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We consider the Cauchy problem of recovering both Neumann and Dirichlet data on the inner part of
the boundary of an annular domain from measurements of a harmonic function on some part of the outer
boundary. Using tools from complex analysis and best approximation in Hardy classes, we present a fam-
ily of fast data completion algorithms which are shown to provide constructive and robust identification
schemes. These are applied to the computation of an impedance or Robin coefficient and are validated by
a thorough numerical study.
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1. Introduction

The problem we are dealing with in this contribution is the recovery of both Dirichlet and Neumann
data on some part of the inner boundary of an annulus from measurements of a function harmonic in the
annulus, taken on some part of the outer boundary. These extended data may be relevant by themselves
in some applications or used to compute the electrical impedance (or the Robin coefficient), which is
needed in other applications.

Such a problem arises for instance in corrosion detection in tubular domains. Corrosion may occur in
many different forms, and several models are encountered in the literature (seeChaabaneet al., 2003b;
Kaup & Santosa, 1995; Kaup et al., 1996; Santosaet al., 1998). Evaluating the electrical impedance,

†Email: moncef.mahjoub@lamsin.rnu.tn

c© The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



482 M. JAOUA ET AL.

which is actually the Robin coefficient, on the internal wall of a hollow pipe from measurements per-
formed on the external wall turns out to be an appropriate way to locate the corroded parts of the internal
wall. Santosaet al.(1998) have given a simple linear model proving how corrosion affects the electrical
impedance. For this model, there is a significant work due toFasino & Inglese(1999a,b) for identifying
Robin coefficients. This was achieved by means of an imposed flux and measured potential on the acces-
sible part of the boundary of the domain. The numerical scheme adopted was based on a Fourier series
expansion and shows instability for thicker domains. Some uniqueness results were given byChaabane
& Jaoua(1999) for simply connected 2D domains for continuous Robin coefficients bounded below:
similar properties hold for doubly connected domains, seeLeblondet al. (2006).

Chaabaneet al.(2003a) proposed an identification algorithm based on a least squares minimization,
an idea attributed toKohn & Vogelius(1997) and developed inChaabane & Jaoua(1999); the algorithm
consists of comparing solutions corresponding to Robin–Dirichlet and Robin–Neumann boundary con-
ditions, which coincide at the actual solution. This method smooths out possible oscillations in the
impedance, which may give information on the regions of corrosion.

Since the Robin coefficient may be recovered from the completed Cauchy data, this problem reduces
to solving a Cauchy problem for the Laplace operator. Among recent approaches to the Cauchy problem,
we mentionKabanikhin & Karchevsky(1995) who used an optimization (gradient) method in order to
minimize the quadratic norm on the accessible part of the boundary.Klibanov & Santosa(1995) used a
quasi-reversible method to resolve the problem, combined with Carleman-type estimations. InKozlov
et al.(1991), an iterative algorithm is provided, which proceeds by resolving alternatively Neumann and
Dirichlet problems; it converges in classes of compatible boundary data, although rather slowly.

The data completion problems that we consider have been widely studied in the case of simply
connected domains, which can be conformally mapped on the unit disc, as inChaabaneet al. (2003b).
The method we wish to generalize here to annular domains is to construct analytic approximations
by solving a bounded extremal problem (BEP) there. Such a construction uses an implicit asymptotic
expansion of the analytic approximant, and it needs to determine by some appropriate procedure the
actual bound of that approximant in order to stabilize the whole algorithm.

The first issue to tackle is thus to obtain asymptotic expansions in annular domains. Provided full
data are available on the whole of the outer boundary, such formulae have already been obtained in
Smith (2005), and stability estimates for the inverse problem (with suitable norms) have been estab-
lished as consequences of boundedness properties for functions of weighted Hardy classes inLeblond
et al. (2006), from which the present work originates. In most practical cases, however, full data cannot
be expected. In the present work, implicit formulae of the analytic approximant have therefore been
sought and obtained for the incomplete data case. Continuity with respect to the data of the computed
approximants has also been proved; this makes it possible to use the formulae as a basic tool in the
algorithmic part.

In order to produce an accurate approximant, it has already been noted (seeChaabaneet al., 2003b)
that the numerical algorithms need sharp information on the actual bound of the data sought. The issues
of computing both these data and the bound on them thus need to be dealt with simultaneously. This has
been achieved in the present work by characterizing the actual bound as the unique zero of an appropriate
function. Robustness properties of the designed procedure are improved by applying it to thenth-order
derivatives of the data, instead of the data themselves, working in certain Sobolev classes of smoother
functions, provided of course that the prescribed data meet this additional regularity requirements. A
whole family of algorithms, more robust as their order increases, is designed this way.

In Section2 of this paper, we introduce the inverse Robin problem and recall the identifiability
and stability results as obtained inChaabane & Jaoua(1999) and Leblond et al. (2006). Section3
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is devoted to deriving the formulae we use to compute the solution in the incomplete external data
case and to proving continuity of these solutions with respect to the prescribed data. The identification
algorithms are presented and studied in Section4, and their numerical implementation and results are
finally discussed in Section5.

2. Setting the inverse problem

2.1 The physical model

Pipelines are widely used to transport gas and petroleum from their production spots to their processing
or consumption places. These pipelines are subject to internal corrosion (caused by hydrogen sulphides
and carbon dioxide in the case of gas pipelines and by sulphato-reducing bacteria in the case of oil
pipelines). Non-destructive testing techniques are used in order to check whether the pipeline needs
to be repaired, before failure occurs. Electrical impedance tomography is one of these techniques. It
consists in prescribing a current flux on the external wall, and from the measured voltage potential
there, to evaluate the location of corrosion if any, thus helping one to make a decision on whether the
pipeline needs repairs (seeKaupet al., 1996; Coltonet al., 1990).

Assuming the pipe is infinite in thez-direction and the current circulates in this direction, the elec-
trical potential thus obeys the 2D Laplace equation in the annular(x, y) sectionG of the pipe:

∆u = 0 in G.

The boundary conditions are of both Neumann and Dirichlet type on the external part of the bound-
ary where the current flux has been prescribed and the voltage potential measured. As for the boundary
condition on the internal wall, several models have been proposed, and particularly a nonlinear one—due
to Butler and Volmer:

∂nu = q(eαu − e−(1−α)u). (2.1)

This model has been analysed in depth byJones(1996) and recently discussed byBryan & Vogelius
(2002), Kavian & Vogelius(2003) andVogelius & Xu (1998). A linearized version of this boundary
condition as proposed bySantosaet al. (1998) is nothing but the Robin condition

∂nu = qu.

Note that if one regardsu as a contrast produced by the effects of corrosion, then it can be regarded as
small, and so a linear model is acceptable.Buttazzo & Kohn(1987) also provides an additional justifi-
cation for working with this linear model, using homogenization techniques. Using this, the corrosion
effects, which are actually material damages due to chemical reactions, reduce, as regards the solution
of the Laplace equation, to their impact on the impedanceq. Recovering the modified impedance (or
Robin coefficient) would therefore permit one to locate the corroded zones and evaluate the damage.
The inverse problem of corrosion detection becomes a Robin inverse problem, the unknown of which is
the impedance on the internal boundary.

2.2 The Robin inverse problem

We shall restrict our study to annular domains. There are two reasons for this. The first is that this is
usually the shape of a cross-section of a pipeline. The second one is that, up to a conformal mapping,
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FIG. 1. Annular domain derived by a conformal mapping.

any doubly connected domain with a smooth boundary made of two non-intersecting closed smooth
Jordan curves may be seen as an annular domain (see Fig.1 andPommerenke, 1992).

Let thereforeD be the unit disc andG be the annulusG = D \ sD for some fixeds with 0< s < 1
and denote∂G = T ∪ sT, whereT is the unit circle. We provide each circle with normalized Lebesgue
measure.

Let I be a non-null measurable subset ofT, and letJ = ∂G \ I . We consider the following inverse
problem: given functionsud andφ, or a number of pointwise measurements, withφ 6≡ 0, find a function
q such that a solutionu to






∆u = 0 in G (i),

u = ud on I (ii ),

∂nu = φ on I (iii )

(2.2)

also satisfies

∂nu+ qu= 0 on J, (2.3)

where∂n stands for the partial derivative w.r.t. the outer normal unit vector toT. In the electrical frame-
work,ud andφ correspond to the measured voltage potential and the prescribed current flux on the outer
boundary of some plane section of a tube, whileq is the electrical impedance to be recovered on the
associated inner boundary.

Let c, c > 0 and introduce the following class of ‘admissible’ electrical impedances:

Qn = {q ∈ Cn(J); |q(k)(x)| 6 c, 06 k 6 n, andq(x) > c, ∀ x ∈ J}.

Fork > 1, letWk,2(I ) denote the usual Sobolev space of functionsf ∈ L2(I ), the derivatives of which
are also up to thekth derivative denoted byf (k) in L2(I ). For consistency, we shall also denote by
W0,2(I ) the spaceL2(I ). The Sobolev spacesWk,2(G) andWk,2(∂G) are defined analogously.

Chaabaneet al. (2003b) and Leblond et al. (2006) have already discussed the existence and the
uniqueness issues for the forward problem in the unit disc and a doubly connected domain, respectively.
They have shown that providedφ ∈ Wn,2(I ), φ > 0, φ 6≡ 0, n > 0, andq ∈ Qn for some constants
c, c > 0, then there exists a unique functionu ∈ Wn+3/2,2(G) whenceu|∂G ∈ Wn+1,2(∂G), a solution
to a direct problem. Further, there exist constantsm > 0 andκ (depending on the classQn) such that
for all q ∈ Qn andφ ∈ Wn,2(I ),

u > m> 0 on J and ‖u‖Wn+1,2(∂G) 6 κ.
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Also, they have examined the questions of the uniqueness of the solutionq of the inverse problem and
have proved that ifu1|I = u2|I , thenq1 = q2, whereq1,q2 ∈ Q0 andu1, u2 be the associated solutions.

2.3 From the Robin inverse problem to the Cauchy problem for analytic functions

We propose here to solve the Robin inverse problem by taking advantage of the analytic extension
theory, which provides with explicit or quasi-explicit formulae for the computation of the extended
data. Letφ ∈ L2(I ) and assume thatq ∈ Q0. In this case,u|∂G ∈ W1,2(∂G) (Leblondet al., 2006,
Theorem 1). Then there exists a functionv harmonic inG such that∂θv = ∂nu on ∂G, where∂θ stands
for the tangential partial derivative on∂G, from the Cauchy–Riemann equations. Hence,v is given on
I up to a constant by

v|I (e
iθ ) =

∫ θ

θ0

φ(eiτ )dτ.

Further, from the M. Riesz theorem (Duren, 2000, Theorem4.1), the harmonic conjugate operator is
bounded inL2(∂G), whencev|∂G ∈ W1,2(∂G). Thus, f = u+ iv is analytic inG and f|∂G ∈ W1,2(∂G);
it is given onI by

f (eiθ ) = ud(e
iθ )+ i

∫ θ

θ0

φ(eiτ )dτ.

Then onJ, we have

q = −
∂θv

u
= −

∂θ Im f

Re f
, (2.4)

which gives the link to be used betweenq and f , in order to recoverq from approximations tof on the
subsetI of the boundary∂G.

The annulus is not simply connected, but it is possible to definef globally in G as a single-valued
function. Indeed, there is a single-valued analytic functionf̃ defined onG such that

f̃ (z) = f (z)−
c

2π
logz; (2.5)

henceu(z) = Re f̃ (z)+ c
2π log |z|, where

c =
∫ 2π

0
φ(eiθ )dθ, (2.6)

for I = T, and

c =
∫

I
φ(eiθ )dθ +

∫

T\I
∂θv(e

iθ )dθ,

if I ( T. In both situations, this allows us to work with single-valued analytic functions, as inLeblond
et al. (2006).

Let us introduce here the Hardy spaceH2(D) of analytic functions in the unit discD whoseL2-
norms on the unit circleT are bounded (seeDuren, 2000). Let H̄2

0 (sD) be the Hardy space consisting
of the analytic functions on the complementof sD that have boundary values inL2(∂G) and vanish at
infinity.
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From the above-mentioned regularity properties, the functionf is bounded inL2(I ), and we then
find an extension off in the so-called Hardy space denoted byH2(G) = H2(D)⊕ H̄2

0 (sD) defined in
Rudin(1955). It is also possible to define the Hardy spacesH2(∂G) as the closure inL2(∂G) of the set
RG of rational functions whose poles lie inC \ G.

The spacesH2(G) and H2(∂G) are then isomorphic in a natural way, and so we identify the two
spaces (seeChalendar & Partington, 1999).

So, a functionf ∈ H2(∂G) has the following expansion:

f (z) =
∑

n∈Z

anzn for z ∈ G, where‖ f ‖2L2(∂G) =
∑

n∈Z

(1+ s2n)|an|
2.

Recalling that∂G = sT∪T where each circle has normalized Lebesgue measure, we see that the space
H2(∂G) has a canonical orthonormal basis consisting of the functions

en(z) = (z
n/
√

1+ s2n)n∈Z.

We writeχI g for the function inL2(∂G) that coincides withg on I and vanishes onJ.

2.4 Approximation in Hardy classes and BEP problems

We assume thatI = [−θ0, θ0] ⊂ T, 0< θ0 < π . We writeL2(∂G) = L2(I )⊕ L2(J). Wheneverκ1 is
defined onI andκ2 on J, we writeκ1 ∨ κ2 for the function equal toκ1 on I andκ2 on J.

Suppose that we are givenf ∈ L2(I ) and we wish to approximatef as well as possible by the
restriction toI of an H2(∂G) function, i.e.g|I for g ∈ H2(∂G). In view of the results established in
Chalendar & Partington(1999), the spaceH2(∂G)|I is dense inL2(I ). Then there will exist a sequence
(gn) of H2(∂G) functions such that‖gn|I − f ‖L2(I ) → 0. However, if f 6= g|I for anyg ∈ H2(∂G),
then it will follow that‖gn|J‖L2(J)→∞, which means that the approximation problem is ill-posed.

In our work, we are interested in the determination of an extension onJ. To prevent instability from
appearing, imposing a bound for the approximation onJ may be a solution. This motivates the following
BEP, which is a problem of analytic approximation of incomplete data in Hardy classes.

To fix ideas, we consider the following minimization problem:

(BEP)






Given f ∈ L2(I ) \ H2(∂G)|I , f1 ∈ L2(J) andM > 0,

find a functiong ∈ H2(∂G) such that‖g− f1‖L2(J) 6 M and

‖ f − g‖L2(I ) = inf{‖ f − ψ‖L2(I ): ψ ∈ H2(∂G), ‖ψ − f1‖L2(J) 6 M}.

In practice, f corresponds to the data,I is the part where these data can be measured andf1 is a
reference behaviour of the data on the part of the boundary where they are unknown. Such a problem
is convex and admits a unique solution which can be obtained by solving a spectral equation for the
Toeplitz operatorT with symbolχJ , the characteristic function of the componentJ:

T : H2(∂G)→ H2(∂G),

g 7→ PH2(∂G)χJg,

wherePH2(∂G): L2(∂G) → H2(∂G) is the orthogonal projection. More precisely, the unique solution
g to the (BEP) problem solves the following.
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PROPOSITION2.1 (Chalendar & Partington, 1999) The unique solutiong of the (BEP) problem is
given by the formula

g = (I d + λT )−1PH2(∂G)[ f ∨ (1+ λ) f1], (2.7)

for the uniqueλ > −1 such that

‖g− f1‖L2(J) = M. (2.8)

REMARK 2.2 Let us note thatλ plays the role of a Lagrange multiplier which makes implicit the depen-
dence of the solution onM and which can be adjusted by dichotomy. A consequence of Proposition2.1
is that the errore(λ) = ‖ f − g(λ)‖L2(I ) smoothly decreases to 0 asλ→ −1 and we refer toTorkhani
(1995), thatλ→ M(λ) is C1, bijective and decreasing on(−1,+∞)→ (0,+∞).

When f is the trace onI of someH2(∂G) function, the (BEP) problem becomes one of interpola-
tion. In this case, for simplicity, we will continue to denote byf the H2(∂G) function defined on the
whole of ∂G. The errore(λ) decreases strictly to zero asM increases to‖ f − f1‖L2(J) and vanishes
identically for M > ‖ f − f1‖L2(J).

3. Solutions for the (BEP) problem

Now, using a Fourier series development on the(en)n basis, we are able to propose a quasi-explicit
method to solve (2.7).

Let an andbn be, respectively, the Fourier coefficients ofφ = f ∨ (1+ λ) f1 ∈ L2(∂G) onT and
sT, defined by

an =
1

2π

(∫ θ0

−θ0
f (eiθ )e−inθ dθ + (1+ λ)

∫ 2π−θ0

θ0

f1(e
iθ )e−inθ dθ

)

and

bnsn =
1+ λ

2π

∫ 2π

0
f1(seiθ )e−inθ dθ.

Moreover, let

B = PH2(∂G)φ = PH2(∂G)[ f ∨ (1+ λ) f1] =
∑

n∈Z

Bnen,

where

Bn =
an + bns2n

√
1+ s2n

.

3.1 Constructive formulae

The following theorem then holds.
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THEOREM 3.1 The solutiong of the (BEP) problem, viewed as the (infinite) vector as defined by its
Fourier coefficients(gn)n∈Z, solves the following equation:

(I d + λT )g = B, (3.1)

whereT is the Toeplitz operator represented in the{en} basis by the infinite Toeplitz matrix defined by

for n,m ∈ Z, Tn,m =






1
1+s2n

(
1+ s2n − θ0

π

)
, whenn = m,

− 1√
(1+s2n)(1+s2m)

sin(m−n)θ0
π(m−n) , whenn 6= m.

(3.2)

REMARK 3.2

1. This result is similar to the one obtained in the unit disc byJacobet al. (2002). Both lead to an
infinite linear system, here indexed byZ whereas it was indexed byN for the problem in the unit
disc. Let us denote bygN the approximate solution obtained by solving the truncated system in
the basis(en)−N6n6N

((I d + λT )gN)N = BN, (3.3)

whereBN is the truncated Fourier series ofB.
The linear system so obtained has a symmetric positive-definite matrix, which can be factorized
using the Cholesky method. Iterating then onλ until (2.8) holds leads to the solution of the (BEP)
problem for a given boundM . Further details are given in Section4.

2. A particular case is that of full external data (J = sT). It has been established inAbrahamse
(1974) that the Toeplitz operator is diagonalizable, and an expression of the (BEP) solution has
been obtained inSmith(2005):

g(z) =
∑

n∈Z

an + αbns2n

1+ αs2n
en(z),

whereα = 1+ λ > 0 is the unique constant such that

∑

n∈Z

|(an − bn)|2s2n

(1+ αs2n)2
= M2.

The proof of Theorem3.1is now a straightforward consequence of the following two lemmas, whose
proofs are provided in the appendix.

LEMMA 3.3

PH2(∂G)φ(z) =
∑

n∈Z

an + bns2n

√
1+ s2n

en(z),

LEMMA 3.4 Letg ∈ H2(∂G) such thatg(z) =
∑

n∈Z gnen(z) for z ∈ G andT the Toeplitz operator.
Then

T g(z) =
∑

n∈Z

1
√

1+ s2n



 gn√
1+ s2n

(
1+ s2n −

θ0

π

)
−
∑

m6=n

gm√
1+ s2m

sin(m− n)θ0

π(m− n)



 en(z).
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Since we have no prior information on how the data behave on the partJ of the boundary, we shall
choose from now onf1 = 0, whencebn = 0,∀ n ∈ Z.

Aiming to make use of these formulae in order to set up robust numerical computation algorithms,
a crucial point to investigate is continuity of the so computed solutions with respect to the data. This is
the matter of Section3.2.

3.2 Continuity of the solutions with respect to the data

In this section, we shall investigate continuity properties of the solutions of (BEP) problem with respect
to the dataf andM . LetR∗+ denote the set of strictly positive real numbers and letg be the mapping
defined by

Ψ : L2(I )× R∗+ → H2(∂G),

( f,M) 7→ g( f,M),

whereg( f,M) solve the (BEP) problem associated to the dataf andM .
LetD = {(h,M) ∈ H2(∂G)|I × R∗+|‖h‖L2(J) < M}.

THEOREM3.5 The mappingΨ is continuous on(L2(I )×R∗+)\D, but not on the whole ofL2(I )×R∗+.
However, if ( fn,Mn) → ( f,M) in L2(I ) × R∗+, then g( fn,Mn) ⇀ g( f,M) weakly in H2(∂G),
whereasg( fn,Mn)→ g( f,M) in L2(I ).

Proof. First, consider the mappingef defined by

ef : R∗+ → R+,

M 7→ ‖g( f,M)− f ‖L2(I ).

The mappingef is convex and decreasing, thus continuous onR∗+.
Next, let ( fn) be a sequence inL2(I ) such that‖ fn − f ‖L2(I ) → 0 and suppose that(Mn) is a

sequence inR∗+ such thatMn→ M . We claim that

lim
n→∞

efn(Mn) = ef (M). (3.4)

Indeed, letδ > 0 and assume that eitherefn(Mn) > ef (M) + δ or efn(Mn) < ef (M) − δ infinitely
often. In the first case, since

‖g( f,Mn)− fn‖L2(I ) 6 ‖g( f,Mn)− f ‖L2(I ) + ‖ fn − f ‖L2(I )

and becauseef is continuous, we have infinitely often

‖g( f,Mn)− fn‖L2(I ) < ef (M)+ δ < efn(Mn),

which contradicts the fact thatg( fn,Mn) is optimal. In the second case,

‖g( fn,Mn)− f ‖L2(I ) 6 efn(Mn)+ ‖ fn − f ‖L2(I ),

which implies that we have infinitely often

ef (Mn) < ef (M)−
δ

2

and contradicts the continuity ofef established above.
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Next, the sequence(g( fn,Mn)) is bounded. We show that each of its subsequences admits a further
subsequence which converges tog( f,M). We pass to a subsequence that converges weakly to, say,
g̃ ∈ H2(∂G). By relabelling, we still call it(g( fn,Mn)). It follows directly from the assumptions and
(3.4) that

‖g̃− f ‖L2(I ) 6 ef (M), ‖g̃‖L2(J) 6 M.

Now, because the solution to (BEP) is unique (by the strict convexity of the norm), we necessarily have
that g̃ = g( f,M). This shows the weak convergence inH2(∂G).

On the other hand, it holds from (3.4) that‖g( fn,Mn) − fn‖L2(I ) → ‖g( f,M) − f ‖L2(I ) which
implies that strong convergence always holds inL2(I ).

Finally, whenever( f,M) 6∈ D, then

lim sup
n→∞

‖g( fn,Mn)‖L2(J) 6 lim sup
n→∞

Mn = M = ‖g( f,M)‖L2(J),

and since we have alsog( fn,Mn) converging weakly tog( f,M) in H2(∂G), then we obtain strong
convergence onJ. �

In order to achieve convergence of the reconstruction scheme, continuity ensured by Theorem3.5
is hardly sufficient. Aiming to ensure strong convergence of the extended data, one needs to deal with
higher-order methods. These methods consist in solving the (BEP) problem for the data derivatives,
instead of the data themselves, provided some additional regularity is available in order to allow that.
Let us define to that end the appropriate Hardy–Sobolev spaces. Forn > 1, define

Hn,2(∂G) = H2(∂G) ∩Wn,2(∂G) = { f ∈ H2(∂G); f (k) ∈ H2(∂G), 16 k 6 n}.

For consistency, we shall also denote byH0,2(∂G) the spaceH2(G).
Let nowΨn be the mapping

Ψn: Wn,2(I )× R∗+ → Hn,2(∂G) (3.5)

defined by

[Ψn( f,M)](n) = Ψ ( f (n),M), [Ψn( f,M)](k)(z0) = f (k)(z0), 06 k 6 n− 1,

for some fixedz0 ∈ I . Note thatΨ0 = Ψ . An order-n version of the (BEP) problem consists in solving
(BEP) with boundM for the nth derivative f (n) of f , and then integratingn times using the initial
conditions provided above, in order to getΨn( f,M) as a function ofHn,2(∂G); see alsoBaratchart &
Leblond(1992).

Finally, let us define as above

Dn = {(h,M) ∈ Hn,2(∂G)|I × R
∗
+|(h

(n),M) ∈ D}.

Similarly to the previous theorem, the convergence result that holds inDn is weaker than the one holding
outsideDn.

THEOREM3.6 The mappingΨn is continuous on(Wn,2(I )×R∗+)\Dn, but not on the whole ofWn,2(I )×
R∗+. However, if( fk,Mk)→ ( f,M) in Wn,2(I )×R∗+, theng( fk,Mk) ⇀ g( f,M)weakly inHn,2(∂G),
whereasg( fk,Mk)→ g( f,M) in Wn,2(I ). Thus,Ψn is continuous onHn−1,2(∂G).

Proof. The first two statements are direct consequences of Theorem3.5applied to the firstn derivatives
of the functiongn. Regarding the third one, this follows since if( fk) is a sequence inW1,2(J) such that
fk(z0) = f (z0), z0 ∈ J, with derivative f ′k converging weakly tof ′ ∈ L2(J), then fk → f pointwise
in J and hence, by the Lebesgue dominated convergence theorem,‖ fk − f ‖L2(J)→ 0. �
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4. Identification algorithms

We present in this section a family of numerical algorithms permitting to compute the Robin inverse
problem solution. Still in the electrical framework, once the current flux and the voltage potential have
been computed on the inaccessible boundaryJ, we can evaluate the impedance (or Robin coefficient)
q from (2.4):

q = −
∂θ Im g( f,M)

Reg( f,M)
on J,

where f is the prescribed data andg( f,M) the extended data computed by solving the (BEP) problem
using f and the boundM .

Actually, the data we are dealing with are usually noisy ones

fε = f + ε,

where f ∈ H2(∂G) |I andε ∈ L2(I ), but ε /∈ H2(∂G)|I . In that case, what can be derived from the
above section, namely from Theorem3.5, is that in order to provide with extended data ‘close’ to the
actual ones, the (BEP) problem needs to use a boundM close enough to the actual one

M0 = ‖ f ‖L2(J).

Moreover, since the prescribed data do not belong to the Hardy classH2(∂G), the computed extension
will saturate the prescribed bound whatever its value is, i.e.

‖g( fε,M)‖L2(J) = M.

Properly choosing the bound is therefore mandatory to get an accurate approximation on these extended
data. The point is that the actual boundM0 is unknown, since it depends on the unknown part of the data.
Any constructive algorithm will thus need to tackle together the tasks of computing both the extended
data and the bound on them. To make the paper easier to read, we shall however describe separately in
the sequel how to go through each of these tasks.

4.1 Determination of the actual bound

In Chaabaneet al. (2003b), the authors have proposed, in order to determine the bound, a cross-
validation procedure using some part of the prescribed data. Though efficient, this method turns out
to be costly in the present case, since a smaller amount of data is available, due to the multiply con-
nected geometry. It is thus preferable to devote the whole of the data to the reconstruction task, which
requires one to build up an alternative‘non-data-consuming’ method in order to compute the bound. We
shall be presenting that alternative method in the sequel.

Given a positive real numberM , g( f,M) denotes as usual the solution of the (BEP) problem with
data f and boundM , whereasgε = g( fε,M) solves the same problem withfε as a data set and the
same boundM . The convergence results of the previous section indicate thatg( fε,M) is close to f ,
which is equal tog( f,M0), provided thatM is close toM0 and fε close to f . Since we do not know
M0, let us try to evaluate the differencef − gε. An approximation of this function onI may be given
by fε − gε, whereas a rough estimate of the bound may be given by

efε (M) = ‖ fε − gε‖L2(I ).
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Let thenwε solve the (BEP) problem with these data

wε = g
(

fε − gε, efε (M)
)
.

Therefore,gε + wε is likely to provide a better approximation tof thangε. As a matter of fact, let us
define

τε: R+ 7→R+,

(4.1)M 7→ |‖gε‖L2(J) − ‖gε + wε(M)‖L2(J)|.

The closerM becomes to the actual bound, the better the approximation becomes, and the closer to zero
τε(M) becomes. Minimizingτε(M) seems thus a reasonable way to find out the actual boundM0. This
is what we are going to prove in Theorem4.1for analytic data. First, let us notice that

τε(M) 6 efε (M), ∀M ∈ R∗+. (4.2)

Indeed,

τε(M) = |‖gε‖L2(J) − ‖gε + wε(M)‖L2(J)| 6 ‖wε(M)‖L2(J) = efε (M).

THEOREM 4.1 (Bound determination for analytic data)
In case the data are analytic (i.e.ε = 0), thenM0 is the smallest positive real number that minimizes the
mappingτ0 and moreoverτ0(M0) = 0.

Proof. Since f ∈ H2(∂G)|I , then for eachM > M0 one hasg( f,M) = f on I , thereforeef (M) = 0.
Then we haveτ0(M) = 0,∀M > M0.

On the other hand, supposeM < M0. Sinceg( f,M) solves the (BEP) problem with respect to
( f,M), we have

ef (M) = ‖ f − g( f,M)‖L2(I ) = inf{‖ f − g‖L2(I ): g ∈ H2(∂G), ‖g‖L2(J) 6 M} > 0

and, sincew0(M) solves the (BEP) problem with respect to( f − g( f,M), ef (M)), we have

‖ f − g( f,M)− w0(M)‖L2(I ) = inf{‖ f − g( f,M)− w‖L2(I ), w ∈ H2(∂G), ‖w‖L2(J) 6 ef (M)}.

Since the null functionw = 0 is in H2(∂G) (and‖w‖L2(J) = 0< ef (M)), then

‖ f − g( f,M)− w0(M)‖L2(I ) 6 ‖ f − g( f,M)‖L2(I ). (4.3)

If there exists a realM < M0 such thatτ0(M) = 0, then‖g( f,M) + w0(M)‖L2(J) = M . Therefore,
from (4.3) and uniqueness of the solution of the (BEP) problem, we haveg( f,M)+w0(M) = g( f,M)
on G and thenw0(M) = 0 onG. This implies thatef (M) = ‖w0(M)‖L2(J) = 0, which contradicts the
fact thatef (M) 6= 0. �

The case of non-analytic data is however the one we are interested in. Figure2 illustrates the be-
haviour of the functionsτ0(M) andτε(M) for the rational function

f (z) = c+
2(z− 1)

z− a
, a ∈ sD, (4.4)

with c = 12,a = 0.1 ands = 0.6. Forε 6= 0, the functionτε seems to have a minimum, the argument
of which is equal to the correct valueM0 of the bound. This is confirmed by numerical computations,
although at this stage we only prove a somewhat weaker result.
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FIG. 2. Plots ofτ0(M) (left) andτε(M), ε 6= 0 (right).

THEOREM 4.2 Letα andβ be two positive numbers such that 0< α < β and M0 ∈ [α, β], and let
ε ∈ L2(I ) be a positive function.

(i) The functionτε has at least one minimumMε in [α, β]. Moreover, defining

δε = inf
M∈[α,β]

τε(M) = τε(Mε), we have lim
‖ε‖L2(I )→0

δε = 0.

(ii) Let Iε = {Mε ∈ [α, β]: δε = τε(Mε)}. ThenIε has a minimum pointMε.

(iii) Any accumulation pointM0 of the family(Mε)ε is such thatM0 > M0.

(iv) When‖ε‖L2(I )→ 0, theng( fε,Mε) ⇀ f weakly in H2(∂G), hence also in the weak topology
of L2(J), andg( fε,Mε)→ f in L2(I ).

Proof.

(i) Since the datafε are not analytic, we get from Theorem3.5

lim
Mn→M

‖g( fε,Mn)− g( fε,M)‖L2(J) = 0,

and also lim
Mn→M

‖wε(Mn)− wε(M)‖L2(J) = 0;

τε is thus continuous on the compact set [α, β], and there exists some real numberMε ∈ [α, β]
such thatτε(Mε) = δε.
Let (εn)n be a sequence such that limn→∞ εn = 0. SinceM0 ∈ [α, β], we have

06 δεn 6 τεn(M0).

From (4.2), we obtain

06 δεn 6 efεn (M0); (4.5)

we conclude then, from (3.4), that

06 lim
n→∞

δεn 6 ef (M0) = 0. (4.6)
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(ii) Let Iε = {Mε ∈ [α, β]: δε = τε(Mε)}. Now Iε is a closed subset of [α, β] sinceIε = τ−1
ε (δε),

then it is a compact set and thereforeMε exists.

(iii) Assume there exists a subsequence
(
Mεn

)
n of (Mε)ε such that limn→∞ Mεn

= M0 < M0.
Introduce the notationgε(M) = g( fε,M), g0(M) = g( f,M), and similarly for the functions
wε andw0. By Theorem3.5, we have

∥
∥gεn

(
Mεn

)∥∥
L2(J)

→ ‖g0(M0)‖L2(J),

and by (3.4),

∥
∥wεn

(
Mεn

)∥∥
L2(J)

→ ‖w0(M0)‖L2(J).

Then

0= lim
n→∞

δεn = τ0(M0),

and we deduce that

M0 = ‖g0(M0)+ w0(M0)‖L2(J).

Since

‖ f − g0(M0)− w0(M0)‖L2(I ) 6 ‖ f − g0(M0)‖L2(I ),

thereforeg0(M0) + w0(M0) = g0(M0), which implies thatw0(M0) = 0, and in this case we
deduce thatef (M0) = 0; then‖ f − g0(M0)‖L2(I ) = 0, i.e. f = g0(M0) andM0 = M0, which
is a contradiction.

(iv) This is a straightforward consequence of Theorem3.5and the point (iii) above. Note that weak
convergence inH2(∂G) implies weak convergence when restricted toL2(J), since the traces of
functions inH2(∂G) are dense inL2(J).

�

REMARK 4.3 Theorem4.2does not provide us with the actual bound for non-analytic data as Theorem
4.1 does for analytic data. However, it provides us with a family of bounds permitting one to compute
extended data that converge—although weakly—to the required extension. The independent operation
of the two tasks (bound determination and data extension) here reaches its limits. In the following
subsections, we shall need to combine them again in order to build up robust reconstruction algorithms.

4.2 The zero-order algorithm (A0)

Theorem4.2 does not ensure the convergence of the boundMε to M0, since only weak convergence
of the analytic extensionsg( fε,Mε) to f holds onJ. Still, despite its ineffectiveness at least from a
theoretical point of view, it is interesting to describe the so-called ‘zero-order’ algorithm that we shall
use in the sequel as the basis on which higher-order algorithms will be built up.
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The (A0) algorithm :

1. Given M > 0, solve the (BEP) problem with respect to( fε,M) and getgε(M) =
g( fε,M), andefε (M) = ‖ fε − gε(M)‖L2(I ).

2. Solve the (BEP) problem w.r.t.
(

fε − gε(M)|I , efε (M)
)

and get

wε = g
(

fε − gε (M)|I , efε (M)
)
;

3. ComputeMε = ArgminM>0 τε(M) by some numerical method such as the golden
section search, seeKiefer (1953);

4. Compute

qε = −
∂θ Im gε(Mε)

Regε(Mε)
on J.

Note that ‘Argmin’ represents the value of the argumentM at which the functionalτε achieves its
minimal value.

The numerical implementation of this algorithm has been done using Matlab. The discrete Fourier
transform functionfft and the inverse discrete Fourier transformifft have been used in order to compute
the Fourier coefficients, whereas the Toeplitz matrix coefficients have been computed using the function
toeplitz. The finite differences functiondiff has been used to compute the function derivatives.

4.2.1 Solving the (BEP) problem for a prescribed multiplierλ. We are given data( fε), a prescribed
boundM and the related multiplierλ; we shall describe how to deriveλ from the boundM and compute
it, in the next sub-subsection. The solution of the (BEP) problem is obtained by solving the infinite
linear equation (3.1), (3.2) given by Theorem3.1. A discretization is needed, using a finite basis of
Fourier functions{en(z),−N 6 n 6 N}. The proper valueN to choose has been derived from an error
study: given the data (4.4) with a = 0.1 andc = 12, and the noisy datafε derived from it by adding
a perturbation of uniform norm varying from 1% to 15%, we have plotted the error‖ f − fε,N‖L∞(I )

between the actual data and the truncated noisy data (Fig.3). It turns out actually that a valueN = 7
(15 basis functions) is sufficient to bring this error below the noise level, if the level is around 15%.
Furthermore, the figure shows that it is not worthwhile to choose more than 35 basis functions (N = 17),
since the error is stabilized starting from that point. In order to fix our computations, and since these
computations are quite cheap, we have, however, chosenN = 25 (51 basis functions).

Let us now describe the computations. Having prescribed dataf on the partI of the boundary,
discretizing equation (3.1) leads to the following:

((I d + λTJ)gN)N = PH2(χJ fε)N, (4.7)

which can also be written as follows:

[(TI + (1+ λ)TJ)gN ]N = PH2(χJ fε)N, (4.8)

whereTI = PH2χI is the Toeplitz operator associated to the characteristic function related to the partI
of the boundary (in our implementation,I = (e−iθ0, eiθ0), θ0 ∈ [0, π ]).

The Toeplitz matrices of operatorsTJ (and TI = I d − TJ) with respect to the basis{en(z),
n = −N, . . . , N} are obtained by truncating the infinite matrix(Tn,m)(n,m)∈Z×Z given in (3.2) for
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FIG. 3. Error approximations w.r.t. the number of Fourier functions used.

−N 6 n,m 6 N. The linear system (4.8) is finally solved using the Matlab. Matlab’s Cholesky algo-
rithm calledpinv.

So far we have described how to go through items(1)–(2) of the above(A0) algorithm, provided
the multiplierλ is known. Let us now describe how to derive it from the boundM .

4.2.2 Determining the multiplierλ associated to the bound M.It has already been mentioned in
Proposition2.1 and Remark2.2 that the mappingλ → M(λ) is C1, bijective and decreasing from
(−1,+∞) to (0,+∞). Using the change of variables

λ =
r

1− r
− 1

gives us a functionM(λ(r )) decreasing on [0, 1). Furthermore, we know that the right value ofλ is that
ensuring that the computed (BEP) solution w.r.t.λ saturates the boundM , which actually means

V(λ) = ‖g( f, λ)‖L2(J) = M.

Having prescribed some threshold, a bisection method has been used to findr , increasingr if V(λ(r )) >
M and decreasing it otherwise.

4.2.3 Computing the right bound M.Let us now describe how to compute the right boundM , which
is Step 3 of the(A0) algorithm. Given a boundM , one needs to solve two (BEP) problems—as described
by items(1)–(2) of the(A0) algorithm—in order to computeτε(M):

1. Solve the (BEP) problem w.r.t.( fε,M) and getgε(M) = g( fε,M).

2. Solve the (BEP) problem w.r.t.
(

fε − gε(M)|I , ‖ fε − gε(M)‖L2(I )

)
and getwε(M).
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Having done so, we have, as defined above in (4.1),

τε(M) = |‖gε‖L2(J) − ‖gε + wε(M)‖L2(J)|.

Minimizing τε w.r.t. M has been done using the golden section search method forM ∈ [ A, B].
In case the bound provided by the algorithm is equal toA (respectivelyB), one needs to run it once

again, after enlarging the interval [A, B] on the left-hand side (respectively on the right-hand side).
Finally, we compute the (BEP) extensiongε associated with the boundMε so obtained, in order

to compute the Robin coefficient, which requires us first to differentiate its imaginary part using finite
differences.

4.3 The higher-order algorithms (An)

The fourth statement in Theorem4.2 can be seen as a weak robustness result for the (A0) algorithm.
This is not strong enough even for the data extension, and it is definitely less than our needs for the
impedance computation. This is the reason why, in search of better robustness properties, we shall now
investigate higher-order algorithms based on the same tools.

The basic idea is actually to apply the above-described zero-order algorithm to thenth derivatives
of the prescribed data and then to integraten times the so extended derivatives.

Let fε = f +ε, whereε is a non-analytic, but still smooth, perturbation (ε ∈ Wn,2(I )\Hn,2(∂G)|I ),
and assumef ∈ Hn,2(∂G). The (An) algorithm is thus expressed as follows:

The (An) algorithm :

1. Compute thenth derivative f (n)ε of fε on I ;

2. Apply the zero order method to the dataf (n)ε , and getg(n)ε ;

3. Integraten timesg(n)ε and getgn,ε;

4. Compute

qn,ε = −
∂θ Im gn,ε

Regn,ε
on J.

Because of the continuity properties of Section3.2, these algorithms have much better robustness prop-
erties than the zero-order one. This is the content of the next theorem.

THEOREM 4.4 (Robustness of thenth-order method)
Supposeφ ∈ Wn,2(I ), q ∈ Qn, n > 1. Let then fε = ud + i

∫
φ dθ + ε ∈ Wn,2(I ) andgn,ε as above.

As ‖ε‖Wn,2(I )→ 0, it holds that

Regn,ε → u in Wn,2(∂G), ∂θ Im gn,ε → ∂nu in Wn−1,2(∂G).

Also

qn,ε → q in Wn−1,2(J).

Proof. This is an immediate consequence of Theorem3.6. �
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REMARK 4.5 This ‘robustness’ result is obtained for smooth noise (ε ∈ Wn,2(I )), a feature that noise
is actually not expected to have. Suppose nowε ∈ L∞(I ) with |ε(x)| 6 ε for x a.e. inI . Let us denote
by f̃ ε the smoothed function obtained by using cubic B-splines with a path lengthh. It has been proved
in Chaabaneet al. (2008) that we then have the following estimates:

‖ f̃ ε − f ‖L∞(I ) 6 c(ε + h2), ‖( f̃ ε − f )′‖L∞(I ) 6 c
( ε

h
+ h

)
.

Choosing nowh = O(
√
ε), we get a

√
ε error on f ′, which means( f̃ ε)′ can be seen as noisy data

w.r.t. f ′, with a noise level
√
ε. By ‘bootstrapping’ with the B-spline approximation, we can thus get an

estimate of orderε
1

2p on thepth derivative of f .
This means that the smoothing of noisy data by using proper B-splines provides us with ‘smoothed

noisy data’ that meet the assumptions of the above theorem. Actually, this is the way numerical results
are usually run: data are smoothed prior to being processed. Observe that in this situation, a compu-
tational algorithm for a Hardy–Sobolev approximant can be directly used, as inBaratchart & Leblond
(1992) in the framework of the unit disc.

In Section5, we are going to confirm these robustness properties by a thorough numerical study
which shows the efficiency of the higher-order methods in the tasks of both extending the data and
recovering the electrical impedance coefficients.

5. Numerical validation

In the numerical results we are presenting in this section, we have considered the cases of both full
prescribed data (i.e. data prescribed on the whole of the outer boundary) and incomplete data (i.e. data
prescribed on some part of the outer boundary). The latter case is actually the most realistic one, particu-
larly concerning non-destructive control applications. The impact on the outcome of several parameters
has been studied:

• regularity of the data to be reconstructed,

• amount of prescribed data,

• noise level.

The non-singular data we have considered are those resulting from

f (z) = exp(z), (5.1)

whereas data with a singularitya in sD have been generated by (4.4) with c = 12. The closera becomes
to the circlesT, with s= 0.6, the more ‘singular’ the data to reconstruct become.

5.1 Case of full external data

Extension formulae at order zero are provided byChalendaret al. (2001), Chalendar & Partington
(1999) andSmith(2005), and formulae for the (An) algorithms (n = 0, 1, 2) have been straightforwardly
derived from them.

First, the non-singular data to be reconstructed are those resulting from the function (5.1). Figure4
shows that the three methods (zero, first and second order) provide very accurate results, as regards the
analytic extension as well as the electrical impedance computed from it.
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FIG. 4. Nyquist plot of the extended data ((Regn,ε(z), Im gn,ε(z)) asz varies insT) (left) and plot of the electrical impedance
(right) obtained from full external smooth data and algorithms of order 0, 1, 2.

Things change however when it comes to noisy data, as can be noticed in Fig.5. Although the
extended data using the zero- and first-order methods remain acceptable up to a 10% level noise, the
accuracy of the reconstructed electrical impedance drops dramatically when the noise level increases.
Actually, the zero-order method turns out to be definitely unsuitable for the electrical impedance recov-
ery task, whereas the first- and second-order ones behave quite well in that respect.

These conclusions were predictable from the theoretical results on robustness proved in Section4.
The zero-order method possesses only weak robustness properties, regarding the extended data but not
the electrical impedance. From Theorem4.4, we derive that the first-order method is the lowest possible
ensuringL2 convergence for the electrical impedance.

The sensitivity of the reconstruction method with respect toa, which parameterizes the singularity
of the data generated by the function (4.4), is summarized in Fig.6. As expected, the accuracy on
the electrical impedance computed drops whena gets too close to the internal boundary. The first-
and second-order methods do not show qualitative differences, though the second-order one is more
accurate, even for data singular nearsT. The next part of the study will thus focus on the second-order
algorithm.

5.2 Case of incomplete external data

In this section, we are concerned with the behaviour of the algorithm when data are lacking on some part
of the outer boundary. This situation is likely to happen quite often in practice, and this is the reason why
we have run quite an extensive numerical study, investigating the impact of the following parameters on
the result:

• amount of prescribed data, as measured by the ratioρ = |I |2π , where|I | is the Lebesgue measure of
the prescription areaI on the outer boundary, whose length is 2π ;
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FIG. 5. Recovery from full external noisy data (methods of order 0, 1 and 2)—bounded extensions (left) and electrical impedances
(right) for 1%, 5% and 10% noise.



INVERSE PROBLEMS IN ANNULAR DOMAINS 501

FIG. 6. Plot ofL∞- andL2-errors onq w.r.t. the distance of the singularity to the inner boundary: first-order (left) and second-
order method (right).

FIG. 7. Plot ofL2- andL∞-errors w.r.t. the amount of prescribed data on the outer boundary (second-order algorithm).

• singularity of the data, as parameterized byδ = 1
sd(a, sT) = 1− |a|/s, wherea is the complex

number defined in the previous section (location of a singularity inside the inner disc);

• noise level.

In the case of non-noisy data (5.1), Fig. 7 shows that the error on the Robin coefficient remains accept-
able for as small a quantity of data as that prescribed on half the outer boundary, and the error decreases
quite fast with respect to the amount of prescribed data.
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Let us now study the sensitivity of the reconstruction method to the data regularity. By makinga
closer to the circlesT, the behaviour of the function (4.4) gets harsher, though remaining smooth as
stated in Theorem4.4. Unsurprisingly, the left-hand plot in Fig.8 shows that the harsher the data, the
lower the accuracy on the computed electrical impedance. However, the plots in the right-hand side of
Fig. 8 also indicate how to make up for the lack of regularity by increasing the amount of prescribed
data. Highly singular functions need an almost complete set of external data in order to compute the
electrical impedance with an acceptable accuracy.

The noise effects are somewhat similar. The right-hand plot of Fig.9 displays curves relating the
noise level to the amount of prescribed data for different targeted error levels. Once again, we observe
that to some extent, one can make up for the noise effects by increasing the amount of available data.

FIG. 8. Plots of errors w.r.t. amount of data (left) and ofρ versusδ for a 1%, 5% and 10% error level (right).

FIG. 9. Plots of errors w.r.t.ρ in the case of noisy data (left) and ofρ versus noise at various error levels.
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6. Conclusion

The methods we have been presenting in this work constitute a family of fast data completion algorithms
solving the Cauchy problem for the Laplace equation in an annular domain, and up to a conformal
mapping, in similar domains in the plane. The main goal was to compute accurately from these data the
electrical impedance on the inaccessible inner part of the boundary from the extended data.

To that end, we have derived new explicit formulae in the case when the set of available data on the
outer boundary is not complete. These formulae have been implemented in order to build up algorithms
using the BEPs and needing the actual bound on the unknown data to be computed at the same time
as the data are extended. These algorithms use a new stabilization technique that proves to be fast and
efficient. Beside their efficiency, the so designed algorithms have been proved to be robust with respect
to noise, and a thorough numerical study has been run that widely confirms these theoretical predictions.

Despite their valuable qualities (accuracy and robustness at a low computational cost), these algo-
rithms have two limitations. The first is related to the exclusive focus on the Laplace equation. Though
not restrictive for corrosion detection, this limitation would need to be lifted, since extensions to other
operators such as Maxwell’s equations electroencephalography (EEG) and magnetoencephalography
(MEG) would be highly appreciated. This is not, however, a straightforward extension of the present
work. On the other hand, lifting the limitation to 2D problems is the crucial issue to investigate in order
to deal with ‘real-life problems’. But before tackling these two challenging developments, the next step
is to study ‘real 2D problems’, i.e. 2D problems in other domains than the annulus, in order to obtain a
clearer idea of how the conformal mapping affects the numerical results.

Extensions of these methods to 3D domains are a subject of current investigation, seeAtfeh et al.
(2008).
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Appendix

Proof of Lemma3.3.
FromSmith(2005), we can write

PH2(∂G)φ(z) =
∑

n∈Z

an + bns2n

1+ s2n
zn,

where

an =
1

2π

∫ 2π

0
φ(eiθ )e−inθdθ =

1

2π

∫ θ0

−θ0
φ(eiθ )e−inθ dθ +

1+ λ

2π

∫ 2π−θ0

θ0

φ(eiθ )e−inθ dθ

=
1

2π

∫ θ0

−θ0
f (eiθ )e−inθ dθ +

1+ λ

2π

∫ 2π−θ0

θ0

f1(e
iθ )e−inθ dθ

and

bnsn =
1

2π

∫ 2π

0
φ(seiθ )e−inθ dθ =

1+ λ

2π

∫ 2π

0
f1(seiθ )e−inθ dθ.

�
Proof of Lemma3.4.
Let φ = χJg. Then we have from Lemma3.3

PH2(∂G)φ(z) =
∑

n∈Z

cn + dns2n

1+ s2n
zn,

where

cn =
1

2π

∫ 2π−θ0

θ0

g(eiθ )e−inθ dθ

and

dnsn =
1

2π

∫ 2π

0
g(seiθ )e−inθ dθ.

Let g(z) =
∑

n∈Z gnzn for z ∈ G, then

cn =
1

2π

∫ 2π−θ0

θ0

∑

m∈Z

gm eimθ e−inθ dθ

=
1

2π

∑

m∈Z

gm

∫ 2π−θ0

θ0

ei(m−n)θ dθ

= gn

(
1−

θ0

π

)
−
∑

m6=n

gm
sin(m− n)θ0

π(m− n)



506 M. JAOUA ET AL.

and

dnsn =
1

2π

∫ 2π

0

∑

m∈Z

gmsm eimθ e−inθ dθ =
1

2π

∑

m∈Z

gmsm
∫ 2π

0
ei(m−n)θ dθ = gnsn.

Then we deduce that

PH2(∂G)χJg(z) =
∑

n∈Z

1

1+ s2n



gn

(
1−

θ0

π

)
+ gns2n −

∑

m6=n

gm
sin(m− n)θ0

π(m− n)



 zn;

therefore,

T g(z) =
∑

n∈Z

1

1+ s2n



gn

(
1+ s2n −

θ0

π

)
−
∑

m6=n

gm
sin(m− n)θ0

π(m− n)



 zn. �
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