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Inverse EEG (electroencephalography) Problem:
From measurements by electrodes of the electric potential u on the scalp, recover a distribution of m pointwise dipolar current sources Ck with moments pk located in the brain (modeling the presence of epileptic foci).

Model: The head Ω is modeled as a set of 3 spherical or ellipsoidal nested regions Ωi ⊂ R3, i = 0, 1, 2 (brain, skull, scalp), separated by interfaces Si (with S2 = ∂Ω) and with piecewise constant conductivity σ, σ|Ωi = σi > 0.

Macroscopic model + quasi-static approximation of Maxwell equations → Spatial behavior of u in Ω [1] : (P )

 div (σ∇u) =

m∑
k=1

pk.∇δCk in Ω

u = g and ∂nu = φ on ∂Ω

where g and φ denote the given potential and current flux on the scalp (or approximate interpolation of these quantities).

The resolution of this inverse problem can be divided into 3 main steps:
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1. Data propagation (Cortical mapping step):

u at electrodes
∂nu = 0 on S2

Cauchy problem−−−−−−−−−−−−→
u

∂nu
on S1

Cauchy problem−−−−−−−−−−−−→
u

∂nu
on S0

Since Ck ∈ Ω0, the function u is harmonic in the outer layers Ω1 and Ω2, where boundary conditions are given by
the continuity relations

[u]i = [σ ∂nu]i = 0 on Si ,

[ ]i denotes the jump across the surface Si.

Based on these boundary conditions, data propagation can be achieved by using boundary element methods [2] , or
by using robust harmonic approximation techniques and expansions on appropriate basis [3].
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2. Anti-harmonic projection (Signal space separation):

From these data on S0, the solution u to equation (P ) in Ω0:4u = 1
σ0

∑m
k=1 pk.∇δCk in Ω0

u and ∂nu given on S0

assumes the form: u(x) = h(x) +

m∑
k=1

< pk, x− Ck >
4π‖x− Ck‖3

= h(x) + ua(x) , h harmonic function in Ω0 .

In order to recover the Ck inside Ω0, the knowledge of the singular function ua is required on S0. This can be deduced
from available boundary data by expanding u on bases of spherical or ellipsoidal harmonics [3, 4].
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3. Best rational approximation on planar sections (Source localization):

(pointwise values of) ua on S0
2D best approximation schemes−−−−−−−−−−−−−−−−−−−−−−−−−→

on planar sections of the boundary
localisation of sources Ck

• Slice Ω0 along a family of planes Πp: Πp ∩ S0 = Γp (circles or ellipses).

• From pointwise values of the singular part ua on Γp, approximate fp = (P−ua)2 the square of the anti-analytic
projection on Γp [3, 5].
Ellipses may then preliminary be mapped by a conformal rational transformation onto circles.

• fp is a meromorphic function, analytic outside Dp = Πp ∩Ω0 with singularities ζk, p inside Dp which are strongly
and explicitely linked with the sources Ck.

• Approximate the ζk, p by ζ̃k, p the poles of the best L2 or L∞ rational approximation to fp on Γp (degree ≥ m

for a sphere, 2m for an ellipsoid), the poles ζ̃k, p accumulate to the singularities ζk,p, [5].

• Varying p, this allows us to approximately locate the m sources Ck in Ω0.

'

&

$

%

Illustrations (Spherical model):

2 sources above view

The error estimate is around 10−2.

Numerical results:
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Spherical model:

In this case the relation between ζk,p and Ck when the slice p varies is the following:

-(ζk, p) are aligned together and also with the complex coordinates ζk of Ck.
-|ζk, p| is maximum at ζk, p = ζk (the kth source’s section).

1 source above view 3 sources above view

The error estimate is around 10−4 for the 1 source case and around 10−2 for the 3 sources case.
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Ellipsoidal model:

In each slice p we construct a real valued polynomial qk, p(ζ) whose coefficients are related to the conformal rational
transformation from ellipse to circle, qk, p(ζ) is minimum for ζ = ζk, [3].

These numerical results represent exact sources > and approximated ones ♦.

1 source 2 sources

The error estimate is around 10−4 for the 1 source case and around 10−1 for the 2 sources case .
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Perspectives:

•Recover the moments pk, improve sources estimation (slicing along different directions).

• Software development (FindSources3D).

•More realistic geometries.

• The inverse MEG source problem.
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FindSources3D :

(view of u on S2 then of C1 into Ω0)
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