

Benchmarking biologically inspired spatio-temporal filter based optical flow estimation on modern datasets

ABOUT SIMULATIONS

Fabio Solari⁽¹⁾, Manuela Chessa⁽¹⁾, N V Kartheek Medathati⁽²⁾ - Pierre Kornprobst⁽²⁾ (1) University of Genoa, Italy – (2) Inria, Team Neuromathcomp, France

CONTEXT AND MOTIVATION

- Visual motion information is useful for a multiplicity of tasks.
- Analysis of it is of great interest both in machine vision for developing applications and biological vision as is it subserves several functional needs.
- Owing to the application potential, the problem of visual motion estimation has also received a lot of attention from the computer vision and robotics researchers, see [3, 12] reviews.
- One of the best practice in the computer vision community is benchmarking of various algorithms on publicly available datasets for e.g. Middlebury [2], MPI-Sientel [5] which played a crucial role in rapid development of algorithms with increasing accuracy.

► Parameters

$\mathbf{V1}$

• Spatial filter support: 11 pixels • Temporal filter support: 7 frames • $\tau = 2.5$ frames • Orientation tuning: 8 in [0 to π]

\mathbf{MT}

• Velocity tuning: [-0.9, -0.4, 0.0, 0.4, 0.9] ppf

► Visualization: Velocity color code

MPI-SIENTEL DATASET

Proposed in ECCV-2012, contains longer synthetic sequences that match statistics of natural images and includes challenging effects such as blur, transparency and specular reflections.

► Results on cave2 training sequence

Sequence	AAE	Std.	AAE	End-Point	Std.	End-Point
Frame 5	24.51	26.	.95	10.60		5.55
Frame 25	60.21	42.	.75	61.23		17.75
Frame 40	53.16	42.	.13	20.06		4.97

► Illustration: Results on training sequence

- Neural mechanisms underlying motion analysis have been studied extensively in the past 2 decades, see [11, 7, 4] for reviews.
- Mathematical models describing the neural mechanisms [1, 10, 13] have received little attention in terms of their performance on computer vision datasets,
- How do these models perform on the modern benchmarking datasets? - Are they scalable?
- We begin to look into this question by examining feedforward spatio-temporal filter based models proposed by Heeger [10].

ESTIMATION OF MOTION ENERGY AND VELOCITY

► Overview of the model for velocity estimation

• Orientation tuning: [0, $\pi/2$]

TESTS ON SYNTHETIC IMAGES

► Multi-scale helps solving motion integration problem

► Using Yosemite video sequence

AAE = 7.12, Std. AAE = 5.36, End-Point = 0.35, Std. End-Point = 0.37.

AAE= 7.89, 5.81 AAE= 6.80, 5.26 AAE= 5.53, 5.31 EPE= 0.36, 0.32 EPE= 0.3, 0.28 EPE= 0.26, 0.43

DISCUSSION

- Spatio-temporal energy features have been very recently demonstrated to be effective in high level vision applications such as Dynamic video segmentation[8], human action recognition[9], region tracking [6].
- They have also been successful in modeling works in neurophysiology and psychophysics, so they truly lie at the interface of both understanding biology and developing scalable computer vision applications.
- Even though early models such as [10] have been proposed for dense optical flow estimation, very little is known in terms of their performance on modern computer vision datasets.

• In this we have benchmarked one model as a starting point.

FUTURE WORK

► Step 1 : V1 (*Motion energy estimation and normalization*)

 $\boldsymbol{E^{V1}(x, y, t; \theta, v^c, \sigma)} = \frac{E(x, y, t; \theta, v^c, \sigma)}{\sum_{\theta_i = \theta_i}^{\theta_N} E(x, y, t; \theta_i, v^c, \sigma) + \epsilon}$ where, $E(x, y, t; \theta, v^c, \sigma) = R_e(x, y, t; \theta, v^c, \sigma)^2 + R_o(x, y, t; \theta, v^c, \sigma)^2$ $R_{e/o} = g_{e/o} \ast I(x,y,t)$ $g_e(x, y, t) = h_e(x, y)p_e(t) - h_o(x, y)p_o(t)$ $g_o(x, y, t) = h_o(x, y)p_e(t) + h_e(x, y)p_o(t)$ $h(x,y) = Be^{\left(\frac{-(x^2+y^2)}{2\sigma^2}\right)}e^{j2\pi f_{x0}x + f_{y0}y}$ $p(t) = e^{\left(-\frac{t}{\tau}\right)} e^{j2\pi(f_{t0}t)}$

► Step 2 : MT (*Motion energy pooling and non-linearity*)

$$\begin{split} \boldsymbol{E}^{\boldsymbol{MT}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{t};\boldsymbol{v}^{\boldsymbol{c}},\boldsymbol{d},\boldsymbol{\sigma}) &= F(\sum_{\theta_i=\theta_1}^{\theta_N} w_d(\theta_i)G*E^{V1}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{t};\theta_i,\boldsymbol{v}^{\boldsymbol{c}},\boldsymbol{\sigma})) \quad (2) \end{split}$$
where,
$$w_d(\theta_i) &= \cos(d-\theta_i) \end{split}$$

► Step 3 : Velocity estimation $\boldsymbol{v}_{\boldsymbol{x}} = \frac{\sum_{\substack{v_i^c = v_1^c \\ v_i^c = v_1^c \\ v_i^c = v_i^c \\ v_i^c = v_i^c \\ E^{MT}(x, y, t; v_i^c, 0, \sigma)}}{\sum_{\substack{v_i^c = v_i^c \\ v_i^c = v_i^c \\ v_i^c = v_i^c \\ E^{MT}(x, y, t; v_i^c, \pi/2, \sigma)}} \qquad \boldsymbol{v}_{\boldsymbol{y}} = \frac{\sum_{\substack{v_i^c = v_1^c \\ v_i^c = v_1^c \\ \sum_{\substack{v_i^c = v_i^c \\ v_i^c = v_i^c \\ E^{MT}(x, y, t; v_i^c, \pi/2, \sigma)}}} \qquad (3)$

Performance evaluation using Middlebury Dataset

Proposed in ICCV-2007, contains sequences with non-rigid motion where ground truth is obtained by tracking fluorescent texture and realistic synthetic sequences divided into training and testing sets.

► Results on training sequence

Sequence	AAE	Std. AAE	End-Point	Std. End-Point
grove2	4.62	9.81	0.31	0.59
grove3	10.37	19.38	1.30	1.88
Hydrangea	8.01	15.05	0.95	1.33
RubberWhale	11.13	17.24	0.37	0.53
urban2	39.46	46.44	3.56	2.22
urban3	20.60	43.88	2.01	3.30

► Illustration: Results on training sequence

	Image sequence	Ground truth	Model output	Error Map
grovez				
groves				
gea				

- Public domain datasets and code sharing practices have proved to be very effective in advancing computer vision algorithms.
- Developing code repository for biologically inspired models and benchmarking them on computer vision datasets.
- Handling boundary conditions with appropriate extrapolation methods.
- Handling low energy regions using diffusion mechanism.
- Using machine learning techniques for read-out to obtain locally context aware velocity estimation.

REFERENCES

- [1] E.H. Adelson, et. al. Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, 1985.
- [2] S. Baker, et. al. A database and evaluation methodology for optical flow. In International Conference on Computer Vision, 2007.
- [3] J.L. Barron, et. al. Performance of optical flow techniques. The International Journal of Computer Vision, 1994.
- [4] D.C. Bradley et. al. Velocity computation in the primate visual system. Nature Reviews Neuroscience, 2008.
- [5] Daniel J. et. al. A naturalistic open source movie for optical flow evaluation. In Proceedings of European Conference on Computer Vision, 2012.
- [6] K.J. Cannons et. al. The applicability of spatiotemporal oriented energy features to region tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2014.
- [7] C.W.G Clifford, et. al. Fundamental mechanisms of visual motion detection: models, cells and functions. *Progress in Neurobiology*, 2002.
- [8] T. Damien, et. al. Segmentation of dynamic scenes with distributions of spatiotemporally oriented energies. In *Proceedings of BMVC*, 2014.

Compared to earlier formulation of Heeger, where velocity is computed using a least squared optimization procedure, it has been formulated into a linear-nonlinear feedforward routine.

IMPLEMENTATION DETAILS

• Multi-scale method.

• Discontinuity enhancement using bilateral filtering at the level of MT energy.

► Analysis

- The model does not have implicit mechanism to deal with blank-wall problem but is helped by multi-scale approach.
- Results are better regions with coarse texture.
- Changes in velocity with-in support of temporal filter leads to erroneous estimates.

- [9] M. J. Escobar, et. al. Action recognition via bio-inspired features: The richness of center-surround interaction. Computer Vision and Image Understanding, 2012.
- [10] D.J. Heeger. Optical flow using spatiotemporal filters. *The International* Journal of Computer Vision, 1988.
- [11] K. Nakayama. Biological image motion processing: A review. Vision Research, 1984.
- [12] D. Sun, et. al. Secrets of optical flow estimation and their principles. Proceedings of CVPR, 2010.
- [13] E. Tlapale, et. al. A neural field model for motion estimation. In Springer Verlag, editor, Mathematical Image Processing, 2011.

N V Kartheek Medathati kartheek.medathati@inria.fr

This work was partially supported by the EC IP project FP7-ICT-2011-8 no. 318723 (MatheMACS)