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Abstract— We consider a time varying wireless fading chan-
nel, equalized by an LMS linear equalizer in decision directed
mode (DD-LMS-LE). We study how well this equalizer tracks
the optimal Wiener equalizer. Initially we study a fixed channel.
For a fixed channel, we obtain the existence of DD attractors
near the Wiener filter at high SNRs using an ODE (Ordinary
Differential Equation) approximating the DD-LMS-LE. We also
show, via examples, that the DD attractors may not be close to
the Wiener filters at low SNRs. Next we study a time varying
fading channel modeled by an Auto-regressive (AR) process of
order 2. The DD-LMS equalizer and the AR process are jointly
approximated by the solution of a system of ODEs. We show via
examples that the LMS equalizer ODE show tracks the ODE
corresponding to the instantaneous Wiener filter when the SNR
is high. This may not happen at low SNRs.

Key words: Fading channels, LMS, Decision-Directed
mode, tracking performance, ODE approximation.

I. I NTRODUCTION

A channel equalizer is an important component of a
communication system and is used to mitigate the ISI (inter
symbol interference) introduced by the channel. The equal-
izer depends upon the channel characteristics. In a wireless
channel, due to multipath fading, the channel characteristics
change with time. Thus it may be necessary for the channel
equalizer to track the time varying channel in order to
provide reasonable performance.

An equalizer is most commonly designed using the Min-
imum Mean Square Error (MMSE) criterion ([6], [11],
[17]). The optimal MSE (MMSE) equalizer, also called the
Wiener filter (WF), is either calculated directly using the
training sequence or indirectly using a training based channel
estimate. The WF often involves a matrix inverse computa-
tion. Hence a computationally simpler iterative algorithm,
the Least Mean Square (LMS), is commonly used as an
alternative.

A Least Mean Square linear equalizer (LMS-LE), de-
signed using training sequence, is a simple equalizer and
is extensively used ([6], [11], [17]). For a fixed channel its
convergence to the Wiener filter has been studied in [1],
[13] (see also the references therein). For a time varying
channel, theoretical tracking behavior (how well an LMS-
LE tracks the instantaneous Wiener filter) has been studied
in [8] (its tracking behavior is also studied via simulations,
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approximations and upper bounds on probability of error in
[6], [10], [18]).

To study the tracking behavior theoretically, one needs
to have a theoretical model of the fading channel. Auto
Regressive (AR) processes have been shown to model such
channels quite satisfactorily ([12], [19]). In fact, it is suf-
ficient to model the fading channel by an AR(2) process
([10], [12], [19]). Thus, in [8] we model a time varying
wireless channel by an AR(2) process. It is shown that for
a stable/unstable channel (the poles are either inside/outside
the unit circle) the LMS-LE tracks the instantaneous WF. It
is also shown that for a marginally stable channel (the poles
are on the unit circle), the distance between the LMS-LE and
the instantaneous WF remains bounded.

A training based LMS-LE becomes inefficient in a wire-
less scenario. Due to time varying nature of the wireless
channel, the training based LMS-LE, needs frequent trans-
mission of the training sequence. Therefore, a significant (∼
18% in GSM) fraction of the channel capacity is consumed
by the training sequence. The usual blind equalization tech-
niques have also been found to be inadequate [5] due to their
slow convergence and/or high computational complexity. In
[7] it is shown using information theoretic arguments that
a semi-blind method can be a better alternative for a time
varying channel. In such scenarios, the decision directed
LMS-LE (the training sequence is replaced by the decisions
of the symbols after some time and hence such a DD-LMS-
LE can also be viewed as a semi blind algorithm) may prove
to be a good alternative ([13]).

However, one needs a theoretical understanding of the DD-
LMS-LE prior to its use. In [13], it has been shown that the
DD-LMS-LE for a fixed channel converges to the WF almost
surely, if the initializer is sufficiently close to the WF. But the
authors in [13] assume bounded channel output and perfect
equalizability. These assumptions are not satisfied in most of
the practical channels, e.g., an AWGN channel with ISI. In
[13], the authors also deal with the AWGN noise and observe
that the DD attractors are away from the WFs when the noise
is non zero. However, they restrict themselves to a single tap
equalizer. But ISI can be mitigated only with equalizers of
length greater than one. The existence of undesirable local
minima are established in [14], [15]. In [5] (Chapter 11 and
the references therein) the convergence properties (noiseless)
and initialization strategies (to ’open’ eye) are discussed.



Hence, the DD-LMS-LE is not completely understood even
for a fixed channel.

In this paper we first study a DD-LMS-LE on a fixed
channel. We obtain an ODE approximation for its trajectory
and show that the ODE’s attractors are close to the corre-
sponding Wiener filters as the noise variance tends to zero
(whenever perfect equalizability is achieved at zero noise).
We also show, once again using ODE approximation, that for
large noise variances (i.e., at low SNRs) the DD attractors
may not be close to the WFs. These results are obtained
under more realistic conditions than in [13]. In particular,
the equalizer can have more than one tap and the channel
output need not be bounded. Furthermore, we assume perfect
equalizability only at zero noise power.

Next we consider a DD-LMS-LE tracking a time varying
wireless channel modeled by an AR(2) process. We use the
ODE approximation of the AR(2) process (obtained by us in
[8]) and obtain an ODE approximation for a DD-LMS-LE
tracking an AR(2) process. Using this ODE approximation
we illustrate via some examples that a DD-LMS-LE can
indeed track an AR(2) process reasonably (the DD-LMS-
LE trajectory is quite close to the instantaneous WFs) as
long as the SNR is high. With increase in noise variance
the DD algorithm loses out. We are not aware of any other
theoretical study on the tracking behavior of a DD-LMS-LE.

The paper is organized as follows. In Section II we
explain our model. Section III studies the decision directed
(DD) algorithm on a fixed channel. Section IV obtains the
ODE approximation for a time varying channel. Section V
provides examples to demonstrate the ODE approximations
and the proximity of the DD attractors to that of the WFs.
Section VI concludes the paper. The appendices contain
some details on the proofs.

II. SYSTEM MODEL, NOTATIONS AND ASSUMPTIONS

We consider a system consisting of a time varying (wire-
less) channel followed by an adaptive linear equalizer. The
input of the channelsk comes from a finite alphabet and
forms a zero mean IID (independent, identically distributed)
process. The channel is a time varying finite impulse re-
sponse (FIR) linear filter{Zk} of lengthL followed by addi-
tive white Gaussian noise{nk}. We assumenk ∼ N (0, σ2).
We also assume that{sk} and{nk} are independent of each
other. The channel output at timek is

uk =
L−1∑
i=0

Zk,isk−i + nk,

where Zk,i is the ith component ofZk. At the receiver
the channel outputuk passes through a linear equalizerθk

and then through a hard decoderQ. The output of the hard
decoder at timek is ŝk.

In this paper we consider a DD-LMS-LE. For this system
the LE θk, of lengthM at timek, is initially updated using
a training sequence. After a while, the training sequence is
replaced by the decisions made at the receiver about the
current input symbolsk. This is the decision directed (DD)
mode.

The outputŝk of the hard decoderQ is Q(θt
kUk), where

Sk, Nk, Uk are the appropriate length input, noise and chan-
nel output vectors respectively. We assumeE[SkST

k ] = I.
Note that,Uk = πkSk +Nk, where the convolutional matrix
πk depends upon the channel co-efficientsZk · · ·Zk−M+1

and is given by,
Zk,1 Zk,2 · · · Zk,L 0 · · · 0
0 Zk−1,1 · · · Zk−1,L−1 · · · 0

0
...

0 0 · · · Zk−M+1,1 · · · Zk−M+1,L

 .

In this paper we assume the input to be BPSK, i.e.,
sk ∈ {+1,−1}. This assumption is made to simplify the
discussions and can easily be extended to any finite alphabet
source. For BPSK,Q(x) = 1{x>0} − 1{x≤0}.

In DD mode the LE is updated usinĝsk(θ): ,

θk+1 = θk − µkUk(θT
k Uk − ŝk(θk)) (1)

whereµk is a positive sequence of step-sizes.
Initially we study the DD system when the channel is

fixed, i.e.,Zk = Z for all k. Later on, we consider a time
varying channel when the channel is modeled by an AR(2)
process:

Zk+1 = d1Zk + d2Zk−1 + µWk (2)

whereWk is an IID sequence, independent of the processes
{sk}, {nk}. An AR(2) process can approximate a wireless
channel quite realistically ([10], [19]) and has been approxi-
mated by an ODE in [8]. Using this ODE approximation we
obtain the required tracking performance analysis.

The fixed channel is studied in Section III while the time
varying in Section IV.

III. DD-LMS-LE FOR A FIXED CHANNEL

In this section, we assume that the channel is fixed, i.e.,
Zk = Z for all k. We first obtain an ODE approximation for
it when the step-sizesµk → 0. We obtain the existence of
DD attractors (ODE) near the corresponding Wiener filters
at high SNRs under the assumption of perfect equalizability
for the channel with zero noise. We show that as noise
varianceσ2 tends to zero, these DD attractors tend to the
corresponding WFs.

A. ODE approximation

DD-LMS-LE for a fixed channel has been approximated
by an ODE in [1]. We start our analysis with this ODE.
Towards this goal, as a first step the DD-LMS-LE algorithm
(1) is rewritten to fit in the setup of [1], p. 276,

ξk :=
[

St
k U t

k ŝk

]t
,

H(θ, ξ) := U t
(
θtU − ŝ

)
,

θk = θk−1 − µk−1H(θk−1, ξk).

Let θ(t, t0, a) denote the solution of the following ODE
with initial condition θ(t0) = a (πZ is the convolutional



matrix πk of the previous section for a fixed channelZ),

�
θ (t) = −Ruuθ(t) + Ruŝ(θ(t)),
Ruu = πZπt

Z + σ2I,

Ruŝ = E
[
UQ

(
U tθ

)]
.

It is easy to see that the Markov chain{ξk} has a unique
stationary distribution for everyθ and that the DD-LMS
satisfies all the required hypothesis of Theorem 13, p. 278,
[1]. Hence one can approximate its trajectory on any finite
time scale with the solution of the above ODE. We reproduce
the precise result below.

For any initial conditionθ0 and for any finite time T, with
t(r) :=

∑r
k=0 µk, m(n, T ) := maxr≥n{t(r)− t(n) ≤ T}

sup
{n≤r≤m(n,T )}

|θr − θ (t(r), t(n), θ0)|
p→ 0

asn →∞, whenever
∑

k µk = ∞,
∑

k µ1+δ
k < ∞ for some

δ < 0.5, µk ≤ 1 for all k and lim infk
µk+r

k > 0 for all r.
Also, from the above convergence one can easily see that
the DD-LMS-LE trajectory converges to an attractor of the
ODE in probability whenever the DD-LMS-LE is started in
its region of attraction (see more details in [9]).

As in Lemma 1 of Appendix C one can show that, the
above ODE has a unique global bounded solution for any
finite time. We will also show the existence of attractors
for this ODE, near WF, at least at high SNRs in the next
subsection.

From the ODE approximation, if the decision directed
mode of the system is started in the region of attraction of
an attractor of the ODE, the DD-LMS-LE will converge to
that attractor in probability. We will show below that under
high SNR, an attractor of the above ODE will be close to
the WF. Thus, the DD mode should be started when the
LE is within the region of attraction of this attractor (e.g.,
when the ’eye’ has opened as in [13]). To reach the region
of attraction, one starts with a ’good’ initial condition and
then uses a training sequence. The region of attraction of
a desired attractor depends upon the channelZ, the input
distribution andσ2. However, for a given set of parameters
it may be computed via the various available methods ([4]).

B. Relation between DD attractors and WFs

In the following we study the desired attractors in more
detail.

Using implicit function theorem ([2]), we will show that
the DD-LMS attractors are close to the WFs at high SNRs.
Let (note thatRuu, Ruŝ depend onσ2),

f(θ, σ2)
4
= −Ruuθ + Ruŝ(θ),

θ∗(σ2)
4
= R−1

uuRus, whereRus = E[Us].

Note thatθ∗(σ2) represents the WF at noise varianceσ2,
while a DD attractor is a zero of the functionf . At σ2

n = 0,
by invertibility of πZπ∗Z and zero noise perfect equalizability
(which we assume and this common assumption is for
example discussed in Theorem 2 in [3]),Ruŝ(θ∗(0)) equals

Rus. Hence θ∗(0), the WF at zero noise variance, also
becomes a DD attractor. Thus,(θ∗(0), 0) is a zero of the
function f(., .). One can easily verify the following :

• f(θ, 0) = −Ruuθ + Rus wheneverθ ∈ B(θ∗(0), ε) for
someε > 0, whereB(x, r) = {y : |x− y| ≤ r}.

• Thus, ∂f
∂θ (θ∗(0), 0) = −Ruu andRuu is invertible.

• By Lemma 2,f is continuously differentiable .

By implicit function theorem (Theorem 3.1.10, p. 115,
[2]), there exists aσ2

0 > 0 and a unique differentiable
function g of σ2 such that, for all0 ≤ σ2 ≤ σ2

0 ,

f(g(σ2), σ2) = 0.

Since ∂f
∂θ (θ∗(0), 0) = −Ruu is negative definite and∂f

∂θ is
continuous at(θ∗(0), 0), ∂f

∂θ is negative definite on a small
neighborhood around(θ∗(0), 0). Thus zeros,g(σ2) are DD
attractors for allσ2 small enough. We represent these DD
attractors at noise varianceσ2, by θ∗d(σ2).

We will now relate the DD attractors,θ∗d(σ2) = g(σ2),
to the corresponding WFs,θ∗(σ2) whenσ2 is close to zero.
Defineh(σ2) = Ruŝ(θ∗d(σ2)). Using dominated convergence
theorem and continuity of the mapg, one can see that
h(σ2) → h(0) = Rus wheneverσ2 → 0. Define

m(θ, σ2, η) = −Ruuθ + Rus + η.

At any noise variance,σ2, m(θ∗(σ2), σ2, 0) = 0 asθ∗(σ2) is
the unique WF at noise varianceσ2. Also, the functionm is
C∞ (infinitely differentiable) in all parameters (note thatRus

is a fixed vector independent of all the parameters whenever
input is IID). Hence once again using implicit function
theorem at any noise variance,σ2

0 there existα, β > 0 and
a continuous functionγ(., .) such that,

m(γ(σ2, η), σ2, η) = 0 when |η| ≤ β, and
∣∣σ2 − σ2

0

∣∣ ≤ α.

Hence by continuity of the functionsγ and h, the WF
(which is also given byγ(σ2, 0)) will be close to the DD at-
tractor,γ

(
σ2,

[
Rus −Ruŝ(θ∗d(σ2))

])
at low noise variances.

IV. DD-LMS-LE TRACKING AN AR(2) PROCESS

In this section we present the ODE approximation for
the linear equalizer (1) in decision directed mode when the
channel is modeled as an AR(2) process (2). Here we set the
step-sizeµk = µ for all k, to facilitate tracking of the time
varying channel. We use Theorem 2 of Appendix B (parts of
this Theorem are presented as Theorem 3 in [8]) to obtain
the required ODE approximation.

We will show below that the trajectory(θk, Zk) given by
equations (1), (2) can be approximated by the solution of the
following system of ODEs,

(1 + d2)
�
Z (t) = [E(W ) + ηZ(t)] , if d2 ∈ (−1, 1],

d2Z(t)
dt2

= [E(W ) + ηZ(t)] , if d2 = −1,

d2Z(t)
dt2

+ η1

�
Z (t) = [E(W ) + ηZ(t)] ,

if d2 is close to− 1, (3)



�
θ (t) = −Ruu(Z(t))θ(t) + Ruŝ(θ(t), Z(t)), (4)

η
4
=

d1 + d2 − 1
µ

, η1 =
1 + d2√

µ

Ruu(Z)
4
= EZ

[
U(Z)U(Z)T

]
= (πZπT

Z + σ2I),

Ruŝ(θ, Z)
4
= EZ [U(Z)ŝ(θ)] .

In (3) , whend2 is close but not equal to−1, two ODEs
approximate the same AR(2) process. This is an impor-
tant case and results when a second order AR process
approximates a fading channel with a U-shaped band limited
spectrum. It is obtained for small values offdT wherefd

is the Doppler frequency shift andT is the transmission
time of one symbol. For example iffdT equals0.04, 0.01
or 0.005 the channel is approximated by an AR(2) pro-
cess with(d1, d2, µ) equal to (1.9707,−0.9916, 0.00035),
(1.9982,−0.9995, 1.38e−6) and(1.9995,−0.9999, 8.66e−8)
respectively (see, e.g., [10])). One could approximate such
an AR(2) process with the first order ODE of (3). However
this approximation will not be very accurate and will require
µ to be very small. In this case, the second order ODE
approximates the channel trajectory better. We will plot these
approximations in Section V.

By Lemma 1, the above system of ODEs has
unique bounded global solutions for any finite time. Let
Z(t, t0, Z), θ(t, t0, θ) represent the solutions of the ODEs
(3), (4) with initial conditionsZ(t0) = Z, θ(t0) = θ and
�
Z (t0) = 0 whenever the channel is approximated by a
second order ODE.

Let Vk
4
=(Zk, θk) and V (k)

4
=(Z(µαk, 0, Z), θ(µk, 0, θ)),

where α = 1 if Z(., ., .) is solution of a first order ODE
and 1/2 otherwise. We prove Theorem 1 using Theorem 2
of Appendix B.

Theorem 1: For any finiteT > 0, for all δ > 0 and for
any initial condition (G, θ, Z), with d2Z−1 + d1Z0 = Z,
�
Z (t0) = 0 whenever the channel is approximated by a
second order ODE andθ0 = θ,

PG,Z,θ

 sup
{1≤k≤ T

µα }
|Vk − V (k)| ≥ δ

 → 0,

as µ → 0, uniformly for all (Z, θ) ∈ Q, if Q is contained
in the bounded set containing the solution of the ODEs (3),
(4) till time T .

Proof : Please see the Appendix A.

One can easily see that the solution of the channel (AR(2)

process) ODE is,

Z(t):=



C1e
η

1+d2
t − E(W )

η ,

η 6= 0, d2 ∈ (−1, 1],
E(W )
1+d2

t + C1,

η = 0, d2 ∈ (−1, 1],
C1cosh(

√
η t)− E(W )

η ,

η > 0, d2 = −1,

C1cos(
√
|η| t)− E(W )

η ,

η < 0, d2 = −1,
E(W )

2 t2 + C1,
η = 0, d2 = −1,

C1e
−2at + E(W )

2a t,
η = 0, d2 close to − 1,

C1e
−atcos(

√
|η| − a2 t)− E(W )

η ,

η < −a2, d2 close to − 1,

C1e
−atcosh(

√
η + a2 t)− E(W )

η ,

otherwise,

(5)

where the constantC1 is chosen appropriately to match the
initial condition of the approximated AR(2) process.

The approximating ODE (4) suggests that, its instanta-
neous attractors will be same as the DD-LMS-LE attractors
obtained in the previous section when the channel is fixed
at the instantaneous value of the channel ODE (3). We have
shown in the previous section that these attractors are close
to the WF at high SNRs. We will verify the same behavior
for tracking, using some examples, in the next section.

One of the uses of the above ODE approximation is that,
one can study the tracking behavior of the DD-LMS (e.g.,
proximity of its trajectory to the instantaneous WFs) using
this ODE. This is done in the next section. Further, one can
also obtain instantaneous theoretical performance measures
like BER, MSE (approximately).

V. EXAMPLES

In this section we illustrate the theory developed so far
using some commonly used examples.

We first consider a fixed channel,Z = [.41, .82, .41] in
Figure 1. The channel of this example is very widely used
(see p. 414, [6] and p. 165, [5]). We use a two tap linear
equalizer. We plot the DD-LMS-LE, its ODE approximation
and the Wiener filter for two values of noise variances
σ2 = 0.01, 1 in this Figure. We can see that the ODE
approximation is quite accurate for all the coefficients. We
can also see that the DD-LMS coefficients as well as their
ODE approximations converge to the DD attractor for both
the noise variances. The ODE approximation thus confirms
that with high probability the realizations of the DD-LMS
trajectory (the DD-LMS trajectory in the figure being one
such realization) converge to the attractor. One can see from
this example that the DD-LMS attractors are close to the
corresponding Wiener filters at high SNRs (σ2 = 0.01) as
is shown theoretically in Section III, but are away from the
same at low SNRs (σ2 = 1).
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Fig. 1. The fixed channel equalizer coefficients for three tap channel
Z = [.41, .8, .41]

We next consider two examples of a time varying channel
equalized by a four/three tap equalizer. We consider two
stable channels in Figures 2 and 3. In the second example
corresponding to Figure 3, we consider a stable channel
with d2 close to−1. The AR parameters ared1 = .497,
d2 = 0.5 andµ = 0.0007 for the first stable channel, while
the same parameters for the second stable channel are set at
1.999982, −.9999947 and1.399677e−010 respectively. For
the second channel, as is shown theoretically, a better ODE
approximation is obtained by a second order ODE. Here,
the channel trajectory is approximated by an exponentially
reducing cosine waveform (asd2 is very close to−1, the
amplitude is reducing at a very small rate). This AR(2)
process, approximates a fading channel with band limited
and U-shaped spectrum and received withfdT = 0.001. This
can correspond, for example to a symbol timeT = 10µs, at
2.4-GHz transmission with mobile speed of 45 Km/h .

Both the examples are run under high SNR conditions (σ2

equals 0.05 for both the channels). In the first example, the
DD-LMS and the ODE are started with the initial value of
the WF while in the second they are started away from the
initial WF. One can see from both the figures that the ODE
once again approximates the DD-LMS quite accurately. Also,
the DD-LMS and the ODE track the instantaneous WF quite
well. Further, we can see from the second example that the
DD-LMS and ODE catch up with the WF soon.

We further plot the instantaneous BER of the DD-LMS,
the ODE and the WF in Figures 4, 5 respectively for both
the stable channels. One can see that the performance of the
DD-LMS and the ODE are quite close to that of the WFs
throughout the time axis. The proximity of the ODE solution
and the BER once again indicate that with high probability
the realizations of DD-LMS track the instantaneous WFs.

Next we plot the DD-LMS, the ODE and the instantaneous
WFs at two different noise variances in Figure 6 for a
marginally stable channel. It is evident from the figure that
the LMS-LE in DD mode, can track the channel variations
at high SNR (σ2 = 0.05), while it looses out at low SNRs
(σ2 = 1).
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Fig. 2. Trajectories of AR(2) process, DD-LMS filter coefficients for a
stable channel
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Fig. 3. Trajectories of AR(2) process, DD-LMS filter coefficients for a
stable channel withfdT = 0.001

VI. CONCLUSIONS

We have obtained theoretical performance analysis of an
LMS linear equalizer in decision directed mode. We first
studied a decision directed LMS-LE for a fixed channel.
Using an ODE, which approximates the LMS-LE trajectory
in decision directed mode, we showed the existence of DD
attractors in the vicinity of the WFs at high SNRs. The same
conclusion is also illustrated using some examples in Section
V. Furthermore, we showed via examples that, a DD attractor
may be away from the Wiener filter at low SNRs. We thus
conclude that at high SNRs, one can update the LMS-LE in
decision directed mode to obtain the WFs, by initializing it
with a ’good’ enough (the initializer must be in the region
of attraction) training based estimate.

We next considered time varying channels. We modeled
a time varying channel by an AR(2) process and obtained
an ODE approximation for the tracking DD-LMS-LE. Using
this ODE approximation, via some examples, we illustrated
that LMS-LE in decision directed mode, can also be used to
track the instantaneous WF at high SNRs. We also showed
that, at low SNRs the decision directed mode does not
provide a good equalizer.

We have extended these results to MIMO systems with
complex input and channel parameters. (see [9]).
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Fig. 6. DD-LMS versus WFs at varyingσ2 in a time varying channel

APPENDIX A

In this appendix we prove Theorem 1 using Theorem 2 in
Appendix B.

Proof of Theorem 1 : DefiningGk+1
4
=[UT

k , ST
k ]T , one can

rewrite the AR process and the DD equalizer adaptation as,

Zk+1 = (1− d2)Zk + d2Zk−1 + µ(Wk + ηZk)
θk+1 = θk + µH1(θk, Gk+1)

H1(θk, Gk+1)
4
= −Uk(θT

k Uk − ŝk)
= −Uk(θT

k Uk −Q(U t
kθk)).

This is similar to the general system (6), (7) of Appendix
B. Hence by Theorem 2, it suffices to show that our system
satisfies the assumptionsA.1-3, B.1-4 of Appendix B and
that the above system of ODEs has a bounded solution for
any finite time.

The AR(2) process{Zk} in (2) clearly satisfies the as-
sumptionsA.1 - A.3 as is shown in [8]. AssumptionB.2 is
satisfied as for any compact setQ and for anyθ ∈ Q,

|H1(θ, G)| ≤ 2

[
max

{
1, sup

θ∈Q
|θ|

}]
(1 + |G|2).

Fixing channelZk = Z for all k, we obtain the transition
kernel ΠZ(., .) for {Gk} which is a function ofZ alone.
Thus conditionB.1 is satisfied. It is easy to see thatGk(Z)
has a stationary distribution given by,

ΨZ([s1, s2, · · · sn]×A1)
= Prob(S = [s1, s2, · · · sn])

Prob(N ∈ A1 − πZ [s1, s2, · · · sn]T ),

whereπZ is theM×M +L−1 length convolutional matrix
formed from vectorZ (as in the fixed channel case) and
S, N are the input and noise vectors of lengthM + L − 1,
M respectively. Define,

h1(θ, Z)
4
= EZ(H1(θ, G(Z)) = −Ruu(Z)θ + Ruŝ(θ, Z),

νθ,Z(G)
4
=

∑
k≥0

Πk
Z(H1(θ, G)− h1(Z, θ)).

By Lemma 2 of Appendix C,h1 is locally Lipschitz. Thus
conditionsB.3 a, b are met.

We now prove conditionB.3.c using Proposition 1 of [9]
(which is proved as in [1]).Gk is a linear dynamical process
depending upon the channel realizationZ and it can be
written as,

Gk+1 = A(Z)Gk + B(Z)Wk+1, where,

A(Z) =
[

JM P
0L+M−1×L JL+M−1

]
, Wk+1 = [sk, nk],

B(Z) =


Z0 1
0M−1×2

1 0
0L+M−2×2

 .

In the above definitions,0n,m is a n×m zero matrix. The
matrix Jn is a n× n shift matrix, andP a M ×L + M − 1
matrix and these are given by,

Jn+1 =
[

01×n+1

In×n 0n×1

]
, P =

[
Z1 · · · ZL−1 0 · · · 0

0M−1×L+M−1

]
.

It is easy to see that,An(Z) = 0 for all n ≥ max{L,L +
M − 1} for all Z as it involves the powers of shift matrices
JL, JL+M−1, which satisfyJn

n = 0. By Lemma 3, the
function Pθ,ZH(θ, G) is Li(Rn) (see definition in [9]).
Now all other conditions of Proposition 1, [9] are satisfied
trivially (becauseA(Z) andB(Z) are linear inZ) and hence
Proposition 1 holds and therefore,B.4.c holds for allλ < 1.

The conditionB.4 is trivially met as for anyn > M+L−1,
the expectation does not depend upon the initial conditionG
but is bounded based on the compact setQ and because
of the Gaussian random variableN and discrete random
variableS.

By Lemma 1 in Appendix C, the DD-LMS ODE has a
unique bounded solution for any finite time. �

APPENDIX B : ODE APPROXIMATION OF A GENERAL

SYSTEM

We consider the following general system,

Zk+1 = (1− d2)Zk + d2Zk−1 + µH(Zk,Wk), (6)

θk+1 = θk + µH1(Zk, θk, Gk+1), (7)

where equation (6) satisfies all the conditions inA.1–A.3
and the equation (7) satisfies the assumptionsB.1–B.4, both
given in the next para. We will show that the above equations



can be approximated by the solution of the ODE’s,

(1 + d2)
�
Z (t) = h(Z(t)), if d2 ∈ (−1, 1],

d2Z(t)
dt2

= h(Z(t)), if d2 = −1,

d2Z(t)
dt2

+ η1

�
Z (t) = h(Z(t)), if d2 is close to− 1,

(8)

�
θ (t) = h1(Z(t), θ(t)), (9)

where the functionh1 is defined in the assumptions given
below andh(Z) = E[H(Z,W )], η1 = 1+d2√

µ .
We make the following assumptions for the system (6) :

A.1 {Wk} is an IID sequence.
A.2 h(Z) = E [H (Wk, Z)] is a C1 function.
A.3 For any compact setQ, there exists a constantC(Q),

such thatE|H(Z,W )|2 ≤ C(Q) for all Z ∈ Q,
where the expectation is taken wrtW .

We make the following assumptions for (7), which are
similar to that in [1]. LetD ⊂ Rd be an open subset.

B.1 There exists a family{PZ,θ} of transition probabilities
PZ,θ(G,A) such that, for any Borel subsetA,

P [Gn+1 ∈ A|Fn] = PZn,θn
(Gn,A)

whereFk
4
=σ(θ0, Z0, Z1,W1,W2, · · · ,Wk, G0, G1, · · · , Gk).

This in turn implies that the tuple(Gk, θk, Zk, Zk−1)
forms a Markov chain.

B.2 For any compact subsetQ of D, there exist constants
C1, q1 such that for all(Z, θ) ∈ D we have

|H1(Z, θ, G)| ≤ C1(1 + |G|q1).

B.3 There exists a functionh1 on D, and for eachZ, θ ∈ D
a functionνZ,θ(.) such that

a) h1 is locally Lipschitz onD.
b) (I − PZ,θ)νZ,θ(G) = H1(Z, θ, G)− h1(Z, θ).
c) For all compact subsets Q of D, there exist constants

C3, C4, q3, q4 and λ ∈ [0.5, 1], such that for all
Z, θ, Z

′
, θ

′ ∈ Q

i) |νZ,θ(G)| ≤ C3(1 + |G|q3),
ii) |PZ,θνZ,θ(G)− PZ′ ,θ′ νZ′ ,θ′ (G)|

≤ C4 (1 + |G|q4)
∣∣∣(Z, θ)− (Z

′
, θ

′
)
∣∣∣λ.

B.4 For any compact setQ in D and for any q > 0,
there exists aµq(Q) < ∞, such that for alln, G,
A = (Z, θ) ∈ Rd

EG,A {I(Zk, θk ∈ Q, k ≤ n) (1 + |Gn+1|q)}
≤ µq(Q) (1 + |G|q) ,

where EG,A represents the expectation taken with
G0, Z0, θ0 = G, Z, θ.

Let Z(t, t0, Z), θ(t, t0, θ) represent the solutions of the
ODEs (8), (9) with initial conditionsZ(t0) = Z, θ(t0) = θ.
For second order ODEs the additional initial condition is
given by

�
Z (t0) = 0. Let Q1 and Q2 be any two compact

subsets ofD, such thatQ1 ⊂ Q2 and we can choose aT > 0
such that there exists anδ0 > 0 satisfying

d ((Z(t, 0, Z), θ(t, 0, θ)), Qc
2) ≥ δ0, (10)

for all (Z, θ) ∈ Q1 and allt, 0 ≤ t ≤ T. We prove Theorem
2, following the approach used in [1]. Parts of this theorem
are presented in [8].

Theorem 2: Assume,E|H(Z,W )|4 ≤ C1(Q) for all Z
in any given compact setQ of D. Also assumeA.1–A.3
and B.1–B.4. Furthermore, pick compact setsQ1, Q2, and
positive constantsT , δ0 satisfying (10). Then for allδ ≤ δ0

and for any initial conditionG, with Z−1 = Z0 = Z,
�
Z

(t0) = 0 (wheneverZ(., ., .) is solution of a second order
ODE), andθ0 = θ,

PG,Z,θ

 sup
1≤k≤b T

µα c
|(Zk, θk)− (Z(kµα, 0, Z), θ(kµ, 0, θ))| ≥ δ


→ 0 asµ → 0

uniformly for all Z, θ ∈ Q1. If Z(., ., .) is solution of a first
order ODE thenα = 1, otherwise1/2.
Proof : The proof is given in the Technical Report [9].

APPENDIX C

Lemma 1: The ODE (4) has a unique solution which
satisfies,

|θ(t)| ≤ c0 + c1e
−σ2t,

for appropriate positive constantsc0 andc1.
Proof : For convenience, we reproduce the ODE (4),

�
θ (t) = −Ruu(Z(t))θ(t) + Ruŝ(θ(t), Z(t)).

The matrixRuu(Z(t)) is positive definite for allt, and it’s
minimum eigen value is greater thanσ2 for all t. Also,
|Ruŝ(θ(t), Z(t))| ≤ C |Z(t)| for all t for some constantC >
0. Using (5),|Ruŝ(θ(t), Z(t))| ≤ C(T ) for all t ≤ T for any
finite time T for some positive constantC(T ) depending
only on T . Thus, for any vectorθ, the inner product,〈

�
θ (t), θ

〉
≤ −σ2|θ|2 + C(T )|θ|

=
[
−σ2|θ|+ C(T )

]
|θ|.

Therefore by Global existence theorem (pp 169 - 170 of
[16]), the ODE (4), has a unique solution for any finite time
and the solution is bounded by the solution of the scalar
ODE (after choosing the initial conditions properly),

�
k (t) = −σ2k(t) + C(T ).

The solution of this ODE isk(t) = c1e
−σ2t + C(T ), for

some appropriate constantc1. �

Lemma 2: The functionRuŝ(θ, Z) is continuously dif-
ferentiable in(θ, Z), σ2 and hence is locally Lipschitz.



Proof : With fN (σ2, N) representing theM dimensional
Gaussian density with varianceσ2,

Ruŝ(θ, Z) = E[(πZS + N)Q(θt(πZS + N))]

=
∑
S

∫
{N :θt(πZS+N)>0}

(πZS + N)fN (σ2, N)dN

−
∫
{N :θt(πZS+N)<0}

(πZS + N)fN (σ2, N)dN.

We make the following change of variables,

Y = A(θ)(πZS + N) where matrix

A(θ)
4
=


θ1 θ2 · · · θM

0 1 · · · 0
...
0 0 · · · 1

 .

With |B| representing the determinant of the matrix B,

Ruŝ(θ, Z) =
∑
S

∫
{Y :Y1>0}

A(θ)−1Y
∣∣A(θ)−1

∣∣
fN (σ2, A(θ)−1Y − πZS)dY.

−
∫
{Y :Y1<0}

A(θ)−1Y
∣∣A(θ)−1

∣∣
fN (σ2, A(θ)−1Y − πZS)dY,

which is continuously differentiable by dominated conver-
gence theorem and because the terms inside the integral are
C∞. �

Let Pθ,Z(.|.) represent the transition function of the
Markov chainGk(θ, Z) (when the channel and equalizer are
fixed at (θ, Z)).

Lemma 3: The functionPθ,ZHθ(G) is locally Lipschitz.
Proof : Note that,

Pθ,ZHθ(G0) = E [H1(θ, G1)|G0 = (U0, S0)]
= E [H1 (θ, (A(Z)G0 + B(Z)W1))] .

For all (θ, Z) in a compact set, one can get a positive constant
C1 depending only upon the compact setQ such that,

|Pθ,ZHθ(G0)− Pθ′,Z′Hθ′(G′
0)|

≤ E
∣∣∣(θtU1)U1 − (θ′tU ′

1)U
′
1

∣∣∣ + 2E |U1 − U ′
1|

+C1E
∣∣∣Q(θtU1)−Q(θ′tU ′

1)
∣∣∣ ,

whereU1
4
=A(Z)G0+B(Z)W1, U ′

1
4
=A(Z ′)G′

0+B(Z ′)W1.
Suffices to show Lipschitz continuity for the last term. Now,

E
∣∣∣Q(θtU1)−Q(θ′tU ′

1)
∣∣∣ = 2P (Q(θtU1) 6= Q(θ′tU ′

1)).

The Lemma follows because, using the steps as in Lemma
2, we can show that the above term is continuously differ-
entiable. �
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