Inverse EEG source problems and approximation
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Inverse EEG (electroencephalography) Problem:

From measurements by electrodes of the electric potential u on the scalp, recover a distribution of m pointwise dipolar current sources C'. with moments p;. located in the brain (modeling the presence of epileptic foci).

Model: The head €2 is modeled as a set of 3 spherical or ellipsoidal nested regions €2, C R3 i=0,1,2 (brain, skull, scalp), separated by interfaces S; (with S9 = 0€) and with piecewise constant conductivity o, Ol = 03 > 0.

Macroscopic model + quasi-static approximation of Maxwell equations — Spatial behavior of u in €2 [1] : (P)

m
div (cVu) = Zpk.V(SCk in

k=1
u =g and Opu = ¢ on Of)
where g and ¢ denote the given potential and current flux on the scalp (or approximate interpolation of these quantities).
NS
The resolution of this inverse problem can be divided into 3 main steps:
/1. Data propagation (Cortical mapping step): A 2. Anti-harmonic projection (Signal space separation):
From these data on Sp, the solution u to equation (P) in
u at electrodes | Cauchy problem | u g Cauchy problem | u g
) on > on .
Opu = 0 on Sy Onu : O V [ Au = OLO > i1 PE-Vée, in Qg
\
Since C. € ()p, the function w is harmonic in the outer layers €21 and {29, where boundary conditions are given by | u and Jhu
the continuity relations
ul; = |0 Opul; =0 on S;,

given on Sy
| ]; denotes the jump across the surface .S;.

m
< — Cf >
assumes the form: u(x) = h(x) + E 4pkH’ - . |]T3 = h(z) + uq(x) , h harmonic function in €2 .
THr — Uk
k=1

Based on these boundary conditions, data propagation can be achieved by using boundary element methods |2
by using robust harmonic approximation techniques and expansions on appropriate basis |3|.

,or In order to recover the C}. inside {2, the knowledge of the singular function u, is required on Sg. This can be deduced
from available boundary data by expanding u on bases of spherical or ellipsoidal harmonics |3, 4|.
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KB. Best rational approximation on planar sections (Source localization): ) [ Mlustrations (Spherical model):
= | o
2D best approximation schemes o
(pointwise values of) ug on Sy : pp. o > | localisation of sources C7, = | | |
on planar sections of the boundary ; /\ e
o Slice () along a family of planes II,,: II, NSy =TIy (circles or ellipses). / N
e [rom pointwise values of the singular part u, on I'y, approximate f) = (P_ua)2 the square of the anti-analytic
projection on I'y, |3, 5. =
Ellipses may then preliminary be mapped by a conformal rational transformation onto circles. “ K*’
e fpis a meromorphic function, analytic outside D), = Il N {)y with singularities (j, ,, inside Dy which are strongly % ;
and explicitely linked with the sources C}.. ; 7
e Approximate the ¢z, by ij p the poles of the best L? or L™ rational approximation to fpon I’y (degree > m i
for a sphere, 2m for an ellipsoid), the poles Ck, p accumulate to the singularities (. ), 5]
e Varying p, this allows us to approximately locate the m sources C}. in ).
2 sources above view
\_ ) \The error estimate is around 1072, )
Numerical results:
fSpherical model:

(Ellipsoidal model:

[n this case the relation between ¢y, ,, and Cp, when the slice p varies is the following:

‘(Ck, p) are aligned together and also with the complex coordinates (;. of C}..
-|Ck, pl 1s maximum at (g, = (i (the k™ source’s section).

~

[n each slice p we construct a real valued polynomial g, p(C ) whose coefficients are related to the conformal rational
transformation from ellipse to circle, g ,,(¢) is minimum for ¢ = ¢, |3].

These numerical results represent exact sources % and approximated ones .
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\The error estimate is around 10™% for the 1 source case and around 1072 for the 3 sources case.

/Perspectives:

KThe error estimate is around 10~# for the 1 source case and around 10~1 for the 2 sources case .

J
N[ FindSources3D

\
e Recover the moments pg., improve sources estimation (slicing along different directions).

e Software development (FindSources3D).

e More realistic geometries.
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e The inverse MEG source problem.
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(view of w on Sy then of C into €)p) |
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