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Abstract—We consider a time varying wireless fading chan- approximations and upper bounds on probability of error in
nel, equalized by an LMS linear equalizer ip decisipn directed [6], [10], [18]).
mode (DD-LMS-LE). We study how well this equalizer tracks To study the tracking behavior theoretically, one needs
the optimal Wiener equalizer. Initially we study a fixed channel. . .
For a fixed channel, we obtain the existence of DD attractors to have .a theoretical model of the fading channel. Auto
near the Wiener filter at high SNRs using an ODE (Ordinary Regressive (AR) processes have been shown to model such
Differential Equation) approximating the DD-LMS-LE. We also ~ channels quite satisfactorily ([12], [19]). In fact, it is suf-
show, via examples, that the DD attractors may not be close to ficient to model the fading channel by an AR(2) process
the Wiener filters at low SNRs. Next we study a time varying ([10], [12], [19]). Thus, in [8] we model a time varying
fading channel modeled by an Auto-regressive (AR) process of . "' . ; ’ .
order 2. The DD-LMS equalizer and the AR process are jointly wireless channel by an AR(2) process. It _'S sh(_)wn that fqr
approximated by the solution of a System of ODEs. We show via a Stable/unstable Channel (the pOleS are e|ther |nS|del0UtS|de
examples that the LMS equalizer ODE show tracks the ODE the unit circle) the LMS-LE tracks the instantaneous WF. It
corresponding to the instantaneous Wiener filter when the SNR s also shown that for a marginally stable channel (the poles
is high. This may not happen at low SNRs. o _ are on the unit circle), the distance between the LMS-LE and

Key words: Fading channels, LMS, Decision-Directedina instantaneous WF remains bounded.
mode, tracking performance, ODE approximation. A training based LMS-LE becomes inefficient in a wire-

l. INTRODUCTION less scenario. I?u_e to time varying nature of the wireless

A ch | i . . cant ¢ of channel, the training based LMS-LE, needs frequent trans-

channeél equalizer IS an important component ol gyisqion of the training sequence. Therefore, a significant (

communication system and is used to mitigate the 151 (int (8% in GSM) fraction of the channel capacity is consumed
symbol interference) introduced by the channel. The equ y the training sequence. The usual blind equalization tech-

izer depends upon the channel characteristics. In a Wireleﬁﬁues have also been found to be inadequate [5] due to their

channel, QUe 'to multipath fading, the channel characteristig%W convergence and/or high computational complexity. In
chanige W'tth tltme.kT?hus Itt may be _neceshsary flor_ the Zhantn ] it is shown using information theoretic arguments that
equa_ldlzer 0 ragl ef ime varying channet in order semi-blind method can be a better alternative for a time
pr(')o\w € re"’}_so”? € per ormancel. desianed usi he Mi varying channel. In such scenarios, the decision directed

n equalizer is most commonly designed using the Minp ;o |'e (the training sequence is replaced by the decisions

imum Mean .Square Error (MMSE) 9riterion (6], 11}, of the symbols after some time and hence such a DD-LMS-
[1.7])' Trﬁ optimal M.SE .('r\]/lMSE? e?ual|zer, alslo caI_Ied tEeLE can also be viewed as a semi blind algorithm) may prove
Wiener filter (WF), is either calculated directly using t €0 be a good alternative ([13]).

training sequence or indirectly using a training based ChannelHowever, one needs a theoretical understanding of the DD-

e_stimate. The WF often _involves a matri_x invgrse Com_pUtaL'MS-LE prior to its use. In [13], it has been shown that the
tion. Hence a computationally su_npler iterative algor'thmDD-LMS-LE for a fixed channel converges to the WF almost
the Least Mean Square (LMS), is commonly used as &g e\ if the initializer is sufficiently close to the WF. But the

alternative. . . authors in [13] assume bounded channel output and perfect
A Least Mean Square linear equalizer (LMS-LE), de-

. . i ) , , equalizability. These assumptions are not satisfied in most of
signed using training sequence, is a simple equalizer arﬂ‘?e practical channels, e.g., an AWGN channel with ISI. In

is extensively used ([6], [11], [17]). For a fixed channel it 31 the 4uthors also deal with the AWGN noise and observe
convergence to the Wiener filter has been studied in [1 hat the DD attractors are away from the WFs when the noise

[13] (see also the references therein). For a time varying ,,, ;er. However, they restrict themselves to a single tap

channel, theoretical tracking behavior (how well an LMSééi]ualizer. But ISI can be mitigated only with equalizers of

!‘E ”a‘?"s the i.nstantane.ous. Wiener filtgr) hgs t?ee” S,IUdi‘F gth greater than one. The existence of undesirable local
in [8] (its tracking behavior is also studied via S|mulat|ons,mimma are established in [14], [15]. In [5] (Chapter 11 and

This research is partially supported by DRDO-1ISc program on advancet@e r?f?'_‘er_]ces thereln) the convergence properties _(n0|seless)
research in Mathematical Engineering. and initialization strategies (to 'open’ eye) are discussed.



Hence, the DD-LMS-LE is not completely understood even The outputs;, of the hard decodef) is Q(0%Uy), where

for a fixed channel. Sk, Ny, Uy are the appropriate length input, noise and chan-
In this paper we first study a DD-LMS-LE on a fixed nel output vectors respectively. We assufigs; S| = I.

channel. We obtain an ODE approximation for its trajectoryNote that,U;, = 7Sy, + N, where the convolutional matrix

and show that the ODE's attractors are close to the corre; depends upon the channel co-efficiettts: - - Zx_pr41

sponding Wiener filters as the noise variance tends to zeamd is given by,

(whenever perfect equalizability is achieved at zero noise

We also show, once again using ODE approximation, that for Zry Zra Zr,L 0 - 0

large noise variances (i.e., at low SNRs) the DD attractor 0 Zk-1x o Ze-1ra 0
may not be close to the WFs. These results are obtaingd :
under more realistic conditions than in [13]. In particular,| ¢ 0 oo DMt oo Zh_MalL

the equalizer can have more than one tap and the channel ) _ )

output need not be bounded. Furthermore, we assume perfect? this paper we assume the input to be BPSK, ie.,

equalizability only at zero noise power. s € {+1,—1}. This assumption is made to simplify the
Next we consider a DD-LMS-LE tracking a time Varyingdiscussions and can easily be extended to any finite alphabet

wireless channel modeled by an AR(2) process. We use tf8Urce. For BPSKQ(z) = 1y.>0) — liz<oy-

ODE approximation of the AR(2) process (obtained by us in N DD mode the LE is updated usirg (6): ,

[8]) and obtain an ODE approximation for a DD-LMS-LE B B Trr &

tracking an AR(2) process. Using this ODE approximation Okir = Ok = i Ux (04 Uk — 3x(0r)) (1)

we illustrate via some examples that a DD-LMS-LE cafyherey, is a positive sequence of step-sizes.

indeed track an AR(2) process reasonably (the DD-LMS- |nitially we study the DD system when the channel is

LE trajectory is quite close to the instantaneous WFS) aged, i.e.,Z, = Z for all k. Later on, we consider a time

long as the SNR is high. With increase in noise variancgarying channel when the channel is modeled by an AR(2)
the DD algorithm loses out. We are not aware of any othgjrocess:

theoretical study on the tracking behavior of a DD-LMS-LE.
The paper is organized as follows. In Section Il we Zpp1 =1 Z + daZp—1 + pWy (2)

explain our model. Section Il studies the decision directed

(DD) algorithm on a fixed channel. Section IV obtains thdVNeréWs is an 11D sequence, independent of the processes
ODE approximation for a time varying channel. Section V{sk}’ {nx}. An AR(2) process can approximate a wireless

provides examples to demonstrate the ODE approximatiofif@nnel quite realistically ([10], [19]) and has been approxi-

and the proximity of the DD attractors to that of the WFs_mated by an ODE in [8]. Using this ODE approximation we

Section VI concludes the paper. The appendices contaptain the required tracking performance analysis.
some details on the proofs. The fixed channel is studied in Section Il while the time

varying in Section V.
Il. SYSTEM MODEL, NOTATIONS AND ASSUMPTIONS
We consider a system consisting of a time varying (wire- I1l. DD-LMS-LE FOR A FIXED CHANNEL

less) channel followed by an adaptive linear equalizer. The | this section, we assume that the channel is fixed, i.e.,
input of the channek, comes from a finite alphabet and 7y, = Z for all k. We first obtain an ODE approximation for

forms a zero mean IID (independent, identically distributed} \when the step-sizeg;, — 0. We obtain the existence of

process. The channel is a time varying finite impulse repp attractors (ODE) near the corresponding Wiener filters
sponse (FIR) linear filtef Z, } of length L followed by addi- ¢ hjgh SNRs under the assumption of perfect equalizability
tive white Gaussian noisgny, }. We assumey, ~ N (0,0%).  for the channel with zero noise. We show that as noise
We also assume that,} and{n;} are independent of each yariances? tends to zero, these DD attractors tend to the

other. The channel output at tinteis corresponding WFs.
L—-1
up =Y Zrisk—i + A. ODE approximation
=0 DD-LMS-LE for a fixed channel has been approximated

where Zy,; is the i'" component ofZ,. At the receiver by an ODE in [1]. We start our analysis with this ODE.
the channel output,;, passes through a linear equalizgr Towards this goal, as a first step the DD-LMS-LE algorithm
and then through a hard decod@r The output of the hard (1) is rewritten to fit in the setup of [1], p. 276,
decoder at timé is 5. }t

k )

In this paper we consider a DD-LMS-LE. For this system & = [ Sk Up 3
the LE 6y, of length M at timek, is initially updated using H(9,6) = U (6'U-3),
a training sequence. After a while, the training sequence is O = Op1— 1 H(Op1,&).

replaced by the decisions made at the receiver about the
current input symbok;. This is the decision directed (DD) Let 6(t,to,a) denote the solution of the following ODE
mode. with initial condition (o) = a (77 is the convolutional



matrix 75 of the previous section for a fixed chanrig), R,s. Hence 6*(0), the WF at zero noise variance, also
becomes a DD attractor. Thug*(0),0) is a zero of the

6 (t) = —Ruf(t)+ Rus(0(t)), function f(_,.). One can easily verify the following :
Ruw = mgnly+ 0%, e f(0,0) = —R,.0 + R,, wheneverd ¢ B(6*(0),¢) for
R, = E[UQ(U')]. somee > 0, where B(z,r) = {y : |[x —y| < r}.
of (g _ . _
It is easy to see that the Markov chaf,} has a unique  * Thus, 55(0(0),0) = ~Ruy and R, is invertible.

Stationary distribution for eVerﬁ and that the DD-LMS . By Lemma 2,f iS Continuously diﬁerentiab|e .
satisfies all the required hypothesis of Theorem 13, p. 278
[1]. Hence one can approximate its trajectory on any finit
time scale with the solution of the above ODE. We reprodu
the precise result below.

For any initial conditiord, and for any finite time T, with f(g(c®),0%) =0.

t =57 , T):= r>nit —1 <T . . . . .
() = Lo s (0, T) 1= mazyzn{t(r) — t(n) < T} Since %4 (6%(0),0) = —R,, is negative definite ang? is
sup 60, — 6 (t(r), t(n), 6o)] 20 continuous at6*(0),0), % is negative definite on a small
{n<r<m(n,T)} neighborhood aroun*(0),0). Thus zerosg(c?) are DD
2 Il enough. We represent these DD
as whenever o, 146 for some attractors for aI.Io— sma g p
"o D e = 00 D fly " < 0 attractors at noise variane&, by 05 (o?).

6 < 0.5, py < 1 for all k£ andliminfy, “+ > 0 for all r. . vl 2 5
Also, from the above convergence one can easily see thatWe will now relate the DD attractorsls(o°) = g(c®),

the DD-LMS-LE trajectory converges to an attractor of th N the corr2espond|ng*WI;§f(02) whena.2 Is close to zero,

ODE in probability whenever the DD-LMS-LE is started in efineh (o) = R“?(Hd.(a )). Using dominated convergence

its region of attraction (see more details in [9]). thegrem and continuity of th82 map, one can see that
As in Lemma 1 of Appendix C one can show that, thd(7”) = h(0) = Rus whenevero® — 0. Define

above ODE has a unique global bounded solution for any m(0,02%,n) = —Ruub + Rus + 1.

finite time. We will also show the existence of attractors ) ) )

for this ODE, near WF, at least at high SNRs in the nexf\t any noise variancer®, m(6*(c%), 0%,0) = 0 as¢*(0?) is

subsection. the unique WF at noise varianeg. Also, the functionm is
From the ODE approximation, if the decision directed”" (infinitely differentiable) in all parameters (note thfaj

mode of the system is started in the region of attraction ¢f & fixed vector independent of all the parameters whenever

an attractor of the ODE, the DD-LMS-LE will converge to/nPut is 1ID). Hence once again using implicit function

that attractor in probability. We will show below that undertheorem at any noise variance; there existo, 3 > 0 and

high SNR, an attractor of the above ODE will be close t& continuous functiory(.,.) such that,

the WF. Thus, the DD mode should be started when t%(7(02,n),02,n) — 0 when |5] < 8, and |o? — 02| < a.

LE is within the region of attraction of this attractor (e.g., - -

when the 'eye’ has opened as in [13]). To reach the region Hence by continuity of the functions and i, the WF

of attraction, one starts with a 'good’ initial condition and(which is also given byy(c2, 0)) will be close to the DD at-

then uses a training sequence. The region of attraction whctor,y (02, [RUS — Ru§(92(0’2))]) at low noise variances.

a desired attractor depends upon the charffiethe input

distribution ando?. However, for a given set of parameters IV. DD-LMS-LE TRACKING AN AR(2) PROCESS

it may be computed via the various available methods ([4]). In this section we present the ODE approximation for
the linear equalizer (1) in decision directed mode when the

"By implicit function theorem (Theorem 3.1.10, p. 115,
1), there exists as2 > 0 and a unique differentiable
nction g of o2 such that, for alb < 2 < 03,

B. Relation between DD attractors and WFs channel is modeled as an AB(process (2). Here we set the
In the following we study the desired attractors in morestep-sizeu,, = u for all &, to facilitate tracking of the time
detail. varying channel. We use Theorem 2 of Appendix B (parts of

Using implicit function theorem ([2]), we will show that this Theorem are presented as Theorem 3 in [8]) to obtain
the DD-LMS attractors are close to the WFs at high SNRéhe required ODE approximation.

Let (note thatR,., R.; depend ons?), We will show below that the trajector§fy., Z;.) given by
A equations (1), (2) can be approximated by the solution of the
f(0,0%) = —Ryub + Rus(0), following system of ODEs,
w2y A -1 _ .
9*(0%) = R,,Rus, whereR,, = E[Us]. (1+dy) Z (t) = [EW)+nZ®)], if dye (—1,1],
Note thatf*(o?) represents the WF at noise variancg, d2Z(t) _ _ B
while a DD attractor is a zero of the functigh At o2 = 0, a2 [EW) +02(t)], ifdy=-1,

by invertibility of =7} and zero noise perfect equalizability 47 (t) .
(which we assume and this common assumption is for gz + M Z () [EW) +0Z(t)],
example discussed in Theorem 2 in [3R,:(6*(0)) equals if dy is closeto—1, (3)



0(t) = —Ru(Z(t)0(t) + Rus(0(t), Z(t)), (4) process) ODE is,
y & dfd-1o 1+d Cremimt _ EOV).
.t v W#0.ds € (~1,1]
Ru(2) & Ez|U(Z)U(2)"] = (rsmh + o°1), B4y,
é a 77:07d2€(_1’1]a
R.:(0,7Z) = Ez[U(Z)309)]. Cycosh(y/i t)_@v
n>0,dy =—1,
Creos(y/In] t) — E02,
In (3) , whend, is close but not equal te-1, two ODEs Z(t):= n<0,dy =—1, )
approximate the same AR(2) process. This is an impor- % t2 + C1,
tant case and results when a second order AR process n=0,dy = —1,
approximates a fading channel with a U-shaped band limited Cre2at 4 % t,
spectrum. It is obtained for small values &fT" where f, n=0,d, close to — 1,
is the Doppler frequency shift an@ is the transmission Cre~cos(v/[n] — a2 t) — EW)
) : et
time of one symbol. For example jf;7" equals0.04, 0.01 n < —a2 d; close to — 1
or 0.005 the channel is approximated by an AR(2) pro- ot 5 EW) ’
cess with (dy, da, ;1) equal to (1.9707, —0.9916,0.00035), Cre™*cosh(y/n +a? 1) — ==,

(1.9982, —0.9995, 1.38¢~%) and(1.9995, —0.9999, 8.66¢ %) otherwise,

respectively (see, e.g., [10])). One could approximate sughhere the constant; is chosen appropriately to match the

an AR(2) process with the first order ODE of (3). Howeveipitial condition of the approximated AR(2) process.

this approximation will not pe very accurate and will require  The approximating ODE (4) suggests that, its instanta-

pu to be very small. In this case, the second order ODRegys attractors will be same as the DD-LMS-LE attractors

approximates the channel trajectory better. We will plot thesgotained in the previous section when the channel is fixed

approximations in Section V. at the instantaneous value of the channel ODE (3). We have
By Lemma 1, the above system of ODEs hashown in the previous section that these attractors are close

unique bounded global solutions for any finite time. Lef0 the WF at high SNRs. We will verify the same behavior

Z(t,to, Z),0(t, to,0) represent the solutions of the oDEsfor tracking, using some examples, in the negt se_ctio_n.
(3), (4) with initial conditionsZ(t,) = Z, 0(t;) = 6 and One of the uses of the above ODE approximation is that,

one can study the tracking behavior of the DD-LMS (e.g.,
6broximity of its trajectory to the instantaneous WFs) using
this ODE. This is done in the next section. Further, one can

Let Vké(zk,ek) and V(k)é(Z(Mo‘k’O’Z)’Q('uk,079)), also obtain instantaneous theoretical performance measures
wherea = 1 if Z(.,.,.) is solution of a first order ODE like BER, MSE (approximately).
and 1/2 otherwise. We prove Theorem 1 using Theorem 2
of Appendix B. V. EXAMPLES

Theorem 1: For any finite7 > 0, for all § > 0 and for I_n this section we illustrate the theory developed so far
any initial condition (G, 6, Z), with doZ_, + d,Z, = z, USing some commonly used examples. ,
. , . We first consider a fixed channel, = [.41,.82, .41] in
Z (to) = 0 whenever the channel is approximated by &g re 1. The channel of this example is very widely used
second order ODE anéh, = 0, (see p. 414, [6] and p. 165, [5]). We use a two tap linear
equalizer. We plot the DD-LMS-LE, its ODE approximation
and the Wiener filter for two values of noise variances
o? = 0.01, 1 in this Figure. We can see that the ODE
approximation is quite accurate for all the coefficients. We
can also see that the DD-LMS coefficients as well as their
ODE approximations converge to the DD attractor for both
the noise variances. The ODE approximation thus confirms
that with high probability the realizations of the DD-LMS
trajectory (the DD-LMS trajectory in the figure being one
. - . uch realization) converge to the attractor. One can see from
I(rzll)trt]iﬁ t)i%uendTed set containing the solution of the ODEs (3 his examp!e tha_t the DD-LMS Qttractors are close to the

' corresponding Wiener filters at high SNRs?(= 0.01) as

Proof : Please see the Appendix A. is shown theoretically in Section lll, but are away from the

. , same at low SNRso@ = 1).
One can easily see that the solution of the channel (AR(2)

A (to) = 0 whenever the channel is approximated by
second order ODE.

Pec,z0 sup |Vix—V (k)| >¢dp —0,
{1<k< %

ne

asu — 0, uniformly for all (Z,0) € Q, if @Q is contained



. Equalizer coefficients trajectory — oS Channel Coefficient Trajectories Equalizer coefficients trajectory

Z=[41, .82, 41] p=0.008 -~ ODE

—— Actual Trajectory
ODE

. . - . ;
0 1000 2000 3000 0 1000 2000 3000

_0'50 4000 8000 10000

. ) . . Fig. 2. Trajectories of AR(2) process, DD-LMS filter coefficients for a
Fig. 1. The fixed channel equalizer coefficients for three tap channgkaple channel

7 = [A41,.8, .41]

Channel Trajectories Equalizer coefficients trajectory

We next consider two examples of a time varying channel ‘ ‘ ‘ ‘
equalized by a four/three tap equalizer. We consider two 12W
stable channels in Figures 2 and 3. In the second example -~ ODE
corresponding to Figure 3, we consider a stable channel
with dy close to—1. The AR parameters aré, = .497,
dy = 0.5 and . = 0.0007 for the first stable channel, while
the same parameters for the second stable channel are set at
1.999982, —.9999947 and1.399677¢ — 010 respectively. For
the second channel, as is shown theoretically, a better ODE_04
approximation is obtained by a second order ODE. Here,
the channel trajectory is approximated by an exponentially
reducing cosine waveform (a& is very close to—1, the Fig. 3. Trajectories of AR(2) process, DD-LMS filter coefficients for a
amplitude is reducing at a very small rate). This AR( stable channel witlfsT" = 0.001
process, approximates a fading channel with band limited
and U-shaped spectrum and received Wi’ = 0.001. This
can correspond, for example to a symbol tiffie= 10us, at V1. CONCLUSIONS
2.4-GHz transmission with mobile speed of 45 Km/h .

Both the examples are run under high SNR conditiar’s (  \ye nave obtained theoretical performance analysis of an

equals 0.05 for both the channels). In the first example, tn_q\AS linear equalizer in decision directed mode. We first

DD-LMS and the ODE are started with the initial value Ofgy qieq a decision directed LMS-LE for a fixed channel.

.th_e. WF while in the second they are st'arted away from th@sing an ODE, which approximates the LMS-LE trajectory
initial WF.‘ One can see from both the flgures that the ODE, qecision directed mode, we showed the existence of DD
once again approximates the DD-LMS quite accurately. AlSQu o otors in the vicinity of the WFs at high SNRs. The same
the DD-LMS and the ODE track the instantaneous WF Quitg, | ,sjon is also illustrated using some examples in Section
well. Further, we can see from_ the second example that the Furthermore, we showed via examples that, a DD attractor
DD-LMS and ODE cat_ch up with the WF soon. may be away from the Wiener filter at low SNRs. We thus
We further plot the instantaneous BER of the DD-LMSy.,nciyde that at high SNRs, one can update the LMS-LE in

the ODE and the WF in Figures 4, 5 respectively for bothyecision directed mode to obtain the WFs, by initializing it
the stable channels. One can see that the performance of tha, 'good’ enough (the initializer must be in the region
DD-LMS and the ODE are quite close to that of the WFg¢ attraction) training based estimate.

throughout the time axis. The proximity of the ODE solution

and the BER once again indicate that with high probability We next _con5|dered time varying channels. We mod_eled
o . a time varying channel by an AR(2) process and obtained
the realizations of DD-LMS track the instantaneous WFs. an ODE approximation for the tracking DD-LMS-LE. Usin
Next we plot the DD-LMS, the ODE and the instantaneou PP g ' 9

WEs at two different noise variances in Figure 6 for ;ﬁms ODE approximation, via some examples, we illustrated

. . 06 . .
1000 2000 3000 1000 2000 3000

. . . . hat LMS-LE in decision directed mode, can also be used to
marginally stable channel. It is evident from the figure th rack the instantaneous WF at high SNRs. We also showed
the LMS-LE in DD mode, can track the channel variation'?hat at low SNRs the decision directed. mode does not
at high SNR ¢2 = 0.05), while it looses out at low SNRs ' .

(0% = 1). provide a good equalizer.
We have extended these results to MIMO systems with
complex input and channel parameters. (see [9]).



» BER VersusTime wherer is the M x M + L —1 length convolutional matrix

O e formed from vectorZ (as in the fixed channel case) and
=~ ODE S, N are the input and noise vectors of length+ L — 1,
M respectively. Define,

BER Versus Time

h1(6,2)
Vgﬁz(G)

Ez(H1(0,G(2)) = —Ruu(Z)0 + Ru3(0, Z),
> TL(Hi(6,G) — h1(Z,6)).

k>0

> e

1000 2000 3000

] 1000 2000 3000

By Lemma 2 of Appendix Ch; is locally Lipschitz. Thus

Fig. 4. Stable channel of Fig.2 Fig. 5. Stable channel of Fig.3 with conditionsB.3 a, b are met.

faT = 0.001 We now prove conditiorB.3.c using Proposition 1 of [9]
! Channel Trajectory Equalizer coefficients trajectory — DD-LMS (WhICh I_S proved asin [1])Gk ISa “n.ear. dynaml(?al Process
p N o depending upon the channel realizatigh and it can be
3 s - - ODE .
° W written as,
— DD-LMS
o
! - oo Gk+1 = A(Z)Gk —|—B(Z)Wk+1, where,
\/\/\/ \ L [ Ju P
—— Actual Traectory A(Z) = 3 Wk+1 - [Sk‘ank‘];
g o a Or+m—1xz Jr+m—1
~ e g I Zo 1
/\/\\/\ RN NN/ BN/ Onr—1x2
< e RN, W\ s B Z —
) i 2 3 0 1 2 3 ( ) 1 0
e’ x10* 0
L+M—2x2

Fig. 6. DD-LMS versus WFs at varying? in a time varying channel
In the above definitions),, ,, iS an x m zero matrix. The
matrix J,, is an x n shift matrix, andP aM x L+ M —1

APPENDIXA matrix and these are given by,
In this appendix we prove Theorem 1 using Theorem 2 in
Appendix B. Jn+1 _ |: 01><n+1:|’ P— |:Z1 ZL,1 0 --- 0 '
Proof of Theorem 1 : Defining Gkﬂé[UkT, STT, one can Tnxn Onxy Onr—1xL+n-1

rewrite the AR process and the DD equalizer adaptation a%ris easy to see thatd”(Z) = 0 for all n > maz{L,L +

Ziy1r = (1=do)Zp +doZp1+p(Wi+nZy) M- 1} for all Z as it involves the powers of shift matrices
Jr, J _1, which satisfyJ"* = 0. By Lemma 3, the
0 = 40 Hy(6 Ly~ L+M-1 : n AT
bt A bt w16k, Gr) function Py zH(0,G) is L;(R™) (see definition in [9]).
Hy(0k, Grs1) = —U(0f Ui — i) Now all other conditions of Proposition 1, [9] are satisfied
= —U,(0TU, — QULH)). trivially (becauseA(Z) andB(Z) are linear inZ) and hence

. _Proposition 1 holds and therefor,4.c holds for all\ < 1.
This is similar to the general system (6), (7) of AppendiX 14 ~onditiorns.4 is trivially met as for any, > M+L—1,

B, Hgnce by Theorem_ 2, it suffices to show thaF our systefge expectation does not depend upon the initial condifion
satisfies the assumptiors1-3, B.1-4 of Appendix B apd but is bounded based on the compact @taind because
that the above system of ODEs has a bounded solution f8f the Gaussian random variabl§ and discrete random

any finite time.

The AR(2) procesgZ;} in (2) clearly satisfies the as-
sumptionsA.1 - A.3 as is shown in [8]. AssumptioB.2 is
satisfied as for any compact s@tand for anyf € Q,

variable S.
By Lemma 1 in Appendix C, the DD-LMS ODE has a
unique bounded solution for any finite time. l

APPENDIXB : ODE APPROXIMATION OF A GENERAL

2
(1 +1G1%). SYSTEM

|H1(6,G)| <2 [maw {1,sup |9|}
0eQ

Fixing channelZ, = Z for all k, we obtain the transition =~ We consider the following general system,
kernel II(.,.) for {Gx} which is a function ofZ alone.
Thus conditionB.1 is satisfied. It is easy to see thal(Z) Zyyr = (1 =do)Zy +doZy1 + pH(Zg, W), (6)
has a stationary distribution given by, Opi1 = On+ pHy(Zy, 0k, Grir), (7

Vz([s1,52, - 5n] X A1) where equation (6) satisfies all the conditionsArl-A.3
= Prob(S = [s1,52, " sn) and the equation (7) satisfies the assumpt®risB.4, both
Prob(N € Ay —z[s1,52,---5,]7),  given in the next para. We will show that the above equations



can be approximated by the solution of the ODE'’s, subsets of), such that); C @), and we can choosea > 0
such that there exists afy > 0 satisfying

(1+d2) Z (1) h(Z(t)), if dye (—1,1],
P20 4((2(.0.2),6(4,0,6)),Q5) = o, (10

72 h(Z(t)), if do =—1,
for all (Z,0) € @, and allt, 0 < ¢ <T. We prove Theorem
+m 7 (t) = h(Z(t), if dyiscloseto—1, 2, following the approach used in [1]. Parts of this theorem
®) are presented in [8].
Theorem 2: Assume,E|H(Z,W)|* < C1(Q) for all Z
. in any given compact sef) of D. Also assumeA.1-A.3
6(t) = hi(Z(t),0(t)), (9) andB.1-B.4. Furthermore, pick compact sefs, Q,, and
where the functiorh; is defined in the assumptions givenposmve constantd’, & satisfying (10). Then for alp < 59
below andh(Z) = E[H(Z,W)], g = 1td and for any initial conditionG, with Z_, = Zy = Z, Z

We make the following assumptions for the system (6) :(fo) = 0 (wheneverZ(.,.,.) is solution of a second order

A.1 {W,} is an lID sequence. ODE), anddy = 0,
A2 h(Z)=E[H (W, Z)] is aC* function.
Pg,z0
1

d*Z(t)
dt?

A.3 For any compact se&p, there exists a constadt(Q), sup  [(Zk, 0) — (Z(kp*,0,2),0(ku,0,0))] > 5}

such thatE|H(Z,W)|?> < C(Q) forall Z € Q, <k<| X% |
where the expectation is taken wit. —~0asp—0
We make the following assumptions for (7), which are _ _ _
similar to that in [1]. LetD c R¢ be an open subset. uniformly for all Z,6 € Q.. If Z(., ., ) is solution of a first
B.1 There exists a familf P, ¢} of transition probabilities ©rder ODE them =1, otherwisel/2.
Py 4(G, A) such that, for any Borel subsg, Proof : The proof is given in the Technical Report [9].
PlGny1 € A|F,] = Pz, 0,(Gn, A) APPENDIXC

Where]-‘kéa(eo Zo. 2. W1 Wa, -+ . Wi, Go, G1.- . Gr). Lemma 1: The ODE (4) has a unique solution which
This in turn implies that the tupléGy, 0k, Zx, Zr—1) satisfies,
forms a Markov chain.

2
. 0(t)| < ot
B.2 For any compact subsél of D, there exist constants 0] < co +ere

C1,q1 such that for all(Z, #) € D we have for appropriate positive constants and c; .
\H1(2,6,G)] < Ci(1+|G|™). Proof : For convenience, we reproduce the ODE (4),
B.3 There exists a functioh; on D, and for eact?, 6 € D 0(t) = —Ruu(Z(1)0(t) + Rus(6(t), Z(t)).

a functionvz ¢(.) such that . ) . - .
a) hy is locally Lipschitz onD, The matrixR,,.,(Z(t)) is positive definite for alk, and it's

ini i lue is greater thar? for all ¢t. Also
b) (I — Pze)vze(G) = Hi(Z,0,G) — hi(Z,6). minimum:€igen va ,
¢) For all compact subsets Q of D, there exist constan@“g(e(t)’ Z(t))| < C|Z(t)| for all ¢ for some constart’ >
Cs,Cigs.qs and A € [0.5,1], such that for al 0. Using (5),|R.s(0(t), Z(t))| < C(T) for all t < T for any
7 (’9 Z} 9/’ €0 T finite time T for some positive constan®(T") depending
i)) |’ 7(G)\ < Cy(1 4 GI) only onT'. Thus, for any vecto#, the inner product,
Vz.0 < Cj3 ),

i) |Pzovze(G) = Py gvy o (G)] <‘9 (1) 9>
/7 ’ A ’
< Ci(1+1G1)|(2,0) - (2',0))
B.4 For any compact sef) in D and for anyq > 0,
there exists a/éq(Q) < oo, such that for alln, G, Therefore by Global existence theorem (pp 169 - 170 of
A=(Z0)eR [16]), the ODE (4), has a unique solution for any finite time

Eaa{I(Z, 06 € Q. k <n)(1+ |Gny1]9)} and the solution is bounded by the solution of the scalar
; ) RS < (@) 1+ (Gl ODE (after choosing the initial conditions properly),
= q )

where Eg 4 represents the expectation taken with k (t) = —o”k(t) + C(T).
Go, Zy,00 =G, Z,0.

Let Z(t,t0, Z),0(t,to,0) represent the solutions of the
ODEs (8), (9) with initial conditionsZ () = Z, 0(to) = 6.
For second order ODEs the additional initial condition is Lemma 2: The function R,;(6, Z) is continuously dif-
given by 7 (t) = 0. Let Q; and Q. be any two compact ferentiable in(¢, Z), o> and hence is locally Lipschitz.

< =9+ ()|

= [=o%0|+C(T)] 0]

The solution of this ODE isi(t) = cie="t 4+ C(T), for
some appropriate constant. W



Proof : With fx(02, N) representing the\/ dimensional
Gaussian density with varianeé,

(1]
Ru:(0,Z) = E[(nzS+ N)Q(0'(nzS + N))] (2]
= > / (125 4+ N)far(0?, N)dN [
g J{N:0t(mzS+N)>0}
- / (28 + N)fi(o?, N)aN.
{N:6t(rzS+N)<0}
5
We make the following change of variables, o]
Y = A(#)(rzS+ N) where matrix (6]
th 0o O -
0 1 . 0
A(p) =
: 8
With |B| representing the determinant of the matrix B, [0
Ru(0,2) = Z/ A(0)7'Y |A(B) 7Y
s J{Y:¥1>0} [10]
n(o?, AO)TYY — 128)dY.
- AO) Y |A@G) T
/{Y:Y1<O} ) 4@~ [11]
In (@ AO)7Y —7z9)dY, (g

which is continuously differentiable by dominated conver-
gence theorem and because the terms inside the integral e
c>~. 1

Let Py z(.|.) represent the transition function of the [14]
Markov chainG'x (0, Z) (when the channel and equalizer areq;s)
fixed at (0, 2)).

Lemma 3: The functionP,, ; Hy(G) is locally Lipschitz.

[16]
Proof : Note that,

[17]
Py, zHg(Go) E[H:.(8,G1)|Go = (Uo, So)]

E[H, (0,(A(Z)Go + B(Z)MW1))] .

(18]

[19]

For all (6, Z) in a compact set, one can get a positive constant

C, depending only upon the compact sgtsuch that,
|Po,zHg(Go) — Py 7z Ho (G))]

< B|@0)U: - (0" UDUL| + 2B|0, - U]

+CLE|Q(0'h) - Q("U))

i

wherel, 2A(Z)Go+ B(Z)Wy, U2 A(Z") G+ B(Z')Wh.
Suffices to show Lipschitz continuity for the last term. Now,

E|Q(0'U1) — Q(0"'UY)| = 2P(Q(0'Ur) # Q(0"'UY)).

The Lemma follows because, using the steps as in Lemma
2, we can show that the above term is continuously differ-
entiable. W
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