

Solutions of the conjugate Beltrami equation in generalized Hardy spaces and applications to inverse problems in Tokamaks

L. Baratchart¹, Y. Fischer¹, J. Leblond¹, J.R Partington², S. Rigat³, E. Russ⁴

¹ INRIA Sophia Antipolis (France)

² Univ. Leeds, School Math. (U.K) ³ LATP-CMI, Univ. Provence, Marseille (France) ⁴ Univ. Paul Cézanne, Marseille (France)

Inverse Problems in Tokamaks:

Model of plasma equilibrium:

Physical problem of plasma confinment in a Tokamak (thermonuclear fusion)

Maxwell equations + axisymmetric assumption \Rightarrow Grad-Shafranov equation in poloidal plane sections $(\varphi = constant)$: $-div\left(\frac{1}{x}\nabla u\right) = j_T (= 0 \text{ in the vacuum})$

where (x, y, φ) , u(x, y) and j_T denote respectively the cylindrical coordinates, the poloidal component of the magnetic flux and the toroidal component of the current density vector.

Motivation:

The above issue is a practical important motivation for considering the following so-called conductivity equation in a planar annular domain Ω

 $div(\sigma \nabla u) = 0$, σ real-valued and Lipschitz-continuous, $0 < c < \sigma < C$ in $\Omega \subset \mathbb{R}^2$

From such questions, several inverse boundary value problems may be considered

- given Dirichlet data u on the boundary $\partial\Omega$, recover u in Ω ,
- given overdetermined Cauchy data u and the normal derivative $\partial_n u$ on a strict subset $I \in \partial \Omega$, recover u in Ω (afterward Cauchy data on $J = \partial \Omega \setminus I$)

1. Conjugate Beltrami equation:

When Ω is simply connected ($\Omega \sim \mathbb{D}$ the unit disc) and when z = x + iy denotes the complex variable, the conductivity equation is linked to the conjugate Beltrami equation by a system of real second order elliptic equations

 $f(z,\overline{z}) = u(x,y) + i v(x,y), \ u \text{ and } v \text{ in } W_{\mathbb{R}}^{1,p}(\Omega)$

solves
$$\overline{\partial} f = \nu \overline{\partial} f$$
 a.e in Ω $\iff u$ and v satisfy
$$\begin{cases} div(\sigma \nabla u) = 0 \text{ in } \Omega \\ div(\frac{1}{\sigma} \nabla v) = 0 \text{ in } \Omega \end{cases}$$
 with $\sigma = \frac{1 - \nu}{1 + \nu}$

with $\nu \in W_{\mathbb{R}}^{1,\infty}(\Omega)$ and $\|\nu\|_{L^{\infty}(\Omega)} \leq \kappa$, $\kappa \in (0,1)$

The study of the solutions of the conjugate Beltrami equation is a generalization of the harmonic case $\overline{\partial} f = 0$ (when $\sigma = 1$, last system reduces to the Cauchy-Riemann equations).

3. Properties of $H^p_{\nu}(\mathbb{D})$:

- Equipped with the norm $\|.\|_{H^p_{\nu}(\mathbb{D})}$, $H^p_{\nu}(\mathbb{D})$ is a Banach space,
- If $\nu = 0$, $H_0^p(\mathbb{D}) = H^p(\mathbb{D})$, the classical Hardy space of holomorphic funtions on \mathbb{D} such that $\sup_{0 < r < 1} ||f||_{L^p(\mathbb{T}_r)} < \infty$,
- Each $f \in H^p_{\nu}(\mathbb{D})$ has a non-tangential limit trf a.e on \mathbb{T} called the trace of f,
- $trH^p_{\nu}(\mathbb{D})$ is a closed subspace of $L^p(\mathbb{T})$,
- On $I \subset \mathbb{T}$, |I| > 0, $(trf)_{|_I} = 0 \Longrightarrow f \equiv 0$ in \mathbb{D} ,

Moreover, the Hilbert transform \mathcal{H} and the Riesz-projection \mathcal{P} are naturally extended to \mathcal{H}_{ν} and \mathcal{P}_{ν} with

$$\mathcal{H}_{\nu}: \qquad L_{\mathbb{R}}^{p}(\mathbb{T}) \to L_{\mathbb{R}}^{p}(\mathbb{T}) \qquad \qquad \mathcal{P}_{\nu}: L_{\mathbb{R}}^{p}(\mathbb{T}) \to L_{\mathbb{R}}^{p}(\mathbb{T})$$

$$Re(trf) = u_{|_{\mathbb{T}}} \mapsto Im(trf) = v_{|_{\mathbb{T}}} \qquad \qquad \text{and} \qquad \qquad g \mapsto \frac{1}{2}(I + i\mathcal{H}_{\nu})g + \frac{1}{4\pi} \int_{\mathbb{T}} g \, ds$$

Density result:

$$\forall I \subset \mathbb{T} \text{ such that } |\mathbb{T}\backslash I| > 0, \ trH^p_{\nu}(\mathbb{D})_{|I|} \text{ is dense in } L^p(I)$$

Solution of the Dirichlet problem:

$$\forall \varphi \in L^p_{\mathbb{R}}(\mathbb{T}), \exists ! f = u + iv \in H^p_{\nu}(\mathbb{D}) \text{ with } \int_{\mathbb{T}} v = 0 \text{ such that, a.e on } \mathbb{T}, Re(trf) = \varphi$$

2. Definition of generalized Hardy spaces (1 :

Dirichlet problem:

Find u defined on \mathbb{D} with prescribed trace on $\mathbb{T} \iff$ Find f defined on \mathbb{D} with prescribed Ref on \mathbb{T} This problem was solved in $W^{1,p}(\mathbb{D})$ only for $W^{1-1/p,p}_{\mathbb{R}}(\mathbb{T})$ -boundary data. With $L^p(\mathbb{T})$ -boundary data, f does no longer belong to $W^{1,p}(\mathbb{D})$ but to $H^p_{\nu}(\mathbb{D})$.

Definition of $H^p_{\nu}(\mathbb{D})$:

$$H^p_{\nu}(\mathbb{D}) = \text{measurable functions } f \text{ on } \mathbb{D} \text{ such that } \sup_{0 < r < 1} \|f\|_{L^p(\mathbb{T}_r)} := \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{1/p} < +\infty$$
 and solving (CB) in the sense of distributions in \mathbb{D}

4. The Cauchy problem:

Instability of the Cauchy solution:

Bounded extremal problem:

By constraining Ref on J, Cauchy problem admits a unique solution. That solution is the best approximation of $\phi_{|_I}$ and $\varphi_{|_I}$. In case p=2 and for M>0, it is given by

$$g_0(\lambda) = (I + \lambda T)^{-1} \mathcal{P}_{\nu}(f_{|_I} \vee (\lambda + 1)h) \text{ with } ||Ref - h||_{L^2_{\mathbb{R}}(J)} \leq M$$
 where $T(f) = \mathcal{P}_{\nu}(\chi_J f)$ is a Toeplitz operator and $\lambda \in (-1, +\infty) / ||Ref - h||_{L^2_{\mathbb{R}}(J)} = M$

Bases of solutions in $trH^2_{\nu}(\mathbb{D}_0)$ and numerical results:

Solutions on a rectangle $\mathcal{R} \supset \mathbb{D}_0$:

On \mathcal{R} , explicit solutions are, for every $N \in \mathbb{N}$, of Bessel-exponential type

where
$$\mu_n = \frac{n\pi}{4c}$$
 and $(\lambda_n)_{n\geq 1}$ denotes zeros of $J_0(\lambda_n b) = 0$.

Density result: Define as \mathcal{B}_1 and \mathcal{B}_2 the families of solutions b_1 and b_2 given above, then

$$\mathcal{B}_{1_{|\mathbb{T}_0}}$$
 and $\mathcal{B}_{2_{|\mathbb{T}_0}}$ are L^2 dense in $L^2_{\mathbb{R}}(\mathbb{T}_0) = Re(trH^2_{\nu}(\mathbb{D}_0))$

Constructive aspects of solutions to the bounded extremal problem:

$u_{ _{\mathbb{T}_0}} \in L^2_{\mathbb{R}}(\mathbb{T}_0)$	L^2 - density	$b_1 \in \mathcal{B}_1, \ u - b_1\ _{L^2_{\mathbb{R}}(\mathbb{T}_0)} \longrightarrow 0$	continuity of $\mathcal{H}_ u$	$\ \mathcal{H}_{\nu}(u) - \mathcal{H}_{\nu}(b_1)\ _{L^{2}_{\mathbb{R}}(\mathbb{T}_{0})} \longrightarrow 0$	$oxed{\mathcal{P}_ u(b_1,b_2)}$
$v_{ _{\mathbb{T}_0}} \in L^2_{\mathbb{R}}(\mathbb{T}_0)$		$b_2 \in \mathcal{B}_2, \ v - b_2\ _{L^2_{\mathbb{R}}(\mathbb{T}_0)} \longrightarrow 0$		$\ \mathcal{H}_{\nu}(v) - \mathcal{H}_{\nu}(b_2)\ _{L^{2}_{\mathbb{R}}(\mathbb{T}_0)} \longrightarrow 0$	and l
			•		

Numerical approximations:

Approximations are computed with $(c_0, r, e, N_1, N_2) = (5, 2, 1, 1, 5)$ and $f_{|_{\mathbb{T}_0}} = u_{|_{\mathbb{T}_0}} + iv_{|_{\mathbb{T}_0}} \in trH^2_{\nu}(\mathbb{D}_0)$.

 $\bullet \ u_{|_{\mathbb{T}_0}} = (x^2y^3 - \frac{3}{4}x^4y)_{|_{\mathbb{T}_0}}$ Error is about 10^{-2} for N=5

Perspectives:

• In an annular domain $\mathbb{A} = \mathbb{D} \setminus \rho \mathbb{D}$? Use of the topological decomposition $H^p_{\nu}(\mathbb{A}) = H^p_{\nu_i}(\mathbb{D}) \oplus H^p_{\nu_e}(\mathbb{C} \setminus \rho \mathbb{D})$, where $\nu_i \in W^{1,\infty}(\mathbb{D}), \nu_e \in W^{1,\infty}(\mathbb{C} \backslash \rho \mathbb{D})$ such that $\nu_{i_{|A}} = \nu_{e_{|A}} = \nu$.

References:

- [1]: K. Astala, L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2) 163 (2006), no. 1, 265–299.
- [2]: L. Baratchart, J. Leblond, S. Rigat, E. Russ, Hardy spaces for the conjugate Beltrami equation, submitted.
- [3]: Y. Fischer, J. Leblond, Solutions to conjugate Beltrami equations equations and approximation in generalized Hardy spaces, Advances in Pure and Applied Mathematics, to appear.