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We consider the Cauchy problem of recovering both Neumann and Dirichlet data on the inner part of
the boundary of an annular domain from measurements of a harmonic function on some part of the outer
boundary. Using tools from complex analysis and best approximation in Hardy classes, we present a fam-
ily of fast data completion algorithms which are shown to provide constructive and robust identification
schemes. These are applied to the computation of an impedance or Robin coefficient and are validated by
a thorough numerical study.

Keywords inverse problems; Cauchy problems; harmonic functions; analytic functions; Hardy spaces;
approximation.

1. Introduction

The problem we are dealing with in this contribution is the recovery of both Dirichlet and Neumann
data on some part of the inner boundary of an annulus from measurements of a function harmonic in the
annulus, taken on some part of the outer boundary. These extended data may be relevant by themselves
in some applications or used to compute the electrical impedance (or the Robin coefficient), which is
needed in other applications.

Such a problem arises for instance in corrosion detection in tubular domains. Corrosion may occur in
many different forms, and several models are encountered in the literatut@aabanet al., 2003h
Kaup & Santosal995 Kaupet al, 1996 Santosaet al, 1998. Evaluating the electrical impedance,
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which is actually the Robin coefficient, on the internal wall of a hollow pipe from measurements per-
formed on the external wall turns out to be an appropriate way to locate the corroded parts of the internal
wall. Santosat al. (1998 have given a simple linear model proving how corrosion affects the electrical
impedance. For this model, there is a significant work dueasino & Ingles€1999ab) for identifying

Robin coefficients. This was achieved by means of an imposed flux and measured potential on the acces-
sible part of the boundary of the domain. The numerical scheme adopted was based on a Fourier series
expansion and shows instability for thicker domains. Some uniqueness results were gilesanane

& Jaoua(1999 for simply connected 2D domains for continuous Robin coefficients bounded below:
similar properties hold for doubly connected domains,ls@ondet al. (2006.

Chaabanet al. (20033 proposed an identification algorithm based on a least squares minimization,
an idea attributed tBohn & Vogelius(1997) and developed i€haabane & Jaouyd999; the algorithm
consists of comparing solutions corresponding to Robin—Dirichlet and Robin—Neumann boundary con-
ditions, which coincide at the actual solution. This method smooths out possible oscillations in the
impedance, which may give information on the regions of corrosion.

Since the Robin coefficient may be recovered from the completed Cauchy data, this problem reduces
to solving a Cauchy problem for the Laplace operator. Among recent approaches to the Cauchy problem,
we mentionKabanikhin & Karchevsky1995 who used an optimization (gradient) method in order to
minimize the quadratic norm on the accessible part of the bounidBipanov & Santosg1995 used a
guasi-reversible method to resolve the problem, combined with Carleman-type estimatikogldwn
et al.(199)), an iterative algorithm is provided, which proceeds by resolving alternatively Neumann and
Dirichlet problems; it converges in classes of compatible boundary data, although rather slowly.

The data completion problems that we consider have been widely studied in the case of simply

connected domains, which can be conformally mapped on the unit discCimabanet al. (20031).
The method we wish to generalize here to annular domains is to construct analytic approximations
by solving a bounded extremal problem (BEP) there. Such a construction uses an implicit asymptotic
expansion of the analytic approximant, and it needs to determine by some appropriate procedure the
actual bound of that approximant in order to stabilize the whole algorithm.

The first issue to tackle is thus to obtain asymptotic expansions in annular domains. Provided full
data are available on the whole of the outer boundary, such formulae have already been obtained in
Smith (2009, and stability estimates for the inverse problem (with suitable norms) have been estab-
lished as consequences of boundedness properties for functions of weighted Hardy clasbéminh
et al. (2009, from which the present work originates. In most practical cases, however, full data cannot
be expected. In the present work, implicit formulae of the analytic approximant have therefore been
sought and obtained for the incomplete data case. Continuity with respect to the data of the computed
approximants has also been proved; this makes it possible to use the formulae as a basic tool in the
algorithmic part.

In order to produce an accurate approximant, it has already been notéch@aiganet al., 2003h
that the numerical algorithms need sharp information on the actual bound of the data sought. The issues
of computing both these data and the bound on them thus need to be dealt with simultaneously. This has
been achieved in the present work by characterizing the actual bound as the unique zero of an appropriate
function. Robustness properties of the designed procedure are improved by applying ittto-dnder
derivatives of the data, instead of the data themselves, working in certain Sobolev classes of smoother
functions, provided of course that the prescribed data meet this additional regularity requirements. A
whole family of algorithms, more robust as their order increases, is designed this way.

In Section?2 of this paper, we introduce the inverse Robin problem and recall the identifiability
and stability results as obtained €haabane & Jaou@l999 and Leblond et al. (2006. Section3
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is devoted to deriving the formulae we use to compute the solution in the incomplete external data
case and to proving continuity of these solutions with respect to the prescribed data. The identification
algorithms are presented and studied in Sedfioand their numerical implementation and results are
finally discussed in Sectioh

2. Setting the inverse problem
2.1 The physical model

Pipelines are widely used to transport gas and petroleum from their production spots to their processing
or consumption places. These pipelines are subject to internal corrosion (caused by hydrogen sulphides
and carbon dioxide in the case of gas pipelines and by sulphato-reducing bacteria in the case of oil
pipelines). Non-destructive testing techniques are used in order to check whether the pipeline needs
to be repaired, before failure occurs. Electrical impedance tomography is one of these techniques. It
consists in prescribing a current flux on the external wall, and from the measured voltage potential
there, to evaluate the location of corrosion if any, thus helping one to make a decision on whether the
pipeline needs repairs (s&aupet al, 1996 Coltonet al., 1990.

Assuming the pipe is infinite in the-direction and the current circulates in this direction, the elec-
trical potential thus obeys the 2D Laplace equation in the anttx]ar) sectionG of the pipe:

Au=0 inG.

The boundary conditions are of both Neumann and Dirichlet type on the external part of the bound-
ary where the current flux has been prescribed and the voltage potential measured. As for the boundary
condition on the internal wall, several models have been proposed, and particularly a nonlinear one—due
to Butler and Volmer:

onu = q(e"V — e~ @0y, (2.1)

This model has been analysed in depthJones(1996 and recently discussed lBryan & Vogelius
(2002, Kavian & Vogelius(2003 andVogelius & Xu (1998. A linearized version of this boundary
condition as proposed yantosat al. (1998 is nothing but the Robin condition

6nu == qu

Note that if one regardg as a contrast produced by the effects of corrosion, then it can be regarded as
small, and so a linear model is acceptaattazzo & Kohn(1987 also provides an additional justifi-

cation for working with this linear model, using homogenization techniques. Using this, the corrosion
effects, which are actually material damages due to chemical reactions, reduce, as regards the solution
of the Laplace equation, to their impact on the impedancRecovering the modified impedance (or
Robin coefficient) would therefore permit one to locate the corroded zones and evaluate the damage.
The inverse problem of corrosion detection becomes a Robin inverse problem, the unknown of which is
the impedance on the internal boundary.

2.2 The Robin inverse problem

We shall restrict our study to annular domains. There are two reasons for this. The first is that this is
usually the shape of a cross-section of a pipeline. The second one is that, up to a conformal mapping,
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FIG. 1. Annular domain derived by a conformal mapping.

any doubly connected domain with a smooth boundary made of two non-intersecting closed smooth
Jordan curves may be seen as an annular domain (sekd&igPommerenkel992).

Let thereforeD be the unit disc an be the annulu§& = D \ sD for some fixeds with0 <s < 1
and denoté®G = T U sT, whereT is the unit circle. We provide each circle with normalized Lebesgue
measure.

Let | be a non-null measurable subseflyfand letd = 6G \ |. We consider the following inverse
problem: given functionsg andg, or a number of pointwise measurements, witi 0, find a function
g such that a solution to

Au=0 inG (i),
u=ug onl (i), (2.2)
onu=¢ onl (iii)
also satisfies
onu+qu=0 onJ, (2.3)

whered,, stands for the partial derivative w.r.t. the outer normal unit vectdr. tm the electrical frame-
work, ug and¢ correspond to the measured voltage potential and the prescribed current flux on the outer
boundary of some plane section of a tube, whijles the electrical impedance to be recovered on the
associated inner boundary.

Letc, T > 0 and introduce the following class of ‘admissible’ electrical impedances:

Q"={qeC"(I):1g%¥x)| <t 0<k<nandqx)>c, Vxeld)

Fork > 1, letW-2(1) denote the usual Sobolev space of functiéns L2(1), the derivatives of which
are also up to th&th derivative denoted by & in L2(1). For consistency, we shall also denote by
WO2() the spacd.2(1). The Sobolev spaca&/*-2(G) andWk-2(5G) are defined analogously.

Chaabaneet al. (20039 andLeblondet al. (200§ have already discussed the existence and the
uniqueness issues for the forward problem in the unit disc and a doubly connected domain, respectively.
They have shown that providetie W™2(1), ¢ > 0,4 # 0,n > 0, andq € Q" for some constants
¢, T > 0, then there exists a unique functiore W"+%/22(G) whenceu,, € W"*12(2G), a solution
to a direct problem. Further, there exist constants 0 andx (depending on the clagd8") such that
forallq € Q" andg € W™2(1),

u=m>0onJ and [Ulwni2pe) < k.
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Also, they have examined the questions of the uniqueness of the sajutibihe inverse problem and
have proved that ilfjlII = Uz, thengy = g2, whereqs, gz € 00 anduj, u, be the associated solutions.

2.3 From the Robin inverse problem to the Cauchy problem for analytic functions

We propose here to solve the Robin inverse problem by taking advantage of the analytic extension
theory, which provides with explicit or quasi-explicit formulae for the computation of the extended
data. Letp e L?(1) and assume that € QO. In this casey|,, € WL2(3G) (Leblondet al, 2006
Theorem 1). Then there exists a functioharmonic inG such thatyo = o,u 0n oG, wheredy stands

for the tangential partial derivative @rG, from the Cauchy—Riemann equations. Hencis given on

| up to a constant by

. 0
v|,(e'9)=/6 #(€7)dr.

Further, from the M. Riesz theorer®(ren 200Q Theorem4.1), the harmonic conjugate operator is
bounded in_?(6G), whencey,, € W>2(0G). Thus,f = u+io is analytic inG and f|,, € W-2(3G);
it is given onl by

. . o
f(e"))zud(e'g)—l—i/ #(€)dr.
)

Then onJ, we have
Opv _ oplm f
u  Ref’

(2.4)

which gives the link to be used betwegiand f, in order to recoveq from approximations td on the
subsetl of the boundaryG.

The annulus is not simply connected, but it is possible to deffigéobally in G as a single-valued
function. Indeed, there is a single-valued analytic functiosefined onG such that

fz) = f(2) — % logz: (2.5)

henceu(z) = Ref (2) + 2= log|z|, where

2
c= [ ¢@E"do, (2.6)
0

forl =T, and
c:/¢(é9)de+/ o0 (€7)d,
I T\I

if I C T. In both situations, this allows us to work with single-valued analytic functions, shtond
et al. (2009.

Let us introduce here the Hardy spadé& (D) of analytic functions in the unit disB whoselL ?-
norms on the unit circl& are bounded (seeuren 2000. Let Hg(s]D)) be the Hardy space consisting
of the analytic functions on the complemaritsD that have boundary values ir?(6G) and vanish at
infinity.
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From the above-mentioned regularity properties, the funcfios bounded inL2(1), and we then
find an extension of in the so-called Hardy space denotedi$(G) = H?(D) & HZ(sD) defined in
Rudin(1959. It is also possible to define the Hardy spatEgoG) as the closure ih?(6G) of the set
Rg of rational functions whose poles lie @\ G.

The space$i?(G) and H2(8G) are then isomorphic in a natural way, and so we identify the two
spaces (se€halendar & PartingtqriL999.

So, a functionf € H2(6G) has the following expansion:

f(z)=> anz" forze G, where] f ”iZ(aG) = > ([1+"anl’.
nez nez

Recalling that G = sT U T where each circle has normalized Lebesgue measure, we see that the space
H?(6G) has a canonical orthonormal basis consisting of the functions

en(2) = (2"/V1+ )nez.

We write y| g for the function inL?(6G) that coincides wittg on | and vanishes od.

2.4 Approximation in Hardy classes and BEP problems

We assume thdt = [—6p, 6] C T, 0 < 6y < 7. We writeL2(6G) = L2(1) @ L2(J). Whenever is
defined onl andxy on J, we writex; V 2 for the function equal ta; on | andx, on J.

Suppose that we are giveh € L2(1) and we wish to approximaté as well as possible by the
restriction tol of an H?(#G) function, i.e.g, forg e H2(6G). In view of the results established in
Chalendar & Partingto(i.999, the spaceH 2(aG)|I is dense irL2(1). Then there will exist a sequence
(gn) of H2(6G) functions such thatgn, — fli 2y — 0. However, iff # g, foranyg e H2(6G),
then it will follow that||gny, Il 25y — oo, which means that the approximation problem is ill-posed.

In our work, we are interested in the determination of an extensiah do prevent instability from
appearing, imposing a bound for the approximatiordanay be a solution. This motivates the following
BEP, which is a problem of analytic approximation of incomplete data in Hardy classes.

To fix ideas, we consider the following minimization problem:

Given f € L?(1)\ H?(8G)),, f1 € L?(J) andM > 0,
(BEP) { find a functiong € H2(6G) such that|g — fillL2(y) < M and
If =gliczqy =inf{l f —wll2q)y v e H2(6G), lly — fillL2gy) < M}

In practice, f corresponds to the daté,is the part where these data can be measuredfans a
reference behaviour of the data on the part of the boundary where they are unknown. Such a problem
is convex and admits a unique solution which can be obtained by solving a spectral equation for the
Toeplitz operatof]” with symboly 3, the characteristic function of the compondnt

T H2(6G) - H?(6G),
9 Phzpe)xa0s

wherePy2(5): L2(6G) — HZ2(8G) is the orthogonal projection. More precisely, the unique solution
g to the (BEP) problem solves the following.
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PrRoOPOSITION2.1 (Chalendar & Partingtgnl999 The unique solutiorg of the (BEP) problem is
given by the formula

9= (1d + A7) Pz [f v L+ 1) f], (2.7)
for the uniquel > —1 such that
lg— fill 25y = M. (2.8)

REMARK 2.2 Let us note that plays the role of a Lagrange multiplier which makes implicit the depen-
dence of the solution oM and which can be adjusted by dichotomy. A consequence of Propoifion
is that the erroe(1) = || f — g(4) |l 2, smoothly decreases to 0 as—> —1 and we refer tdorkhani
(1999, that1 — M(1) is C1, bijective and decreasing @r-1, +00) — (0, +00).

When f is the trace orl of someH?(6G) function, the (BEP) problem becomes one of interpola-
tion. In this case, for simplicity, we will continue to denote bythe H2(6G) function defined on the
whole of 6G. The errore(l) decreases strictly to zero & increases tgf f — f1|||_z(J) and vanishes
identically forM > || f — f1l 2(;).

3. Solutions for the (BEP) problem

Now, using a Fourier series development on (8@ basis, we are able to propose a quasi-explicit
method to solveZ.7).

Let a, andb, be, respectively, the Fourier coefficientsgpt= f v (14 1) f1 € L2(6G) onT and
sT, defined by

1 to X i 2z —6o . .
an ( / f(@)e ™ dg 4+ (1+ 2) / f1(€%)e de)
[

2 —0o o
and

144 [
bnsn = _2

f1(s€?)e™ ' dg.

Moreover, let

B = Py26)¢ = Przeg)[f V(L +4)f1] = ZBneh,

nez

where

B an + bnSZn

B .
" 1y

3.1 Constructive formulae

The following theorem then holds.
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THEOREM 3.1 The solutiorg of the (BEP) problem, viewed as the (infinite) vector as defined by its
Fourier coefficient§gn)nez, solves the following equation:

(Id +AT)g =B, (3.1)

where7 is the Toeplitz operator represented in g} basis by the infinite Toeplitz matrix defined by

1+52n (14520 — %), whenn = m,

fornmeZ, Tam= (3.2)

_ 1 sin(m—n)fo
V@) s T

whenn £ m.

REMARK 3.2

1. This result is similar to the one obtained in the unit disclagobet al. (2002. Both lead to an
infinite linear system, here indexed Bywhereas it was indexed QY for the problem in the unit
disc. Let us denote bgy the approximate solution obtained by solving the truncated system in
the baSiien)_NgngN

((1d + AT)gn)N = Bn, (3.3)

whereBy is the truncated Fourier series Bf
The linear system so obtained has a symmetric positive-definite matrix, which can be factorized
using the Cholesky method. Iterating thenjouantil (2.8) holds leads to the solution of the (BEP)
problem for a given boun®. Further details are given in Sectidn

2. A particular case is that of full external datd & sT). It has been established Abrahamse
(1974 that the Toeplitz operator is diagonalizable, and an expression of the (BEP) solution has
been obtained ismith (2005:

Z an + abnszn

92 = T

én(2),

nez
wherea = 1+ 1 > 0is the unique constant such that
Z |(@n — bn)[?s?" - M2
(14 as?M)? '

neZ

The proof of Theorem3.1is now a straightforward consequence of the following two lemmas, whose
proofs are provided in the appendix.

LEMMA 3.3

an + bps®
Pu26)9(2) = en(2),
H2(2G) é Ve

LEMMA 3.4 Letg € H2(8G) such thag(z) = > nez Inén(2) for z € G andT the Toeplitz operator.
Then

On & _ m sin(m — n)@o
1+ .
To@) = %\/Hszn («/1+52” ( ) Z:\/1+szm m(m— )en(z)

m#£n
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Since we have no prior information on how the data behave on thel prthe boundary, we shall
choose from now orf; = 0, whenceb, = 0,V n € Z.

Aiming to make use of these formulae in order to set up robust numerical computation algorithms,
a crucial point to investigate is continuity of the so computed solutions with respect to the data. This is
the matter of SectioB.2

3.2 Continuity of the solutions with respect to the data

In this section, we shall investigate continuity properties of the solutions of (BEP) problem with respect
to the dataf andM. Let R denote the set of strictly positive real numbers andylbe the mapping
defined by

P L2(1) x R, — H2(26),
(f, M) = g(f, M),

whereg( f, M) solve the (BEP) problem associated to the datndM.
LetD = {(h, M) € H2(aG);i x R |[[h]l 25 < M}.

THEOREM3.5 The mapping” is continuous orfL2(1) x R} )\D, but not on the whole of 2(1) x RY .
However, if (fn, Mp) — (f, M) in L2(1) x R%, theng(fn, Mp) — g(f, M) weakly in H%(8G),
whereagy( fn, M) = g(f, M) in L2(1).

Proof. First, consider the mappire defined by
ef: R:_ e R+,
M = llg(f, M) = fli 2.

The mappinges is convex and decreasing, thus continuoukgn
Next, let(f,) be a sequence ih?(1) such that] f, — f|||_2(|) — 0 and suppose thdMp) is a
sequence ifR}_ such thatM, — M. We claim that

nIi_)mOO ef,(Mp) = ef (M). (3.4)

Indeed, lety > 0 and assume that eithef,(Mp) > ef(M) + J or ef,(Mn) < ef(M) — d infinitely
often. In the first case, since

I9(f, Mn) = fallL 2y < II9CF, Mn) = fll2y + 1o = Fll2q)
and because; is continuous, we have infinitely often
19(f, Mn) = fall 2y < ef (M) +J < e, (Mn),
which contradicts the fact thagf( f,,, My) is optimal. In the second case,
19(fn, Mn) — fli 2y < e, (Mn) + | o = fll2¢),
which implies that we have infinitely often
ef(Mn) <ef(M) — g

and contradicts the continuity ef established above.
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Next, the sequena@( fn, Mp)) is bounded. We show that each of its subsequences admits a further
subsequence which convergesgof, M). We pass to a subsequence that converges weakly to, say,
§ € H2(6G). By relabelling, we still call it(g( fn, Mn)). It follows directly from the assumptions and
(3.9 that

19— fllL2gy <er(M), Al 2y < M.
Now, because the solution to (BEP) is unique (by the strict convexity of the norm), we necessarily have
that§ = g(f, M). This shows the weak convergenceH(6G).
On the other hand, it holds fron3.¢) that||g( fn, Mn) — fall 2y = llg(f, M) — ]l 2, which

implies that strong convergence always holds il ).
Finally, whenevel f, M) ¢ D, then

limsupllg(fn, Mn)llL2(g) < limsupMp =M = [Ig(f, M)l 25,
n—oo n—oo

and since we have alsg( f,, M) converging weakly tay(f, M) in H2(8G), then we obtain strong
convergence od. 0

In order to achieve convergence of the reconstruction scheme, continuity ensured by TBéorem
is hardly sufficient. Aiming to ensure strong convergence of the extended data, one needs to deal with
higher-order methods. These methods consist in solving the (BEP) problem for the data derivatives,
instead of the data themselves, provided some additional regularity is available in order to allow that.
Let us define to that end the appropriate Hardy—Sobolev spaces.}dr, define

H™2(6G) = H2(6G) NW™2(0G) = {f € H2(8G); f® e H?(6G), 1 < k < n}.
For consistency, we shall also denotet$2(6G) the spacéH2(G).
Let now ¥, be the mapping
Po: Wh2(1) x R} — H™2(0G) (3.5)
defined by
[a(f, MN® = #(F ™ M), [#(f, MY (@) = F¥@), 0<k<n-1,

for some fixedzp € |. Note that?y = ¥. An ordern version of the (BEP) problem consists in solving
(BEP) with boundM for the nth derivative f ™ of f, and then integrating times using the initial
conditions provided above, in order to g&t(f, M) as a function oH™2(5G); see als®Baratchart &
Leblond(1992.

Finally, let us define as above

Dn = {(h, M) € H™2(8G)); x R%|(h™, M) e D).

Similarly to the previous theorem, the convergence result that hollg is weaker than the one holding
outsideDy,.

THEOREM3.6 The mapping, is continuous ofW™2(1 ) x R* )\ Dy, but not on the whole dV™2(1 ) x
R*% . However, if( f, M) — (f, M) in W™2(1)xR*%, theng( fx, Mk) — g(f, M) weakly inH"2(3G),
whereagy( fx, Mx) — g(f, M) in W™2(1). Thus, ¥, is continuous orH"~12(6G).

Proof. The first two statements are direct consequences of Thedseapplied to the firsh derivatives
of the functiong,. Regarding the third one, this follows sinc i) is a sequence iW12(J) such that
fk(z0) = f(20), 20 € J, with derivative f,, converging weakly tof’ e L2(J), then fy — f pointwise
in J and hence, by the Lebesgue dominated convergence thelpfem, f || 25y — 0. d
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4. Identification algorithms

We present in this section a family of numerical algorithms permitting to compute the Robin inverse
problem solution. Still in the electrical framework, once the current flux and the voltage potential have
been computed on the inaccessible boundBrye can evaluate the impedance (or Robin coefficient)
g from (2.4):
dpImg(f, M)
Reg(f, M)

onJ,

where f is the prescribed data agd f, M) the extended data computed by solving the (BEP) problem
using f and the bound\.
Actually, the data we are dealing with are usually noisy ones

fe=1+e,

wheref € H2(8G) |, ande € L2(l), bute ¢ H2(6G)|,. In that case, what can be derived from the
above section, namely from Theorehd, is that in order to provide with extended data ‘close’ to the
actual ones, the (BEP) problem needs to use a bdtitbse enough to the actual one

Mo = | f |||_2(J)~

Moreover, since the prescribed data do not belong to the Hardy ld4gG), the computed extension
will saturate the prescribed bound whatever its value is, i.e.

19(fes M)l L23) = M.

Properly choosing the bound is therefore mandatory to get an accurate approximation on these extended
data. The point is that the actual boudd is unknown, since it depends on the unknown part of the data.

Any constructive algorithm will thus need to tackle together the tasks of computing both the extended
data and the bound on them. To make the paper easier to read, we shall however describe separately in
the sequel how to go through each of these tasks.

4.1 Determination of the actual bound

In Chaabaneet al. (2003h, the authors have proposed, in order to determine the bound, a cross-
validation procedure using some part of the prescribed data. Though efficient, this method turns out
to be costly in the present case, since a smaller amount of data is available, due to the multiply con-
nected geometry. It is thus preferable to devote the whole of the data to the reconstruction task, which
requires one to build up an alternative‘non-data-consuming’ method in order to compute the bound. We
shall be presenting that alternative method in the sequel.

Given a positive real numbevl, g(f, M) denotes as usual the solution of the (BEP) problem with
dataf and boundM, whereagy, = g(f., M) solves the same problem withy as a data set and the
same boundV. The convergence results of the previous section indicategitfat M) is close tof,
which is equal tay( f, Mg), provided thatM is close toMg and f, close tof. Since we do not know
Mo, let us try to evaluate the differende— g.. An approximation of this function oh may be given
by f. — g., whereas a rough estimate of the bound may be given by

er,(M) = [ fo — QellL2())-
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Let thenw, solve the (BEP) problem with these data
we =9 (f; — gs, er,(M)) .

Therefore,g, + w, is likely to provide a better approximation tothang,. As a matter of fact, let us
define

Tg: R+'—)R+,

M = [11GellL2¢3) = 19: + we (M)l 251 (4.1)

The closeM becomes to the actual bound, the better the approximation becomes, and the closer to zero
7.(M) becomes. Minimizing. (M) seems thus a reasonable way to find out the actual b®gnd his
is what we are going to prove in Theorehi for analytic data. First, let us notice that

:(M) < e (M), VM eR:. (4.2)
Indeed,
(M) = (1191l L2(3) = 19 + we (M)l L2 < lwe (M)l 2(5) = €1, (M).

THEOREM4.1 (Bound determination for analytic data)
In case the data are analytic (iee= 0), thenMg is the smallest positive real number that minimizes the
mappingrp and moreovetg(Mg) = 0.

Proof. Sincef e HZ(aG)“ , then for eactM > Mg one hagy(f, M) = f on |, thereforee; (M) = 0.
Then we haveg(M) =0,V M > Mp.

On the other hand, suppos¢ < Mg. Sinceg(f, M) solves the (BEP) problem with respect to
(f, M), we have

er(M) = [If —g(f, M)ll o) = inf{Il f = gllL2q): 9 € HZ(@G), Igll 2y < M} > O
and, sincavg(M) solves the (BEP) problem with respect(tb — g(f, M), e; (M)), we have
I = g(f. M) — wo(M)l 2y = inf{|| f = g(f. M) — w2y, w € HX@G), [[w]l 25 < e (M)}.
Since the null functionw = 0 is in H2(8G) (@ndwll 25y = 0 < et (M)), then
It —g(f, M) — wo(M)l L2y < I f = g(f, M)llL2q)). (4.3)

If there exists a reaM < Mo such thatro(M) = 0, then|ig(f, M) + wo(M)[l_2¢3y = M. Therefore,
from (4.3) and uniqueness of the solution of the (BEP) problem, we gafeM) + wo(M) = g(f, M)
on G and thenwg(M) = 0 onG. This implies thae; (M) = lwo(M)ll L2y =0, which contradicts the
fact thate; (M) £ 0. |

The case of non-analytic data is however the one we are interested in. Bigusrates the be-
haviour of the functionsp(M) andz. (M) for the rational function

f(2) = c+ Z(ZZ__ al), acsh, (4.4)

with ¢ = 12,a = 0.1 ands = 0.6. Fore # 0, the functionr, seems to have a minimum, the argument
of which is equal to the correct valudg of the bound. This is confirmed by numerical computations,
although at this stage we only prove a somewhat weaker result.
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FIG. 2. Plots ofrg(M) (left) andz; (M), & # 0 (right).

THEOREM 4.2 Leta and g be two positive numbers such thatfa < g andMg € [a, £], and let
¢ € L2(1) be a positive function.

(i) The functionz, has at least one minimuM; in [, £]. Moreover, defining

0, = inf 7,(M)=1,(M;), wehave lim o, =0.
Me[a,p]

HSHLZ(U_)O

(i) Let Z, = {M; € [a, B]: 0 = 7:(M;)}. ThenZ, has a minimum poinM,.

(iii) Any accumulation pointM of the family (M,.). is such thaMy > Mo.

(iv) When|ell 2y — O, theng(f;, M,) — f weaklyin H2(8G), hence also in the weak topology
of L2(J), andg(f,, M,) — fin L2(l).

Proof.

(i) Since the datd, are not analytic, we get from Theore3rb

and alsomnin?w lwe(Mn) = we (M)l 25) = 0;

7, IS thus continuous on the compact setf], and there exists some real numids € [a, f]
such that.(M;) = ;.
Let (en)n be a sequence such that }im., ¢, = 0. SinceMg € [a, f], we have

0 < gy < 72,(Mo).
From @.2), we obtain

0 < d;, < ef,,(Mo); (4.5)
we conclude then, fronB(4), that

0< lim o, < ef(Mo) =0. (4.6)
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(i) Let Z, = {M; € [a, B]: 6, = 7.(M,)}. Now Z; is a closed subset of[ 5] sinceZ, = r;l(ég),

then it is a compact set and therefdrie exists.

(i) Assume there exists a subsequerfbe, ). of (M,). such thatlim_,.c M, = Mg < Mo.

Introduce the notatiog, (M) = g(f;, M), go(M) = g(f, M), and similarly for the functions
w, andwg. By Theoren3.5, we have

19en M)l L5y = 190Mo)IL2(),
and by B8.4),

| wen (M) |25y = wo(Mo)llL2(s).
Then

0= lim 4, = r0(Mo),
and we deduce that
My = 119o(Mp) + wo(Mp)ll 23y
Since
I'f —go(Mg) — wo(Mp)ll 2y < I f = go(Mo)llL2(1)s

thereforego(Mg) + wo(Mg) = go(Mg), which implies thatog(Mgy) = 0, and in this case we

deduce thaes (M) = 0; then| f — Jo(Mo)llL2y =0, i.e. f = go(Mgy) andMp = My, which
is a contradiction.

(iv) This is a straightforward consequence of TheofBand the point (iii) above. Note that weak

REMARK 4.3 Theorem.2does not provide us with the actual bound for non-analytic data as Theorem
4.1 does for analytic data. However, it provides us with a family of bounds permitting one to compute
extended data that converge—although weakly—to the required extension. The independent operation
of the two tasks (bound determination and data extension) here reaches its limits. In the following
subsections, we shall need to combine them again in order to build up robust reconstruction algorithms.

convergence itH2(2G) implies weak convergence when restricted f§J), since the traces of
functions inH?(8G) are dense ih.?(J).

O

4.2 The zero-order algorithmAp)

Theorem4.2 does not ensure the convergence of the boMndio Mg, since only weak convergence
of the analytic extensiong(f., M,) to f holds onJ. Still, despite its ineffectiveness at least from a

theoretical point of view, it is interesting to describe the so-called ‘zero-order’ algorithm that we shall

use in the sequel as the basis on which higher-order algorithms will be built up.
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The (Ap) algorithm:

1. GivenM > 0, solve the (BEP) problem with respect ¢6., M) and getg.(M) =
g(fe, M), ander (M) = || f; — g (M)l _2()).
2. Solve the (BEP) problem w.rtf, — g,(M),,, er,(M)) and get

we =g (fo = 0. (M) e, (W),
3. ComputeM, = Argminy,. (M) by some numerical method such as the golden

section search, ségefer (1953;
4. Compute

_ _80 Imgé(Ma)

. = onJ.
a Reg:.(M,)

Note that ‘Argmin’ represents the value of the argumkhat which the functionat, achieves its
minimal value.

The numerical implementation of this algorithm has been done using Matlab. The discrete Fourier
transform functiorfft and the inverse discrete Fourier transfaffnhave been used in order to compute
the Fourier coefficients, whereas the Toeplitz matrix coefficients have been computed using the function
toeplitz The finite differences functiodiff has been used to compute the function derivatives.

4.2.1 Solving the (BEP) problem for a prescribed multiplier We are given datéf,), a prescribed
boundM and the related multipliet; we shall describe how to deriviefrom the boundvl and compute
it, in the next sub-subsection. The solution of the (BEP) problem is obtained by solving the infinite
linear equation .1), (3.2 given by Theoren8.1 A discretization is needed, using a finite basis of
Fourier functiongen(z), —N < n < N}. The proper valudN to choose has been derived from an error
study: given the datad(4) with a = 0.1 andc = 12, and the noisy daté, derived from it by adding
a perturbation of uniform norm varying from 1% to 15%, we have plotted the ¢rror f; n|lLoo()
between the actual data and the truncated noisy data3Jifj.turns out actually that a valud = 7
(15 basis functions) is sufficient to bring this error below the noise level, if the level is around 15%.
Furthermore, the figure shows that it is not worthwhile to choose more than 35 basis funitien$«),
since the error is stabilized starting from that point. In order to fix our computations, and since these
computations are quite cheap, we have, however, chdser25 (51 basis functions).

Let us now describe the computations. Having prescribed flada the partl of the boundary,
discretizing equation3(1) leads to the following:

((Hd + AT3)9n)IN = Ph2(xa TN, 4.7)
which can also be written as follows:
[(TI + A+ DTHNIN = Pr2(xa fon (4.8)

where7| = P2y is the Toeplitz operator associated to the characteristic function related to the part
of the boundary (in our implementatioh= (e7'%, &%), gy € [0, 7).

The Toeplitz matrices of operatofg (and 7y = |d — 73) with respect to the basife,(2),
n = —N,..., N} are obtained by truncating the infinite matii¥n, m) n,myezxz given in @.2) for
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L™ errors
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. 3. Error approximations w.r.t. the number of Fourier functions used.

—N < n,m < N. The linear system¥(8) is finally solved using the Matlab. Matlab’s Cholesky algo-
rithm calledpinv.

So far we have described how to go through itgihs-(2) of the above(Ag) algorithm, provided
the multiplierZ is known. Let us nhow describe how to derive it from the boivhd

4.2.2 Determining the multiplierl associated to the bound M.t has already been mentioned in
Proposition2.1 and Remark?2.2 that the mapping. — M(1) is C1, bijective and decreasing from
(=1, +00) to (0, +00). Using the change of variables

r
1-—r

A= -1

gives us a functioM (A(r)) decreasing on [Ql). Furthermore, we know that the right value/ois that
ensuring that the computed (BEP) solution wi.saturates the bound, which actually means

V() = llg(f, Dll2g) = M.

Having prescribed some threshold, a bisection method has been usedtarfardasing if V (A(r)) >
M and decreasing it otherwise.

4.2.3 Computing the right bound M. Let us now describe how to compute the right bolvhdwhich
is Step 3 of théAg) algorithm. Given a bouni¥, one needs to solve two (BEP) problems—as described
by items(1)—(2) of the (Ag) algorithm—in order to compute. (M):

1. Solve the (BEP) problem w.r¢f,, M) and getg. (M) = g(f., M).

2. Solve the (BEP) problem W.r.ﬁ.fg = g:(M)p, 1 fe = gg(M)||L2(|)) and getw, (M).
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Having done so, we have, as defined abovetit)(

7e(M) = 1GellL2(3) — I1Ge + we (M)l L2(g)]-

Minimizing 7, w.r.t. M has been done using the golden section search methdd fof A, B].
In case the bound provided by the algorithm is equah {@espectivelyB), one needs to run it once
again, after enlarging the interval[ B] on the left-hand side (respectively on the right-hand side).
Finally, we compute the (BEP) extensigp associated with the bounl, so obtained, in order
to compute the Robin coefficient, which requires us first to differentiate its imaginary part using finite
differences.

4.3 The higher-order algorithmsAQ)

The fourth statement in Theore?2 can be seen as a weak robustness result forApgdlgorithm.
This is not strong enough even for the data extension, and it is definitely less than our needs for the
impedance computation. This is the reason why, in search of better robustness properties, we shall now
investigate higher-order algorithms based on the same tools.

The basic idea is actually to apply the above-described zero-order algorithmrthtberivatives
of the prescribed data and then to integratanes the so extended derivatives.

Let f, = f +¢, wheree is a non-analytic, but still smooth, perturbatiang W™2(1)\ H ”=2(8G)|| ),
and assumd € H™2(6G). The @A) algorithm is thus expressed as folls:

The (Ap) algorithm:

1. Compute thaith derivativef™ of f, onl;
2. Apply the zero order method to the dafg%T), and gelggn);
3. Integraten timesggn) and getgn,;

4. Compute

dp IMgn .

e = T Regn,

Because of the continuity properties of Sect®B these algorithms have much better robustness prop-
erties than the zero-order one. This is the content of the next theorem.

THEOREM4.4 (Robustness of th&h-order method)
Supposa € W™2(1),q € Q",n > 1. Letthenf, = ug +i [ $dd + ¢ € W™2(1) andgn . as above.
As ||€||Wn,2(|) - 0, it holds that
Regn. — U in W™2(6G), & lmgn. — énu in W'L2(5G).
Also

One — g in W"=12().

Proof. This is an immediate consequence of TheoBf |
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REMARK 4.5 This ‘robustness’ result is obtained for smooth noise (W™2(1)), a feature that noise
is actually not expected to have. Suppose rowL (1) with |e(X)| < € for x a.e. inl. Let us denote
by f¢ the smoothed function obtained by using cubic B-splines with a path léndthas been proved
in Chaabanet al. (2008 that we then have the following estimates:

- - , €

£ = Fllumay < cle+h?, (e = ) lumay <c (- +h).
Choosing nowh = O(,/€), we get a,/e error on f/, which meang f¢)’ can be seen as noisy data
w.r.t. f/, with a noise level/e. By ‘bootstrapping’ with the B-spline approximation, we can thus get an

estimate of ordechp on thepth derivative off.

This means that the smoothing of noisy data by using proper B-splines provides us with ‘smoothed
noisy data’ that meet the assumptions of the above theorem. Actually, this is the way numerical results
are usually run: data are smoothed prior to being processed. Observe that in this situation, a compu-
tational algorithm for a Hardy—Sobolev approximant can be directly used, Baratchart & Leblond
(1992 in the framework of the unit disc.

In Section5, we are going to confirm these robustness properties by a thorough numerical study
which shows the efficiency of the higher-order methods in the tasks of both extending the data and
recovering the electrical impedance coefficients.

5. Numerical validation

In the numerical results we are presenting in this section, we have considered the cases of both full

prescribed data (i.e. data prescribed on the whole of the outer boundary) and incomplete data (i.e. data
prescribed on some part of the outer boundary). The latter case is actually the most realistic one, particu-
larly concerning non-destructive control applications. The impact on the outcome of several parameters

has been studied:

e regularity of the data to be reconstructed,
e amount of prescribed data,
e noise level.

The non-singular data we have considered are those resulting from
f(2) = exp(2), (5.1)

whereas data with a singulari@yin sD have been generated b4.4) with ¢ = 12. The closea becomes
to the circlesT, with s = 0.6, the more ‘singular’ the data to reconstruct become.

5.1 Case of full external data

Extension formulae at order zero are providedQ@lyalendaret al. (2001, Chalendar & Partington
(1999 andSmith(2009, and formulae for theA,) algorithms ( = 0, 1, 2) have been straightforwardly
derived from them.
First, the non-singular data to be reconstructed are those resulting from the fusctiofrigure4
shows that the three methods (zero, first and second order) provide very accurate results, as regards the
analytic extension as well as the electrical impedance computed from it.
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FIG. 4. Nyquist plot of the extended datéRegn,: (2), Im gn, (2)) asz varies insT) (left) and plot of the electrical impedance
(right) obtained from full external smooth data and algorithms of ordéy .

Things change however when it comes to noisy data, as can be noticed i Rijhough the
extended data using the zero- and first-order methods remain acceptable up to a 10% level noise, the
accuracy of the reconstructed electrical impedance drops dramatically when the noise level increases.
Actually, the zero-order method turns out to be definitely unsuitable for the electrical impedance recov-
ery task, whereas the first- and second-order ones behave quite well in that respect.

These conclusions were predictable from the theoretical results on robustness proved in4section
The zero-order method possesses only weak robustness properties, regarding the extended data but not
the electrical impedance. From Theordm, we derive that the first-order method is the lowest possible
ensuringlL 2 convergence for the electrical impedance.

The sensitivity of the reconstruction method with resped,tahich parameterizes the singularity
of the data generated by the functioh4), is summarized in Fig6. As expected, the accuracy on
the electrical impedance computed drops whegets too close to the internal boundary. The first-
and second-order methods do not show qualitative differences, though the second-order one is more
accurate, even for data singular ne@t The next part of the study will thus focus on the second-order
algorithm.

5.2 Case of incomplete external data

In this section, we are concerned with the behaviour of the algorithm when data are lacking on some part
of the outer boundary. This situation is likely to happen quite often in practice, and this is the reason why

we have run quite an extensive numerical study, investigating the impact of the following parameters on

the result:

e amount of prescribed data, as measured by the paﬂo%, where|l | is the Lebesgue measure of
the prescription areb on the outer boundary, whose length is;2
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FIG. 7. Plot of L2- andL®-errors w.r.t. the amount of prescribed data on the outer boundary (second-order algorithm).

e singularity of the data, as parameterizeddoy= %d(a, sT) = 1 — |a|/s, wherea is the complex
number defined in the previous section (location of a singularity inside the inner disc);

e noise level.
In the case of non-noisy dat&.(), Fig. 7 shows that the error on the Robin coefficient remains accept-

able for as small a quantity of data as that prescribed on half the outer boundary, and the error decreases
quite fast with respect to the amount of prescribed data.
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Let us now study the sensitivity of the reconstruction method to the data regularity. By nmaaking
closer to the circlesT, the behaviour of the functiord(4) gets harsher, though remaining smooth as
stated in Theorerm.4. Unsurprisingly, the left-hand plot in Fi@ shows that the harsher the data, the
lower the accuracy on the computed electrical impedance. However, the plots in the right-hand side of
Fig. 8 also indicate how to make up for the lack of regularity by increasing the amount of prescribed
data. Highly singular functions need an almost complete set of external data in order to compute the
electrical impedance with an acceptable accuracy.

The noise effects are somewhat similar. The right-hand plot of Fdjsplays curves relating the
noise level to the amount of prescribed data for different targeted error levels. Once again, we observe
that to some extent, one can make up for the noise effects by increasing the amount of available data.
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6. Conclusion

The methods we have been presenting in this work constitute a family of fast data completion algorithms
solving the Cauchy problem for the Laplace equation in an annular domain, and up to a conformal
mapping, in similar domains in the plane. The main goal was to compute accurately from these data the
electrical impedance on the inaccessible inner part of the boundary from the extended data.

To that end, we have derived new explicit formulae in the case when the set of available data on the
outer boundary is not complete. These formulae have been implemented in order to build up algorithms
using the BEPs and needing the actual bound on the unknown data to be computed at the same time
as the data are extended. These algorithms use a new stabilization technique that proves to be fast and
efficient. Beside their efficiency, the so designed algorithms have been proved to be robust with respect
to noise, and a thorough numerical study has been run that widely confirms these theoretical predictions.

Despite their valuable qualities (accuracy and robustness at a low computational cost), these algo-
rithms have two limitations. The first is related to the exclusive focus on the Laplace equation. Though
not restrictive for corrosion detection, this limitation would need to be lifted, since extensions to other
operators such as Maxwell’s equations electroencephalography (EEG) and magnetoencephalography
(MEG) would be highly appreciated. This is not, however, a straightforward extension of the present
work. On the other hand, lifting the limitation to 2D problems is the crucial issue to investigate in order
to deal with ‘real-life problems’. But before tackling these two challenging developments, the next step
is to study ‘real 2D problems’, i.e. 2D problems in other domains than the annulus, in order to obtain a
clearer idea of how the conformal mapping affects the numerical results.

Extensions of these methods to 3D domains are a subject of current investigatiéfeteet al.

(2008.
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Appendix

Proof of Lemma3.3.
From Smith (2005, we can write

an + bps?
> i ?

Pr2ec)#(2) = Ty 2
neZ
where
1 (2 o ing 1 6\ a—ing 144 (2= o ing
an=— $(EHe"Mdp = — qb(e' e " do + —— »(€7)e™" do
2z 0 27 —fo T 6o
1 1 /1 271'—(70 i X
f(e'g)e"”ede-i- i / f1(%)e ™ dg
~ 2 _0 2r  Jo,
and
1 1+41 : :
bns" = 7 /s ¢(se'9)e_'”9d9 2+ fl(se'e)e"”" do.
O
Proof of Lemma3.4.

Let¢ = y3g. Then we have from Lemni&a3

Cn + dps?"
Przc)$(@ = i z",
nez

where
1 2 —6p . .
Ch=— g(@’)e ™ dg
2n 0o
and
1 2r ) .
dhs" = — g(s€’)e ™ dg.
2 0

Letg(z) = D ez InZ" for z € G, then

1 2 —6o img —ing
Cn = Z Z gm elm e_ln d9
to meZ
1 Z 27 —0o ei(m e
2x meZ o

B _@ 3 sin(m — n)fo
—gn(l 71) ng—n(m—n)
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and

1 2% . . 1 2z
dns" = —/ smeM e Mgy = — sm/ M9 gy = g,s".
ns" =5 |, n%gm > rTégm ; On

Then we deduce that

1 6o sin(m — n)fo
PHZ(aG)XJg(Z)=Zm<Qn (1—;)+9n5 Z On————— Z(m—n) )Z
m#£n
therefore,

1 sin(m — n)é
7’g(z)=zz—1Jr32n (gn(1+s ) > Gm e n)0)2

nez m=#£n
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