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Context and motivation

• Visual motion information is useful for a multiplicity of tasks.
• Analysis of it is of great interest both in machine vision for developing ap-

plications and biological vision as is it subserves several functional needs.
• Owing to the application potential, the problem of visual motion estimation

has also received a lot of attention from the computer vision and robotics
researchers, see [3, 12] reviews.

• One of the best practice in the computer vision community is benchmarking
of various algorithms on publicly available datasets for e.g. Middlebury [2],
MPI-Sientel [5] which played a crucial role in rapid development of algorithms
with increasing accuracy.

• Neural mechanisms underlying motion analysis have been studied extensively
in the past 2 decades, see [11, 7, 4] for reviews.

• Mathematical models describing the neural mechanisms [1, 10, 13] have
received little attention in terms of their performance on computer vision
datasets,
– How do these models perform on the modern benchmarking datasets?
– Are they scalable?

• We begin to look into this question by examining feedforward spatio-temporal
filter based models proposed by Heeger [10].

Estimation of Motion energy and Velocity

▶ Overview of the model for velocity estimation

▶ Step 1 : V1 (Motion energy estimation and normalization)

EV 1(x, y, t; θ, vc, σ) =
E(x, y, t; θ, vc, σ)∑θN

θi=θ1
E(x, y, t; θi, vc, σ) + ϵ

(1)

where,

E(x, y, t; θ, vc, σ) = Re(x, y, t; θ, v
c, σ)2 +Ro(x, y, t; θ, v

c, σ)2

Re/o = ge/o ∗ I(x, y, t)
ge(x, y, t) = he(x, y)pe(t)− ho(x, y)po(t)
go(x, y, t) = ho(x, y)pe(t) + he(x, y)po(t)

h(x, y) = Be

(
−(x2+y2)

2σ2

)
ej2πfx0x+fy0y

p(t) = e(−
t
τ )ej2π(ft0t)

▶ Step 2 : MT (Motion energy pooling and non-linearity)

EMT (x, y, t; vc, d, σ) = F (

θN∑
θi=θ1

wd(θi)G ∗ EV 1(x, y, t; θi, v
c, σ)) (2)

where,
wd(θi) = cos(d− θi)

▶ Step 3 : Velocity estimation

vx =

∑vcM
vci=vc1

vciE
MT (x,y,t;vci ,0,σ)∑vcM

vci=vc1
EMT (x,y,t;vci ,0,σ)

vy =

∑vcM
vci=vc1

vciE
MT (x,y,t;vci ,π/2,σ)∑vcM

vci=vc1
EMT (x,y,t;vci ,π/2,σ)

(3)

Compared to earlier formulation of Heeger, where velocity is computed using a
least squared optimization procedure, it has been formulated into a linear-non-
linear feedforward routine.

Implementation Details

• Multi-scale method.
• Discontinuity enhancement using bilateral filtering at the level of MT energy.

About simulations

▶ Parameters

V1

• Spatial filter support: 11 pixels
• Temporal filter support: 7 frames
• τ = 2.5 frames
• Orientation tuning: 8 in [0 to π]

MT

• Velocity tuning: [-0.9, -0.4, 0.0, 0.4, 0.9] ppf
• Orientation tuning: [0, π/2]

▶ Visualization: Velocity color code

Tests on synthetic images

▶ Multi-scale helps solving motion integration problem
Image sequence #Scales = 1 #Scales = 3 #Scales = 6

▶ Using Yosemite video sequence
Image sequence Ground truth Model output Error Map

AAE = 7.12,Std. AAE = 5.36, End-Point = 0.35, Std. End-Point = 0.37.

▶ Non linear filtering helps in smoothing while preserving discontinuities
Image sequence No filtering # BF iter. = 1 # BF iter. = 5

AAE= 7.89, 5.81 AAE= 6.80, 5.26 AAE= 5.53, 5.31
EPE= 0.36, 0.32 EPE= 0.3, 0.28 EPE= 0.26, 0.43

Performance evaluation using Middlebury Dataset

Proposed in ICCV-2007, contains sequences with non-rigid motion where
ground truth is obtained by tracking fluorescent texture and realistic synthetic
sequences divided into training and testing sets.

▶ Results on training sequence

Sequence AAE Std. AAE End-Point Std. End-Point
grove2 4.62 9.81 0.31 0.59
grove3 10.37 19.38 1.30 1.88

Hydrangea 8.01 15.05 0.95 1.33
RubberWhale 11.13 17.24 0.37 0.53

urban2 39.46 46.44 3.56 2.22
urban3 20.60 43.88 2.01 3.30

▶ Illustration: Results on training sequence
Image sequence Ground truth Model output Error Map
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▶ Analysis

• The model does not have implicit mechanism to deal with blank-wall problem
but is helped by multi-scale approach.

• Results are better regions with coarse texture.
• Changes in velocity with-in support of temporal filter leads to erroneous

estimates.

MPI-Sientel Dataset

Proposed in ECCV-2012, contains longer synthetic sequences that match statis-
tics of natural images and includes challenging effects such as blur, transparency
and specular reflections.

▶ Results on cave2 training sequence

Sequence AAE Std. AAE End-Point Std. End-Point
Frame 5 24.51 26.95 10.60 5.55

Frame 25 60.21 42.75 61.23 17.75
Frame 40 53.16 42.13 20.06 4.97

▶ Illustration: Results on training sequence
Image sequence Ground truth Model output Error Map
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Discussion

• Spatio-temporal energy features have been very recently demonstrated
to be effective in high level vision applications such as Dynamic video
segmentation[8], human action recognition[9], region tracking [6].

• They have also been successful in modeling works in neurophysiology and
psychophysics, so they truly lie at the interface of both understanding biol-
ogy and developing scalable computer vision applications.

• Even though early models such as [10] have been proposed for dense optical
flow estimation, very little is known in terms of their performance on modern
computer vision datasets.

• In this we have benchmarked one model as a starting point.

Future work

• Public domain datasets and code sharing practices have proved to be very
effective in advancing computer vision algorithms.

• Developing code repository for biologically inspired models and benchmarking
them on computer vision datasets.

• Handling boundary conditions with appropriate extrapolation methods.
• Handling low energy regions using diffusion mechanism.
• Using machine learning techniques for read-out to obtain locally context

aware velocity estimation.
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