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Abstract—We propose a method for synthetic zooming of
tomographic images by applying super resolution technique on
reconstructed data via a union of rotated lattices (URL). The
proposed method consists of two steps: (i) sinogram data is
filtered and backprojected on to two lattices, which are rotated
versions of each other and (ii) the samples from the two lattices
are interpolated to generate the upsampled image. Square and
hexagonal lattices have been investigated for URL. Results of
subjective and objective evaluations of the proposed method
on analytic phantoms are presented and compared with direct
upsampling of data reconstructed on a single square lattice
and upsampled image generated by union of low resolution
shifted images (USL). The proposed method shows qualitative
and quantitative improvement over direct upsampling but when
compared with USL, generated upsampled images are of com-
parable quality.

Index Terms—Super-resolution, Tomographic images, Combi-
nation of rotated lattices.

I. INTRODUCTION

IMPROVING the resolution of tomographic images has

been an active area of research in the past few years. One

can obtain high resolution images by increasing the number

of detectors and views which will result in increased X-ray

dosage (for CT) and scan time (for PET/SPECT). Reconstruc-

tion based on a union of shifted lattice [1] is an alternative

method which increases the resolution of tomographic images

without altering the number of detectors.

Super resolution (SR) techniques based on a combination

of a set of low resolution images with spatial shifts have been

examined for CT [2] and PET [3] [4] [5] images. Ideally,

k times upsampled image is generated by combining, k2

subpixel shifted images. This idea was implemented in [3]

to generate PET images by acquiring multiple low resolution

images sequentially, after translating or rotating the same

object (or detector array) by a subpixel distance with respect

to the previous acquisition. Though this demonstrated the SR

concept clearly, it was by directly applying the shifts and

rotations to a phantom. In the case of a real patient, this is

practically not attractive as it will increase the scan duration

and it can also potentially increase the probability of patient

motion during scan. Hence, an alternative was proposed in [4]

that tried to achieve the sub-pixel shifts in the reconstruction

space. Specifically, it was shown that it is possible to generate

the desired low resolution images by introducing shifts in

the reconstruction grids using the same sinogram data. An

improvement on this by way of a reduction in the required
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Fig. 1: Processing stages in filtered back projection

number of low resolution images, with no degradation in

the quality of the final image, was investigated in [5]. Two

new algorithms, namely ISR-1 (incomplete super resolution)

and ISR-2, were presented which require only 2k − 1 and k
low resolution images respectively instead of the standard k2

images.

In general, the concept of super resolution relies on using

a combination of low resolution images which provide a

different view of an object/scene. Translation and rotation

are the possible ways in which these different views can be

obtained. Though both were demonstrated by [3] by directly

manipulating a phantom, the methods in [4] and [5] have

only focused on translation by sub-pixel shifts. We examine

the rotation alternative in this paper and propose a solution

for synthetically zooming tomographic images by combining

samples from two low resolution images which are rotated ver-

sions of each other. These low resolution images, as in [4], can

be derived from the same sinogram data. We investigate if this

alternative has any implications on SR image reconstruction in

terms of the number of images required for a given upsampling

factor and the final image quality. For simplicity, the remaining

part of this paper will assume parallel beam tomography

and reconstruction by filtered back projection (FBP) [9] and

ordered subset expectation maximization (OSEM) [12].

II. METHOD

Let I(x, y) be the imaged object and P (r, θ) be the

corresponding sinogram data where (r, θ) are both discrete.

The process of reconstruction as described in [4] consists of

two main steps: back-projection of P (r, θ) into a continuous

image IRc
(x, y) and sampling it to generate a digital image

IR[n1, n2] where [n1, n2] are discrete. Algorithm used for

implementing FBP is given in Fig.1.

Assuming the image IR[n1, n2] is of size M × M , in

order to up-sample this image by a factor of k, the traditional

approach is to introduce (k − 1) zeros row- and column-wise

and interpolate between the non-zero valued samples. The

limitation with this approach is that the result entirely depends

on the choice of the interpolation kernel as no new data has

actually been used to derive the required new samples. In SR



techniques, non-overlapping sets of samples from IRc(x, y)
are derived and then interpolated such as in union of shifted

lattices [1]. We generate these desired sets by sampling

(a) (b)

Fig. 2: Sample points drawn from a union of rotated lattices:

(a) S (indicated by *) and S45 (indicated by o) and (b) H
(indicated by *) and H30 (indicated by o).

(a)

Fig. 3: Sample points drawn from a union of shifted lattices

centered at (0, 0) and (1/2, 1/2)

IRc
(x, y) with two lattices which are rotated versions of each

other. Consider 2 × 2 sampling matrices V and Vφ = AφV ,

where Aφ is a rotation matrix. The desired sets of samples IR

and IRφ
are then given as

IR[n] = IRc
(V n) (1)

IRφ
[n] = IRc

(Vφn) (2)

where n = [n1, n2]T . The samples obtained by combining

the samples from IR and IRφ
are shown in Fig.2(a) for

φ = 45◦. In the preceding formulation, the sampling matrix

V will vary with the choice of the underlying lattice, namely

square or hexagonal. Hexagonal lattices offer superior packing

efficiency with non-orthogonal bases [6], [7] and hence have

been considered in our work. The sample points derived from

a combination of hexagonal lattices are shown in Fig.2(b)

for φ = 30◦. From these figures, an interesting point can

be observed. The union operation on the two rotated lattices

breaks up the periodicity and hence the result is in a non-

uniformly sampled space. However, there is some quasi-

peridodicity in this space. This is in contrast to the samples in

union of shifted lattices, where they always lie in a periodic

lattice. For example, Fig.3 shows samples obtained from a

union of a square lattice and another shifted diagonally by

half a pixel. The periodicity present here can be contrasted

with the union of rotated (by 45◦) square lattices in Fig.2(a)

where it is absent.

Given a sinogram data P (r, θ), we first reconstruct two

images, namely IR and IRφ
using FBP and Equations 1 and 2.

Next, we derive an upsampled (by k) image denoted as URLk

by interpolating between the samples as follows:

URLk = (IR + IRφ
) ∗ h (3)

where * denotes convolution and h is an interpolating function.

Since two different lattices were considered in our work, the

results obtained with the square and hexagonal lattices are

denoted as URLk
sq and URLk

hex respectively.

For validation, the results of the proposed method are

compared with two types of images :

a) Direct upsampled images Sk: Obtained by upsampling IR

via bicubic interpolation kernel.

b) Union of shifted lattices USLk: The upsampled (by k)

result obtained by combining low resolution shifted images.

III. IMPLEMENTATION

1) Generating URL images: Since, combination of rotated

lattices generates quasi-periodic samples, thin plate splines

were chosen to interpolate between them and generate the

desired samples on upsampled lattice. The computed samples

were always defined to be on a square lattice regardless of the

original (low resolution) lattices. The angle of rotation φ was

taken to be 45 ◦ and 30 ◦ for square and hexagonal lattices,

respectively, to minimize overlap between IR and IRφ
sample

points. Hexagonal lattice with basis vectors (1, 0), (1/
√

3, 1)
and (1, 1/

√
3), (0, 1) was used to generate a good distribution

of samples. Up-sampling factors of k = 2, 4 and 6 were

considered in our experiments. In all cases, the input samples

were drawn only from two rotated lattices. This was done in

order to study the degradation in quality as the sampling factor

was increased.

2) Generating USL images: Ideally for an upsampling

factor of k, k2 subpixel shifted images are needed to gen-

erate high resolution image. It has been shown in [5] that

high resolution images of similar quality can be obtained by

combining just k subpixel diagonal shifted images. Hence,

diagonal shifted low resolution images were reconstructed

with the FBP algorithm using Fessler’s toolbox [12]. Samples

from these images were interpolated using a bicubic kernel to

generate desired samples on a high resolution grid (upsampled

image) using Vanderwalle’s toolbox [11].

3) OSEM: The quality of tomographic images are ad-

versely affected by the introduction of noise during the

acquisition process. For PET/SPECT imaging, the strength

of the detected signal (projection or sinogram data) is very

weak compared to CT and MR images which results in poor

resolution (typically 128×128) and decrease in SNR (signal to

noise ratio) of the reconstructed images. Traditional iterative

methods like maximum likelihood - expectation maximiza-

tion (ML-EM) or ordered subsets expectation maximization

(OSEM) are used for improving the image quality. OSEM uses

FBP generated image as an initial estimate, and improves the

quality iteratively [12]. Some of the results in our experiment



were generated using the OSEM reconstruction algorithm

(with 21 subsets and 2 iterations) implementation in the

Fessler’s toolbox.

In CT imaging there are two types of noise, one is electrical

noise or roundoff error which can be modeled as additive noise

and other is shot noise which can be modeled as Poisson

distribution [10]. In the case of PET imaging, shot noise is

prominent [9]. We assume sufficiently large mean for the

Poisson noise and hence approximate it with a Gaussian dis-

tribution. Thus, for generating the sinogram data suitable for

both the modalities, additive Gaussian noise (0 mean, standard

deviation =0.001) was added to the analytical sinogram.

(a) S4 (b) S4

(c) URL4
sq (d) URL4

sq

(e) URL4

hex
(f) URL4

hex

(g) USL4 (h) USL4

Fig. 4: Upsampled results for Concentric rings (only 1 quad-

rant is shown) and the corresponding full amplitude spectra.

IV. RESULTS

Three analytically generated phantoms were used to study

the effects of upsampling samples from a union of rotated

lattices: The concentric rings and lines phantoms were used to

study preservation of curved and linear structures respectively;

(a) Angular energy plot

(b) Radial energy plot

Fig. 5: Angular and radial energy plot of concentric rings for

different upsampling methods

The dots phantom was used to compare the contrast and

spatial resolution of the up-sampled image. The results of

the experiments were compared quantitatively using intensity

(along a line) profiles, energy distribution in angular and

radial directions, and noise profiles. Intensity profiles help to

compare the contrast difference between the images.

A. Concentric rings

A concentric rings phantom was generated analytically and

used to study the preservation of curved structure in the

up-sampled image and the effectiveness of an up-sampling

method in suppressing imaging. Images were reconstructed

from sinogram of size 151 × 180 by implementing the FBP

algorithm. Fig.4 (a), (c), (e) and (g) show one quadrant of

the up-sampled S4, URL4

sq, URL4

hex and USL4 images (up-

sampling factor 4) of the concentric rings phantom while

(b), (d), (f) and (h) show their corresponding full amplitude

spectra. While up-sampling an image, our aim is to preserve

details and definition of the image but prevent imaging. From

the spectra, one can observe the prominent imaging present in

the S and USL results and not in URL. It is evident however,

that union of lattices (shifted or rotated) helps in preserving

the definition of curves. The S image exhibits aliasing and

distortion that is typical of direct upsampling. The energy

distribution, computed from the normalized power spectrum of

an image [8], in angular (−90◦ to 90◦ in steps of 4◦) direction

is shown in Fig.5(a) and radial (ρ = 64 bands) direction is



(a) S4

(b) URL4
sq

(c) URL4

hex

(d) USL4

Fig. 6: Upsampled results for Lines

shown in Fig.5(b). The energy variation across ρ is seen to

be much smoother for USL and URL compared to S due to

reduction in imaging. On an average, there is a boost in energy

for all angles over URLhex with a directional bias evident at

45◦ for URLsq. USL images shows prominent increase of

energy from −90◦ to 0◦ compared to URL.

B. Lines

Lines phantom was used to study the preservation of linear

structures by different methods of upsampling. Images are

reconstructed from sinogram of size 121× 180 using the FBP

algorithm. The quality of the images was evaluated visually.

Fig.6 (a), (b), (c) and (d) show the up-sampled S4,URL4

sq,

URL4

hexand USL4 images (up-sampling factor 4) of the lines

at angles 30◦ 90◦, 105◦, 120◦, 135◦, 150◦ and 165◦. All the

lines are crisper and well defined in URL images compared to

USL and S images. In the USL result, the vertical line exhibits

blurring towards the periphery of the image even though this

grid supports a good representation for a line at 90◦. In the S

image, distortion is present in all the lines except for vertical

one Fig. 6(a).

C. Dots

The dots phantom was created to compare the contrast

and spatial resolution of the up-sampled image using line

profiles and contrast ratio. Images are reconstructed from

a noisy sinogram of size 101 × 180 by implementing FBP

and OSEM. Fig.7 (a), (b), (c) and (d) show the up-sampled

S4, URL4

sq, URL4

hex and USL4 images reconstructed using

FBP. OSEM has been implemented to improve the SNR of

the reconstructed image. OSEM generated upsampled images

are shown in Fig.8 (a) through (c). Fig.10 (a), (b) and (c)

show the ROI of up-sampled S6, URL6

sq and USL6 images

reconstructed using OSEM.

Visually, URLsq appears noisier than URLhex and USL.

This is partially due to the fact that the latter are of similar

quality but with higher contrast.

TABLE I: Contrast ratio across last two lines of the Dots

Phantom
Images FBP OSEM

- k=4 k=4 k=6

- second last last second last last second last last

S4 0.5406 0.6086 0.5801 0.7036 0.5752 0.6964

USL4 0.5645 0.6516 0.6235 0.7730 0.6153 0.7861

URL4
sq 0.5717 0.6638 0.6326 0.7441 0.6273 0.7527

URL4

hex
0.5581 0.6534 - - - -

A quantitative evaluation of the contrast was carried out by

taking the intensity profile in the last 2 lines of the image and

using the contrast ratio [5] defined as follows.

CR =
1

m

∑m

i=1
Pi −

1

n

∑n

j=1
Tj

1

m

∑m

i=1
Pi

(4)

where m and n are number of peaks and trough respectively, Pi

is the amplitude of the ith peak and Tj is the amplitude value

of the jth trough of the of last two lines. The obtained contrast

values are tabulated in Table.I. From this table it is seen

that OSEM helps increase the contrast of the reconstructed

images by suppressing noise. Since upsampling by USL and

URL method can introduce noise, we studied the spectra of

a noisy ROI in these images. The 41 × 41 ROI and the

obtained amplitude spectra (with dc suppression) are shown

in Fig.9. The URL introduces less noise than USL as evident

from the circularly symmetric pattern of the former spectra



(a) S4 (b) URL4
sq

(c) URL4

hex
(d) USL4

(e) Line profile of the last row

(f) Line profile of the penultimate row

Fig. 7: FBP- based upsampled (k=4) results ((a) through (d))

and line profiles of the last two rows for Dots.

(a) S4 (b) URL4
sq

(c) USL4

(d) Line profile of the last row

(e) Line profile of the penultimate row

Fig. 8: OSEM- based upsampled (k=4) results ((a) through

(c)). and line profiles of the last two rows for Dots



compared to the wider bandwidth of the spectra in the case of

USL. Prominent distortion in line profile for penultimate row

of dots also suggests that noise content in USL more than

URL. In our experiment we also investigated upsampling by

a factor of six. This was to study the relative degradation in

quality of the results produced by the different upsampling

methods. The results are shown only for the last two lines of

dots shown in Fig. 10. From these results it can be seen that

both URL and USL are capable of preserving the definition

of the circular structures for k = 6 compared to S. The results

are smoother than direct upsampled result, but are of similar

quality with similar distortions in the shapes. However, it

should be noted that this similar quality has been obtained

in URL with only two images as opposed to six images for

USL. From analysis of line profile and contrast ratio, we can

conclude that URL generates comparable quality image as

USL at lower computational cost.

(a) ROI (b) URL4
sq (c) USL4

Fig. 9: A noisy ROI of Dots phantom and its noise spectra

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed a new method for generating

up-sampled tomographic images which uses samples from

two rotated lattices. The results of the proposed method were

compared against ISR-2 algorithm [5] and direct up-sampling.

Results show that the our scheme produces an image of better

quality when compared with direct up-sampling method as

well as of comparable quality to the image obtained with ISR-

2 algorithm.

Theoretically, for generating k times upsampled image k2

shifted images are needed. To decrease the computational cost

chang [5] proposed two new algorithm ISR-1 and ISR-2 which

require 2k−1 and k images respectively without affecting the

quality of up-sampled images. Our proposed method offers

further reduction as only two images are needed for any

up-sampling (k=2,3,4...) factor. This amounts to considerable

savings in computational cost and storage space.

The main objective of generating upsampled images by com-

bination of low resolution images is to improve the quality

and suppress imaging artifacts. Our results (images, spectra

and energy distribution plots) demonstrated that URL is able

to suppress imaging far more effectively than USL. Part of

the reason for this could be the sample distribution that

underlies USL (periodic) versus URL (quasi-periodic). This

needs further investigation from a sampling theory perspective

and to determine the optimal rotation and the best interpolation

(a) S6 (b) URL6
sq

(c) USL6

(d) Line profile of the last row

(e) Line profile of the penultimate row

Fig. 10: OSEM-based upsampled (k=6) results for Dots dis-

playing last two rows of dots and the corresponding line

profiles

kernel to further improve the URL based synthetic zooming

scheme.
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