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Analytic extensions and Cauchy-type
inverse problems on annular domains:
stability results
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Abstract — We consider the Cauchy issue of recovering boundary values on the
inner circle of a two-dimensional annulus from available overdetermined data on the
outer circle, for solutions to the Laplace equation. Using tools from complex analysis
and Hardy classes, we establish stability properties and error estimates.

1. INTRODUCTION

Let G ⊂ R2 be a doubly-connected domain with smooth boundary ∂G = Γi∪Γe

made of two Jordan closed curves Γi,Γe such that Γi ∩ Γe = ∅.
Consider the following inverse problem: given two functions ub and Φ de-

fined on Γe, or a number of their pointwise measurements, with Φ 6≡ 0, find a
function ϕ, such that a solution u to

∆u = 0 in G
u = ub on Γe

∂nu = Φ on Γe

(1)

also satisfies
∂nu + ϕu = 0 on Γi, (2)

where ∂n stands for the partial derivative w.r.t. the outer normal unit vector
to ∂G.

Let us now explain the physical motivation of such an inverse problem.
Among data extension issues in elliptic inverse problems there arises the task

∗INRIA, BP 93, 06902 Sophia–Antipolis Cedex, France. E-mail: leblond@sophia.inria.fr
†LAMSIN-ENIT, BP 37, 1002 Tunis Belvedere, Tunisia.

E-mail: moncef.mahjoub@lamsin.rnu.tn
‡School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

E-mail: J.R.Partington@leeds.ac.uk



190 J. Leblond, M. Mahjoub, and J.R. Partington

of recovering either Dirichlet or Neumann boundary data (such as temperature
field, or electric potential), or a Robin type exchange coefficient (which may
represent thermal exchange, corrosion effects, etc.), or geometrical singularities
(cracks, sources), from overdetermined measurements on part of the boundary
of a domain.

In the thermal framework, ub and Φ above correspond to the measured
temperature and to the imposed heat flux on the outer boundary of some plane
section of a tube, while ϕ is the Robin exchange coefficient to be recovered on
the associated inner boundary.

This amounts to solving a Cauchy problem from available data on part
of the boundary. This problem is known to be ill-posed since the work of
Hadamard, its most critical feature being the lack of continuity of the solution —
whenever it exists. (This is the case for compatible data, which means that the
overdetermined data is indeed the trace and normal derivative of the solution
of a single harmonic function.) Therefore great care is required when studying
or solving such a problem.

Sufficient conditions on the available data together with a priori hypothe-
ses on the missing data may however be provided for continuity and stability
properties, and also error estimates, to hold. This is the topic of the present
work where we mainly consider the issue of recovering a Robin coefficient —
or the Dirichlet or Neumann boundary data — on the inner boundary of a
two-dimensional annulus, or of a conformally equivalent doubly-connected do-
main, from overdetermined data on the outer boundary. Note that the case of
cylindrical 3D objects, like tubes or pipes, reduces to this one.

Stability results and error estimates for the inverse Robin problem (with
suitable norms) will be established as consequences of boundedness properties
for functions of weighted Hardy classes — more specifically, by means of the
recovery of functions in Hardy classes of certain domains (in this work, doubly-
connected domains) from their restrictions to subsets of the boundary (see [7]
and the survey article [10] for more on this approach). Our results can be viewed
as an extension of those established in [2, 7], which hold on part of connected
Lipschitz or Hölder smooth boundaries. One can also refer to [13, 16] for local
or global estimates in the case of square domains.

The overview of the present article is as follows. The next section, Section 2,
is devoted to notation and preliminary well-posedness results. Our main sta-
bility results and errors estimates for the inverse problem are then stated in
Section 3. Using harmonic conjugation, we then introduce in Subsection 4.1
some analytic functions associated with the problem, which in fact belong to
Hardy spaces of an annulus, defined in Subsection 4.2, for which norm estima-
tions on the boundary are discussed in Subsection 4.3. This allows us to give a
proof of our results in Section 5 and some conclusions are given in Section 6.

This paper is mainly concerned with stability results. In a later paper,
we shall present further details of the Hardy class approximation scheme, which
require modest amounts of operator theory; we shall also present some numerical
results.
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2. NOTATION AND PRELIMINARY RESULTS

Let G ⊂ R2 ' C be a bounded domain, with Lebesgue measure ν. We let L2(G)
be the Hilbert space of square-integrable functions on G (w.r.t. ν) while, for
m ∈ N the Sobolev spaces Wm,2(G) (of real or more generally complex valued
functions) are defined as usual by [6, 12]:

Wm,2(G) =
{

f ∈ L2(G), ‖f‖2
W m,2(G) =

∑
0≤|p|≤m

∫
G
|Dpf(ξ)|2 dν(ξ) < ∞

}
,

with, as usual,

|p| = p1 + p2, Dpf =
∂p1+p2

∂xp1
1 ∂xp2

2

f.

They become Hilbert spaces with the related inner product. Whenever ∂G is
smooth enough (Cn+1,β , say, 0 < β < 1), the following characterization of
Sobolev spaces Wn+1/2,2(∂G) also holds, for n ∈ N:

Wn+1/2,2(∂G) = {f ∈ L2(∂G) s.t. ∃F ∈ Wn+1,2(G) : F|∂G = f},

with the norm ‖f‖W n+1/2,2(∂G) = inf {‖F‖W n+1,2(G), F|∂G = f}. Further, there
exist constants kn,G and Kn,G such that for all f ∈ Wn+1,2(G) we have:

kn,G‖f|∂G‖W n,2(∂G) ≤ ‖f|∂G‖W n+1/2,2(∂G) ≤ Kn,G‖f‖W n+1,2(G).

Concerning the associated Neumann to Dirichlet direct problem of finding
the solution u and its trace ub on T when Φ and ϕ are given in (1), (2), we have
the following existence and regularity Theorem 1 which, as well as the following
results, requires a number of classical prior assumptions, see [2, 7, 9, 13, 16].
They are of three kinds.

Let n ≥ 0. The first class of assumptions concerns the smoothness of the
boundary of the domain G; this physically means that the initial (non-corroded)
domain should be smooth, which is not a so severe restriction.
(HG,n): Assume that Γi,Γe are both of class Cn,β , 0 < β < 1, n ≥ 1.

The second set of hypotheses concern the imposed flux Φ on Γe, which
should be smooth enough. In order to guarantee without too many technicalities
that the solution does not vanish in G, we simply assume Φ to be without
change of sign. Note however that this could be expected to hold even if Φ
had variable sign, provided that it did not oscillate too much, as in [2] for the
simply-connected case. Although these are additional physical restrictions, they
can be guaranteed to hold on Γe, where Φ is chosen.
(HΦ,n): Φ ∈ Wn,2(Γe), Φ ≥ 0,Φ 6≡ 0.

The last hypotheses concern the unknown Robin coefficient ϕ, which has to
be smooth and bounded from below and above. The smoothness requirement
is indeed a restrictive condition, technically needed for the inverse problem to
make sense (see Theorem 2). Boundedness, however, corresponds to physical
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limitations on the exchange process on Γi, which in particular may not turn
out to be perfectly insulating or conducting. Let cs, Cs > 0 and introduce the
following class of “admissible” Robin coefficients on Γi:

A(n) = A(n)(Γi, n, cs, Cs) = {ϕ ∈ Cn(Γi), |ϕ(k)| ≤ Cs, 0 ≤ k ≤ n, and ϕ ≥ cs}.

(Hϕ,n): ϕ ∈ A(n), for some constants cs, Cs > 0.

Theorem 1 ([8, 9]). Let n ≥ 0 and assume that (HG,n), (HΦ,n), (Hϕ,n)
are satisfied by G, Φ and ϕ, respectively. Then there exists a unique function
u ∈ Wn+1,2(Ḡ), which is a solution to (1), (2).

Further, there exist constants m > 0 and κ > 0 (depending on the class A(n))
such that for all ϕ ∈ A(n) and Φ ∈ Wn,2(Γe),

u ≥ m > 0 on Γi, (3)

and
‖u‖W n+1,2(∂G) ≤ κ. (4)

The proofs of the above results, see [8, Lemma 2], [9, Theorem 2], rely
on shift and Sobolev embedding theorems, together with the Hopf maximum
principle [12, 18, 23].

The next identifiability property [8, Theorem 1] ensures the uniqueness of
solutions ϕ to the inverse problem, which is a necessary prerequisite for the
stability issue to make sense.

Theorem 2 ([8]). Suppose that Φ satisfies (HΦ,0) and ϕ1, ϕ2 satisfy (Hϕ,0).
Let u1 and u2 be the associated solutions. If u1|K = u2|K on some open subset
K 6= ∅ of Γe, then ϕ1 = ϕ2.

3. STABILITY RESULTS AND ERROR ESTIMATES

Let D be the unit disc and G be the annulus G = D \ sD for some fixed s with
0 < s < 1. We consider in this particular framework the inverse problem (1),
(2) which is then stated as follows.

Given two functions ub and Φ, with Φ 6≡ 0, find a function ϕ, such that a
solution u to 

∆u = 0 in G

u = ub on T
∂nu = Φ on T

(5)

also satisfies
∂nu + ϕu = 0 on sT, (6)

where ∂n stands for the partial derivative w.r.t. the outer normal unit vector
to T.

We are now in a position to state our main results concerning the Cauchy
problem (5), (6) in the annulus G.
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Theorem 3. Suppose that n ≥ 1, that Φ1 and Φ2 satisfy (HΦ,n) on T
and ϕ1 and ϕ2 satisfy (Hϕ,n) on sT. Let u1, u2 be the associated solutions
to (5), (6), and assume that:

‖u1 − u2‖L2(T) ≤ ε, ‖Φ1 − Φ2‖L2(T) ≤ ε, (7)

for some ε > 0. Then, there exists a constant K = K(s,A(n)) > 0 such that the
following estimate holds:

‖ϕ1 − ϕ2‖L2(sT) ≤ K/| log ε|n. (8)

This still holds in more general situations of a smooth doubly-connected
domain G ⊂ R2 as in (1), (2).

Corollary 4. Let n ≥ 1, assume that Γi,Γe satisfy (HG,n), that Φ1 and Φ2

satisfy (HΦ,n) and that ϕ1 and ϕ2 satisfy (Hϕ,n). Let u1, u2 be the associated
solutions to (1), (2), and assume that:

‖u1 − u2‖L2(Γe) ≤ ε, ‖Φ1 − Φ2‖L2(Γe) ≤ ε, (9)

for some ε > 0. Then, there exists a constant K = K(s,A(n)) > 0 such that the
following estimate holds:

‖ϕ1 − ϕ2‖L2(Γi) ≤ K/| log ε|n. (10)

In the uniform norm, we have the following:

Corollary 5. Let n ≥ 2, let Φ1 and Φ2 satisfy (HΦ,n) on T and ϕ1 and ϕ2

satisfy (Hϕ,n) on sT. Let u1, u2 be the associated solutions to (5), (6), and
assume that:

‖u1 − u2‖L∞(T) ≤ ε, ‖Φ1 − Φ2‖L∞(T) ≤ ε, (11)

for some ε > 0. Then, there exists a constant K = K(s,A(n)) > 0 such that the
following estimate holds:

‖ϕ1 − ϕ2‖L∞(sT) ≤ K/| log ε|n−1. (12)

Remark 6. Note that the (proofs of the) above results also contain es-
timates of the errors on inner boundary data ‖u1 − u2‖W 1,p(sT) and ‖∂nu1 −
∂nu2‖Lp(sT) for p = 2,∞, which can be extended to higher order Sobolev spaces.
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4. HARDY SPACES OF ANNULUS

4.1. Harmonic conjugation

Let G = D \ sD ⊂ C ' R2, 0 < s < 1, be an annulus, its boundary ∂G = sT∪T
being equipped with the Lebesgue measure normalized so that the circles T
and sT each have unit measure.

Let Φ ∈ L2(T) and assume that ϕ ∈ A(0). From Theorem 1, u|∂G
∈

W 1,2(∂G). There exists a locally single-valued function v harmonic in G such
that ∂θv = ∂nu on ∂G, where ∂θ stands for the tangential partial derivative
on ∂G, from the Cauchy–Riemann equations.

Note that v is given on T up to a constant by

v|T(e
iθ) =

∫ θ

θ0

Φ(eiτ ) dτ,

for an arbitrary eiθ0 ∈ T, a quantity which is available from (5). Thus, f = u+iv
is analytic (and many-valued) in G; it is given on T by

f(eiθ) = ub(eiθ) + i

∫ θ

θ0

Φ(eiτ ) dτ. (13)

Also, on sT,

ϕ = −∂θv

u
= −∂θ Im f

Re f
, (14)

which gives the link to be used between ϕ and f , in order to recover ϕ from
approximants to f on the outer part T of the boundary ∂G or to establish
stability results as continuity properties of the map (u, Φ) → ϕ (see Section 3).

However, since the annulus is not simply-connected, it may not be possible
to define f globally in G as a single-valued function. Indeed, one can see from
Green’s formula applied to the solution u of (5), (6) and to any constant function
in G, that ∫

∂G

∂nu =
∫

T
Φ−

∫
sT

∂θv = 0. (15)

necessarily holds. Thus, if
∫

T Φ dθ 6= 0, then v, and hence also f , is multiply-
valued in G, see [1].

But since u is locally in G the real part of the analytic function f = u + iv,
we may lift the local definition of f to the simply-connected Riemann surface
R = {σ ∈ C : log s < Re σ < 0}, by means of the covering mapping h : R → G,
h(σ) = eσ. That is, there is an analytic function g : R → C such that locally
f = g ◦ h−1.

Now g(σ + 2πi)− g(σ) is an analytic function in R whose real part is zero,
and it is therefore equal to a (purely imaginary) constant, ic say. Thus g(σ)−
(2π)−1cσ is a 2πi-periodic function of σ. We conclude that there is a single-
valued analytic function F defined on G such that

F (z) = f(z)− (2π)−1c log z, (16)
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whence u(z) = Re F (z) + (2π)−1c log |z|. Now (15) implies that

c =
∫ 2π

0

Φ(eiθ) dθ. (17)

Indeed, if u has the standard representation of a harmonic function in an annu-
lus, namely

u(reiθ) =
∑

k∈Z, k 6=0

rk(ak cos kθ + bk sin kθ) + a0 + b0 ln r,

then c = 2πb0 and v is given by

v(reiθ) =
∑

k∈Z, k 6=0

rk(ak sin kθ − bk cos kθ) + b0θ,

and
F (z) =

∑
k∈Z, k 6=0

(ak − ibk)zk + a0.

On examining the Fourier coefficients of the functions involved, we see immedi-
ately that, if u ∈ Wm,2(∂G) for some m, then v, f and F also lie in Wm,2(∂G),
and the Hilbert transform is a contraction with respect to each of these norms.

4.2. Weighted Hardy classes of circular domains

Let G be a circular domain, that is, a domain consisting of the open unit disc
from which a finite number of pairwise disjoint closed discs have been removed:

G = D \
N⋃

j=1

(aj + rjD ), (18)

with the obvious inequalities satisfied by the aj and rj for j = 1, . . . , N . We
write Dj = aj + rjD for 1 ≤ j ≤ n. Let Γ denote the boundary of G. We
normalize the Lebesgue measure on Γ so that each circle Γj composing it is
given unit measure.

The Hardy spaces Hp(G) on a circular domain G were defined by Rudin [24]
in terms of analytic functions f such that |f(z)|p has a harmonic majorant on G,
that is, a real harmonic function u(z) such that |f(z)|p ≤ u(z) on G.

It is also possible to define the Hardy spaces Hp(∂G) for 1 ≤ p < ∞ as
the closure in Lp(∂G) of the set RG of rational functions whose poles lie in the
complement of G. This approach, similar to one in [3], was taken in [11]. The
spaces Hp(G) and Hp(∂G) are then isomorphic in a natural way, and so we
identify the two spaces.

Below, we stick to the most completely analysed example of the annulus
G = D \ sD for some fixed s, 0 < s < 1, and to the Hilbert case where p = 2.
Here again, ∂G is equipped with the Lebesgue measure normalized so that the
circles T and sT each have unit measure.
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The space H2(∂G) has a canonical orthonormal basis consisting of the func-
tions

en(z) := (zn/
√

1 + s2n )n∈Z,

and it can be written as an orthogonal direct sum

H2(∂G) = H2(D)⊕H2
0 (C \ sD ) (19)

of elementary Hardy spaces, by taking the closed linear spans of (en)n≥0 and
(en)n<0 respectively. Here H2

0 (C \ sD) is the Hardy space of functions analytic
on the complement of sD, with L2 boundary values, and vanishing at infin-
ity. It should be noted that a similar decomposition applies to general spaces
Hp(∂G), but the direct sum is no longer orthogonal in the case p 6= 2, see [15,
Theorem 10.12].

Given sequences (wn)n∈Z and (µn)n∈Z of positive numbers, we introduce
H2

w,µ(∂G) to be the weighted Hardy space of the annulus G, with the norm

‖g‖2
H2

w,µ(∂G) =
∑
n∈Z

|gn|2[wn + s2nµn],

for functions g(z) =
∑

n∈Z gnzn, z ∈ G. Provided that

inf
n∈Z

wn + s2nµn

1 + s2n
> 0, (20)

and because the sequence of functions (zn/
√

1 + s2n )n∈Z is an orthonormal basis
of H2(∂G), the space H2

w,µ(∂G) embeds continuously in the unweighted space
H2(∂G), and thus its elements possess boundary values on T and sT, as follows.
Let L2

w(T) ⊂ L2(T) and L2
µ(sT) ⊂ L2(sT) respectively be the spaces of functions

g =
∑

n∈Z gnzn such that ‖g‖2
L2

w(T) =
∑

n∈Z |gn|2wn < ∞ and ‖g‖2
L2

µ(sT) =∑
n∈Z |gn|2s2nµn < ∞, respectively. Functions belonging to H2

w,µ(∂G) thus
admit traces on T and sT that belong to L2

w(T) and L2
µ(sT), respectively.

More generally, we have a continuous embedding from H2
w,µ(∂G) into

H2
w′,µ′(∂G) if and only if

inf
n∈Z

wn + s2nµn

w′
n + s2nµ′n

> 0. (21)

We write L2
w,µ(∂G) ⊂ L2(∂G) for the space of those functions defined on ∂G

such that their restrictions to T and sT lie in L2
w(T) and L2

µ(sT), respectively.
Assumption (21) is also necessary and sufficient to ensure that L2

w,µ(∂G) is
continuously embedded into L2

w′,µ′(∂G)′.
We write PL2

w(T)g = χTg for the function in L2
w,µ(∂G) that coincides with g

on T and vanishes on sT. The definition of PL2
µ(sT) is analogous.

For m ≥ 1, introduce Hm,2(∂G) = H2(∂G)∩Wm,2(∂G), the Hardy–Sobolev
space of the annulus G, with the Wm,2(∂G) norm:

‖g‖2
Hm,2(∂G) = ‖g‖2

W m,2(∂G) =
∑
n∈Z

|gn|2[wm,n + µm,ns2n],
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for functions g ∈ Hm,2(∂G), g(z) =
∑

n∈Z gnzn, z ∈ G, and{
wm,n = 1 + n2 + n2(n− 1)2 + · · ·+ n2(n− 1)2 · · · (n−m + 1)2,

µm,n = 1 + n2s−2 + · · ·+ n2(n− 1)2 · · · (n−m + 1)2s−2m.
(22)

For consistency of notation, we shall also write H0,2(∂G) for H2(G) and
W 0,2(∂G) for L2(∂G).

4.3. Norm estimations in Hardy spaces

We now establish L2
w′,µ′ estimates for functions in rather general weighted Hardy

classes H2
w,µ(∂G). These results are strongly linked to those of [5, 7], which hold

in Hardy–Sobolev spaces of the unit disc, the estimates concerning the norm
on subsets of the connected boundary T. In the present case, estimates are
obtained in Hardy spaces of circular domains, on one of the two components of
the boundary ∂G.

Let Bm,2 denote the unit ball of Hm,2(∂G), and B2
w,µ the unit ball of

H2
w,µ(∂G).

Let (wn), (µn), and (w′
n), (µ′n) be sequences of positive numbers: in order to

guarantee boundary values of H2
w′,µ′(G) functions we shall suppose that (w′

n),
(µ′n) satisfy (20); recall that in this case, H2

w′,µ′(∂G) ⊂ H2(∂G). We shall also
assume that

s2nµ′n
wn + s2nµn

≤ δ(n) for n < 0,

where δ(n) decreases to 0 as n → −∞,

(23)

together with

sup
n∈Z

µ′n
w′

n

≤ %, for some constant % > 0. (24)

The following result uses the one-sided condition in (23) in order to deduce
results about a function’s behaviour on sT from its behaviour on T. This may
be contrasted with a later result, Theorem 10, where we use the two-sided
conditions (20) and (21) in order to deduce the convergence to zero on ∂G of a
sequence of functions from convergence (in another norm) on a subset of ∂G.

Theorem 7. Assume that hypotheses (20), (23) and (24) are satisfied for
sequences (wn), (µn) and (w′

n), (µ′n) of positive numbers. Let g ∈ H2
w,µ(∂G) be

such that g ∈ B2
w,µ and ‖g‖L2

w′ (T) ≤ ε for some ε > 0. Then

‖g‖L2
µ′ (sT) ≤

(
δ
(
− 1−

⌊∣∣∣ log ε

2 log s

∣∣∣⌋)
+ %ε

)1/2

≤
(
δ
(
−

∣∣∣ log ε

2 log s

∣∣∣) + %ε
)1/2

.

In particular, if there are constants c > 0 and α > 0 such that δ(n) ≤ c|n|−α,
then there exists a constant C > 0 such that

‖g‖L2
µ′ (sT) ≤ C/| log ε|α/2.
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Proof. We estimate the quantity

‖g‖2
L2

µ′ (sT) =
∑

n≤−N

s2nµ′n|gn|2 +
∞∑

n=−N+1

s2nµ′n|gn|2 = σ1 + σ2, say.

Because g ∈ B2
w,µ, we see that∑

n≤−N

|gn|2(wn + s2nµn) ≤ 1.

Hence σ1 ≤ supn≤−N δ(n) = δ(−N). Moreover,
∑

n∈Z w′
n|gn|2 ≤ ε2, and hence

σ2 ≤ s−2(N−1)%ε2. Choosing N = 1 + b| log ε/(2 log s)|c, we have

‖g‖2
L2

µ(sT) ≤ δ(−N) + %ε,

and the result follows.

Corollary 8. Let m and k be integers with m > k ≥ 0. Then there exists a
constant C, depending only on m, k and s, such that whenever g ∈ Bm,2 with
‖g‖W k,2(T) ≤ ε for some ε > 0, we have

‖g‖W k,2(sT) ≤ C/| log ε|m−k.

Proof. This follows from Theorem 7, on taking the weights wn = wm,n,
µn = µm,n and w′

n = wk,n, µ′n = µk,n. We then have Condition (20) for both
(wn, µn) and (w′

n, µ′n) because all the weights are greater than or equal to 1.
Condition (23) holds with δ(n) of order |n|−2(m−k) for n < 0, since µn grows
as |n|2m and µ′n grows as |n|2k as n → −∞. Finally, we also have (24) directly
from the definition of the weights given in (22), with % = s−2k.

Remark 9. The estimate of Corollary 8 can be shown to be sharp, by
considering for instance functions of the form g(z) = δzp, where δ > 0 and p is
a negative integer. Given ε > 0, choose p as large in absolute value as possible
such that

‖g‖W m,2(T)/‖g‖W k,2(T) ≤ 1/ε,

and then choose δ such that ‖g‖W k,2(T) = ε, and hence g ∈ Bm,2. It is easy
to see that p is asymptotic to − log ε/ log s, as ε → 0. But ‖g‖W k,2(sT) is now
asymptotic to c1δ|p|ksp, which is asymptotic to c2| log ε|k−m, where c1 and c2

are constants depending on m, k and s, but not p, δ or ε. The result follows.

Whenever the norm of the H2
w,µ(∂G) function is known to be “small” on only

a subset I of ∂G, we can still conclude that its norm on the whole boundary ∂G
remains small (in a certain sense to be made precise). The following result
requires a stronger assumption than (21), but it is satisfied in the situation we
are presenting.
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Theorem 10. Let (w′
n), (µ′n) be weight sequences satisfying (20), and

suppose additionally that (wn), (µn) is another weight sequence such that

sup
|n|≥N

w′
n + s2nµ′n

wn + s2nµn
→ 0

as N →∞. Let I ⊂ ∂G be a subset with strictly positive measure, and suppose
that (gp) is a sequence of functions in B2

w,µ ⊂ H2
w,µ(∂G) such that ‖gp‖L2(I) → 0.

Then ‖gp‖H2
w′,µ′ (∂G) → 0.

Proof. We claim that B2
w,µ is a compact subset of H2

w′,µ′(∂G). It is closed,
since if (gp) is a sequence in B2

w,µ which converges to g in H2
w′,µ′(∂G), then for

every N > 0 the Fourier coefficients gp,n of gp satisfy

N∑
n=−N

|gp,n|2(wn + s2nµn) ≤ 1,

and thus the same holds for g. Now taking the limit as N → ∞ shows that
g ∈ B2

w,µ, which is therefore closed. It is also a bounded subset and for every
g ∈ B2

w,µ we have that∑
|n|≥N

|gn|2(w′
n + s2nµ′n) ≤ sup

|n|≥N

w′
n + s2nµ′n

wn + s2nµn
→ 0

as N → ∞ (uniformly for g ∈ B2
w,µ). We deduce easily that B2

w,µ is a totally
bounded subset of H2

w′,µ′(∂G), and hence compact (cf. [14, ch. IV, Ex. 13] for
a compactness criterion in `2, which is easily adapted here).

Now, let (gp) satisfy the assumptions of the proposition. Either
‖gp‖H2

w′,µ′ (∂G) → 0, or, after extracting a subsequence and relabelling, we

may suppose that (gp) converges in H2
w′,µ′(∂G) norm to some function g ly-

ing in B2
w,µ, a compact set; however, g necessarily vanishes on I. Now I is a

uniqueness set in H2(∂G) (this can be seen using the fact that either I ∩ T
or I ∩ sT has positive measure, and g also lies in H2(E) for some suitable
simply-connected domain E ⊂ G with a smooth boundary). Hence g vanishes
identically, and this is a contradiction.

Corollary 11. Let m and k be integers with m > k ≥ 0, and let I ⊂ ∂G be
a compact subset with nonempty interior. Let (gp) be a sequence of functions
in Bm,2 ⊂ Hm,2(∂G) such that ‖gp‖L2(I) → 0. Then ‖gp‖Hk,2(∂G) → 0.

Proof. It is easily verified that the weights wn = wm,n, µn = µm,n and
w′

n = wk,n, µ′n = µk,n satisfy the conditions of Theorem 10.

5. PROOF OF THE MAIN RESULTS

Related to the direct problem of finding the solution u and its trace ub on T
when Φ and ϕ are given in (5), (6), we have the following result:
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Lemma 12. Let Φ ∈ L2(T) and assume that ϕ ∈ A(0). There exists a
function f ∈ H1,2(∂G) such that the solution u to (5), (6) satisfies u = Re f
in G.

Moreover, there exists a single-valued function F ∈ H1,2(∂G) such that
f = F + c log z in G, for c defined by (17).

More generally, let n ≥ 0, Φ ∈ Wn,2(T), ϕ ∈ A(n). Then u = Re f , for some
f ∈ Hn+1,2(∂G).

The proof of this assertion is contained in Section 4.1 for n = 0 and may be
established as a corollary for n ≥ 1.

We are now in a position to prove our main results.

Proof of Theorem 3. We define u = u1−u2, Φ = Φ1−Φ2. Introduce now
as in (13) the functions fi analytic in G such that ui = Re fi. Together with
the regularity results of Theorem 1, Lemma 12 implies that fj ∈ Hn+1,2(∂G).

The following Hardy–Littlewood–Pólya inequality holds for all u ∈
Wn+1,2(T) [17]:

‖D1u‖n+1
L2(T) = ‖u′‖n+1

L2(T) ≤ ‖u‖W n+1,2(T)‖u‖n
L2(T). (25)

Hence
‖u‖2

W 1,2(T) ≤ (κ‖u‖n
L2(T))

2/(n+1) + ‖u‖2
L2(T)

from (4) and for some κ ≥ 1. Next, if f = f1 − f2, then

‖f‖2
W 1,2(T) ≤ ‖u ‖2

W 1,2(T) + ‖Φ‖2
L2(T) ≤ cε2n/(n+1)

for c = (κ)2/(n+1) + 2, as soon as ε < 1.
Further, from (4) in Theorem 1 and Lemma 12, there exists κ′ ≥ κ

(depending on s and the class A(n)) such that f/κ′ ∈ Bn+1,2. Now, let
k = max (

√
c, κ′) ≥ 1. We have:

‖f/k‖W 1,2(T) ≤ (cε2n/(n+1))1/2/k ≤ εn/(n+1),

while f/k ∈ Bn+1,2. In view of Corollary 8, this leads to

‖f/k‖W 1,2(sT) ≤
C

| log εn/(n+1)|n
≤ eC

| log ε|n
, (26)

for some C > 0 (depending on s), noting that ((n + 1)/n)n < e.
Let now ϕ = ϕ1 − ϕ2. On sT, we have that ∂nui + ϕiui = 0, whence

∂nu + ϕu1 + ϕ2u = 0 and

ϕu1 = −∂nu− ϕ2u on sT.

Now by hypothesis, and from (3) in Theorem 1, we have

‖ϕ‖L2(sT) ≤ (
√

2/m) max (1, Cs)‖u‖W 1,2(sT). (27)



Inverse problems on annular domains 201

Finally, since ‖u‖W 1,2(sT) ≤ ‖f ‖W 1,2(sT), we conclude from (26) and (27) that:

‖ϕ‖L2(sT) ≤
e
√

2 Ck max(1, Cs)
m| log ε|n

.

Proof of Corollary 4. It is classical that there exists a conformal trans-
formation CG : G → G, for appropriate value of 0 < s < 1, [19, Theorem 17.1a].
Further, as in the case of simply-connected domains D and of conformal map-
pings from the disc, the smoothness assumptions on ∂G allow to get an appro-
priate Cn extension of CG : ∂G → ∂G, [4, 22]. Problems (5), (6) and (1), (2)
are then linked each to the other by CG , and the result follows, as in [7]. Note
that the constant K in (10) depends on the choice of CG .

Proof of Corollary 5. We employ the notation already used in the proof
of Theorem 3, and follow the same steps with the appropriate modifications.
Here again, the Hardy–Littlewood–Pólya inequality [17] is to the effect that, for
0 < k < N , one has

‖u(k)‖N
L2(T) ≤ ‖u(N)‖k

L2(T)‖u‖
N−k
L2(T)

for all u ∈ WN,2(T). Applying these for k = 1 and k = 2 with N = n + 1, we
arrive at inequalities of the form

‖u‖L2(T) ≤ a0ε, ‖u′‖L2(T) ≤ a1ε
n/(n+1), ‖u′′‖L2(T) ≤ a2ε

(n−1)/(n+1)

for u = u1 − u2, with appropriate constants a0, a1, a2 > 0, and similarly for
Φ = Φ1 − Φ2. The conclusion is that, provided that 0 < ε < 1, we have

‖f‖W 2,2(T) ≤ cε(n−1)/(n+1)

for some c > 0. We are now in position to apply the same arguments as in
the proof of Theorem 3, which, using Theorem 1 and Lemma 12 to show that
u = Re f , where f ∈ Hn+1,2(∂G), and then Corollary 8 to pass from a bound
on T to a bound on sT, bring us to an inequality corresponding to (26), which
now has the form

‖f/k‖W 2,2(sT) ≤
C

| log ε(n−1)/(n+1)|n−1
≤ e2C

| log ε|n−1
(28)

for some C, k > 0. We have by hypothesis and from (3) that ϕ = ϕ1 − ϕ2

satisfies
‖ϕ‖L∞(sT) ≤ (1/m) max (1, Cs)‖u‖W 1,∞(sT). (29)

and, further,
‖u‖W 1,∞(sT) ≤ ‖u‖W 2,2(sT) ≤ ‖f‖W 2,2(sT).

This finally leads to:

‖ϕ‖L∞(sT) ≤
e2C k max(1, Cs)

m| log ε|n−1
.
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6. CONCLUSION

We have mainly derived error estimates for the Robin coefficient on the inner
boundary of a doubly connected domain, in terms of the error on both Dirichlet
and Neumann data on the whole outer boundary.

Notice that an additional stability property follows from Corollary 11 which
is to the effect that if the error in Dirichlet and Neumann data is small on a
part of the outer boundary, than so will be the error in the Robin coefficient on
the inner one. However, no estimate is available so far.

Observe further that the results of Corollary 4 are expected to hold for
doubly-connected domains G with only piecewise Cn,β boundary, since the
derivative of the conformal maps still has a suitable behaviour up to the bound-
ary in this case, [4]. Note that conformal mappings can also be used for solving
geometrical 2D inverse problems and to express them as data recovery ones, see
e.g. [21].

Computational issues, robustness and convergence properties of the algo-
rithm will be more deeply studied in a companion paper [20] (see [9] for the
simply connected situation of the disk).
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