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Analytic approximation with real constraints,
with applications to inverse diffusion problems

J. Leblond, J.-P. Marmorat, and J. R. Partington

Abstract. The methods of constrained approximation in Hilbert spacesof analytic functions are
applied to the solution of the inverse problems of detectingcracks or sources in a two-dimensional
material by means of boundary measurements. Issues of well-posedness are discussed, and results on
continuity and robustness with respect to the given data areestablished. Constructive and efficient
methods for resolution of the above approximation problemsare presented. The techniques are
illustrated by numerical examples incorporating a furtherrational approximation step.
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1. Introduction

1.1. Notation

By H2 we denote the Hardy space on the unit discD, and byH
2

the set of functionsf
for f ∈ H2, wheref(z) = f(1/z̄). It is well-known thatH2 may be embedded
isometrically as a closed subspace ofL2(T), for T the unit circle.

The orthogonal complement ofH2 in L2(T) is written asH
2
0; it coincides with

the subset ofH
2

consisting of functions that vanish at infinity. We writeP for the
orthogonal projectionP : L2(T) → H2 and similarlyP for the orthogonal projection

P : L2(T) → H
2
.

Likewise,H∞ denotes the Hardy space of bounded analytic functions inD, which
may be regarded as a closed subspace ofL∞(T) in a natural way, whileA(D) ⊂ H∞

denotes the disk algebra consisting of analytic functions with continuous boundary
values. See [15] for more details on Hardy spaces.

Let I be a compact subset of the unit circleT ⊂ C such thatI andJ = T \ I have
positive Lebesgue measure. The usual inner product inL2(T) is denoted by〈f, g〉 for
f , g ∈ L2(T), the associated norms onL2(T) andL2(I) are written as‖ · ‖ and‖ · ‖I ,
respectively, while‖ · ‖2

J = ‖ · ‖2−‖ · ‖2
I onL2(J). Wheneverf1 is defined onI andf2

onJ , we writef1 ∨ f2 for the function equal tof1 on I andf2 onJ .
Let E be a subset ofT with positive measure. The space of real-valuedL2 functions

on E is denoted byL2
R
(E). We also writeχE for the characteristic function ofE. We

recall that the modulus of continuity of a functionf ∈ C(E) is defined by

ωf(δ) = sup{|f(x)− f(y)| : x, y ∈ E, |x − y| ≤ δ}.
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For 0< α < 1 the Lipschitz (or Hölder–Zygmund class) is defined by

Cα(E) = {f ∈ C(E) : ωf (δ) = O(δα)},

with norm

‖f‖α = ‖f‖L∞(E) + sup
δ>0

ωf(δ)

δα
.

To relate the real and imaginary parts of an analytic function, we shall make use of
theHilbert transform(or harmonic conjugation), of which the basic properties can be
found in [3, pp. 104–106]. Letu be a function inL2

R
(T); then the Hilbert transform

of u is the unique functionv in L2
R
(T) with vanishing Fourier coefficient ˆv(0) = 0

such thatu + iv has a holomorphic extension to the disc. The Hilbert transform is a
contraction in theL2 norm.

1.2. Physical motivation: inverse diffusion problems

Methods of constrained approximation have been used before in the solution of various
inverse problems for PDEs, and we refer to the survey [13] for an introduction to this
topic in other contexts.

Cracks

Consider the inverse geometrical problem of detecting and locating cracks, modelled
by C2 simple curvesσ, inside a 2 dimensional material by means of boundary mea-
surements. These can consist of either thermal, electrical, or acoustic data, depending
on the experimental framework. Without loss of generality, using conformal mapping,
we can handle this issue in the unit discD ⊃ σ, where it can be written as [1, 10]:






∆u = 0 in D \ σ,

∂u

∂n
= 0 on σ,

∂u

∂n
= Φ on T,

(1.1)

for a flux Φ ∈ L2
R
(T) which satisfies

∫

T

Φ dθ = 0, (1.2)

and with the normalisation condition
∫

T

u dθ = 0.

From additionalincompleteboundary data, that is given a functionuI (built from mea-
surements) onI ⊂ T, the inverse problem consists in determiningσ ⊂ D such that the
solutionu to (1.1) satisfies:

u
∣∣
I

= uI .
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Such problems have been considered since [16], mainly by iterative methods. Among
recent work, we mention [4] and [12]; an extensive bibliography appears in [11]. Com-
plex analytic methods were introduced in [10] as a way of avoiding repeated resolutions
of the associated direct problem.

In order to extend the available datauI to the whole outer boundaryT, the Hilbert
transform (or harmonic conjugation) allows one to work in the frameworkof analytic
function theory and Hardy spaces, where appropriate approximation techniques will
be used. Indeed, thanks to the Cauchy–Riemann equations, there existsa functionU
analytic inD \ σ such that the above solutionu satisfies

u = ReU in D.

Equivalently, there exists a (conjugate harmonic inD \ σ) function v such thatU =
u + iv and

∂u

∂n
=

∂v

∂θ
,

∂u

∂θ
= −

∂v

∂n
on T.

Thus, the trace ofU at pointsξ = eiθ on I is given here by:

U(ξ) = uI(ξ) + i

∫ θ

θa

Φ(eiτ ) dτ, (1.3)

for someeiθa ∈ I, and is Hölder smooth up toT, see [1]:U ∈ C1/2(T). Further, it
holds that:

U(z) =
1

2iπ

∫

σ

[u](τ)

z − τ
dτ + G(z), ∀z ∈ D \ σ, (1.4)

for some functionG ∈ H∞ and if [u] denotes the jump ofu on σ, which is known to
belong toC1/2(σ), see [10].

Sources

Another geometrical inverse problem is to determine sources located inside a domain
from partially overdetermined data. The case of pointwise dipolar sources is, in partic-
ular, related to applications in medical imaging as the inverse electroencephalography
issue (EEG), see e.g. [5]. In dimension 2, this raises the following problem [7]:






∆u =
∑m

k=1 pk · ∇δCk
in D,

∂u

∂n
= Φ on T,

(1.5)

with Ck ∈ D, pk ∈ C, and for a fluxΦ ∈ L2
R
(T) which satisfies (1.2).

From additionalincompleteboundary datauI on I ⊂ T, the inverse sources prob-
lem consists in determining the numberm, the locations{Ck} ⊂ D and the complex
moments{pk} of the sources, such that the solutionu to (1.5) satisfies:

u
∣∣
I

= uI .
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This problem is discussed in [19] which contains an extensive bibliography.
Using harmonic conjugation and (1.3), this also allows one to build the trace on

I ⊂ T of a functionU analytic and Hölder smooth inD \ {Ck}:

U(z) =
1

2iπ

m∑

k=1

pk

z − Ck
+ G(z), ∀z ∈ D \ {Ck}, (1.6)

for some functionG ∈ A(D), see [7].

Recovery of analytic function

Let S denote either the singular integral in expression (1.4) or the sum in (1.6), so that
in both casesU = S + G.

Assume that measurementsu∅
I of a solution to (1.1) or (1.5) on asafedomain (with

σ = ∅) are also available onI, from the same fluxΦ. This allows one to obtain onI
the associated functionU∅, see (1.3):

U∅(ξ) = u∅
I + i

∫ θ

θa

Φ(eiτ ) dτ,

for someeiθa ∈ I, which is analytic in the whole ofD in view of (1.4) or (1.6), and
whose imaginary part coincides with that ofU onT. As a result, the function

f = U − U∅ = G − U∅ + S = g + S,

with g = G − U∅, is real valued onT. Becauseg ∈ H2 while S ∈ H
2
0, we get that

S = g on T,

whence
f = 2 Reg = 2 ReS on T.

We therefore seek to recoverg, hence alsoS and ultimatelyσ or {Ck}, from the partial
and normally corrupted values off obtainable onI, wheref = uI − u∅

I . To do this we
use the methods of analytic approximation, as outlined in the next section.

2. Bounded extremal problems

2.1. Statement of the problem

A systematic approach (using duality) to extremal problems in Hardy spaces can be
traced back to [18, 24] around 1950 and has been extensively studiedsince then [15, 21].
The standard Bounded Extremal Problem (BEP), which has its origins withKrein and
Nudel’man (see [2, 9, 22]), and is of importance in frequency-domain systems identi-
fication, may be stated as follows.
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Problem 2.1. Given f ∈ L2(I), φ ∈ L2(J) and M > 0, find g0 ∈ H2 such that
‖g0 − φ‖J ≤ M and

‖g0 − f‖I = inf {‖g − f‖I : g ∈ H2, ‖g − φ‖J ≤ M}.

For the application to the inverse problem outlined above, the following version of
the problem is more appropriate.

Problem 2.2. Givenf ∈ L2
R
(I), φ ∈ L2(J) and positive constantsα, β, M , let φr =

Reφ andφi = Im φ and define the setCα,β,M by

Cα,β,M = {g ∈ H2 : α2‖Reg − φr‖
2
J + β2‖ Im g − φi‖

2
J ≤ M2}.

Find g0 ∈ Cα,β,M such that

‖f − Reg0‖I = inf {‖f − Reg‖I : g ∈ Cα,β,M}.

Remark 2.3. Ideally, we might prefer to work with a constraint such as‖ Im g‖J ≤ M
(small), that is, to takeα = 0, but the solution to this problem is no longer unique in
general. To see this, note that the functionw(z)= arccoshs, wheres= i(1−z)/(1+z),
lies in H2. This provides a conformal mapping from the region{z ∈ C : |z| < 1}, via
{s ∈ C : Im s > 0}, to the domain

{w ∈ C : Rew > 0, 0 < Imw < π}.

See for example [25, p. 177]. TakingI to be the circular arcT ∩ {Rez ≥ 0}, we see
that Rew = 0 onI, whereas| Imw| ≤ π on J . Hence, forf = φr = φi = 0, a family
of multiples ofw solves the extremal problem simultaneously.

We can of course takeα small in comparison withβ, if we choose. An alternative
constraint that would be of interest is‖α Reg ± β Im g‖J ≤ M , but this is closely
related to Problem 2.2 because of the parallelogram identity

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2,

which holds in any Hilbert space, in particular inL2(J). We remark also that taking
α = β = 1 in Problem 2.2 provides the simple norm constraint of Problem 2.1, namely
‖g‖J ≤ M .

A related problem is the following, which was solved in [20].

Problem 2.4. Given f ∈ L2(I), φ ∈ L2
R
(J) and M ≥ 0, find g1 ∈ H2 such that

‖ Im g1 − φ‖J ≤ M and

‖g1 − f‖I = inf {‖g − f‖I : g ∈ H2, ‖ Im g − φ‖J ≤ M}. (2.1)
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2.2. A general Hilbert space framework

In fact Problems 2.2 and 2.4 can both be re-expressed using the language of [14], pro-
vided that we accept the additional technical difficulty involved in regarding H2 as a
Hilbert space withreal scalars. To see this, we recall the following result. It was stated
originally for complex Hilbert spaces, because the main application was in the con-
struction of invariant subspaces, but this is not necessary.

Let H, I andJ be real Hilbert spaces andA : H → I andB : H → J bounded
linear operators, such thatA andB are coprime, in the sense that there exists a constant
η > 0 such that

‖Ax‖2 + ‖Bx‖2 ≥ η‖x‖2 for all x ∈ H. (2.2)

We suppose also thatA has dense range. Then the associated extremal problem is as
follows.

Problem 2.5. GivenxJ ∈ J , xI ∈ I, andM > 0, let CM
x0

be defined by

CM
x0

= {y ∈ H : ‖By − xJ ‖ ≤ M},

and suppose thatCM
x0

is nonempty whereasAy 6= xI for all y ∈ CM
x0

. Find y0 ∈ CM
x0

such that
‖Ay0 − xI‖ = inf {‖Ay − xI‖ : y ∈ CM

x0
}. (2.3)

Under the hypotheses above, Problem 2.5 has a unique solution and the extremal
vector saturates the constraint, in the sense that‖By0 − xJ ‖ = M .

Theorem 2.6([14]). The solution to Problem 2.5 is given by(A∗A − γB∗B)y0 =
A∗xI − γB∗xJ , whereγ < 0 is the unique constant such that‖By0 − xJ ‖ = M .

We shall discuss in Section 3 how to determine the appropriate value of the parame-
terγ, using the fact that the relation betweenM andγ is continuous and monotonic.

In practical applications,xI represents measured data,xJ is a reference vector,
andM a constraint that may be chosen in the light of experience. It is therefore es-
sential to know that the model obtained, which is here denotedy0, will depend con-
tinuously on the data, and this is shown in the next result. Recall that we assumed in
Problem 2.5 thatxI 6∈ ACM

x0
.

Theorem 2.7. The solutiony0 to Problem 2.5 depends continuously onxI andM , xJ

being fixed.

Proof. First, for a fixedxI , the quantitye = ‖Ay0−xI‖ is a convex decreasing function
of M , since we can take linear combinations of solutions for differentM ; hencee varies
continuously withM .

Now suppose that‖x(n)
I −xI‖ → 0 andMn → M . We claim that the corresponding

solutionsy(n)
0 converge in norm toy0. Note first thate(n) → e = e(M), for if δ > 0
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ande(n) < e − δ infinitely often, then‖Ay
(n)
0 − xI‖ < e − δ/2 infinitely often and

‖By
(n)
0 − xJ ‖ = Mn, soe(Mn) < e(M) − δ/2, a contradiction to the continuity ofe

with respect toM . Or if e(n) > e + δ infinitely often, let ỹ(n)
0 denote the solution

associated withxJ , xI andMn. Then, using the above continuity property ofe with
respect toM , we get that‖Aỹ

(n)
0 − xI‖ → e, whence‖Aỹ

(n)
0 − x

(n)
I ‖ < e(n) infinitely

often, a contradiction to the optimality ofy
(n)
0 . We deduce thate(n) → e.

Now (y
(n)
0 ) is a bounded sequence. We show that every subsequence of it has a

further sub-subsequence converging in norm toy0; this will imply that the original
sequence also converges in norm toy0. Now suppose by passing to a subsequence and
relabelling thaty(n)

0 converges weakly toy′; then

(
A

B

)
y

(n)
0 converges weakly to

(
A

B

)
y′,

and it follows that‖Ay′ − xI‖ ≤ e and ‖By′ − xJ ‖ ≤ M , hencey′ = y0. Also
‖Ay

(n)
0 −xI‖ → ‖Ay0−xI‖ and‖By

(n)
0 −xJ ‖ → ‖By0−xJ ‖, implying thatAy

(n)
0 →

Ay0 and similarlyBy
(n)
0 → By0. Hence‖y(n)

0 − y0‖ → 0. The result follows. 2

The following result enables one to find an appropriate parameter in Theorem 2.6
(and this will be used again in Corollary 2.9) by an interval-halving search.

Proposition 2.8. In Theorem 2.6, the parameterM depends continuously and monoton-
ically onγ, and vice-versa.

Proof. Since(A∗A − γB∗B)−1 depends continuously onγ for γ < 0, we see thaty0,
and henceM also, depends continuously onγ. It is impossible for two different values
of γ to yield the samey0, as otherwise we would haveB∗By0 = B∗xJ , implying
that the samey0 is a solution to Problem 2.5 foreveryvalue ofγ, which is clearly
impossible. Thus the mapping fromγ to M is continuous and also monotonic (since
injective), and hence the same is true of its inverse. 2

2.3. Solution to Problem 2.2

Back to Problem 2.2, let us now takeH = H2, I = L2
R
(I), andJ = L2

R
(J) ⊕ L2

R
(J)

(theL2 direct sum), all regarded asreal Hilbert spaces. The real inner product onH2 is
just Re〈h1, h2〉, where〈h1, h2〉 is the usual inner product. The real-linear operatorsA
andB are defined by

Ag = (Reg)
∣∣
I
, Bg = (αReg, β Im g)

∣∣
J
,

for g ∈ H. Moreover,xJ = (αφr, βφi) andxI = f . The desired solutiony0 is the
same as ourg0.

To see that condition (2.2) is satisfied we may use the theorem of M. Riesz that the
Hilbert transform is a contraction, as in Lemma 3 of [20] where it is shownthat there
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is an absolute constantC > 0 such that, for allh ∈ H2, one has

‖h‖ ≤ C max{‖h‖I, ‖ Imh‖J}.

On exchanging the roles ofI andJ , and replacingh by ih, one arrives easily at an
inequality equivalent to (2.2).

The adjoint operatorsA∗ : I → H andB∗ : J → H are given by

A∗f = P (f ∨ 0), B∗(φ1, φ2) = P (0∨ (αφ1 + iβφ2)).

Corollary 2.9. The solution to Problem 2.2 is given by

P (Reg0χI − γ(α2 Reg0 + iβ2 Im g0)χJ) = P (fχI − γ(α2φr + iβ2φi)χJ), (2.4)

whereγ < 0 is the unique constant such thatα2‖Reg0−φr‖2
J+β2‖ Im g0−φi‖2

J = M2.

Proof. This is now a simple consequence of Theorem 2.6, using the identifications
above. 2

Let T : H2 → H2 be the Toeplitz operator defined by

Tg = PχJ g.

Introduce the Hankel operatorH : H2 → H
2

defined by

Hg = PχJ g.

Put
λ = 1 + γα2 < 1, µ = γβ2 < 0. (2.5)

Define
Γg = g + g(0)− (λ + µ)Tg − (λ − µ)Hg,

for g ∈ H2 (observe thatHg = PχJ g = PχJ ḡ). Write

F = 2P (fχI − γ(α2φr + iβ2φi)χJ).

It can be deduced from (2.4) that
Γg0 = F.

For g ∈ H2, let ĝ ∈ l2
N
(C) denote the sequence of its Fourier coefficients. Introduce

now the linear operatorsTF andHF on l2
N
(C) defined by:

TF ĝ = T̂ g, HF ĝ = Ĥg.

It follows that, withe0 = (1, 0, . . . ) ∈ l2
N
(C):

Γ̂g = ĝ + ĝ(0)e0 − (λ + µ)TF ĝ − (λ − µ)HF ĝ. (2.6)
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This allows us to write:
Γ̂g = Γr Reĝ + iΓi Im ĝ,

whereΓr andΓi are real linear operators on real sequences inl2
N
(R).

Taking real and imaginary parts in (2.6) leads to:

Γra = a + a(0)e0 − (λ + µ)TF a − (λ − µ)HF a, (2.7)

Γia = a + a(0)e0 − (λ + µ)TF a + (λ − µ)HF a, (2.8)

for a ∈ l2
N
(R). Then

Re ˆg0 = Γ−1
r ReF̂ , Im ĝ0 = Γ−1

i Im F̂ . (2.9)

2.4. More on Problem 2.4

For Problem 2.4, we takeH = H2, I = L2(I), J = L2
R
(J), and use the real-linear

operatorsA andB defined by

Ag = g
∣∣
I
, Bg = (Im g)

∣∣
J
.

In [20], it was conjectured that the analogous problem forL∞ andH∞ might be
ill-posed. This is in fact the case, as the following example shows.

Example 2.10. Let I be the arc{z ∈ T : |argz| ≤ π/4}, andJ = T \ I as usual.
Definef(z) = log((1− iz)/(1 + iz)), where we take analytic continuation from the
branch of log withf(0) = log 1= 0. This function has the following properties:

Sincez 7→ (1−iz)/(1+iz) is a conformal bijection between the discD and the right
half planeC+, and log(reiθ) = logr + iθ, we see that| Im f | ≤ π/2 onT, whereasf
is unbounded. Indeedf is in H2 but notH∞. However,f is bounded onI.

Now takeM = π/2 andφ = 0. We claim that

inf {‖g − f‖L∞(I) : g ∈ H∞, ‖ Im g − φ‖L∞(J) ≤ M} = 0.

For if we write f = u + iv (real and imaginary parts), thenf can be approximated
arbitrarily closely onI by the Fejér meansgn = un + ivn of its Fourier series, which
in this case are just polynomials inz. This follows becausef is continuous onI and
f ∈ L1(T). Moreover,vn is just the Fejér mean of the Fourier series forv, and, by
well-known properties of the Fejér kernel [26, p. 86],‖vn‖∞ ≤ ‖v‖∞ = π/2.

On the other hand, it is clear that there is no functiong ∈ H∞ such thatg = f in I,
sinceI is a set of uniqueness forH2.

3. Algorithmic and numerical results

3.1. An algorithm for Problem 2.2

A matlab version of the described algorithm (Section 2.3) has been implemented.
Analytic functions, as well as Hankel and Toeplitz operators, are approximated on
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the Fourier basis, keeping only a finite numberN of Fourier coefficients. In all the
following examples,N = 512.

Searching for the good value ofγ is done iteratively: starting with an initial predic-
tion γ = γ0, we compute the analytic functiong0 = g0(γ) given by equations (2.9)
together with (2.5), (2.7), (2.8).

We then decide to increase or decreaseγ according to the value of1

eJ(γ) = α2‖Reg0(γ)− φr‖
2
J + β2‖ Im g0(γ)− φi‖

2
J :

if eJ(γ) > M2 then increase γ,

if eJ(γ) < M2 then decreaseγ.

Convergence is guaranteed in view of the continuous monotonic relation betweenγ
andM established in Proposition 2.8.

In fact, without further information, the choice of the control parameterM is likely
to be heuristic; however, an unsuitable choice would be reflected in an unreasonable
error achieved in the approximation problem. A slight modification of the preceding
algorithm has been implemented, allowing one to control a dimensionless parameterk
which is the ratio of the erroreJ(γ) on J introduced above to the approximation error
on I: eI(γ) = ‖g0(γ)− f‖2

I . These two quantities vary in a monotonic opposite way
whenγ varies, and the final value forγ is found by an interval-halving procedure. Then,
for a givenk, the actual minimization problem is: minγ{eI(γ) | eJ(γ)− keI(γ) < 0}.
Good values fork lie in a neighbourhood of 1, typicallyk ∈ [1/10, 10], which means
that the errors onI andJ havethe same order of magnitude.

3.2. Inverse problem examples

The following examples show results for

• the crack inverse problem with partial boundary data (Examples 1 and 2),
• the dipolar sources inverse problem with partial boundary data (Examples 3 and 4),

as described in Section 1.2. There are actually two issues here: first, recovery of miss-
ing boundary data, which is achieved by the resolution of Problem 2.2; second, more
ambitiously, attempting to find the approximate location of the singularities, whichis
done by bestL2 rational approximation methods that are justified elsewhere [6, 8, 17].
Pretty good “recovery” capacity of the combined algorithm is demonstrated by these
examples. Note that Theorem 2.7 guarantees the robustness of the first step with respect
to available (possibly noisy) data, while strong continuity properties of the second step
are established in [6].

3.2.1. Cracks

For crack examples, we apply the following procedure. First we solve the “direct prob-
lem”: the 2D domain is the unit diskD. Cracks are modelled by thin subdomains.

1To be more precise,γ is allowed to vary in the interval(−∞, 0]. Instead, we map this interval to the bounded
interval [0, 1] by puttingγ = r/(r − 1), and we look for the appropriate value ofr ∈ [0, 1].
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Given a boundary fluxΦ satisfying the zero-mean value property, the Neumann prob-
lem defined by (1.1) is solved for the zero-mean solutionu. For this we use a PDE
integration library2. The same equations with same boundary fluxΦ are solved on
a safe (no crack) domain and this gives the zero-mean value solutionu∅. Boundary
values of the error functionu − u∅ are picked on theI subarc and used as “measures”.

Then, we solve the “inverse problem” of finding the missing imaginary part on sub-
arcI and the missing data on subarcJ of the error function. This is done by solving for
the analytic functiong of Section 1.2, a solution to Problem 2.2. We takef = u − u∅

on I and we choose as reference constraint functionφ = 0 on J . Finally, a bestL2

rational approximation of the conjugateg of the analytic extensiong is performed [17].
The computed poles are seen to accumulate on geodesic arcs, which arearcs of circles
orthogonal to the boundaryT, as expected for piecewise analytic cracks; see [8, 11]
where the result is established for an analytic crack. Of course, in general the crack is
not a geodesic arc, but there is such an arc which joins the endpoints of the crack (or
the endpoints of its analytic parts), and this assists in locating the crack.

In Examples 1 and 2 of Section 3.3, we identify cracks. The flux is chosen to be a
trigonometric polynomial of low degreeΦ(x, y) = x . The solutiong of the inverse
problem forf = u − u∅ is seen in the first plot of Figures 2 and 4, respectively. We
note that it is virtually indistinguishable from the data, where the latter is given.For
the subsequent rational approximation step, the number of poles of the approximant is
decided according to theL2 error observed.

In both examples, significant poles accumulate near the geodesic passing through the
extremities of the crack. The supposed unknown crack is drawn for comparison (heavy
line). A number of poles also accumulate on arcs of circles joining the endpoints ofI
andJ . However, their residues are small and they are a result of the first approximation
step, which induces a discontinuity ofg at these points. This is linked to the choice
of M and an alternative approach would be to work with other constraints, suchas
those given by Hardy–Sobolev or uniform norms.

3.2.2. Dipoles

For dipole examples, we apply the following procedure. We solve the “direct problem”
in D: the fundamental solutionE (null at infinity) of the dipole distribution is explicitly
given (E = ReS, see equation 1.6) and we compute a harmonic functionh so that the
solutionu = h + E has normal derivative onT equal toΦ.

Here we take againφ = 0 as constraint reference onJ , so thatu∅ = 0 andf = u
on I. Then, we solve the “inverse problem” by solving Problem 2, just as forcracks,
thus gettingg, shown in the second plot of Figures 5 and 7, for Examples 3 and 4 of
Section 3.3. Again it matches the given data very well, where the latter is available.

Once more, in the subsequent rational approximation step, the number of poles of
the approximant is decided according to theL2 error observed. The most significant
poles of the bestL2 rational approximant tog are seen to be located at the true dipoles,
as established in [7]. This is a direct consequence of the fact thatS is rational. (Note
that in [7] the case of monopolar sources is also considered, which gives rise to a

2Thematlab R13 pde toolbox
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functionS with logarithmic singularities; in this case the poles would accumulate in a
manner similar to that in the situation of a crack, as described above.) Theremaining
poles accumulate on an arc of circle orthogonal to the boundaryT, containing the
endpoints of the subarcsI andJ . However, once again these additional poles have
residues much smaller than the others, which are located near the true sources.

3.3. Numerical results

We present the results of some numerical experiments: in each case, for reasons of
space, we demonstrate the results obtained with a single choice ofΦ. Clearly, further
choices would help in locating the singularities in question. There is, however, an issue
of identifiability here: for example, it is necessary that the cracks do notlie along the
level lines of the associated solution.

Example 1.This example shows how the data extend analytically, and how rational
approximation can help to locate the crack as previously explained (Section3.2.1).

Problem 2.2 is solved with a subarcI corresponding to[π/6, 11π/6] and withf =
u − u∅ andφ = 0. The valuesα = 0.01,β = 1 of the numerical parameters give rise
to the errorseI = ‖f − Reg0‖I = 2.8e−2 onI andeJ = M = 6e−2 onJ .

Example 2. In this example, the boundary dataf = u − u∅ (still with φ = 0) are
additionally corrupted by an additive noise (signal/noise = 20), and theI subarc where
data are measured is only[π/3, 5π/3]. The error values are theneI = 0.65e−2 on I
andeJ = 1.5e−2 onJ . We can see that the poles of the rational approximant still help
to locate the crack.

Example 3. This example illustrates how one can locate positions and estimate
moments of 2 dipolar sources, as described in Section 3.2.2. Dataf = u (andφ = 0
whenceu∅ = 0) of the inverse problem are picked within the subarcsI = [π/4, 7π/4]
and[π/3, 5π/3] where we solve for Problem 2.2. Resulting errors areeI = 0.21 onI
andeJ = 0.45 onJ . The first poles (n = 2, and 8) of the rational approximant are
shown with their corresponding residue.

Figure 1. Example 1. Direct problem: domain with level curves foru, boundary
solutionsu andu∅, and error functionu − u∅
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Figure 2. Example 1. Inverse problem: analytic extensiong, I = [π/6, 11π/6] and
poles of the rational approximant ofg, n = 8

Figure 3. Example 2. Direct problem: domain with level curves foru, boundary
solutionsu andu∅, and error functionu − u∅

Figure 4. Example 2. Inverse problem: analytic extensiong, I = [π/3, 5π/3] and
poles of the rational approximant ofg, n = 8
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Figure 5. Example 3. Domain with level curves foru (direct problem); analytic exten-
siong of boundary solution,I = [π/4, 7π/4]

Figure 6. Example 3. Inverse problem:I = [π/4, 7π/4], and[π/3, 5π/3], poles of the
rational approximant ofg, n = 2, and 8
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Figure 7. Example 4. Domain with level curves foru (direct problem); analytic exten-
siong of boundary solution,I = [π/6, 11π/6]

Figure 8. Example 4. Inverse problem:I = [π/6, 11π/6], poles of the rational ap-
proximant ofg, n = 4, and 12

Example 4. This example illustrates the case of 4 dipolar sources. Dataf = u
(φ = 0, u∅ = 0) of the inverse problem are picked within the subarcI = [π/6, 11π/6]
where Problem 2.2 is solved, with errorseI = 3e−2 onI andeJ = 7e−2 onJ . The
first poles (n = 4, and 12) of the rational approximant are shown with their correspond-
ing residue.

4. Conclusions

We have seen that the methods of constrained approximation provide a numerically
efficient technique for certain inverse diffusion problems on the disc, by the strategy
of recovering an analytic function from measurements of its real part on a subset of
the circle. By means of a conformal equivalence it is possible to perform analogous
calculations in other simply-connected two-dimensional domains.
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Although we have established a significant stability result (Theorem 2.7) showing
the robustness of the solution with respect to the given data, it remains open whether
one has continuity of the solutiony0 given by Theorem 2.6, when all ofxJ , xI andM
are allowed to vary simultaneously.

An extension of some of the ideas of this paper to multiply-connected domains,
such as the annulus, is a topic of current investigation [23]: it requires additional tools,
such as the notion of a harmonic conjugate in a non-simply connected region, and the
analysis of the Hardy spaces of an annulus.
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