scheduler (3)
in Remark II-2. The α-FSA ([14]), a stochastic approximation
based fair scheduling algorithms, exactly follows this outline
(with Θα

k :=
[
θα1,k, · · · , θαM,k

]
, rk := [r1,k, · · · , rM,k]):

θαm,k = θαm,k−1 + εk
[
Iαm(rk,Θα

k−1)rm,k − θαm,k−1

]
Iαm(r,Θ) = 1{m=arg maxj dΓα(dj+θj)rj} (18)

= 1{m=arg maxj rj(θj+dj)
−α}

where dm are small positive constants (added for stability).
While making decisions {Iαm}, if there are more than one users
attaining maximum, one of the maximizers is chosen by the
BS randomly. In [14, Th. 2.2], the authors show that {θαm,k}
of (18), with α ≤ 1, converges weakly to the unique limit
point Θ∗ that satisfies E [rmIαm(r,Θ∗)] = θ∗m for all m. A
close look at this limit point (when we neglect {dm}) reveals
that Iαm(r,Θ∗) is the α-fair scheduler (3) and that Θ∗ are the
unique cooperative shares, {θm(β∗)} = {θcαm }. Thus, α-FSA
weakly converges to the unique point (cooperative shares) that
maximizes the α-fair criterion (1).

A. Convergence of α-FSA in presence of noncooperation

The α-FSA uses signaled rates, rsm,k := f(sm,k) and rsk =
[rs1,k, · · · , rsM,k]t to make decisions, as in Section IV:

θαm,k = θαm,k−1 + εk
[
Iαm(rsk,Θ

α
k−1)rsm,k − θαm,k−1

]
.

These signaled rates reflect the statistics ps (instead of ph).
Again, there is weak convergence, but to a different attractor
corresponding to ps. It is very easy to see as in Section IV that,
when mobiles are noncooperative with profile µ, α-FSA con-
verges weakly to unique maximum ASA rates

{
UASAm (µ, β∗µ)

}
with β∗µ defined by (11).

7For understanding the asymptotic limits of the dynamic algorithms of this
section we will need the results corresponding to the static settings of Section
II. But, all the results of Section II correspond to discrete channel states and
rates. We assume that even for the more general case under study in this
section, an α-fair solution of the form (3) exists and that the corresponding
shares {θαcm }are unique as in Lemma 1. Sufficient conditions for this to occur
are under study. This result is required for showing that α-FSA asymptotically
converges to the cooperative shares (i.e., limits maximize the α-fair criterion)
for all α. In [14] Theorem 2.3 does this job approximately at least for α ≤ 1:
any other assignment rule results in a limit Θ with

∑
m Γα(θm) less than

that corresponding to scheduler {Iαm} of α-FSA (18). The simulations of this
section also confirm the results we obtained based on this assumption.



B. Failure of α-FSA in presence of noncooperation

As noted above, the α-FSA (18) converges to the maximum
ASA utility (under µ) which need not be equal to the ATA util-
ity, in the presence of noncooperation. However, to understand
the behavior of (18) in presence of noncooperation, one needs
to study the asymptotic true utilities gained by the mobiles
under (18). Towards this, we consider a second iteration
running in parallel with (18), in which the instantaneous
signaled utility rsm,k replaced by the true instantaneous utility
r̄m,k := min{rm,k, rsm,k}:

θ̄αm,k = θ̄αm,k−1 + εk
[
Iαm(rsk,Θ

α
k−1)r̄m,k − θ̄αm,k−1

]
. (19)

As in [14], one can show that θ̄m,k converges weakly to
UATAm (µ, β∗µ), the ATA utility under β∗µ.

Thus, the asymptotic limits of α-FSA equal maximum ASA
utilities of section IV while the true utility adaptation (19)
converges to the corresponding ATA utilities. These time limits
will thus have all the properties of section IV: the α-FSA will
fail for small α and will be robust for large α as discussed in
section IV. The only difference here is that the channel rates
are continuous.

Numerical examples : Two asymmetric users are consid-
ered in Figure 3. Let Z(σ2) be a Rayleigh random vari-
able with density fZ(z;σ2) = ze−z

2/2σ2
. Channel state

of user 1 is conditional Rayleigh distributed, i.e., h1 ∼
fZ(z; 1)1{z≤2}dz/P (Z(1) ≤ 2). User 2 has almost a constant
channel, h2 − 0.45 ∼ fZ(z; 0.05)1{z≤2}dz/P (Z(0.05) ≤ 2).
The utilities are the achievable rates f(h) = log(1+h). User 1
is noncooperative with s1(h) = h(1−δ)+2δ with δ = 0.9. We
plot the limit of the α-FSA, the limits of true utility adaptation
(19) as function of α8. We also plot the cooperative shares,
obtained by the limits of α-FSA with δ = 0. We observe
that the cooperative shares tend towards equal values as α
tends to infinity. User 1 is successful in gaining more utility
in comparison to its cooperative share for all α less than 1.2.
Beyond 1.2, user 1 actually loses and the loss increases as α
increases. The observations are similar to that in the motivating
example of Section I and indicate that α-FSA is robust only
for large α. More examples, inferences, including the ones for
symmetric case can be found in [13].

VII. ROBUST α-FAIR ALGORITHMS : ROBUST FAIR SA

We saw that α-FSA fails in the presence of noncooperative
users. Hence, we propose a robustification of α-FSA against
noncooperation using the policies of subsection V-B. The
policies of subsection V-B do not allow the ATA utility of any
user to go above the cooperative share. Nevertheless, when a
user is noncooperative, these policies may still result in a loss
for the cooperative users: the noncooperative user can still grab
the channel from other users without getting a gain, because
of the robust allocation policies (16). To avoid this problem,

8The authors in [14] analyzed these algorithms only for α ≤ 1. However
numerical simulations appear to indicate their validity for all values of α.
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one may robustify the decisions as well:

θαm,k+1 = θαm,k + εk
[
φαm,k+1I

α
m

(
Φαk+1,Θ

α
k

)
− θαm,k

]
φαm,k+1 = max{0, rsm,k+1 −

(
θαm,k − θαcm

)
∆}, (20)

where Φαk := [φα1,k, · · · , φαM,k] are robust allocations. As
before, to analyze (20), we need to estimate the average of
actual utilities, r̂αm,k+1 = min

{
rm,k+1, φ

α
k+1

}
:

θ̂αm,k+1 = θ̂αm,k + εk

[
r̂αm,k+1I

α
m

(
Φαk+1,Θ

α
k

)
− θ̂αm,k

]
. (21)

A. Analysis :

We analyze the robustness of the proposed algorithm using
game theoretical tools. Fix any α. We consider a M1+1 player
game with utilities defined by:

Um := lim
k→∞

θ̂αm,k+1 for all m and UBS :=
∑
m

Γα(Um).

We analyze the limits of (21) using ODE approximation
methods (for e.g., [14]). As a first step, we obtain the following
ODE approximation result (proof available in [13]).

Theorem 2: Assume that algorithms (20), (21) satisfy
assumptions A.1, A.2, and A.3 of Appendix A of [13]. For
any initial conditions, (Θα

k , Θ̂
α
k ) converge weakly to the set of

limit points of the solution of the ODE (for all m ≤M ):
�
θm= h̄m(Θ)− θm, h̄m(Θ) = E [φαmI

α
m (Φα,Θ)] , (22)

�

θ̂m= ¯̂
hm(Θ)− θ̂m, ¯̂

hm(Θ) = E [r̂αmI
α
m (Φα,Θ)] . (23)

These conclusions hold whenever εn → 0,
∑
n εn = ∞ and

for some αn →∞, limn sup0≤l≤αn |εn+l/εn − 1| = 0. �
Hence, one can upper bound utilities {Um} by upper bounding
all the attractors of ODE (23). Any attractor Θ∗ of the ODE
(22) satisfies θ∗m − θαcm = E[φαmI

α
m(Φα,Θ∗)]−θαcm

1+∆E[Iαm(Φαm,Θ
∗)] . Thus, θ∗m ≤

θαcm + o(1/∆). Further, any attractor of ODE (23) satisfies
θ̂∗m = ¯̂

hm(Θ∗) leading to θ̂∗m ≤ θ∗m. Thus for any µ,

Um
w= θ̂∗m ≤ θ∗m ≤ θαcm + o(1/∆). (24)

So, none of the users, no matter what strategy they use or the
others use, can gain more than θαcm .



Under µT , θαc is a zero of RHS of both the ODEs (22),
(23). It will indeed be an attractor (see [13])9. Thus Um = θαcm
for all m under µT . Thus the robust policy (20) at BS together
with the truth-revealing policy of users forms an ε-NE.

Numerical examples

We continue with the example of Figure 3 (in which α-
FSA failed) in Figure 4. We use Robust Fair SA in place of
α-FSA. We set ∆ = 1000. We plot only the ATA utilities
for both values of δ = 0, δ = 0.9. We do not plot the ASA
utilities (time limits of {θm,k}) in this figure as these utilities
for all the cases are very close to cooperative shares Θαc. We
see that this policy is indeed robust : 1) the time limit of the
asymptotic true (ATA) utilities are lesser than the cooperative
shares for the noncooperative mobile. 2) It is also lesser for
cooperative mobile, but the gap between the cooperative shares
and the ATA utilities is much lesser for a cooperative mobile
(plots corresponding to δ = 0.9); 3) when all the mobiles are
cooperative both the ASA as well as ATA utilities are close to
the cooperative shares for all the mobiles (plots with δ = 0).

VIII. CONCLUSIONS

We studied centralized downlink transmissions in a cellular
network in the presence of noncooperative mobiles. Using α-
fair scheduler, the BS has to assign the slot to one of the many
mobiles based on truthful information from mobiles about
their time-varying channel gains. A noncooperative mobile
may misrepresent its signal to the BS so as to maximize his
throughput. We modeled a noncooperative mobile as a rational
player who wishes to maximize his throughput. For this game,
we identified several scenarios related to the awareness of BS.
When the BS is unaware of this noncooperative behavior, we
model this game as hierarchical game with two levels. We
identify that, the presence of noncooperative users, results in
an α-fair bias in the channel assignment for small values of α.
As α increases, an α-fair scheduler becomes more and more
robust to noncooperation irrespective of the awareness of BS
and a max-min fair scheduler is always robust. When the BS
is aware of the noncooperative mobiles, we characterized a
babbling equilibrium which is obtained when both the BS
and the noncooperative players make no use of the signal-
ing opportunities. This game has no TRE. Using additional
knowledge of the statistics of the signals observed at the BS,
we built new robust policies to elicit the truthful signals from
mobiles and achieve a Truth Revealing Equilibrium. We then
studied the popular, iterative fair scheduling algorithm (which
we called α-FSA) analyzed by Kushner and Whiting in [14].
We showed that α-FSA fail under noncooperation. Finally, we
proposed iterative robust fair sharing to robustify the α-FSA
in the presence of noncooperation.
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