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Résumé

Pour aborder le développement d’applications concurrentes et distribuées, le modele
de programmation a objets actifs procure une abstraction de haut niveau pour pro-
grammer de fagon concurrente. Les objets actifs sont des entités indépendantes
qui communiquent par messages asynchrones. Peu de systemes a objets actifs
considerent actuellement une exécution multi-threadée. Cependant, introduire un
parallélisme controlé permet d’éviter les couts induits par des appels de méthodes
distants.

Dans cette these, nous nous intéressons aux enjeux que présentent les objets
actifs multi-threadés, et a la coordination des threads pour exécuter de facon
sure les taches d’un objet actif en parallele. Nous enrichissons dans un premier
temps le modele de programmation, afin de controler 'ordonnancement interne des
taches. Puis nous exhibons son expressivité de deux fagons différentes: d’abord
en développant et en analysant les performances de plusieurs applications, puis
en compilant un autre langage a objets actifs avec des primitives de synchroni-
sation différentes dans notre modele de programmation. Aussi, nous rendons nos
objets actifs multi-threadés résilients dans un contexte distribué en utilisant les
paradigmes de programmation que nous avons développé. Enfin, nous développons
une application pair-a-pair qui met en scene des objets actifs multi-threadés. Glob-
alement, nous concevons un cadre de développement et d’exécution complet pour
les applications hautes performances distribuées. Nous renforgons notre modele
de programmation en formalisant nos contributions et les propriétés du modele.
Cela munit le programmeur de garanties fortes sur le comportement du modele de

programmation.
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Abstract

In order to tackle the development of concurrent and distributed systems, the
active object programming model provides a high-level abstraction to program
concurrent behaviours. Active objects are independent entities that communicate
by the mean of asynchronous messages. Compared to thread-based concurrent
programming, active objects provide a better execution safety by preventing data
races. There exists already a variety of active object frameworks targeted at a large
range of application domains: modelling, verification, efficient execution. However,
among these frameworks, very few of them consider a multi-threaded execution of
active objects. Introducing a controlled parallelism within active objects enables
overcoming some of their well-known limitations, like the impossibility of commu-
nicating efficiently through shared-memory.

In this thesis, we take interest in the challenges of having multiple threads
inside an active object, and how to safely coordinate them for executing the tasks
in parallel. We enhance this programming model by adding language constructs
that control the internal scheduling of tasks. We then show its expressivity in
two ways: first in a classical approach by developing and analysing the perfor-
mance of several applications, and secondly, by compiling another active object
programming language with different synchronisation primitives into our program-
ming model. Also, we make multi-threaded active objects resilient in a distributed
context through generic engineering constructs, and by using our programming
abstractions. Finally, we develop a peer-to-peer application that shows multi-
threaded active objects and their features in action. Overall, we design a flexible
programming model and framework for the development of distributed and highly
concurrent applications, and we provide it with a thorough support for efficient
distributed execution. We reinforce our programming model by formalising our
work and the model’s properties. This provides the programmer with guarantees

on the behaviour of the programming model.
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1.1 Motivation

At the age of e-commerce, ubiquitous chats, collaborative on-line editors, synced
cloud storage, real-time games and connected objects, each and every of our digital
habits involve simultaneous multi-party interactions. Such now common usages are
inherently supported by concurrent and distributed computer systems that have
been evolving through the multi-core era. However, the languages for program-
ming these systems have not evolved as fast as the hardware and applications,
although the purpose of programming languages is to map the applications to the
hardware. This is especially true for the programming languages that are well es-
tablished in the industry. In general, existing programming models and languages
lack of support for handling the concurrency of parallel programs and for writing
distributed applications. As such, parallel and distributed systems have coped for

decades with programming languages that barely provide support for parallelism.



2 CHAPTER 1. INTRODUCTION

This support is embodied by so-called threads, an abstraction for independent,
asynchronous sequences of instructions. Threads represent the oldest parallel pro-
gramming abstraction that is given in the hands of the programmer, yet they are
still omnipresent. Currently, all programming languages provide at least an API
to create and start threads. The problem in the programmer manipulating bare
threads is that he must have a precise knowledge of the right way to use and
synchronise threads, which is not trivial. Synchronisation in concurrent systems is
what can lead to two well-known categories of concurrency bugs: deadlocks, where
there exists a circular dependency between tasks, and data races, where several
threads access a shared resource with no synchronisation. Typically, in a shared-
variable concurrency model, one must analyse where data protection is required,
most often by the mean of locks [And99]. Not doing this analysis exposes the
application to the risk of non-deterministic bugs [Lee06|. In short, with threads,

the burden of parallelism is put on the shoulders of the programmer.

On the other hand, as programming languages evolved, modularity of pro-
grams has become a major leitmotiv. A representative of this organisational
change is object-oriented programming, which represent a reality-like abstraction
for programs. The fact that data structures and procedures could be manipu-
lated together as a whole was first explored in the ‘algorithm language’ ALGOL
60 [Bac+63|. Later on, Simula 67 [DN66], an extension of ALGOL 60, introduced
the main concepts of object-oriented programming in term of classes, and in term
of objects as instance of classes. The creator of SmallTalk |[Kay93| introduced the
term of object-oriented programming and the pervasion of objects was carried to
the extreme in further versions of SmallTalk [GR83], where each and every entity
is seen as an object. Since then, multi-paradigm programming languages have
been perpetually developed, and almost all of them include an object layer that is
strongly inspired from the SmallTalk approach. Object-oriented programming is
now borne by the programming language triptych - C++, Java, C# - to support
production code in the industry.

As said earlier, programmer-side support for threads is massively embedded
in mainstream programming languages. Thus, object-oriented programming and
multi-threaded programming are often mixed in the same language, although they

are conceptually orthogonal. Indeed, objects encapsulate a state which should
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only be modified through messages, seen as object methods. By allowing sev-
eral threads of control to execute these methods, the encapsulation of objects
becomes broken. Moreover, this architectural inconsistency is worsen by the use
of locks within a class: locks force an exposure of the object’s variables on which
the synchronisation applies. Finally, using threads in a distributed context is not
adapted, because threads that are settled on different computers cannot commu-
nicate through shared-memory. A global shared-memory in distributed architec-
tures is rather difficult to obtain, and often comes at a too high performance cost.
Alternatively, it can be efficient if full data consistency is not guaranteed, but
approximate distributed systems are out of our scope. The current programming
languages clearly lack of parallel and distributed abstractions that fit the currently
developed applications. They do not enforce by default a safe parallel execution

nor offer a programmer-friendly way to program concurrently.

1.2 Objectives

Already, we have given many reasons why threads, coupled with object-oriented
programming, cannot be the right approach for implementing parallel and dis-
tributed systems. In order to write applications with higher-level constructs, in-
herently concurrent and distributed, one has to let the developers focus on the
application business, and for that, they need well-integrated abstractions for con-
currency and distribution which they can trust and rely on. They must be given
frameworks that provide convenient constructs and thread safety guarantees, and
not at the expense of the application’s performance. A complete stack of technolo-
gies can help the programmer in this objective. My work focuses on the elements
of the stack that are the closest to the programmer, and that are directly used
by him: the programming models, the programming languages, and their APIs.
Crafting a programmer experience that is as pleasant as possible while keeping
application’s safety and performance is the guideline of this thesis. On one hand,
low-level abstractions for programming parallel and distributed systems must be
given up, first because they are not user-friendly, and second because they do not
scale with the intricacy of programs. One the other hand, high-level abstractions

are often incomplete or lack efficiency, which also cuts off scalability. In particular,
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there is a need for unifying the abstractions that are given for parallelism: we need
to redefine concurrent abstractions so that they do not only work in the case of
shared-memory architectures, if we aim at raising them to a distributed execution.

In this thesis, we want to offer a parallel and distributed programming model
and runtime that balances the ease of programming and the performance of the
application. We offer the abstractions that the programmer needs in order to
effectively and safely program modern systems, that are necessarily parallel and
distributed. In particular, we focus on the active object programming model, be-
cause it gives the building blocks for safe parallelism and distribution. The active
object programming model also reconciles object-oriented programming and con-
currency. A characteristic of active objects is the absence of shared memory, which
makes them adapted to distributed execution as well. Each active object has its
own local memory and cannot access the local memory of other active objects.
Consequently, objects can only exchange information extra-memory through mes-
sage passing, implemented with requests sent to active objects. This characteristic
makes object accesses easier to trace, and thus it is easier to check their safety.
Active objects enable formalisation and verification thanks to the framework they
offer: the communication pattern is well-defined as well as the accesses to objects
and variables. This facilitates static analysis and validation of active object-based
programs. For all these reasons, the active object model is a very good basis for
the construction of programming languages and abstractions that match the influx
of concurrent and distributed systems.

In this thesis, our goal is to promote holistic approaches when considering
active object languages. We aim at studying both the implementation of the
languages and their semantics. The gap between language semantics and language
implementation is often not enough considered, and our objective is to show that

this gap can nevertheless be fulfilled with the right approaches and the right tools.

1.3 Contributions

The global contribution of this thesis is to come with a global approach for tack-
ling the development and the controlled execution of concurrent and distributed

systems. We build a complete framework based on multi-threaded active objects.
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We use it for bridging a gap between active object languages, and for develop-
ing realistic applications. More precisely, the contribution of this thesis comes in
three aspects, summarised below. More details on the content of the chapters are
available in Section [L.4l

Local scheduling for multi-threaded active objects. The first contribution extends
the multi-threaded active object programming model with a set of annota-
tions that controls the local scheduling of requests. This contribution allows
the programmer to manage the internal execution of multi-threaded active
objects, while keeping the safety ensured by the automated interpretation of

declarative annotations.

From modelling to deployment of distributed active objects. The second contri-
bution is an encoding of cooperative active object languages into a precise
configuration of multi-threaded active objects. We provide one fully imple-
mented translator and prove its correctness. This general study about active
object languages provides the users and the designers of active object lan-
guages with a precise knowledge of the guarantees given by active object

programming models and frameworks.

Efficient execution support for multi-threaded active objects. A third contribution
of this thesis is to improve the execution support of the multi-threaded active
object programming model. We provide a post-mortem debugger for its
applications. It helps the developer in seeing the effects of annotations on
the application’s execution. It makes the development iterations easier and
faster by providing a comprehensive feedback on an application’s execution.
We also come with a preliminary fault tolerance protocol and implementation
for multi-threaded active objects. It provides the developer with a recovery
mechanism that automatically handles crashes in distributed executions of

multi-threaded active objects.

Finally, to illustrate the programming model and to show the effectiveness of
our framework, we use fault tolerant multi-threaded active objects in the realistic
scenario of a peer-to-peer system. We provide a middleware approach to implement

a robust distributed broadcast.
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1.4 Outline

The contributions are structured around four core chapters. Each chapter is ended
with a conclusion that summarises the content of the chapter, along with a com-
parison to the related works for this chapter. We summarise the chapters of this

thesis below.

Chapter [2| presents the context of this thesis which is the active object pro-
gramming model. We introduce there the key notions that are related to this
programming model and organise them into a classification, that we bring from
a general study of active object languages. We then give an overview of active
object languages regarding the classification. We also introduce multi-threaded
active objects, that represent the basis of this thesis. More precisely we introduce
the multiactive object programming model in details, the formal calculus that is
associated to it, MultiASP, and finally its implementation in ProActive, the Java li-
brary that is the main technology used to implement the different works presented

in this thesis.

Chapter (3| introduces the first contribution of this thesis, published in [3],
which offers advanced scheduling controls in the context of multi-threaded active
objects. The idea is to empower the programmer with safe constructs that impact
on the priority of requests and their allocation on available threads, in the context
of multiactive objects. The mechanisms are introduced in a didactic manner and
presented as they are implemented in the ProActive library. The properties of the
priority specification are studied in details and evaluated with micro-benchmarks.
The chapter is concluded with related works on application-level scheduling in

active object programming languages.

Chapter [4| promotes the work published in |4]. In this work, we use the
multiactive object framework to encode another active object language, ABS. First,
we present a backend for this language that automatically translates ABS programs
into ProActive programs. Secondly, we use MultiASP, the calculus of ProActive, to
formalise the translation and prove its correctness. The associated proofs are
presented in appendix of this thesis. We show in the thesis the relevant elements
of the proofs, the lemmas on which we rely, the equivalence relation, and the

restrictions that apply. We give an informative feedback on the outcome of this
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translation in the conclusion of this chapter.

Chapter [5| highlights the latest works done around multiactive objects. In
particular, it is split into two major parts. The first part presents a visualiser
of multiactive object executions, that helps in debugging multiactive object-based
applications. We review the debugger tool and we present two use cases in which it
proves to be useful. The second part deals with the fault tolerance of multiactive
object. To enter this subject in details, we first introduce the fault tolerance
protocol that was developed for active objects in ProActive. We then present our
generic adaptation of the protocol for multiactive objects. We give as well the
current limitations of the new protocol and some possible solutions and directions
to improve it in a future work.

Chapter [6]exposes an application that we have developed with the multiactive
object programming model and that is set in the context of peer-to-peer systems.
We start by introducing the Content-Addressable Network (CAN]) together with
our contribution, published in [2], dealing with the challenge of efficiently broad-
casting information in a [CANl We then move to the developed application that
consists in making the efficient broadcast in robust, thanks to fault tolerant
multiactive objects. This chapter actually brings together several notions that
were introduced in the previous chapters.

Chapter [7] concludes the thesis in two parts. It first summarises the thesis by
recalling the methodology that was employed throughout the works, and by going
over the main contributions of each chapter. Finally, it presents the perspectives

that have been opened by this thesis.
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In this chapter, we introduce the ecosystem of this thesis, which starts from
the active object programming model. We first introduce the context in which
active objects were created, and the models that inspired active objects. We then
propose a classification of active object-based languages based on implementation
and semantic aspects. After that, we offer an overview of active object-based
languages and frameworks, taking into account the previous classification. Then,
we focus on multi-threaded active objects, that represent the specific context of this
thesis. Finally, we relate the content of this thesis with the ecosystem presented

before and justify its relevance there.

2.1 The Active Object Programming Model: Ori-

gins and Context

The active object programming model, introduced in [L.S96], has one global objec-
tive: facilitate the correct programming of concurrent entities. The active object
paradigm derives from actors [Agh86]. Actors are concurrent entities that com-
municate by posting messages to each other. Each actor has a mailbox in which
messages arrive in any order. An actor has a thread that processes its messages
sequentially. Only the processing of a message can have a side effect on the ac-
tor’s state. This is a way to inhibit the effect of preemption on operating system
threads. Since actors evolve independently, they globally execute concurrently.
Yet, actors ensure the absence of data races locally. A data race exists if two
parallel threads can access the same memory location. As actors encapsulate their
state, an actor’s state cannot be modified by other threads than the unique thread
associated to the actor.

Once a message is posted to an actor, the sender continues its execution, with-
out knowing when the message will be processed by the other actor. This is called

an asynchronous communication pattern. In the original actor model, actors do
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Figure 2.1 — Structure of an activity.

not guarantee the order in which messages are processed. If another computation
is dependent on the result of the processing of a message, then a new message
should be issued to the initiator of the first message. We call this new message a

callback message.

Active objects are the object-oriented descendants of actors. They commu-
nicate with asynchronous method invocations. Asynchronous communication be-
tween active objects is First In First Out (FIFQl) point-to-point, which means
that the messages are causally ordered, preserving the semantics of two sequential
method calls. In this sense, active objects are less prone to race conditions than ac-
tors, because their communications characterise more determinism. Like an actor,
an active object has a thread associated to it. This notion is called an activity: a
thread together with the objects managed by this thread. An activity contains one
active object and several encapsulated objects that are known as passive objects.

Figure [2.1] pictures the structure of an activity.

When an object invokes a method of an active object in another activity, this
creates a request on the callee side. The invoker continues its execution while the
invoked active object processes the request asynchronously. A request is dropped
in the active object request queue, where it awaits until it can be executed. Con-
trarily to the messages of actors, the method invocations of active objects return
a result. And since method invocations can be asynchronous, the result of the
invocation might not be known just after the invocation. In order to have room

for the prospected result, and to allow the invoker to continue its execution, a
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place holder is created for the result of the asynchronous invocation. This place
holder is called a future. A future represents a promise of response. It is an empty
object that will later be filled by the result of the request. We commonly say that
a future is resolved when the value of the future is computed and available. Fu-
tures have seen their early days in functional languages: in MultiLisp [Hal85] and
in ABCL/1 [YBS86]. They have been later on formalised in ABCL/f [TMY94],
in [FF99|, and, more recently, in a concurrent lambda calculus [NSS06], and in
Creol [BCJOT7]. A future is a particular object that will eventually hold the result
of an asynchronous method invocation. In the meantime, a future allows the caller
to continue its execution even if the result has not been computed yet, until the
value of the future is needed to proceed.

In practice, actors and active objects have fuzzy boundaries, one being the
historical model that inspired the other model. When actor frameworks are imple-
mented using object-oriented languages, they often mix the characteristics of actors
and active objects, that were established in the original models. For example, some
actor frameworks (detailed in Paragraph , like Salsa, are implemented using
method invocations to post messages. Others, like Scala actors and Akka, allow
actors to synchronise on futures, which is not strictly part of the original model
proposed in [Agh86|. Actors and active objects share the same objectives and have
the same architecture, so there is not point in distinguishing the two models, apart
from a comparative point of view on specific instances. This is the reason why,
in the rest of the manuscript, we might use interchangeably actor or active object
terms depending on the context. We also use sometimes the terms ‘request’ and
‘message’ interchangeably, whether we take the point of view of active objects or
actors. These different denominations have no impact on their actual meaning.

In summary, active objects and actors enforce decoupling of activities: each
activity has its own memory space, manipulated by its own thread. This strict
isolation of concurrent entities makes them suited to distributed systems. Further-
more, the notion of activity provides a convenient abstraction for implementing
non functional features of distributed systems like components, built on top of
objects, or like process migration, group communication, and fault tolerance.

More recently, active objects have been playing a part in service-oriented pro-

gramming, and especially in mobile computing |[CVCGV13} Gorld], thanks to
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their loose coupling and to their execution safety. However, the strict active ob-
ject model suffers from obsolescence from a particular perspective: it processes
requests in a mono-threaded way. Thereby, many extensions and adaptations of
the active object programming model have been proposed through the past ten
years, in order to fit with new usages, new technologies, and new hardware. These
enhancements have scattered the active object paradigm such that each new branch
of active objects is adapted to a particular environment and targets a particular

objective.

2.2 A Classification of Active Object Languages

In this section, we present the aspects under which active object languages can
be studied, and the choices that must be made in order to implement them. In
particular, there are crucial questions to answer when implementing an active ob-
ject language. Answering these questions often determines the application domain
to which the language is the most adapted. We will see that those aspects will
have a large impact on the contributions of this thesis. Throughout the following
subsections, we briefly mention corresponding related works in order to illustrate
the point without going much into details. Related works are presented in details

in the next section.

2.2.1 Object Models

All active object-based languages define a precise relation between active objects
and regular objects. Considering the object models in active object languages
boils down to answering the question “how are objects associated to threads?”, or
more precisely, in active object words, “how are objects mapped to activities?”.

In existing active object languages, we can find three categories of object models.

Uniform Object Model. In this model, all objects are active objects with their
own execution thread, and with their own request queue. All communi-
cations between objects are made through requests. The uniform object
model is convenient to formalise and reason about, but can lead to scala-

bility issues when put into practice. Indeed, in the case where the model is
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implemented with as many threads of control as objects, the performance of
the application becomes quickly poor when executed on commodity comput-
ers. Alternatively, the model can be implemented by associating each object
to a logical thread. Logical threads are threads that are seen, and that
can plainly be manipulated as threads, at the application level, but that
might not exist at the operating system level. In this case, several logical
threads are mapped to one operating system thread. Although this solu-
tion would scale in number of threads managed by a computed, it has two
main drawbacks. Firstly, logical thread are sometimes difficult to implement
considering the underlying execution platform. Secondly, even with logical
threads, the whole active object baggage is carried anyway: the active object
queue, the request scheduler, and in general all the non-functional structure
of the active object, which can also be problematic at some point. Neverthe-
less, the concern of scalabilty might not be relevant considering the target of
the language. Creol, detailed in Section [2.3.1], is representative of this active
object model and has a compositional proof theory [BCJ07].

Non Uniform Object Model. This model involves active and passive objects. A

passive object is only directly accessible (in term of object reference) locally
and cannot receive asynchronous invocations. In this sense, passive objects
are only accessible remotely through an active object, i.e. they are part
of the state of the active object. ASP, the foundation stone of this thesis,
presented in Section [2.3.4], features a non uniform object model and restricts
the accessibility of a passive object to a single active object. In this case,
a passive object exists in a single activity, which prevents concurrent state
alterations. In general, an activity contains one active object and several
passive objects. The non uniform object model is scalable at a large scale as
it requires less remote communications and runs with less concurrent threads.
Reducing the number of activities also reduces the number of references that
must be globally accessible in a distributed execution. Thus, a large number
of passive objects can still be instantiated. However, this model is tougher

to formalise and reason about than the uniform object model.

Object Group Model. The object group model is inspired from the notion of
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group membership [BJ87] that applies to the partitioning of processes in
distributed systems. However, with group membership, the groups are dy-
namically formed, whereas in the object group model, groups are assigned
only once. In this model, an activity is made of a set of objects sharing the
same execution thread and the same request queue. The difference with the
non uniform object model is that all objects in the group can be invoked
from another activity, there is no notion of passive object. Compared to the
two previous object models, this approach has a balanced scalability, due to
the reduced number of concurrent threads, and a good propensity to formal-
isation, because there exists only one category of objects. Nevertheless, this
object model presents a major drawback in distributed settings: all objects
are accessible from any group. This fact implies that an object-addressing
layer, that applies on top of shared-memory, must be created and maintained.
Thus, in distributed setting, such a model does not scale as all objects cre-
ated by the program must be registered in a global directory in order to be
further retrieved for invocation. ABS, detailed in Section [2.3.3] and often
referred to in this thesis, is an example of active object-based language that

features the object group model.

Other hybrid kinds of object models have been released in actor models and
languages. The E programming language [MTS05] is an actor-based programming
language that features inter object communication through message passing. E
uses many kinds of object references in order to identify suspect accesses, which is
called isolating coordination plans, and handles object state hazards. Other works
on the actor model attempt to release the constraint of having message-passing as
an exclusive communication pattern. Some of these works make actors partially
communicate through shared memory. In [DKVCD12|, the actor model is extended
to provide actors with a dynamic safe communication through shared memory,
based on the notions of object domains and of synchronisation views. This is done
by an inversion of control in which it is the user of the resource - and not its owner
- that has an exclusive access to the resource. In [LL13|, the performance of the
actor model is optimised specifically for the single-writer multiple-reader case. In

this case only, data is communicated through shared memory instead of message
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passing.

2.2.2 Scheduling Models

Active objects are tightly related to threads through the notion of activity. Latest
developments in the active object programming model have led to the emergence
of new request execution patterns. This brings to the question “how requests”
are executed in active objects. Although we divided here the classification into
three categories based on threading aspects, the focus of our analysis is on the

interleaving of request services.

Mono-threaded Scheduling Model. This threading model is the one supported
in the original active object programming model. It specifies that an active
object is associated to a single thread of execution. In addition, it specifies
that the requests of an active object are served sequentially up to completion,
which is, without interleaving possibilities. In this case, data races and race
conditions, as defined in Section [2.1] are completely avoided. ASP features
this scheduling model. The drawback of this model is that deadlock are likely
to arise in the presence of reentrant requests. So the application must be

designed according to this constraint.

Cooperative Scheduling Model. A major development in active object request
scheduling, introduced first by Creol, consists in having the possibility to
release the single thread of control of an active object, explicitly, at the
application level. Cooperative scheduling represent a solution to the need
for a controlled preemption of requests. The cooperative scheduling model is
based on the idea that a request should not block the progression of another
request if it temporarily cannot progress itself. For that, a running request
can explicitly release the execution thread before completion, based on some
condition or unconditionally, in order to let another request progress. In
this model, requests are not processed in parallel, but they might interleave.
Consequently, data races are avoided, as a single thread is running at a time,
but race conditions can occur because the execution of requests interleaves.

Here, contrarily to the mono-threaded scheduling model, the result of the



2.2. A CLASSIFICATION OF ACTIVE OBJECT LANGUAGES 17

execution does not only depends on the request execution order, but also on
the order in which futures are resolved. As a result, much more execution
possibilities exist in the cooperative scheduling model. The possibilities are
also increased depending on the request activation mechanism, whether the
scheduler favours starting or resuming requests, or if it activates one them
not deterministically. The cooperative scheduling model takes its inspiration
in the concept of coroutines, that enable multiple entry points for suspending
and resuming execution. Coroutines are opposed to subroutines in the sense
that subroutines have a single entry point at the beginning and a single exit
point at the end of the routine. Coroutines were first introduced in |[Con63|
and first implemented in a programming language in Simula 67 [DMNGS|
for concurrent system simulation, using a single thread of control. Since
then, many modern languages offer a native support for coroutines, such
as C#, Erlang, Haskell, JavaScript and Python, but not all of them: for
example Java. In this case, implementing cooperative scheduling is made

more difficult.

Multi-threaded Scheduling Model. As computer processors were becoming multi-
cores, the hardware started to be adapted to several simultaneous flows of
control. In return, high-level programming models have to adapt to this
evolution in order to map to the hardware at best. In the multi-threaded
scheduling model for active objects, several threads are executed in a parallel
manner inside a same active object. In this category, we distinguish two kinds
of multi-threading. In the first kind of multi-threading, contrarily to the
cooperative scheduling model, multiple requests can be allowed to progress
at the same time. Each request runs to completion without yielding the
thread they have been assigned. In this case, data races and race conditions
are possible if the requests processed in parallel manipulate the same part
of the memory (e.g. the active object fields). However, data races can
only occur within an activity because activities are still isolated from each
other. MultiASP, a key component of this thesis, presented in details in
Section [2.4.3] is based on the multi-threaded scheduling model. Hereafter,

we call the active objects featuring this scheduling model multiactive objects.
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The second kind of multi-threading that can apply in active object languages
is when data-level parallelism is allowed inside a request. In this case, the
requests may not execute in parallel, but a single request processing may use
more than one thread. This kind of multi-threading can also lead to data
races, but only within a single request. Encore, presented in Subsection[2.3.6]

features this particular kind of multi-threading.

In the context of actors, many works extend the actor model in order to enable
parallelism within an actor. Parallel Actor Monitors (PAM) [STDM14] offer a par-
allel message processing approach in which an actor can be associated to a monitor
that decides if messages can be processed in parallel. The parallelisation decision
can be user-defined to enable fine-grain filtering. It is claimed that PAM save the
programmer from having to rewrite data parallelism into task parallelism, as it
should be done with regular actors. Other works propose the unification of the ac-
tor model with other parallel models to achieve intra-actor parallelism. In [IS12],
the async-finish task-parallel model is embedded in an actor so that it can be
used in the body of a function that processes a message. This reunification enables
strong synchronisation at the finish stages, where bare actors cannot easily syn-
chronise due to the non deterministic order on the messages. In [Hay-+13; HSF15],
several parallel message processing strategies that mix transactional memory with
the actor model prove to increase message throughput, either without failing the
actor semantics (in an optimistic approach for low contention workloads) or by
avoiding transactional memory rollbacks if inconsistent snapshots only include

readers (in a pessimistic approach for high contention workloads).

2.2.3 Transparency

Whether the programmer is aware of concurrency aspects and whether the pro-
grammer is able to manipulate them through language constructs is a key point of
comparison of active object languages. Besides, the transparency of the language is
the aspect that impacts the most the end users of active objects: the programmers.
The active object programming model is designed such that it integrates well with
object-oriented programming. Nevertheless, the level of integration can substan-

tially vary depending on the active object language design and of the underlying
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object-oriented paradigm. In case of fully transparent active object language, the
programmer manipulates active objects as regular objects, without any difference.
In this case, points of desynchronisation and resynchronisation are completely
hidden from the programmer by the active object runtime. In the other cases,
some language constructs are given to the programmer to explicitly mark either
desynchronisation or resynchronisation, or both. In this case, the programmer is
responsible for a good placement of those language constructs. We review below
concrete situations where the transparency of an active object language can be

discussed.

Transparency of asynchronous method calls. In active objects, remote method
invocations are the points of desynchronisation in an execution flow, where
the invoker continues its execution concurrently with the request processing.
In some active object languages, like Creol, such points of desynchronisa-
tion are explicitly placed in the program by the programmer. In this case,
a special syntax is used: where usually a dot is the symbol of synchronous
method invocation, separating the object instance from the called method,
another symbol is used to mark an asynchronous method call. For example,
Creol and ABS use the exclamation mark (!) in order to distinguish asyn-
chronous method calls from synchronous ones. On the other hand, some
other active object languages offer transparent asynchronous method calls:
the same syntax is used both for synchronous and asynchronous method
calls. In this case, the active object runtime distinguishes the two kinds of
method calls thanks to the nature of the invoked objects: if it is an active ob-
ject, then the method call will be asynchronous; if it is a passive object, then
the call will be synchronous. Further local optimisations can be made from
this basic rule. ASP is an example of active object language that features

transparent asynchronous method calls.

Transparency of futures. In all active object languages, the asynchronous invo-
cation of a method is coupled with the creation of a future. And, in most
active object languages, a future is implemented as an object. However, ac-
tive object languages differ whether they show to the programmer the future

object, through a dedicated type, or if they hide the future thanks to inher-
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itance techniques. Often, when futures are explicit, a dedicated type exists
and it is parametrised with the enclosed type, as in Fut<Int> (ABS syn-
tax). Additionally, when futures are statically identified, they can also be
accessed and polled explicitly. A dedicated operator, like .get in ABS, al-
lows the programmer to retrieve the value of the future. If the future is
not yet resolved when accessed through the operator, the execution flow is
blocked until the future’s value is computed. Explicit futures also allow the
programmer to explicitly release the current thread if a future is not resolved.
This is implemented with a particular keyword, usually named await. This
possibility is strongly tight to the cooperative scheduling model described
in Subsection above. On the other hand, in active object languages,
futures can also be implicit: the programmer does not see them in the pro-
gram, as futures are only identifiable at runtime. In case of implicit futures,
the expressions that need the future’s value to be computed (as knows as
blocking operations) automatically trigger a synchronisation: the program is
blocked at this point until the future is resolved. This behaviour is known
as wait-by-necessity. In some active object implementations, futures can be
given as parameters of requests without resolving them before. Futures that
have this ability are called first class futures. In practice, explicit or implicit
futures can be implemented as objects that can be globally accessed through
proxies. All activities to which the future has been passed can then access

the future through its proxy.

Transparency of distribution. As not all active object languages offer a support

for distributed execution, we focus here on the ones that can execute their
program across distributed resources connected through a network. In this
case, a major question that remains for the design of a distributed active
object language is whether the programmer is aware of distributed aspects,
and if distribution appears in the program. This is not specially related to
active objects but to the level of abstraction of the distributed layer. For
example, if the program must deal with Internet Protocol (IP]) addresses in
order to contact a remote active object, then the transparency of distribution

of the language is very low. On the contrary, if active objects are addressed
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like regular objects (by various means: distributed global memory, abstract
deployment layer, indirection, etc.) even if they lie on the other side of
the world, then the active object languages has a transparent distribution.
With such active object languages, there is almost no difference between a
distributed program and usual objects. This is what ProActive (detailed in
Subsection offers. Transparent distribution is an important point to
take into account as abstracting away distribution greatly facilitates the im-
plementation of advanced features of active objects, such as automatic trans-
mission of future references and automatic future updates (related to first
class futures). Defining a level of abstraction for distribution also defines the
semantic options offered by the language. For example, several active object
languages that target distributed execution forbid synchronous method calls
on remote active objects (e.g. AmbientTalk, presented in Subsection .

Overall, the active object languages that are not transparent facilitate static
verifications on the program, for example in order to statically detect deadlocks.
Also, having explicit constructs for the aspects that are related to active objects
makes the programmer aware of where futures are created. They offer to the pro-
grammer a better control on execution, but also assume that the programmer has
experience with the key notions of active objects. On the other hand, transparent
active object languages are handier and more accessible to programmers, as par-
allel sections are spawned automatically, and as joining phases hold automatically
as well. In return, transparent active object languages must be equipped with a
sophisticated runtime, in order to detect the points in the program where the be-
haviour should differ from standard object-oriented execution, for example when
a wait-by-necessity must be triggered out of a simple object access expression, or

when an asynchronous method call must take place instead of a synchronous one.

2.3 Overview of Active Object Languages

In this section, we review the main active object languages that have arisen in
the past ten years, and that have inspired the newest active object languages.

Voluntarily, the presented active object languages are instances of the various
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Figure 2.2 — Cooperative scheduling in Creol.

kinds of active objects that we have introduced in the classification of Section
As mean of syntactic comparison, we show a same code snippet for most of the
presented active object languages, in order to emphasise their features. The given
example gives room for using most of the language constructs that are important
in the context of this thesis. Finally, we present major actor systems because they

are also a relevant source of inspiration for the design of active object languages.

2.3.1 Creol

Creol [JOYO06] is an uniform active object language in which all objects are active
objects: they all come with a dedicated execution thread. The full semantics of
Creol with minor updates is presented in [BCJ07]. Creol objects are perfectly out-
lined so that no other thread than the object’s execution thread can access the
methods (and the fields) of the object. Consequently, objects can only communi-
cate through asynchronous method calls and futures; no data is shared between
objects. In Creol, asynchronous method calls and futures are explicit, but futures
are not first class. Creol is based on a cooperative scheduling of requests, which
softens its strict object partitioning. Figure shows an example of execution of
a Creol program in two steps. The example involves a cooperative scheduling of
requests by using the await language construct.

The await Creol keyword can be used by the programmer in a method’s body
in order to yield the execution thread if the future on which the await is applied
is not resolved. In Figure [2.2a] object a does an asynchronous method invocation

on object b, and then awaits for the result. When the await instruction actually
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releases the execution thread because the future is not resolved, another request
for this object can start (if it is in the request queue) or can resume (if it was
deactivated by a previous call to await). In Figure , while taskA is put back in
the queue of object a, taskX gets activated. In Creol, when a request is deactivated
or finished, the choice for the next request to start or resume is not deterministic.
Finally, a .get() call can be used to eventually retrieve a future’s value, like in
Figure at the end of taskA. Contrarily to await, get is a blocking construct,
so the current request is never deactivated upon a .get () call and also, no other
request is activated if the future is still not resolved at this point.

As mentioned in Subsection [2.2.2] Creol avoids data races thanks to its co-
operative scheduling of requests offered by the await language construct. But
in practice, interleaving of requests in a Creol program can be quite complex, as
release points are highly needed to avoid the deadlocks that arise from circular
request dependencies. Overall, the goal of Creol is to ‘reencapsulate’ the object
state that can be infringed in multi-threaded environments. It achieves this goal
by having a rich and precise active object language. However, the drawback of
Creol is that its safety of execution strongly depends on how well the program-
mer places the release points in the program. Indeed, not enough release points
would lead to deadlocks whereas too many release points would lead to complex
interleaving of requests, which could violate the semantic integrity of the object’s

state.

2.3.2 JCoBox

JCoBox [SPH10] is an active object programming model, together with its program-
ming language implementation in Java. JCoBox mixes the non uniform and the
object group model presented in Subsection . The objects are organised into
groups, called CoBoxes, such that each CoBox is responsible for maintaining its
own coherent concurrency model. At each time, each CoBox has one single thread
that is actively processing a request for any of the active objects contained in the
CoBox. However, there might exist multiples other threads (plain Java threads)
in the CoBox, but in this case, all they can do is wait for an unresolved future. A

CoBox contains two kinds of objects: first, active objects, called standard objects,
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Figure 2.3 — Organisation of JCoBox objects.

that are accessible from other CoBoxes via asynchronous method calls, and sec-
ond, passive objects, called transfer objects, that are local to a CoBox. In addition,
JCoBox offers a third kind of objects: immutable objects. Immutable objects are
passive objects that can safely be shared between active objects. Figure[2.3] taken
from |[SPH10|, represents all objects kinds and their permitted communications,
as well as the cooperative scheduling featured in each CoBox. Like in Creol (Sub-
section above), asynchronous method calls and futures are explicit. Requests
are executed according to the cooperative scheduling model. The methods get ()
and await () are used on future variables to respectively retrieve a future’s value
in a blocking way and to release the execution thread in the case where a future
is not resolved. Additionally, JCoBox defines a static yield() method in order to
unconditionally release the execution thread. The yield() method can optionally
take as parameter a minimum waiting time before being rescheduled. To sum-
marise, JCoBox interleaves the request execution of all the objects lying in a same
CoBox, where Creol only interleaves the requests for a single object. However,
contrarily to Creol, that executes requests not deterministically, JCoBox enforces
a requests execution policy, where incoming requests and ready-to-resume
requests are put together in a ready queue. From an implementation point of view,
both blocked (by a get ()) and descheduled (by an await () or a yield()) requests

are put in the ready queue once they satisfy the resuming condition. However, de-
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Figure 2.4 — An example of ABS program execution

scheduled requests are appended whereas blocked requests are prepended to the
ready queue, in order to enforce the desired semantics.

JCoBox has a prototyped runtime for the support of distributed execution us-
ing Java Remote Method Invocation [WRW96] (RMI) as the communication layer.
In this case, the unit of distribution is the CoBox. Generally, JCoBox better ad-
dresses practical aspects than Creol: it is integrated with Java, its design tolerates
distribution, and the object group model improves the scalability in number of
threads. The interleaving of request services in JCoBox is similar to the one of
Creol; request services can even be more interleaved due to object groups. Thus,

the request scheduling of JCoBox has the same advantages and drawbacks as Creol.

2.3.3 ABS

The Abstract Behavioral Specification language (ABS) [Joh+11] is an object-
oriented modelling language based on active objects. ABS takes its inspiration
in Creol for the cooperative scheduling and in JCoBox for the object group model.
ABS is intended at modelling and verification of distributed applications. The
object group model of ABS is based on the notion of Concurrent Object Group
(coq), that partition the objects of an application into several COGs. A COG man-
ages a request queue and a set of threads that have been created as a result of
asynchronous method calls to any of the objects inside the COG. The cOG granu-
larity ensures that only one thread among the managed threads is executing (also
said active) at a time. Figure shows an ABS configuration with a request
sending (dotted line) between two COGs.

In an ABS progam, new objects can be instantiated in a new COG with the

new keyword. In order to instantiate an object in the current COG, the new local
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keyword combination must be used. As in Creol and JCoBox, ABS features an
await language construct, that unschedules the thread if the specified future is
unresolved and a get language construct, that blocks the thread execution until
the specified future is resolved. In ABS, await can also be used to pause on a
condition. In addition, there is a suspend language construct (counterpart of
yield in JCoBox) that unconditionally releases the execution thread. Contrarily
to JCoBox, ABS makes no difference on the objects’ kind: all objects can be
referenced from any COG and all objects can be invoked either synchronously or
asynchronously. Moreover, all kinds of object invocation fall in the request queue

of the enclosing cOG. Asynchronous method calls and futures are explicit.

1 BankAccount ba = new local BankAccount (459818225, Fr);
2...

3TransactionAgent ta = new TransactionAgent(ba) ;
4WarningAgent wa = new WarningAgent(ba.getEmail(), ba.getPhone());
5...

6 Transaction dt = new DebitTransaction(42.0, Eur);

7 Fut<Balance> bfut = tal!apply(dt);

g8await bfut?;

9Balance b = bfut.get;

10 wa!checkForAlerts(b);

...

12b.commit () ;

Listing 2.1 — Bank account program example in ABS.

Listing shows an ABS code snippet. The example consists of an (ac-
tive) agent that handles the transactions on a bank account, and another (ac-
tive) agent that is responsible for triggering alerts, based on the transactions that
happened. As the transaction agent and the warning agent are supposed to be
highly loaded, they are instantiated in their own COG (new is used instead of
new local). Note that, in this program, we could wait and retrieve the future
variable after the call of checkForAlert, passing the variable bfut instead of
b. But for that, the checkForAlerts method signature must be changed from
checkForAlert(Balance) to checkForAlert(Fut<Balance>), which might not
be convenient for other usage of checkForAlerts. This code snippet would be

similarly implemented in Creol and JCoBox, this is why we did not present it in
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the respective subsections.

ABS comes with numerous engines! for verification of concurrent and dis-
tributed applications and their execution. Below is a list of the verification tools
provided for ABS:

— A deadlock analyser |GLL15| allows the programmer to statically detect
deadlocks in ABS programs, thanks to an inference algorithm that is based

on a behavioural description of methods.

— A resource consumption analyser [JST15] enables the comparison of application-

specific deployment strategies

— A termination and cost analyser, COSTABS |Alb+12], that has two parts.
The first ability of this tool is to find deadlocks in an ABS program, in
a different way than [GLL15] by the use of a solver. The second purpose
of COSTABS is to evaluate the resources that are needed to execute an
ABS program. In this case, computer resources are abstracted away through
a model with quantifyable measures. COSTABS has also been generalised
for concurrent object-based programs |Alb+14]

— A program verifier, KeY-ABS |[DBH15; |Din+15|, allows the specification and
verification of general, user-defined properties on ABS programs. KeY-ABS
is based on the KeY reasoning framework [BHS07].

In addition to verification tools, ABS tools also comprise a frontend compiler
and an Integrated Development Environment ([DEl) support through an Eclipse
plugin for ABS programs. In addition, several backends translate ABS programs
into various programming languages, including into the Maude system, Java, and
Haskell [BB16]. The Java backend for ABS translates ABS programs into local Java
programs that enforce the ABS semantics. The Haskell backend for ABS performs
the translation into distributed Haskell code. The ABS semantics is preserved
thanks to the thread continuation support of Haskell, which is not supported on
the JVM. A Java backend for ABS based on Java 8 [Ser+16] is currently under

development and experiments different approaches to encode thread continuation

LABS related tools can be found at: http://abs-models.org/
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on the Java Virtual Machine ([(ITVM)]). In Chapter |4] we present another backend
for ABS that specially targets distributed High Performance Computing (HPC)
with ProActive (Subsections [2.3.4] and [2.4.2]). This backend is fully implemented

and, moreover, the correctness of the translation is formally proven. The imple-

mentation of the ProActive backend for ABS is compared with the design of the
Java 8 backend for ABS in [1].

2.3.4 ASP and ProActive

ASP [CHS04] is an active object programming language tailored for distributed
computing. ASP has proven properties of determinism, and particularly fits the for-
malisation of object mobility, groups, and componentised objects [CHO5|. ASP fol-
lows a non uniform active object model with high transparency: active and passive
objects are almost always manipulated in the program through the same syntactic
constructs. Contrarily to the cooperative scheduling model of Creol, JCoBox, and
ABS, in ASP a request cannot be punctuated of release points. Once a request
starts to be executed, it runs up to completion without ever releasing the thread.
Synchronisation is also handled automatically: futures are implicitly created from
asynchronous remote method calls. In practice, future types are dynamically cre-
ated and inherit the return type of the method that was called asynchronously.
Futures are, as such, completely transparent to the programmer. ASP features
the wait-by-necessity behaviour upon access to an unresolved future: the program
execution automatically blocks when a future’s value is needed to pursue the pro-
gram execution. A wait-by-necessity is triggered when the future is an operand
of a strict operation, that is when, not only the reference of the future is needed,
but also its value. ASP has first class futures, which means that futures can be
passed between activities without being resolved beforehand. This happens when
futures are not part of strict operations, for example when a future is a param-
eter of a local or remote method call. Indeed, as futures are transparent, they
are also transparently passed between activities. When the future is resolved, its
value is automatically updated for all activities it has been passed to. Several fu-
ture update strategies have been explored in ProActive for this purpose [Hen+11].

ASP ensures causal ordering of requests by enforcing a rendez-vous upon all asyn-
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chronous communications. When a caller asynchronously invokes method on a
callee, the caller is only allowed to continue its execution when the request has
been successfully put in the queue of the callee. Thus, two successive asynchronous
method calls are always put in the request queue of the recipient in a causal order.
This characteristic enforces [FIFQO] point-to-point request channels, and makes the
semantics of ASP programs very close to the one of a sequential execution. This
latter point allows the programmer to predict the behaviour of the program more
easily.

ASP forms the theoretical foundation of ProActive [Bad+06|, the implementa-
tion of ASP in Java. The active object model [LS96] and the distributed object
model of Java (Java Remote Method Invocation (RMI)) [WRW96] were released
the same year in seminal papers. ProActive has combined those two models and
has implemented the semantics of ASP in a Java library that offers full support for
distributed execution. As the active object model of ASP is transparent, ProAc-
tive active objects follow as much as possible the syntax of regular Java objects.
The only difference is when an active object is created: a static method of the
library, named newActive, must be used for that. Passive objects are created as

standard Java objects with the new keyword.

BankAccount ba = new BankAccount (459818225, Country.FR);

2 e

3
4
5
6
7

TransactionAgent ta = PAActiveObject.newActive(

TransactionAgent.class, new Object[l{bal}, node) ;
Object[] warningParams = {ba.getEmail(), ba.getPhone()}
WarningAgent wa = PAActiveObject.newActive(

WarningAgent.class, warningParams, node);

8 EE

9

Transaction dt = new DebitTransaction(42.0, Currency.EUR);

10Balance b = ta.apply(dt); // dt is deeply copied
11 wa.checkForAlerts(b); // ¢f b is a future it is passed transparently
12....
13b.comnit(); // a wait-by-necessity is possible here
Listing 2.2 — Bank account program example in ProActive. node is not defined

here.

Listing shows the transaction agent example written in ProActive. Again,
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the transaction agent and the warning agent have their own thread of control,
and in ProActive, they can be settled on different machines. The transaction
agent and the warning agent are two active objects created through the call to
PAActiveObject.newActive with three parameters: the class to instantiate, the
parameters of the constructor, and optionally, the node on which the active object
must be deployed (ProActive supports remote instantiation of active objects). As
opposed to ABS, we can notice in the example that first class futures are com-
pletely transparent: line 11 will proceed even if b is an unresolved future. Thus,
the ABS and ProActive programs have in fact a slightly different semantics. In
Chapter [, we will see that an updated version of ASP, namely MultiASP, intro-
duced in Subsection [2.4.3] allows us to encode ABS programs in ProActive, giving
exactly the same semantics.

In ProActive, when an active object is created, it is registered in the Java
RMI registry, RMIl being the main communication layer used in ProActive. ProAc-
tive uses the [RMI registry in order to have active objects accessible through the
network and identified by Uniform Resource Locator (URL]). When an RMI[URLI
is requested, the[RMIlregistry returns a Java object that is a proxy to the requested
active object. The proxy encapsulates network communication and serialisation
mechanisms, in order to remotely invoke methods on the active object. Proxies
enable transparent distributed program execution. In practice, ProActive active
objects are always manipulated through proxies that delegate all asynchronous in-
vocations to the active object. In the example given above, the references returned
by the calls to newActive are references to the local proxies of the remote active
objects.

One aspect of ProActive is also dedicated to components [BHR15]. ProAc-
tive active objects form a programming model that is suitable for component-
based composition of distributed applications through the GCM? model. The
Vercors platform [HKM16] enables the design, specification and verification of
ProActive components through an Eclipse plugin, similarly to the verification abil-
ities of ABS.

ProActive is intended for distribution, it forms a complete middleware that sup-

ports application deployment on distributed infrastructures such as clusters, grids

2Grid Component Model
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and clouds. The deployment mechanism of ProActive, named GCM Deployment,
is based on the concept of virtual nodes: a virtual node is an aggregation of phys-
ical machines that are declared in configuration files (XML files). Such virtual
nodes can be denoted in a ProActive program through identifiers. This allows the
programmer to choose indirectly a location on which to deploy an active object.
The ProActive middleware has proven to be scalable and suitable for distributed
[HPCl [Ame+10]. It is the main technology used as a basis to implement the works
that are presented in this thesis. This first description of ProActive is enriched in
Section [2.4] where the multi-threaded extension of ASP, MultiASP, is presented

together with its implementation in ProActive.

2.3.5 AmbientTalk

AmbientTalk [Ded+06; (Cut+07] is a distributed actor-based programming lan-
guage targeting distributed execution in mobile ad hoc networks. Although Am-
bientTalk would rather work with message passing instead of Remote Procedure
Call (RPC), we liken it to an active object language because the concurrency layer
is highly entangled with object-oriented notions, and because it makes an advanced
use of futures, specially for dealing with network failures. So, in the following, as
we speak of active object, AmbientTalk usually use the term actor. AmbientTalk is
inspired from the E actor-based programming language |[MTS05] for most of the
concurrency layer. AmbientTalk follows both a non uniform model and an object
group object model (see Subsection : it features active and passive objects.
Asynchronous invocations are explicit and return dynamically typed futures (ob-
ject typing is dynamic in AmbientTalk). Only passive objects that are owned by the
same active object can communicate through synchronous message passing (with
syntax o.m()). AmbientTalk follows a mono-threaded scheduling model (see Sub-
section , where request processing is atomic: requests are executed one after
the other and always run up to completion. Yet, an AmbientTalk program execu-
tion never leads to a deadlock because the execution flow never stops. The reason
for deadlock-freedom in AmbientTalk is that a future access is a non-blocking oper-
ation: accessing an unresolved future results in an asynchronous call that returns

another future. In our context, this is the most atypical aspect of AmbientTalk.
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This way, even unresolved futures can receive messages intended to the not yet
computed future’s value. In order to implement this behaviour, futures are imple-
mented like active objects, where the messages are accumulated in a queue until
the future becomes resolved. Moreover, a callback can also be attached to a future
in order to do something with the future’s value as soon as it is available. In a

sense, callbacks on futures can be likened to the first class futures of ASP.

twhen: contactFut becomes: { |contactInfol

2 // execution is postponed until future is resolved

3 system.println("Found item, contact: " + contactInfo);
4} catch: { |exception| ... };

5// code following when: is processed immediately

Listing 2.3 — AmbientTalk when:becomes:catch clause example.

Listing[2.3] taken from [Cut+07], shows an example of a future’s handler, where
the callback is located in the becomes: block. The event-based execution of the
different activities makes sequences of actions difficult to enforce in AmbientTalk.
However, an AmbientTalk program is always partitioned into separate event han-
dlers that maintain their own execution context; this is known as an inversion of
control. Thus, reasoning on AmbientTalk programs is a bigger challenge compared

to the other active object languages presented in this thesis.

1def ba := BankAccount.new(459818225, Fr);
2...

3def ta := actor: {

4 def myBankAccount := ba;

5 def apply(debitTransaction) {

6

7}

8};

o9def wa := actor: {

10 def email := ba.getEmail();

11 def phone := ba.getPhone();

12 def checkForAlerts(balance) {

13

14 };

15 };

16 ...

17def dt := DebitTransaction.new(42.0, Eur);
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def b = ta<-apply(dt);
wa<-checkForAlerts(b) ;

20 ...

21
22
23
24
25
26

b.commit () ;
when: b becomes: { |resB|

system.println("Balance is computed. Commit can proceed.");
} catch: { lel

system.println("Exception: " + e);

};

Listing 2.4 — Bank account program example in AmbientTalk.

Listing represents the bank account example written in AmbientTalk. The
active objects (characterised with the actor: definition in the program) are de-
clared inline: they are created at the same time as their behaviour is defined.

As ProActive, AmbientTalk is primarily made for distributed execution. Un-
like JCoBox, the support for deployment on distributed infrastructures is much
experienced. In particular, AmbientTalk features a dynamic active object discov-
ery mechanism, based on the publish/subscribe pattern, that allows unexpected
resources to be a part of the application. AmbientTalk also deals with unexpected
disconnections of distributed resources by the mean of leasing, that denotes a lim-
ited access in time to an object. The lease is automatically renewed when objects
communicate. Considering its resilient approach, AmbientTalk is probably the ac-
tive object language that is the most representative of active objects as a service.
Finally, AmbientTalk programs run on the JVM] and, as such, must comply to
the [JVM] constraints. In return, AmbientTalk can hit a potentially large audience
thanks to this fact.

2.3.6 Encore

Encore [Bra+15| is an active object-based parallel language that is currently un-
der development. Encore is inspired from the works carried out around the Joélle
programming language [Cla+08], oriented towards a theory and practice of ob-
ject ownership. The philosophy of Encore is to provide a programming language
that is parallel by default, and that relies on the active object programming model

mixed with other parallel patterns. Encore is essentially based on a non uniform
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object model and a cooperative scheduling model (see Subsections .
Encore features active and passive objects. Method calls are transparently asyn-
chronous or synchronous, depending whether the called object is active or passive.
Although futures are typed dynamically, their value must be explicitly retrieved
via a get construct. Unlike the other presented active object languages, Encore na-
tively includes two forms of asynchronous computation: asynchronous method calls
(like the other languages) and asynchronous parallel constructs inside a request.
Internal parallelism can be explicit through async blocks, or it can be implicit
through parallel combinators, an abstraction that spawns Single Instruction Mul-
tiple Data tasks and joins them automatically. What is special about
Encore is that all parallel constructs are unified with the use of futures for han-
dling asynchrony [FRCS16]. In Encore, active objects encapsulate passive objects,
in terms of ownership, but unlike ProActive and AmbientTalk, passive objects can
be shared by reference across the activity boundaries. In this context, in order
to prevent concurrent modifications on passive object, the programmer gives to a
passive object a capability type, that defines both the accessible interface of the
object and the level of accessibility of this interface. The capability possibilities
include not exhaustively: exclusive access from one control thread, optimistic and
pessimistic sharing, and unsafe sharing. The capability system of Encore has been
formalised in [CW16]. Regarding request scheduling, Encore features the same
cooperative scheduling as Creol and ABS with the await and suspend language

constructs.

let ba = new local BankAccount (459818225, Fr); // BankAccount ts a passive class
in {
let
ta = new TransactionAgent (ba);

wa = new WarningAgent(ba.getEmail(), ba.getPhone());

dt = new DebitTransaction(42.0, Eur);
in {
let bfut = ta.apply(dt)
in {
await bfut;
let b = get bfut

in {
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wa.checkForAlerts(b) ;

b.commit () ;

3

}

Listing 2.5 — Bank account program example in Encore.

Listing shows the bank account example written in Encore. Here, we sup-
pose that the BankAccount and DebitTransaction classes are passive, and that
TransactionAgent and WarningAgent are classes declared without special key-
word (and in this case, ta and wa are automatically active objects). The manipu-
lation of futures is similar to what can be found in Creol or ABS programs. But in
addition, Encore provides a chaining operator ~ that adds a callback to a future, in
order to execute it when the future is resolved. This chaining operator is somehow
similar to the callbacks of AmbientTalk. Cooperative scheduling and future chain-
ing mix explicit and automatic synchronisation, which might save the programmer
from the burden of precisely placing all the release points in the program.

An Encore program is compiled through a source-to-source compiler, written
in Haskell, that produces C code complying to the C11 standard. Consequently,
all tools that apply to C programs can also be applied to a compiled Encore pro-
gram. In conclusion, Encore is oriented towards massively parallel execution, but
its design makes it not adapted for high performance distributed execution, due

to the predominance of object sharing.

2.3.7 Actor Languages and Frameworks

Like active objects, since the publication of the original actor model in |[Agh86],
many implementations of actors have emerged, along with the needs of the pro-
grammers throughout the years. These implementations have various character-
istics that differentiate them from each other, and that makes them adapted to
particular contexts. An informative study [KSA09| compares several actor frame-
works that execute on the [JVM]lplatform and discusses their guarantees. We review

below the actor languages and frameworks that execute on various platforms and
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whose characteristics are remarkable in our context.

Rebeca

Rebeca [Sir+04] is an actor-based programming language featuring classical asyn-
chronous message passing without reply between actors. Rebeca aims at using
actor-based concepts for the specification and model-checking of reactive systems.
The only difference of Rebeca against the original actor model is that Rebeca
actors preserve the order of messages that are sent between two actors. This com-
munication model is known as point-to-point communications, as in ASP.
However, contrarily to ASP, message sending is non blocking. Consequently, upon
reception, messages can be reordered depending on their timestamps. Each Re-
beca actor encapsulates its own variables, so there exists no data sharing between
actors. In addition, the execution model of Rebeca actors is mono-threaded, which
makes Rebeca programs intrinsically data race free. As ABS, Rebeca has many
frontend verifier tools, and several backend translators into various languages. One
of the backends translate Rebeca models into the Erlang programming language,
that has a solid background and support for concurrent programming [VWW96|.
Rebeca also supports componentised model-checking [Sir+05], and an extension
of Rebeca enables verification of Rebeca models in the presence of timed con-
straints |[Kha+15].

Scala and Akka actors

Scala actors [HO09| are pioneers and ones of the most successful actors that par-
ticipated to their popularisation. Their impact on the developement of support
for concurrency and on newly designed technologies is nowadays as much visible in
education as in industry [Hall2]. A more recent implementation of actors in Scala
is available in the Akka library [Inc12|, that mainly improves the performance of
distributed actors on the [[VMl This is mainly due to a better implementation
of serialisation compared to standard Java serialisation. Akka actors also offer a
facilitated way to distribute the execution of actors, compared to Scala actors, by
making the deployment more transparent. Both Scala and Akka actors support

the use of futures for the convenience of the programmer, although this makes a
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significant difference with respect to the original actor model.

Kilim

Kilim |[SMO08] is an actor implementation that provides lightweight threads on top
of Java. To this end, actor’s threads are cooperatively scheduled, which makes
the execution of Kilim actors slightly different from the execution of actors in the
original model. Also, Kilim allows the message content to reference objects that
are outside the actor’s boundaries. Such object sharing can lead to inconsistent
state. It is then on the shoulders of the programmer to realise a copy of the
shared object, or to protect it accordingly. An extension of Kilim [GB13] enables
ownership-based isolation of objects in order to better structure object accesses.
Another aspect of Kilim is that, in order to drop a message to an actor, one must
get the local reference of the actor’s mailbox. This has the drawback of breaking
the actor’s encapsulation and of relying on local references to target an actor.
All of these properties make Kilim handy and efficient but not yet adapted to

distribution.

SCOOP

The Maude model and the C runtime of SCOOP [Mor+13|, that stands for Simple
Concurrent Object-Oriented Programming, provides a concurrency model based
on the notion of handlers. A handler is an autonomous thread of control that
is able to execute actions on an object. In SCOOP, method calls on an object
reference are performed asynchronously if they are placed in a special separate
block, that mentions this object reference. What distinguishes SCOOP from other
actor models is that a whole sequence of actions can be registered to an object’s
handler. For that, the actions just need to lie in a same separate block. The
sequence of actions that are in a separate block is ensured to be delivered in
order. Additionally, these actions are ensured to be executed atomically, which is,
without interleaving with actions from other separate blocks. Although SCOOP
is well studied and optimised for local concurrency [WNM15|, it also starts to be
adapted to distributed execution [SPM16].
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Salsa

Salsa [DV14] is an actor-based programming language that targets distributed
computing above all goals. Salsa is implemented in Java and can be used as
follows. A Salsa program must be first compiled into Java code with a dedicated
compiler, and then compiled into Java bytecode through a standard Java compiler.
Although both Kilim and Salsa are made for running actors on the [JVM] they
pursue a radically different goal. Indeed, Kilim is oriented towards efficient multi-
core computing and Salsa is oriented towards distributed execution. Salsa allows
no shared state between actors and offers a location-transparent distribution of
actors, based on the notion of universal naming. It targets grid computing, mobile
computing and internet-based computing. This illustrates well how the objective of

the language can lead to completely different implementations of the actor model.

Java 8-based actors

New language constructs based on functional programming have been introduced
lately in the version 8 of Java. Even though this cannot change the possibilties of
the underlying execution platform of Java, namely the [JVM] recent works [NB14;
Ser+14; Ser+ 16| investigate whether those new constructs make Java more adapted
to the implementation of actor frameworks, and make optimistic conclusions. Be-
fore Java 8, a lot of high level parallel constructs, such as lightweight asynchronous
tasks, barrier, phasers and transactions, required the modification of the compiler,
hence to have a language-based approach. The Java 8 runtime allows most of these

constructs to be directly embodied without intricate underlying implementation.

Habanero Java actors

Habanero-Java (HJ) [Cav+11] is a parallel programming language built on top
of Java and based on the X10 programming language [Cha+05]. HJ is primarily
oriented toward portable multicore computing through the provision of parallel
constructs and of lightweight tasks that are missing from Java. A new implemen-
tation of HJ, HJ-lib, has been written using Java 8 [[S14]. In particular, this new
version uses closures through Java 8 lambda expressions for the safe implementa-

tion of the former parallel constructs, and also led to an implementation of actors.



2.4. FOCUS ON MULTI-THREADED ACTIVE OBJECTS 39

The execution of HJ-1lib actors deviate from the original actor model in the sense
that an actor can be multi-threaded if a message contains parallel constructs. For
example, it is possible with HJ-lib to have an actor processing a message using an

async call.

Table summarises the active object languages that have been presented in
this section. Their main features are highlighted and placed according to the clas-
sification given in Section [2.2] Many mixed combinations of preponderant features
have been experimented through each language, especially for the transparency
of asynchronous method calls and futures. Yet, through this table we can notice
the emergence of categories of language. Creol, JCoBox, and ABS share a lot of
common features in the scheduling and transparency aspects. ProActive and Am-
bientTalk have the same object model and full support distribution, they belong to
a same category of language where their models that are adapted to distribution.
Finally, Encore would rather join the cooperative-based languages but its wide

range of possibilities makes it unfitted to any of the categories.

2.4 Focus on Multi-threaded Active Objects

In this thesis, we mainly contribute to the multi-threaded active object model,
this is why we propose in this section a particular focus on multi-threaded active
objects, hereafter multiactive objects. Firstly, we present the multiactive object
programming model and then, the way it is implemented in the ProActive library
(Subsection [2.3.4). Afterwards, we present MultiASP, the multi-threaded exten-
sion of ASP (Subsection [2.3.4), that formalises the implementation of multiactive

objects in ProActive.

2.4.1 Multiactive Object Model

As mentioned in Subsection [2.2.2] controlled multi-threading is gaining attention
in the actor and the active object communities, in order to embrace the raise
of multi-core computer architectures. Multiactive objects |[HHI13| are a multi-
threaded extension of the active object programming model. The principle of mul-

tiactive objects is to enable the execution of multiple requests of an active object
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ASP
Creol JCoBox ABS ProActive AmbientTalk Encore
MultiASP
Object . e object group e object group e non uniform
uniform N K . . .
model e non uniform e uniform non uniform non uniform e multiple styles
Schedulin, mono-threaded ® cooperative
model g cooperative cooperative cooperative (multi-threaded mono-threaded . mawzm_ constructs
with MultiASP) P
.. .. e explicit async e implicit async e explicit async . ..
* explicit async * explicit async method calls method calls method calls ¢ implicit async
method calls method calls .. . .. . . . method calls
Transparency o explicit futures e implicit futures | e implicit futures

e explicit futures
e no distribution

e explicit futures
e early distribution

e distribution
through backends

e full support
for distribution

e full support
for distribution

e explicit futures
e no distribution

Table 2.1 — Summary table highlighting the main features of active object languages
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in parallel, while having control on the concurrency. Such a parallelism proceeds
at the request level inside the active object: several requests can be executed at
the same time, where the original active object programming model advocates the
processing of one request at a time. The request scheduling of multiactive objects
differs from cooperative scheduling in the sense that cooperative scheduling can-
not make an active object take advantage of multi-core architectures, because it
has only one single thread that is active at a time. On the opposite, multiactive
objects feature not only multi-tasking but also true parallelism of tasks. An alter-
native for benefiting from multi-cores could be to have as many threads running
as the number of cores of the machine on which they are deployed on. And, for
the frameworks that implement logical threads, like Encore and ABS, many more
active objects than running threads can fit on the same machine. Indeed such a
solution would load all the cores of the machine. Nonetheless, this does not remove
the communication overhead that exists when active objects communicate, due to
the presence of remote method calls. This is a limitation that multiactive objects
overcome thanks to shared-memory between threads.

In order to keep a notion of safety inside a multiactive object, the requests that
execute in parallel must be acknowledged by the programmer: the programmer
must say beforehand which requests are compatible regarding data race freedom
and execution ordering. The compatibility of two requests is declared statically
(when writing a class), but may depend on dynamic parameters. So, in multiactive
objects, the execution safety is partially handed over to the programmer. Nonethe-
less, it is more accessible to the standard programmer to specify compatibilities
rather than manipulating low-level concurrency construct, such as protecting each
shared variable and critical section with a lock. This way, the multiactive ob-
ject programming model preserves the ease of programming of the active object

programming model.

2.4.2 Implementation in ProActive

ProActive implements the multiactive object programming model as an extension
to the active object implementation presented in Subsection [2.3.4. ProActive offers

to the programmer a specification language that allows him to declare compatibil-
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ity of requests, and thus to have multiactive objects. The specification language
used for multiactive object business is based on the Java annotation mechanism,
that allows the programmer to add metadata to a Java program. Java annotations
can be either intended to compile-time tools or to run time libraries. In the case
of ProActive, annotations related to multiactive objects are processed at runtime,
which enables dynamic parameters.

In practice, a Java class can be annotated with the multiactive object annota-
tions that are available in the ProActive library. In this case, when an active object
of such a class is created (with the static method PAActiveObject.newActive), it
is interpreted as a multiactive object. This basic rule implies that, if no annotation
is found in the class of an active object, then it remains a ‘basic’ active object;
otherwise, it is a multiactive object. ProActive allows the programmer to define

request compatibility in three steps:

— First, a @Group annotation must be declared on top of a class to define a
group of requests. A group is meant to gather requests that have the same
concerns (semantic partitioning) and /or the same compatibility requirements
(practical partitioning). Methods belonging to the same group must share

the same compatibility rules.

— Second, @Member(0f annotations can be defined on top of method definitions,

in order to make them belong to a group (previously defined).

— Third, @Compatible annotations must be used to specify the groups that are
compatible, so, in extension, to specify which requests can be run in parallel

safely.

Declaring compatibilities of groups instead of methods increases the abstraction
level of the specification of request parallelism. If a method is not assigned to a
group, then it is compatible with nothing. Also, if the group names specified in
the @Member0f and @Compatible annotations do not correspond to any group, a
warning message is produced, but the execution proceeds anyway. As an example,
consider a distributed peer-to-peer system implemented with multiactive objects.

A class Peer is defined, with methods that deal with: joining a peer in the network,
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adding a value in the system, retrieving a value, and monitoring the peer. Such a

class is displayed on Listing [2.6]

1public class Peer {

2

3 public JoinResponse join(Peer other) { ... }
4

5 public void add(Key key, Value value) { ... }
6

7 public Value lookup(Key key) { ... }

8

9 public void monitor() { ... }

10

11}

Listing 2.6 — Peer class

When creating Peer objects with PAActiveObject.newActive in ProActive,
all of such objects already run concurrently and can receive requests for any of
the methods they define. Without further specifications, for each peer all requests
are processed sequentially. However, it might be interesting to parallelise the op-
erations that are done within a peer execution. For example, let us assume that
monitoring a peer can be done at the same time as any other requests, since it
does not modify the peer and it does not rely on the peer’s state. Similarly, adding
values in parallel should be feasible as long as it does not apply on the same key.
On the opposite, joining a peer in the network must be a strict atomic operation,
otherwise the peer-to-peer network architecture could be corrupted. All of those
synchronisation notions can be expressed with multiactive object annotations, ap-
plicable on the Peer class.

1 @DefineGroups ({

2 @Group(name="atomic", selfCompatible=false),

3 OGroup(name="concurrentRW", selfCompatible=true, parameter="Key",

4 condition="!equals"),

5 @Group(name="monitoring", selfCompatible=true)

61)

7 @DefineRules ({

8 OCompatible({"atomic", "concurrentRW"}, condition="!isLocal"),

9 @Compatible({"concurrentRW", "monitoring"}),
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b

public class Peer {

@Member0f ("atomic")
public JoinResponse join(Peer p) { ... }

@Member0f ("concurrentRW")
public void add(Key k, Value v) { ... }

@Member0f ("concurrentRW")
public Value lookup(Key k) { ... }

@Member0f ("monitoring")

public void monitor() { ... }

I;

Listing 2.7 — Peer class with multiactive object annotations.

Listing shows how to map those notions with the ProActive multiactive
object annotations. The annotations previously introduced are used to partition
the methods of the Peer class into three groups of requests, named respectively
atomic, concurrentRW, and monitoring. All the methods of the Peer class are
assigned to a group and, because any not specified combination leads to an in-
compatibility, join requests are forbidden to be executed in parallel with monitor
requests. The @Group and @Compatibility annotations define more parameters
than just group names. The second parameter of the @Group annotation specifies
whether the requests of this same group are compatible. For example, the requests
of the atomic group are not compatible, because we do not want to have two peers
joining the same peer at the same time. The condition parameter of the @Group
and @Compatible annotations enables dynamic compatibilities: two considered
requests are compatible if the evaluation of the specified condition method returns
true. The parameter parameter of the @Group annotation specifies the parameters
to be taken into account for the evaluation of the condition method. Here, it is
specified that the parameters of the requests that have type Key must be taken
as parameters of the condition method. For example, in our case we allow join

requests to be executed in parallel with add requests only if the peer must not add
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the content to its own storage, but just route it to the next peer (the behaviour
of isLocal is not shown is the code snippet). Evaluation conditions and their
parameters enable very flexible and fine grained parallelism, provided that the
programmer is able to determine it. In conclusion, a few multiactive object an-
notations can greatly improve request processing throughput with a low overhead
compared to low-level optimisations for parallelism |[HHI12]. Overall, program-

ming with multiactive objects can be summarised with the following principles:

— Without multiactive object annotations, a ProActive active object is mono-

threaded without any local parallelism nor race condition.

— If some parallelism is desired, compatibility must be declared between groups
of requests that can be safely executed at the same time and, for which the
execution order do not matter. Compatibility can be statically declared
or decided dynamically depending on invocation parameters and/or on the

object’s state.

— If even more parallelism is required, an expert programmer can still declare
more methods as compatible and manually protect the access to the shared

variables, using a lower-level synchronisation mechanism.

The multiactive object runtime is in charge of interpreting the multiactive an-
notations. In order to ensure maximum parallelism, multiactive objects enforce a
policy with possibility to overtake. More precisely, within a multiactive ob-
ject request queue, a request is executed if it is compatible with requests that are
already executing and with older requests in the queue. The first condition pre-
vents data races and the second condition preserves the ordering of non-compatible
requests. A side effect of the second condition is that starvation is avoided in the
presence of a continuous stream of incompatible requests. Indeed, request exe-
cution would not be fair if a request A could overtake a request B even though
incompatible, because then request A would prevent request B from executing,
and this could last as long as request B is overtaken by incompatible requests.
Besides, compatibility is a monotonic notion: once a request is marked as ready

for execution (it has been checked for all compatibility conditions), this status
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cannot change until the request is executed. This default policy of execution max-
imises the parallelism but does not take into account the execution needs at the
application-level. In Chapter [3| we extends the model in order to offer a wider

range of possibilities.

2.4.3 MultiASP

MultiASP is the active object programming language that extends ASP (see Subsec-
tion for the support of multiactive objects (see Subsection. MultiASP for-
malises the multiactive objects that are implemented in ProActive, and allows us
to reason on multiactive object executions. A seminal version of MultiASP is given
in [HHI13|, and the encoding of MultiASP in the proof assistant Isabelle/HOL is
publicly available [HK15]. We base this thesis on a slightly updated version of
MultiASP, that we introduce in this section from a syntactical point of view, and
for which we give the operational semantics in Chapter We will also present
in Chapter [4] our contribution to MultiASP that regards scheduling aspects. The
preliminary formalisation of multiactive objects in [HHI13| is based on object in-
stances whereas the version presented in this thesis is based on classes. This mod-
ification allows us to compare MultiASP against ABS in Chapter [l MultiASP is an
imperative programming language, whose syntax is inspired from object-oriented
core languages resembling to Featherweight Java [[PWO01]. It is worth noticing that
the syntax of MultiASP is extremely close to what can be found in a ProActive pro-
gram. This is done on purpose, as minimising the gap between the formalism and
the practical implementation is, first, easier to transcribe, and second, ensures that
what is proven trough formalisation still holds in a practical execution.

Figure [2.5] shows the static syntax of MultiASP. A program consists of a set of
classes and one main method. Classes, methods, and statements are standard. In
MultiASP syntax, x ranges over variable names, C' ranges over class names, and m
ranges over method names. We characterise a list of elements with the overlined
notation. The list * denotes local variables when it appears in method bodies
and denotes object fields when it appears in class declarations. In MultiASP, as
in ProActive, there are two ways to create an object: new creates a new object in

the current activity (a passive object), and newActive creates a new active object.
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P == C{z; s} program
S == n(T) method signature
C == class C(Z) {T M} class
M == S{Ts} method definition
s == skip | =z | returne | s; s statement
z u= e | em(e) | new C(€) | newActive C(€) expression with side effects
e == v | = | this | arithmetic-bool-exp expression
v == null | primitive-val value

Figure 2.5 — The class-based static syntax of MultiASP.

Also, no syntactic distinction exists between local and remote (asynchronous) in-
vocations, e.m(€) is the generic method invocation. Similarly, as synchronisation
on futures is transparent and handled through wait-by-necessity, there is no partic-
ular syntax for interacting with a future. A special variable, this, enables access
to the current object. The sequence operator is associative, with a neutral skip
element: a sequence of instructions is possibly rewritten s;s’, with s not a se-
quence. Although they are omitted in Figure 2.5 we assume that the if and while
constructs exist, even if we did not define their semantics explicitly. In Chapter [4]

we will present the complete semantics of MultiASP along with the contribution.

To recap, there are two main building blocks in this thesis: ProActive and
MultiASP. The two of them lie under a common programming model that is mul-
tiactive objects. Figure [2.6] summarises the technology pile introduced in this
section, including the historical background introduced in Subsection [2.3.4] This
diagram highlights the temporal evolution and gives an idea of the increment for
each block. The contributions of this thesis apply on the new stack displayed on
the picture, namely, the multiactive object model, MultiASP, and ProActive.

2.5 Determinism in Active Object Executions

Since active objects are concurrent entities, their global execution, characterised as
a sequence of communications, is non-deterministic. However, the design choices

and the implementation details of active object frameworks affect the level of
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Figure 2.6 — Interweaving of ASP, ProActive, multiactive objects, and MultiASP

determinism of active object executions. These choices and details make some
frameworks more or less deterministic than other, either globally, i.e. at the level
of the execution of the application, or locally, i.e. at the level of the execution
of the active object. In general, being more deterministic implies having more
properties on the execution. The programmer can use these properties to better
predict the behaviour of the program. It is thus easier to program under these
conditions: less interleavings to consider, and more sequential events. On the
other hand, having less determinism enables more flexibility on the implementation
side. It leaves room for choice and optimisation of the execution, for example
choosing the most efficient scheduling with less constraints. Sometimes, having
too strong constraints on the execution, and on the ordering of events, even makes
the execution impossible (deadlock); this is clearly a counter objective of program
determinism.

In the context of active objects and actors, a first variable source of determin-
ism is that the communication between them can be implemented with various
communication channels, that offer various guarantees. Although very specialised,
this implementation detail is of great importance for the programmer, because it
gives the set of possible executions that can be expected looking at asynchronous

invocations. Three examples of asynchronous invocations are given in Figure [2.7]
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They reflect the cases where the type of communication channel changes the ex-
ecution guarantees. Throughout the survey of active object languages conducted
in Section [2.3] we came across four different approaches of asynchronous com-
munications between active objects, summarised below with the guarantees they

offer.

No assumption on the order of reception of requests. In the original actor model,
the only guarantee that actors give is that messages are put in the mailbox
of actors in the same order as they are received. In [Agh86], this behaviour is
denominated as a arrival order. This type of communication channel
does not guarantee that two sequential invocations of the same active object
are received in the same order. In this case, instantiated in Figure [2.7a,
active object b has in its request queue either foo before bar, or bar before
foo. This unpredicted behaviour is motivated by the fact that objects a and
b might be separated by a network, which does not ensure ordering without
a specific additional layer. For example, ABS and Creol make no supposition
on the order of reception of requests. This semantics has the advantage
of not excluding any underlying execution platform for such active object

languages.

point-to-point. This communication channel ensures that all asynchronous
invocations that are sequentially sent from one sender are ordered in the
same sequence on the recipient side. If [FTFOl point-to-point ordering is used
in the case of Figure 2.7a] then the execution of this example becomes de-
terministic: the only possibility is that active object b receives request foo
before request bar. For example, Rebeca actor language offers this guaran-
tee. However, when requests arrive from different senders to a same recipient,
no assumption can be made. In Figure[2.7d no one can tell if active object b
will receive request foo (sent from a) before request bar (sent from c) only
with a point-to-point ordering guarantee. The advantage is that the
programmer can send consecutive requests that have a dependency between
them.

Causally ordered. Communications that occur on causally ordered channels are

correlated with the happened-before relation: the sequence of requests are
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foobar() {

b.foobar();

b.barfoo();
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b.foa();

bbar(); \
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(a) No ordering vs. (b) [EIEQ] point-to-point vs. (c) [EIFOIl point-to-point vs.
EIEOl point-to-point. no interleaving. causal ordering.

O
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Figure 2.7 — Examples of invocations affected by communication channels.
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preserved within multiple hops. In Figure[2.7d, considering that active object
a sends request foobar after request foo to active object b, all requests to b
that are sent during the execution of foobar are received after request foo on
b. Causal ordering of requests gives a stronger determinism in active object
executions[FTFO] point-to-point channels. For example, ASP - and MultiASP -
ensures causal ordering of requests. It has the same advantage as point-
to-point, but the guarantees also operate when there are intermediates in the

communication.

Interleaving-free sequences. This special kind of communication enables com-

pound asynchronous invocations that are ensured to be put in the request
queue of the recipient atomically: no other requests can be inserted in be-
tween the compound requests. In Figure if interleaving-freedom is
applied to the invocation sequences of active objects a and c, then b can
only receive these requests in two different orders: either foo and bar in
the first place, or foobar and barfoo before. For example, SCOOP actor
language features the specification of interleaving-free sections. Within an
interleaving-free sequence, the communication is intrinsically [FTFOl point-to-
point, but it gives more determinism with respect to concurrent invocations
from other senders. The advantage for the programmer is that he does not
have to consider the possibility of having other executed requests within a

sequence; thus it is easier to program correctly.
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It is worth noticing that the communication channel that is taken is distin-
guished from the scheduling policy that is applied, although both notions are
used complementarily. Indeed, the communication channel impacts on the order
of reception of requests whereas the scheduling policy impacts on the order of
their execution. A scheduling policy is often fully deterministic, although some
active object frameworks do not guarantee any execution order of requests, like
Creol and ABS. Additionally, since these languages feature cooperative scheduling
of requests, their global execution is highly non-deterministic. As we will see in
Chapter [4, when an active object language is implemented for a concrete execution
platform, it must define a scheduling policy that offers a minimum of guarantees.
Advanced scheduling policies are also studied in more details in Chapter [3]in the

context of ProActive, and also compared to related works.

Apart from communication channels and scheduling policies, another potential
source of non-determinism is when the active object language allows a request to
release the execution thread in the middle of its processing. This is the case of all
active object languages that feature cooperative scheduling. Cooperative schedul-
ing introduces an additional source of non-determinism because the request order
obtained through the communication channel is mixed with the order in which
awaiting requests are paused, typically consecutive to an await command, like
in Creol, JCoBox, ABS, and Encore. Contrarily to communication channels, that
impact on the global determinism of active object executions, the presence of
language constructs like await weakens the local determinism of active objects,
especially because, most of the time, the reactivation of an awaiting request de-
pends on the progression of another request in a concurrent activity. In ASP and
in AmbientTalk, since requests run to completion, the interleaving possibilities are
totally discarded. Thus, ASP and AmbientTalk programs execute more determinis-
tically than programs involving cooperative scheduling. Besides, when the active
object model is based on object groups, like in ABS and JCoBox, requests that
target different objects compete for the same execution thread. Thus, the schedul-
ing decision must be considered in addition to the decision between starting and

resuming requests, increasing even more the execution possibilities.

In conclusion, the multitude of aspects that impact the determinism of active

object executions make the active object languages and frameworks difficult to
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compare to each other. The experimental evaluation of their performance is in-
tricate, because they do not offer the same execution guarantees. The reason for
this difficulty is that the sources of non-determinism are placed at different levels
of the different languages. For example, MultiASP places the non-determinism at
the level of the activity, by allowing parallel requests. Because of parallelism, one
could think that MultiASP is less deterministic than active objects based on coop-
erative scheduling. However, MultiASP requests always run to completion, whereas
an execution thread of cooperative scheduling interleaves different requests, so it
is not possible to conclude directly whether cooperative scheduling provides more
or less determinism than multi-threaded scheduling. Nevertheless, MultiASP en-
sures a causal ordering of requests, which is the communication channel that gives
the most determinism. In general, the communication channel that is employed
gives the restrictions of the protocols that built upon an active object language.
In Chapter [, we will see that having causally ordered communications is a basic
condition for having a correct fault tolerance protocol for MultiASP active objects.
Indeed, it makes programs fully deterministic, as it was formally proven for ASP in
[CHSO04], under some conditions. Overall, the determinism in active object execu-
tions is a important aspect to consider when active object languages are developed
and when active object frameworks are compared to each other. Also, these as-
pects are crucial when active object languages are translated for specific execution

platforms; this is a problematic that we explore in Chapter [4]

2.6 Positioning of this Thesis

There is now an undeniable effervescence that surrounds asynchrony in program-
ming languages. This fact has led to the emergence of many programming mod-
els and languages, and also to soft evolutions in well-established programming
languages. The active object programming model and associated programming
models are becoming leaders in the asynchronous computing era, thanks to their
provided safety and convenience of programming. However, we are still facing a
gap between two categories of active object-based programming languages. The
programming languages that are developed in academics feature the latest pro-

gramming abstraction whereas the programming languages that are used in the
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industry, and that are put into production, still cope with modest increments that

are inspired from developments made in academics.

All the active object-based programming languages presented in Section
have the common point of being designed for a particular purpose, and excel in
it. This is because they have approached different areas. For example, ABS is
a powerful modelling language that focuses on property analysis and verification,
and offers hooks for code generation. Other languages, like Encore and ProActive,
target another objective, that is providing an efficient runtime for active objects.
But there too, two different directions are taken: Encore targets multicore plat-
forms whereas ProActive reaches its potential in distributed settings. Likewise,
distributed execution is the basis of AmbientTalk programs, but the runtime of
AmbientTalk is focused on connectivity in mobile ad hoc networks whereas the
runtime of ProActive is optimised for [HPC], which leads to dissimilar programming

models and implementations.

Among the presented languages, some of them only have a limited support for
distributed execution (JCoBox), do not take distribution into account (Creol), or
not yet (Encore). Other languages make distributed execution their main focus,
but they are not yet fully implemented (some backends for ABS) or are not ready
for production code (AmbientTalk). A new trend is to study new programming
paradigms in a layered manner. Basically, the language for specifying and ver-
ifying the program is decoupled from the language of execution, which enables
using the language that is the most efficient in the considered layer. Such a design
implies having, in the middle, an automatic layer that translates the specifica-
tion language into the execution language. Yet, the two end points must map,
semantically. ABS has several backends but only two of them consider distributed
execution. The Haskell backend for ABS [BB16| provides a cloud aware translation
of ABS models. However, the execution language is not multi-platforms and, as
the implementation is based on Haskell continuations, it is not supported on in-
dustrial execution platforms like the [JVMl The application domain of the Haskell
backend for ABS is thus relatively focused. The second distributed backend for
ABS, targeting the and based on Java 8 features [Ser+16|, is starting to be
investigated and currently experiencing implementation challenges. In this thesis,

we also provide a fully working and proven backend for ABS that runs on the [JVM]
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but with a novel approach: by encoding ABS in another active object language.
We believe that the layered approach for designing new programming languages is

the most beneficial when it relies on layers that are proven and experienced.

The programming languages developed in academics give a set of advanced
language constructs and abstractions that are likely to become the basis for all
programmers. However, at the time of Big Data, distributed execution is a ‘must
have’ for any language platform. In order to be accepted in the industry, the
programming languages must ensure a good performance in the first place, and
also be compatible with the industry platforms. But often, programming lan-
guages are developed from scratch in order to investigate new paradigms, and the
transposition to mainstream languages or platforms is then quite tough, because
the constraints of the execution platforms and execution environments have not
been taken into account. Moreover, industrial use cases and data are rarely made
available for research, necessarily leading to biased implementations. During the
HAT project3, an industrial use case from Fredhopper, a e-Commerce company?,
has been successfully modelled in ABS [WDS12]. As mentioned in the paper, this
partnership has highly influenced further decisions made for the design of ABS.
This is why, not only the design but also the implementation challenges have to
be tackled on the research side. Indeed, integrating new language features and
runtimes might entail severe design issues. Technological transfer from research to
industry is not a straightforward engineering work: it has crucial issues and is not
ensured to be successful, nor to stick to the original objective.

To some extent, the couple formed by ASP and ProActive, is representative of
this mixed approach. ASP provides a provable formalism on which to confront
new language constructs and abstractions. On the other hand, ProActive enables
checking that the new developments make sense in practical settings, and show
their applicability in general purpose computing. Moreover, both of them evolve
in a coordinated manner, which reduces the gap from theory to practice at each
iteration. As the fundamental model of ASP was becoming inadequate for multi-

core computing, a need for updating both the formal model and the library was

3EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Software using Formal
Models (http://www.hats-project.eu)
v fredhopper.com
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inescapably rising. The presented, up-to-date model MultiASP started to give up
mono-threaded active objects in favour of controlled multi-threading, as well as its
seminal implementation in ProActive. Because the multiactive object model was, to
the best of our knowledge, the first active object model supporting multi-threaded
execution, it raised new challenges. Among them, cleverly adapting the local
execution is crucial to make the best use of parallelism. Multi-threaded execution
in ProActive also challenges the previously established non functional features that
make its strength, in particular, robustness of execution in distributed settings,
that are known to be extremely patchy. Clearly, a need for thorough support
of controlled multi-threading in multiactive objects appeared, both in the formal
model and in its implementation. These are the questions we tackle in this thesis.
Yet, multiactive objects did not only bring new problems, they also brought an
opportunity for a higher expressiveness. This is another aspect we explore in this
thesis, by challenging multiactive objects against the other models and this way,
probe their capacity.

Overall, we position this thesis as a complete contribution to multi-threaded,
asynchronous and safe programming models, although we mainly focus our work
on MultiASP for formalisation and on ProActive for implementation. This divided
approach is similar to the ones of ABS and Rebeca (Subsection , with their
use of backends: proving properties on a high-level, neat language, and relying
on massively used platforms for implementation burdens. Overall, throughout the
contributions of this thesis, we take a particular care in making interacting all
approaches. We believe that this work can impact both academic and industrial
fields. We have achieved the formalisation and implementation of a thorough
model and language that cater for a high expressiveness, and we are confident in
its success because it is experienced, proven, robust, and also resourceful for future

work.
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58 CHAPTER 3. REQUEST SCHEDULING FOR MULTIACTIVE OBJECTS

In this chapter, we present the first contribution of this thesis, which can be
summarised as an application-level scheduling for multiactive objects (see Subsec-
tion [2.4.1)), and its implementation in the ProActive library (see Subsection [2.4.2).
After motivating the need for application-level scheduling in the first section, we
present an approach for controlling the creation and allocation of threads of multi-
active objects in the second section. Then, in a third section, we present a priority
specification mechanism that allows the processing of requests in prioritised order.
We will see that the way priorities are applied do not jeopardise the safety of mul-
tiactive object execution. The imbrication of the components in the multiactive
object scheduler of ProActive is summarised in a fourth section. The compositional
software architecture of the scheduler proves to have a well defined separation of
concerns and enables adaptation of scheduling components without affecting the
core of the active object library. Finally, in the last section, we test the priority
specification mechanism on several use cases and we experiment different internal

representation of priorities. This chapter is associated to the publication [3].

3.1 Motivation

The multiactive object programming model automatically provides a request-level
parallelism thanks to the specifications written by the programmer. Bringing
parallelism in active objects also brings the question “how parallel requests should
be scheduled for execution?”. In particular, an order of execution has to be chosen.
Also, a maximum degree of parallelism must be defined, otherwise all the benefits of
parallelisation could be lost with too many parallel threads. Indeed, in multiactive
objects, even if requests are compatible (see definition in Section , we cannot
infinitely create new threads on-the-fly, whenever some parallelism can be done,
and expect a good execution performance. One has to size the program for the
resources that will be needed for execution. Another thing that must be taken into
account is the applicative requirements. Often, the different requests sent to an
active object have different importance regarding the application business. This

fact must be reflected in the execution order of requests. A default multiactive
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Figure 3.1 — Indirect interaction between the programmer and the multiactive
object scheduler through the annotation interface

object execution policy, implemented in ProActive, ensures fairness and maximum
parallelism (see Section 7 but cannot fit the aforementioned aims because
request execution is not controllable by the programmer through the program. In
this first contribution, we empower the programmer with scheduling customisation
of request execution for multiactive objects. We extend the ProActive library and
propose new and updated multiactive object annotations for the programmer that
is interested in the performance of a multiactive object-based application. Using
this new set of annotations does not require more expertise on the programmer’s
side: the specification is purely declarative, and represent an interface between the
programmer and the request scheduler, as shown in Figure |3.1}

Although multiactive scheduling annotations enable high performance tuning,
the programmer does not have a direct interaction with the scheduler. Thanks to
this interface, the programmer can focus on what the tuning should do, and not
on how to do it. This is why we claim that it is a scheduling made at application-
level. However, empowering the programmer also means increasing the probability
of introducing bugs. In order to prevent unwanted behaviours, for example if
the programmer writes inconsistent annotations, we implement the interpreter of
multiactive object annotations with some guardrails.

Through this work, we aim at a complete programming model for high perfor-
mance computing that is suited to all programmers