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Abstract—In recent years there has been an increasing aware-
ness that the deployment as well as utilization of new information
technology may have some negative ecological impact. This
includes awareness to energy consumption which could have
negative consequences on the environment. In recent years, it
was suggested to increase energy saving by deactivating base
stations during periods in which the traffic is expected to be low.
In this paper we study the optimal deactivation policies, using
recent tools from Multimodularity (which is the analog concept
of convexity in optimization over integers). We consider two
scenarios: In the first case, a central control derives the optimal
open loop policies so as to maximize the expected throughput
of the system given that at least a certain percentage of Base
stations are deactivated (switched OFF). In the second case, we
derive optimal open loop polices, which each base station can
employ in a decentralized manner to minimize the average buffer
occupancy cost when the fraction of time for which the BS station
is deactivated (idle mode) is lower bounded. In both the cases, we
show that the cost structure is Multimodular and characterize
the structure of optimal policies.

I. INTRODUCTION

In recent years, there is a paradigm shift towards greener
and denser networks [1], [2]. While green networks aim at
reducing overall power and energy consumption in networks,
denser networks increase the capacity and coverage of net-
works. Typically, dense networks, popularly referred to as
small cell networks comprise Femto and pico cells serving
indoor, hot-spot and urban mobility regions. The base stations
used in such cells are compact and small portable devices,
which can be easily installed on existing infrastructure and
are often battery operated. They recharge periodically and it
would be beneficial from a greener perspective if this can be
as less frequent as possible. Thus these base stations need
to judiciously use the available battery power. Further, if one
assumes that all these base stations are accessible to a central
control unit via a back haul link, depending on the load, some
of these devices can be deactivated to conserve their battery
life.

In our current work, we derive optimal policies to con-
serve energy in two scenarios. 1) A central control unit,
which, depending on the load in the system can deactivate
(eg. switched OFF) certain base stations to reduce overall
energy conservation in the system, but, with an objective to
maximize the expected throughput. 2) Each base station can
derive its policy independent of its neighbors to minimize
an average cost metric (for example, its buffer occupancy),
while keeping a lower bound on the fraction of time it is

deactivated (eg. idle). To address these problems, we use tools
from Multimodularity.

The natural counterpart of convex functions over integer
sets turn out to be the so called Multimodular functions
([3]) and for such functions we have indeed the property
that local minima are global minima. The property of Mul-
timodularity can handle the control of discrete events and
we utilize the same to obtain optimal activation policies for
base stations. These tools were earlier used in the context
of stochastic control of Queuing systems ([4] and references
therein). In a recent work [5], while addressing the problem of
energy limited wireless handsets, the authors use tools from
Multimodularity to address open loop control and establish
optimality of bracket sequences based control.

We consider a regular network, wherein the base stations
form a linear network and here the tools of Multimodularity
fit in. Tools like stochastic geometry can be used to address
networks which have base stations and mobiles distributed
stochastically according to some given process (for eg. Pois-
son) and this study is not addressed here. Our objective is to
obtain open loop policies. The main results of our paper are

1) We show that the cost structure for the both centralized
and decentralized scenarios is Multimodular.

2) For the central control, among all feasible policies with at
least an asymptotic fraction ρ of the base stations being
deactivated, the bracket policy with rate ρ is optimal.

3) For the decentralized control, among all feasible policies
with the BS deactivated for at least an asymptotic fraction
ρ of the time, the bracket policy with rate ρ is optimal.

4) In both the cases, the optimal policy is given by (bxc
denotes the largest integer smaller or equal to x)

an = bnρc − b(n− 1)ρc.

Here, an = 1(0), if the n-th BS in the centralized case
or BS in the n-th time slot in the decentralized case is
deactivated (activated).

5) The optimal policies depend only upon the conservation
factor ρ and are independent of all other system pa-
rameters, for example path loss coefficient, power per
transmission, etc.

In both the problems, we call ρ, the switch OFF fraction1

(the total fraction of base stations to be deactivated in central

1In this article, we shall use switch OFF and ON to mean deactivation and
activation. In our context, deactivation in central control means that the BS
is switched OFF and for the decentralized control, this means that the BS is
in Idle mode.
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control or the fraction of time a base station is deactivated in
decentralized control), as the conservation factor. In the first
case, this is decided by the central control based on system
statistics (like traffic type, load distribution, QoS, time of hour,
day of week, power saving, etc.), while in the decentralized
case, it is derived based on resources available and the QoS
setting (memory, power saving, waiting time, sojourn time,
etc.). Further, in our analysis, we assume that this factor is
known a priori.

Organization of the paper: In Section II, we introduce
Multimodularity concepts and the tools relevant to this paper.
In Section III, we address the central control problem, while
Section IV studies the decentralized control. We conclude our
work in Section V.

Notations: Bold letters, for example a, represent an infinite
sequence while akj represents a part of this sequence defined
by (aj , · · · , ak). Let 1n1 represent a n vector of all ones while
1 represents the infinite sequence of all ones. In the sections,
where the infinite sequences are not used and where all the
vectors used are of the same length, then bold letters (for
example a) themselves are used to represent the finite length
vectors. lim, lim is limit infimum and supremum, respectively.

II. MULTIMODULARITY

Multimodularity can be used to address a wide class of con-
trol problems over sequences of integer numbers. Multimodu-
lar functions turn out to be the natural counter part of Convex
functions, in the case of integer valued functions, for which the
existence of a local minima guarantees a global minima. Also,
they induce a particular form of optimal policies, which turn
out to be very regular, and are described by the well known
bracket sequences. We reproduce the related definitions (see
[4] for general definitions) specific to the spaces considered
in this paper.

In this section, we use notation a to represent the N−length
vector aN1 as here we do not need the infinite length sequences.

Definition 1: A function f : {0, 1}N → R is Multimodular
if

f(a + v) + f(a + u) ≥ f(a) + f(a + u + v) (1)

for all a ∈ {0, 1}N and for all u,v ∈ F with u 6= v and such
that a + u,a + v,a + u + v ∈ {0, 1}N .

The Multimodular base F contains the vectors
{−e1, s2, s3, · · · , sN , eN}, where,

−e1 = (−1 0 0 0 0 . . . 0 0),
s2 = (1 − 1 0 0 0 . . . 0 0),
s3 = (0 1 − 1 0 0 . . . 0 0),
· · · ,
sN = (0 0 0 0 0 . . . 1 − 1) and
eN = (0 0 0 0 0 . . . 0 1)

Definition 2: The bracket sequence a(ρ, θ) := {an(ρ, θ)}
with rate ρ ∈ [0, 1) and initial phase θ ∈ [0, 1) is defined as

an(ρ, θ) = bnρ+ θc − b(n− 1)ρ+ θc (2)

In this paper we mainly use Theorem 6, pp. 25, [4] which

establishes the optimality of bracket sequences and the same
is reproduced here.

Theorem 1: A bracket sequence a(ρ, θ) for any θ ∈ [0, 1)
minimizes the cost

lim
N→∞

1
N

N∑
n=1

fn(a1, · · · , an)

over all the sequences that satisfy

lim
N→∞

1
N

N∑
n=1

an ≥ ρ,

when ρ ∈ [0, 1), under the following assumptions:
A.1 fn is Multimodular ∀n.
A.2 fn(a1, . . . , an) ≥ fn−1(a2, . . . , an), ∀n > 1 and
A.3 for any sequence {an}, ∃ a sequence {bn} such that
∀n,m with n > m,

fn(b1, . . . , bn−m, a1, . . . , am) = fm(a1, . . . , am)

A.4 for every n, the functions fn(a1, · · · , an) are increasing
in ai for every i.

III. CENTRALIZED OPTIMAL CONTROL

We have uniformly placed points on a line, which are
separated by a distance d. Each point can potentially contain a
BS and or a mobile. The mobile at any point is active (i.e., has
a communication request) with probability q and this process
is identical and independent across the space. Some of the base
stations are switched OFF to optimize the battery performance.
Every BS that is ON is associated to some of the mobiles
based on the nearest distance criterion. Further the BS uses
directional antennae and can only communicate with the users
to its right. The throughput at the base station from a mobile
located at distance r is given by

θ = q log
(

1 +
pr−β

σ2

)
,

where p, r, β, σ2 respectively represent the transmit power
from mobile, distance between BS and mobile, path loss factor
and the noise variance. Further we assume that there is no
intra or inter-cell interference. Note that the throughput is
achieved only when the mobile has a request, which occurs
with probability q.

Our goal is to find an optimal switch OFF pattern of the
base stations so as to maximize the sum of the expected
throughputs of all the mobiles when one has to at least switch
OFF a fraction ρ of the base stations. The conservation factor
ρ at any time period will be decided by the network based
on the load and for a given ρ the network prefers to adopt an
optimal ON-OFF pattern.

We obtain this answer in the asymptotic limit as N , the
number of points in the space tend to∞. Consider a sequence
a ∈ {0, 1}∞ to represent the control sequence in the following
sense: ai, the action at ith point is 1 if BS is switched OFF
and 0 if BS is ON. The goal is to find an optimal sequence a∗

which maximizes the expected throughput (defined via Cesaro
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Sequence a 100100100 101000100 010010010 101000010 100010001 001001001
Throughput Θ 5.1 5.0 4.9 4.86 4.6 4.4

Table 1: Expected system throughput Θ = 1
N

∑N
1 θN (a) for different sequences.

The underlined sequence is the bracket sequence which optimizes the throughput.

limit) such that the total fraction of the base stations, that are
switched OFF, is lower bounded by ρ. We assume that the
system starts at point 0 where a BS is always switched ON and
we control the ON-OFF status of the remaining base stations,
i.e., the ones starting from point 1 onwards. We neglect the
throughput due to the mobile at 0 as it does not contribute to
optimization. Thus, we maximize

max
a

lim
N→∞

1
N

N∑
n=1

θn(a) (3)

subject to lim
N→∞

1
N

N∑
n=1

an ≥ ρ (4)

where θn(a) is the throughput due to the mobile at position n
(which depends upon the position of the nearest base station).
This depends upon the sequence a and equals (note the base
station at point 0 is always ON):

θn(a) = q log

(
1 +

p
(
1 + r2n

)−β/2
σ2

)
(5)

where,

rn :=
{
nd if an1 = 1n1
inf1≤j≤n {|n− j|d : aj = 0} else. (6)

We use tools from Multimodularity [4] to address this
problem. The related definitions are summarized in section
II. We use Theorem 1 and obtain (proof is in Appendix A)

Theorem 2: The function fn(an1 ) := −θn(a) is Multi-
modular for every n. Further, the centralized problem (3) is
optimized by a bracket sequence (2),

a∗ = a(ρ, θ) for some θ ∈ [0, 1). �

From the above theorem it is clear that the optimal sequence
depends only upon the conservation factor ρ and nothing else.
We now give some examples of bracket sequences.

Example 1: The bracket sequence 100100100 maximizes
the expected throughput for (ρ, θ) = (0.33, 0.9) .

Example 2: The bracket sequence 1001001000 maximizes
the expected throughput for (ρ, θ) = (0.3, 0.9) .

If the factor ρ is rational, then the sequence is periodic
([3]). In this case the optimal policy is to switch OFF the
base stations in a periodic fashion, for example with ρ = 0.33
one needs to switch OFF every third BS. The optimality of
bracket sequence is established in the limit N , the number
of points, tending to infinity. This would imply the bracket
sequence would be nearly optimal for systems with large N .
It would also be optimal for not so large values of N and
this is established using a numerical example. We consider a
system with N = 9 points in the space, ρ = 1/3 and obtain the
optimal control sequence by exhaustive search. The results are

tabulated in Table 1. We observe that the system throughput
is maximized again for the bracket sequence 100100100.

IV. DECENTRALIZED OPTIMAL CONTROL

We have base stations deployed in a network. Each BS is
powered by a battery and can transmit up to a maximum of
B bytes during a transmission opportunity, which are slotted
over time. The BS can either be in an active (ON) state where
it transmits packets or in an idle state where it shuts OFF
its activity to conserve the battery. Note that whenever a BS
enters idle (OFF) mode, more number of packets get stored
in the buffer and the buffer occupancy cost increases. What is
an optimal policy to minimize the average buffer occupancy
such that the BS is switched OFF at least for a fraction ρ of
the time ?

Let a = {at}t≥1, at ∈ {0, 1}, be a sequence of controls
such that at = 1 indicates BS is OFF at the tth time slot and
at = 0 indicates that the BS can serve at maximum B packets.
With any general ON-OFF policy, a, the buffer occupancy, xt
evolves as

xt(a) = (xt−1(a)− (1− at)B)+ + wt (7)

and it begins with x0 = w0.
In the above, wt represents the new arrivals in the t-th time

slot. We assume {wt}n≥0 is an Identically and Independently
distributed (IID) sequence and that it is bounded by B, i.e.,
wt ≤ B with probability one. We now have the following
problem of minimizing

min
a

lim
T→∞

1
T

T∑
t=1

E[xt(a)]

subject to lim
T→∞

1
T

T∑
t=1

at ≥ ρ. (8)

One needs to choose the conservation factor, ρ such that

B(1− ρ) > E[W ].

This has to be done to ensure that the system can be stable at
least for some of the control sequences a. With the above
condition, the system for example is stable for all those
sequences whose switch OFF fraction exactly equals ρ. We
again use the Multimodularity Theorem 1 and obtain (proof
is in Appendix B)

Theorem 3: The function ft(at1) := E[xt(a)] = E[xt(at1)]
is Multimodular for every t. And, the decentralized problem
(8) is optimized by a bracket sequence.

a∗ = a(ρ, θ) for some θ ∈ [0, 1). �

Thus the optimal sequence is again a bracket sequence which
depends only on ρ, the conversation factor.



4

Hence, in both centralized and decentralized problems,
we have similar optimal control pattern which depends only
upon the conservation factor ρ and none of the other design
parameters.

V. CONCLUSIONS

In this paper, we derived energy conserving policies for
Base stations in regular green networks using tools from
Multimodularity. We considered two example scenarios and
show how the cost functions are Multimodular. In the first
case, for the case of central control, we derived the optimal
open loop policies so as to maximize the expected throughput
of the system given that at least a certain percentage of Base
stations are deactivated (switched OFF). In the second case,
we derived optimal open loop polices, which each base station
can employ in a decentralized manner to minimize buffer
occupancy costs, while keeping the long term average fraction
of the BS deactivation (idle mode) time at least above a given
threshold. We established the optimality of bracket policies
for both the cases. We established that these regular sequences
optimize the (respective) performance(s) and these sequences
depend only upon the conservation factor and nothing else.
We conclude that Multimodularity can be applied in several
interesting example scenarios to derive optimal control in
Green Networks.
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APPENDIX A: PROOFS RELATED TO CENTRALIZED
CONTROL

Proof of Theorem 2: The proof is obtained using Theorem
1 of section II. By Theorem 4 given below, the function

fn(a1, · · · , an) = −θn(a)

is Multimodular and hence assumption A.1 of Theorem 1 is
satisfied.

Given an1 , define a0 = 0 and then define

nb := arg inf
0≤j≤n

{|n− j| : aj = 0, }

to denote the index of the nearest base station in the left for the
mobile at point n. When nb > 1, assumption A.2 is satisfied
as then

fn(an1 ) = fn−1(an2 ) = f(annb
).

When nb = 1 (i.e., when an1 = (0, 1, · · · , 1)) the equality still
holds in A.2 by the definitions (5)-(6). When an1 = 1n1 , then
the assumption A.2 is satisfied with inequality as

θn(1n1 ) < θn−1(1n−1
1 ).

Assumption A.3 is satisfied by taking {bn} to be all zeros.
For any n and for any 1 ≤ i ≤ n, clearly with aj for all j 6= i
fixed

fn(a1, a2, · · · , ai−1, 1, ai+1, · · · , an)
≥ fn(a1, a2, · · · , ai−1, 0, ai+1, · · · , an)

and hence the assumption A.4 is satisfied. Thus all the
hypothesis of Theorem 1 are satisfied and hence the theorm
follows by Theorem 1. �

Theorem 4: For every n, fn is Multimodular.
Proof: All the sequences in this proof are n length vectors

and hence we use the short notation a in place of an1 . Consider
any sequence a. We need to show for u 6= v ∈ F (see section
II for definitions) fn satisfies

fn(a + u) + fn(a + v) ≥ fn(a) + fn(a + u + v)

whenever, a + u, a + v, a + u + v are all in {0, 1}n.

Without loss of generality let v = sj (see section II for
definition of sj), which when added to a results in a + v
in which the ON position of the base station is shifted from
j − 1 location to location j. Since we can only consider such
sj for which a + sj is in {0, 1}n the sequence a should have

aj−1 = 0 and aj = 1.

Further,
(a+ v)j−1 = 1, (a+ v)j = 0

and ai = (a+ v)i for every i 6= j or i 6= j − 1.

Thus, addition of vector v to a results in changes in the base
station associations and hence the throughputs, only for the the
mobiles located in (j− 1, · · · , ηrj −1), where ηrj is defined as
the nearest base station to the right of the location j that is
switched ON in a:

ηr
j :=

{
arg infn>j{|n− k| : ak = 0} if set is non empty
n+ 1 else. (9)

Hence,

fn(a)− fn(a + v) =
n∑
k=1

θk(a)−
n∑
k=1

θk(a + v)

=
ηr

j−1∑
k=j−1

θk(a)− θk(a + v).
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Let u = sl with l > j+ 1 (l 6= j+ 1 as then it is not possible
that both a+u and a+v are in {0, 1}n). The addition of u to a
will introduce changes in mobile throughputs only at locations
(l− 1, · · · , ηrl ), which do not overlap with locations changed
by v, (j − 1, · · · , ηrj ). Further, the addition of v to a + u
also changes the mobile throughputs only in locations (j −
1, · · · , ηrj ) (w.r.t. the mobile throughputs under a+u). Because
of the independence of the locations of the changes due to
v and u and because the mobile throughputs only depend
upon the distance w.r.t. the serving BS, the mobile throughput
changes from a + u to a + u + v will be same as that when
a is changed to a + v. Thus,

fn(a + u)− fn(a + u + v)

=
ηr

j∑
k=j−1

θk(a + u)− θk(a + u + v)

=
ηr

j∑
k=j−1

θk(a)− θk(a + v) = fn(a)− fn(a + v). (10)

The second vector u can either be sl with l > j+1 or l < j−1
(as both a+u and a+v have to be in {0, 1}n) or u can be en
when j < n or it can e1 when j > 1. In all the combinations,
addition of vectors u and v results in changes to the base
station association at independent locations as above. Thus
for any u 6= v, as in (10), one can show that

fn(a + u) + fn(a + v) = fn(a) + fn(a + u + v). �

APPENDIX B: PROOFS RELATED TO DECENTRALIZED
CONTROL

Proof of Theorem 3: The proof is again obtained using
Theorem 1 of section II. By Theorem 5, the function

gt(a1, a2, · · · , at) = xt(a)

is Multimodular for every sample path of the arrival sequence,
wt

0 = (w0, w1, · · · , wt). The sample path wise Multimodular-
ity implies the Multimodularity of the average function

ft(at1) = E[xt(at1)]

and thus the first part of the theorem is established as well as
the assumption A.1 is satisfied.

The initial buffer size is w0, i.e., x0(a) = w0 for all
sequences a and all samples. The function value ft(at1) is the
average buffer size at t− 1 time slot, obtained by progressing
(Lindley’s recursion) t−1 time slots using the control sequence
at2 and when initial buffer size is given by x1(a1) ≥ w1 while
the function value ft−1(at2) is the average buffer size at the
same time slot obtained again by progressing t− 1 time slots
using the same control sequence ak2 but now with initial buffer
size equal to w0. Note that w1 is distributed same as w0 and
hence

ft(at1) ≥ ft−1(at2).

Thus, the assumption A.2 is satisfied.
For assumption A.3 take {bt} to be an all zero sequence.

When the control sequence is all zeros, i.e., the BS serves in

all the time slots, since the maximum number of arrivals in a
slot is B, the buffer size at the end of every slot t, will exactly
be wt, the new arrivals. Thus the function value ft(bt−τ1 ,aτ1)
represents the average buffer size after τ time slots when the
control sequence is aτ1 and when the initial buffer size is wt−τ
while fτ (aτ1) represents the same after τ time slots and with
the same control sequence aτ1 but with initial buffer size w0

and hence the two average values are equal. Thus, assumption
A.3 is satisfied.

Clearly, assumption A.4 is also satisfied and hence the
theorem follows by Theorem 1. �

Theorem 5: For every t and for every sample path wt
0, the

function gt is Multimodular.
Proof: In [5], while addressing the problem of energy limited
wireless handsets, the authors show that the function xt(at1)
is Multimodular for every sample path of the arrival sequence
{wt}. The functions used in describing their Cesaro limit
(see [5]) are exactly the same as the functions {xt} of the
decentralized problem. The sample path wise Multimodularity
is proved as Theorem 17, page 6 [5] (details of this proof are
in their technical report, Theorem 20, [6]). The proof there is
little difficult to read and hence we provide a brief overview
of the same below:

If xt−1 ≤ B then at = 0 results in an empty queue and
xt = wt. On the other hand, if xt−1 > B, some part ∆xt−1 =
xt−1 −B, remains in the queue and thus

xt = ∆xt−1 + wt.

Using this one can show that

xt(a) = xt(a + sj) if xj−2 > B

and xt(a) ≥ xt(a + sj) if xj−2 ≤ B (11)

Without loss of generality, let v = sj with j = 2, · · · , t.
Then by defintion 1 of section II, there are three possible cases:
i) u = −e1, ii) u = sk, k > j and iii) u = et and we need to
show for every combination that the equation (1) is satisfied,
by the function gt = xt, to complete the Multimodularity
proof. In the following we present the proof for the case (ii)
and the remaining cases are much simpler and follow similar
logic.

Let u = sk with k > j. Note that

xl(a + u) = xl(a) for all l < k − 1.

Thus, xj−2(a) ≥ B if and only if xj−2(a + v) ≥ B. Note
further that this case is possible only if

aj−1 = 0, aj = 1 and ak−1 = 0, ak = 1.

Case a: If xj−2(a) ≥ B then xj−2(a+ v) ≥ B and so

xt(a + v) = xt(a) and xt(a + u + v) = xt(a + u).

Thus (1) is satisfied with equality.
Case b: If xj−2(a) < B.

(i) In additon if xk−2(a) ≥ B and xk−2(a + v) ≥ B then
again

xt(a + u) = xt(a) and xt(a + v + u) = xt(a + v)

and so again (1) is satisfied with equality.



6

(ii) In addition if xk−2(a) ≥ B and xk−2(a+v) < B then
we have

xt(a + u) = xt(a) and xt(a + v + u) ≤ xt(a + v)

and now (1) is satisfied, but need not be with equality.
(iii) Now if xk−2(a) < B and xk−2(a + v) < B then

because ak−1 = 0 so is (a + v)k−1 = 0 (the controls in a,
a+ v are same after j + 1), xk−1(a) = xk−1(a + v) as they
both result only because of new arrivals at k − 1 and older
ones (which might be different) were flushed out completely.
Since there is no difference in both the controls a, a+v after
the time point j,

xt(a) = xt(a + v).

From (11) we do have

xt(a + u) ≥ xt(a + u + v)

and so again (1) is satisfied. �


