Inverse EEG source problems and approximation

F. Ben Hassen¹, M. Clerc², J. Leblond³, S. Rigat⁴, M. Zghal¹,

¹ LAMSIN, ENIT, Tunis (Tunisie) ² ENPC and INRIA Sophia Antipolis Méditerranée ³ INRIA Sophia Antipolis Méditerranée ⁴ LATP-CMI, Univ. Provence, Marseille (France)

Inverse EEG (electroencephalography) Problem:

From measurements by electrodes of the electric potential u on the scalp, recover a distribution of m pointwise dipolar current sources C_k with moments p_k located in the brain (modeling the presence of epileptic foci).

Model: The head Ω is modeled as a set of 3 spherical or ellipsoidal nested regions $\Omega_i \subset \mathbb{R}^3$, i = 0, 1, 2 (brain, skull, scalp), separated by interfaces S_i (with $S_2 = \partial \Omega$) and with piecewise constant conductivity σ , $\sigma_{|_{\Omega_i}} = \sigma_i > 0$.

Macroscopic model + quasi-static approximation of Maxwell equations
$$\rightarrow$$
 Spatial behavior of u in Ω [1] : (P)
$$\begin{cases} \operatorname{div}(\sigma \nabla u) = \sum_{k=1}^{m} p_k \cdot \nabla \delta_{C_k} \text{ in } \Omega \\ u = g \text{ and } \partial_n u = \phi & \text{ on } \partial\Omega \end{cases}$$

where g and ϕ denote the given potential and current flux on the scalp (or approximate interpolation of these quantities).

The resolution of this inverse problem can be divided into 3 main steps:

1. Data propagation (Cortical mapping step):

Since $C_k \in \Omega_0$, the function u is harmonic in the outer layers Ω_1 and Ω_2 , where boundary conditions are given by the continuity relations

$$u]_i = [\sigma \partial_n u]_i = 0 \text{ on } S_i,$$

 $_{i}$ denotes the jump across the surface S_{i} .

Based on these boundary conditions, data propagation can be achieved by using boundary element methods [2], or by using robust harmonic approximation techniques and expansions on appropriate basis [3].

3. Best rational approximation on planar sections (Source localization):

$$(\text{pointwise values of}) \ u_a \text{ on } S_0 \xrightarrow[]{2D \text{ best approximation schemes}}_{\text{on planar sections of the boundary}} \text{ localisation of sources } C_k$$

- Slice Ω_0 along a family of planes Π_p : $\Pi_p \cap S_0 = \Gamma_p$ (circles or ellipses).
- From pointwise values of the singular part u_a on Γ_p , approximate $f_p = (P_u a)^2$ the square of the anti-analytic

From these data on S_0 , the solution u to equation (P) in Ω_0 :

$$\begin{cases} \Delta u = \frac{1}{\sigma_0} \sum_{k=1}^m p_k . \nabla \delta_{C_k} \text{ in } \Omega_0 \\ u \text{ and } \partial_n u \qquad \text{given on } S_0 \end{cases}$$

assumes the form:
$$u(x) = h(x) + \sum_{k=1}^{m} \frac{\langle p_k, x - C_k \rangle}{4\pi \|x - C_k\|^3} = h(x) + u_a(x)$$
, h harmonic function in Ω_0

In order to recover the C_k inside Ω_0 , the knowledge of the singular function u_a is required on S_0 . This can be deduced from available boundary data by expanding u on bases of spherical or ellipsoidal harmonics [3, 4].

Illustrations (Spherical model):

FindSources3D :

♥ Find Sources3d	INRIA	_ ×
File Calcul Rotation View of slice		لا لا
	Slicer	
	Axe de section: Axe (0x)	Re-initialisation: 🔤
éshelle umin 9.127a 01 64C0U ▼ Belette sumotvisuou □		

• Software development (FindSources3D).

• More realistic geometries.

• The inverse MEG source problem.

References:

[1]: M. Hämäläinen, R. Hari, J. Ilmoniemi, J. Knuutila, O. V. Lounasmaa: Magnetoencephalography theory instrumentation, and applications to noninvasive studies of the working human brain, Rev. Modern Physi., 65, pp. 413-497(1993).

[2]: J. Kybic, M. Clerc, T. Abboud, O. Faugeras, R. Keriven, T. Papadopoulo: A common formalism for the integral formulations of the forward EEG problem, IEEE Trans. Medical Imaging, vol 24, pp. 12-28 (2005).

[3]: J. Leblond, C. Paduret, S. Rigat, M. Zghal, Sources localisation in ellipsoids by best meromorphic approximation in planar sections, Inverse Problems 24, 035017 (2008).

[4]: S. Taulu, J. Simola, M. Kajola, Applications of the Signal Space Separation Method, IEEE Trans. Signal Proces., 53, pp. 3359-3372 (2005).

[5]: L. Baratchart, J. Leblond, J-P. Marmorat, Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices, Elec. Trans. Numerical Analysis (ETNA), 25, pp. 41-53 (2006).