# A retina-inspired descriptor for image classification

ISTITUTO ITALIANO **DI TECNOLOGIA** 

<u>Cristina Hilario<sup>1</sup>, Kartheek Medathati<sup>2</sup>, Pierre Kornprobst<sup>2</sup>, Vittorio Murino<sup>1</sup> and Diego Sona<sup>1</sup></u>

<sup>1</sup> Pattern Analysis and Computer Vision, PAVIS, Istituto Italiano di Tecnologia, Genova, Italy <sup>2</sup> Neuromathcomp, INRIA, Sophia Antipolis, France

## Abstract

- Retina extracts many features from visual stimuli with a high efficiency. Our goal is to build a bio-inspired descriptor for scene categorization based on low-level processing performed by the retina.
- We propose a new image descriptor based on the center-surround organization of the ganglion receptive fields. Each receptive field is described with a linear-nonlinear model (LN) taking into account the inhibitory surrounds.
- **FREAK<sup>1</sup> descriptor** is used as baseline, which is enriched sticking to biological data and models of retina. We define a **set of FREAK-variant descriptors** and test them on the problem of scene classification.

# **Proposed Method**

### 1. Retinal Sampling Pattern



FREAK:

- **Circular grid** of concentric distribution of overlapping receptive fields (RFs)
- □ Higher density of RFs near the fovea
- Considers the difference in intensity between **pairs of** receptive fields:

binary descriptor =  $\begin{cases} 1 & \text{if } (intensity(RF_1) - intensity(RF_2)) > 0 \\ 0 & \text{otherwise} \end{cases}$ 

#### Our model:

**Circular center-surround** organization of RFs; the radius of the **surround** is calculated using the retinal eccentricity<sup>2</sup>  $\rho$ :

 $r_S(\rho) = 0.203 \rho^{0.472}$ 

**ON-center OFF-surround** processing is mimicked using a **difference of Gaussians (DoG)**:  $K(x,y) = w_C G_{\sigma_C}(x,y) - w_S G_{\sigma_S}(x,y)$  $\sigma_S = 3\sigma_C$ 



### **2. Approach**

**Retinal activity** is defined by a **linear-nonlinear (LN) model**, where the activity A of a cell is defined by:

A = f(RF) where RF: Receptive field of the cell

f: Nonlinear function

• Each binary descriptor is defined as the difference in activity between pairs of RFs:  $binary \ descriptor = \begin{cases} 1 & \text{if } f(RF_1) - f(RF_2) > 0 \\ 0 & \text{otherwise} \end{cases}$ 

**Descriptor 1**: Consider the activity in the center of the RF  $A = f(I * K_C(x, y))$  where  $K_C(x, y) = w_C G_{\sigma_C}(x, y)$ I: Static Image *binary descriptor* = 0101100100...1 Center RF **Descriptor 2**: Add the surround response (sign of the DoG) A = sign(I \* K(x, y)) where  $K(x, y) = w_C G_{\sigma_C}(x, y) - w_S G_{\sigma_S}(x, y)$ *binary descriptor* = 0101100100...1 0101...1 Sign DoG Center RF



**Descriptor 3**: Enrich the descriptor adding ON and OFF cell responses  $A_{+1} = f(+(I * K(x, y))) \qquad A_{-1} = f(-(I * K(x, y)))$ 

 $binary\ descriptor = 0101100100...1 0101...1 0101100100...1 0101100100...1$ 

Sign DoG OFF cells Center RF ON cells

#### References

- Alahi A., Ortiz R. and Vandergheynst P. FREAK: Fast retina keypoint. CVPR 2012, pages 510-517.
- Croner L.J.and Kaplan E. Receptive fields of P and M ganglion cells across the primate retina. Vision Research, 35(1):7-24, 1995

#### Acknowledgements



Our preliminary results shows that enriching FREAK with ON and OFF **RFs** improves the performance of the original FREAK. □ In order to evaluate the impact of retinal geometry, our model had been compared to LBP. From our data, it seems that the size of the pattern makes a difference in the results, more than the organization of the RFs. □ In the future, the model will be enriched considering other processing performed by the retina.

This research received financial support from the 7<sup>th</sup> Framework Programme for Research of the European Commission, under Grant agreement n° 600847: RENVISION project of the FET programme-NBIS **RENVISION** 

%Accuracy