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Analytic approximation with real constraints,
with applications to inverse diffusion problems

J. Leblond, J.-P. Marmorat, and J. R. Partington

Abstract. The methods of constrained approximation in Hilbert spaxfesnalytic functions are
applied to the solution of the inverse problems of detectiragks or sources in a two-dimensional
material by means of boundary measurements. Issues opasdidness are discussed, and results on
continuity and robustness with respect to the given dat@stablished. Constructive and efficient
methods for resolution of the above approximation problemes presented. The techniques are
illustrated by numerical examples incorporating a furttaional approximation step.

Key words. Approximation, extremal problems, analytic functions,rédaspaces, Toeplitz and
Hankel operators, inverse problems.

AMS classification.41A29, 35R30, 31A25, 47A57.

1. Introduction

1.1. Notation

By H? we denote the Hardy space on the unit disand byﬁ2 the set of functiong’
for f € H? wheref(z) = f(1/z). Itis well-known that#7? may be embedded
isometrically as a closed subspaced{T), for T the unit circle.

The orthogonal complement df? in L3(T) is written asﬁg; it coincides with

the subset o~ consisting of functions that vanish at infinity. We wriiefor the
orthogonal projectiorP : L?(T) — H? and similarly P for the orthogonal projection
P LAT) - H.

Likewise, H> denotes the Hardy space of bounded analytic functiofi wwhich
may be regarded as a closed subspace™ofT) in a natural way, whiled(D) ¢ H*
denotes the disk algebra consisting of analytic functions with continuousdaoy
values. See [15] for more details on Hardy spaces.

Let I be a compact subset of the unit cir@lec C such thatl and.J = T \ I have
positive Lebesgue measure. The usual inner produtt i) is denoted by(f, g) for
f, g € L3(T), the associated norms dr#(T) and L?(1) are written ag| - || and| - ||,
respectively, whild| - |2 = || - [|2— || - || on L?(.J). Wheneverf; is defined orf and f»
on.J, we write f; vV f5 for the function equal tg; on 7 and f, on J.

Let £ be a subset df with positive measure. The space of real-valiiédunctions
on E is denoted by.2(E). We also writey i for the characteristic function af. We
recall that the modulus of continuity of a functigne C(F) is defined by

wr(0) = sup{|f(z) = f(y)l:z,y € E, |z —y| <}
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For 0 < « < 1 the Lipschitz (or Holder—Zygmund class) is defined by
C(E) ={f € C(E) : ws(9) = O(6)},

with norm
wy(6)

do
To relate the real and imaginary parts of an analytic function, we shaleroak of
theHilbert transform(or harmonic conjugatio)y of which the basic properties can be
found in [3, pp. 104-106]. Let be a function inLZ(T); then the Hilbert transform
of « is the unique function in LZ(T) with vanishing Fourier coefficient(0) = 0
such that: + iv has a holomorphic extension to the disc. The Hilbert transform is a
contraction in thel.? norm.

[flla = [/ 1l oo () + SUP
5>0

1.2. Physical motivation: inverse diffusion problems

Methods of constrained approximation have been used before in theabivarious
inverse problems for PDEs, and we refer to the survey [13] for andattion to this
topic in other contexts.

Cracks

Consider the inverse geometrical problem of detecting and locatings;rakdelled

by C? simple curvess, inside a 2 dimensional material by means of boundary mea-
surements. These can consist of either thermal, electrical, or acoattjceépending

on the experimental framework. Without loss of generality, using comibmapping,

we can handle this issue in the unit di3o o, where it can be written as [1, 10]:

Au=0 in D\o,

ou 0
% = on o, (11)
ou
— =0 T
o~ on T,
for a flux® € L2(T) which satisfies
/ ®do =0, (1.2)
T

and with the normalisation condition

/ud9:0.
T

From additionalncompleteboundary data, that is given a functiep (built from mea-
surements) o C T, the inverse problem consists in determining: D such that the
solutionw to (1.1) satisfies:

= ury.

u|1
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Such problems have been considered since [16], mainly by iteratitreodse Among
recent work, we mention [4] and [12]; an extensive bibliographyeappin [11]. Com-
plex analytic methods were introduced in [10] as a way of avoiding repeeselutions
of the associated direct problem.

In order to extend the available datato the whole outer boundary, the Hilbert
transform (or harmonic conjugation) allows one to work in the framevedr&nalytic
function theory and Hardy spaces, where appropriate approximatbnitgies will
be used. Indeed, thanks to the Cauchy—Riemann equations, thereaeiistdionU
analytic inD \ o such that the above solutiensatisfies

uw=ReU in D.

Equivalently, there exists a (conjugate harmoni®if o) function v such thatU' =

u + v and

%—@ @—7@ on T
on 90’ 90  on ’

Thus, the trace off at points¢ = ¢’ on I is given here by:

0
U(€) = ur(€) +3 / (') dr, (1.3)

for somee’?= ¢ I, and is Holder smooth up @, see [1]:U € C*¥?(T). Further, it
holds that: 1 fal(7)
u\T —
U(z)—%/lj:dr—l-G(z), Vz e D)\ o, (1.4)
for some function? € H*> and if [u] denotes the jump af on o, which is known to
belong toC/?(o), see [10].

Sources

Another geometrical inverse problem is to determine sources locate@ imsldmain
from partially overdetermined data. The case of pointwise dipolar ssisci partic-
ular, related to applications in medical imaging as the inverse electroealogpdphy
issue (EEG), see e.g. [5]. In dimension 2, this raises the followingemofr]:

Du= 3" pr- Vi, in D,

(1.5)
u _ P on T,
on

with Cy, € D, px, € C, and for a flux® € L2(T) which satisfies (1.2).

From additionaincompleteboundary data:; onI C T, the inverse sources prob-
lem consists in determining the number the locations{C} C D and the complex
moments{p; } of the sources, such that the solutioio (1.5) satisfies:
= ury.

u|1
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This problem is discussed in [19] which contains an extensive bibliograph
Using harmonic conjugation and (1.3), this also allows one to build the tnace o
I T of a functionU analytic and Holder smooth in \ {C}.}:

”+G@L Vz e D\ {Ci}, (1.6)

for some functiorG € A(D), see [7].

Recovery of analytic function

Let S denote either the singular integral in expression (1.4) or the sum in Eb.@at
in both case¥’ = S + G.

Assume that measuremenisof a solution to (1.1) or (1.5) onsafedomain (with
o = ) are also available of, from the same fluxp. This allows one to obtain oh
the associated functidiiy, see (1.3):

0 .
Ua(€) = ul +i /0 ®(c") dr,

for somee®= ¢ I, which is analytic in the whole db in view of (1.4) or (1.6), and
whose imaginary part coincides with thatiéfon T. As a result, the function

f=U-Upy=G-Up+S=g+S§,

with ¢ = G — Uy, is real valued of. Becausegy € H? while S Fs, we get that
S=9 on T,

whence

f=2Reg=2ReS on T.

We therefore seek to recovgrhence alsd and ultimatelys or {Cj }, from the partial
and normally corrupted values ¢gfobtainable orl, wheref = u; — u?. To do this we
use the methods of analytic approximation, as outlined in the next section.

2. Bounded extremal problems

2.1. Statement of the problem

A systematic approach (using duality) to extremal problems in Hardyespean be
traced back to [18, 24] around 1950 and has been extensively sgidgsthen [15, 21].
The standard Bounded Extremal Problem (BEP), which has its originddsétin and
Nudel'man (see [2, 9, 22]), and is of importance in frequency-doragstems identi-
fication, may be stated as follows.
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Problem 2.1. Given f € L%(I), ¢ € L?*(J) and M > 0, find go € H? such that
llgo — ¢ll; < M and

llgo— fllr =inf{llg— fllr: g € H |lg—¢|l; < M}.

For the application to the inverse problem outlined above, the following vefio
the problem is more appropriate.

Problem 2.2. Givenf € L2(I), ¢ € L?(J) and positive constants, 3, M, let ¢, =
Re¢ and¢; = Im ¢ and define the s&l, 5 s by

Capr = {g € H? 1 o%||Reg — ¢.[|5 + 6% Img — |5 < M?}.
Find go € Co 3,0 such that
If —Regollr = inf{||f —Regl; : g € Cap,m}-

Remark 2.3. Ideally, we might prefer to work with a constraint such|dms g|| ; < M
(small), that is, to taker = 0O, but the solution to this problem is no longer unique in
general. To see this, note that the functiaiy) = arccoshs, wheres= i(1—z)/(1+z),
lies in H2. This provides a conformal mapping from the regianc C : |z| < 1}, via

{s € C:Ims > 0}, to the domain

{weC:Rew>0,0<Imw < 7}.

See for example [25, p. 177]. Takidgto be the circular ar@ N {Rez > 0}, we see
that Rew = 0 onI, whereas Imw| < « onJ. Hence, forf = ¢, = ¢, = 0, a family
of multiples ofw solves the extremal problem simultaneously.

We can of course take small in comparison withs, if we choose. An alternative
constraint that would be of interest iseReg = Slmgl||; < M, but this is closely
related to Problem 2.2 because of the parallelogram identity

lu+0[|? 4 lu = 0| = 2||ul|® + 207,
which holds in any Hilbert space, in particular i3(.7). We remark also that taking
a = = 1in Problem 2.2 provides the simple norm constraint of Problem 2.1elyam

lglls < M.

A related problem is the following, which was solved in [20].

Problem 2.4. Given f € L?(I), ¢ € L3(J)and M > 0, find g; € H? such that
[tmgy — ¢|l; < M and

lgr = fllr =inf{llg = fllr: g € H |[Img —¢||l; < M}. (2.1)
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2.2. A general Hilbert space framework

In fact Problems 2.2 and 2.4 can both be re-expressed using theagmof [14], pro-
vided that we accept the additional technical difficulty involved in regardii as a
Hilbert space withreal scalars. To see this, we recall the following result. It was stated
originally for complex Hilbert spaces, because the main application waicdh-
struction of invariant subspaces, but this is not necessary.

Let H, 7 and 7 be real Hilbert spaces aml: H — Z andB : H — J bounded
linear operators, such thdtand B are coprime, in the sense that there exists a constant
n > 0 such that

|Az||? + | Bz|?> > n||z||>  forall zeH. (2.2)

We suppose also that has dense range. Then the associated extremal problem is as
follows.

Problem 2.5. Givenz; € J, z7 € Z, andM > 0, letC2! be defined by
Cay ={y € M| By —az|l < M},

and suppose that}! is nonempty wheready # 7 for all y € C2!. Find yo € C2/
such that
lAyo — zz|| = inf{||Ay — 27| 1 y GC% . (2.3)

Under the hypotheses above, Problem 2.5 has a unique solution anxtrémaas
vector saturates the constraint, in the sense|tBg — z 7 || = M.

Theorem 2.6([14]). The solution to Problem 2.5 is given Byi*A — vB*B)yp =
A*xz — yB*z 7, wherey < 0is the unique constant such theByo — = 7| = M.

We shall discuss in Section 3 how to determine the appropriate value ofrdra@a
ter, using the fact that the relation betweg&hand~ is continuous and monotonic.

In practical applicationsgz represents measured datg; is a reference vector,
and M a constraint that may be chosen in the light of experience. It is therefor
sential to know that the model obtained, which is here denggedill depend con-
tinuously on the data, and this is shown in the next result. Recall that wenadsn
Problem 2.5 that; ¢ AC)!.

Theorem 2.7. The solutionyg to Problem 2.5 depends continuouslyanand M, 7
being fixed.

Proof. First, for afixedrz, the quantitye = || Ayo—xz|| is @ convex decreasing function
of M, since we can take linear combinations of solutions for diffeiénhencec varies
continuously with)/.

Now suppose tharz(I") — 7| — 0andM,, — M. We claim that the corresponding
solutionSyé”) converge in norm tgo. Note first that®) — ¢ = e(M), forif 6 > 0
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ande™ < e — § infinitely often, then|| Ay{"” — 27| < e — /2 infinitely often and
HByé") —zg|| = M,, soe(M,) < e(M) — §/2, a contradiction to the continuity ef

with respect toM. Or if e > e + § infinitely often, Ietyf)") denote the solution
associated withx 7, x7 and M,,. Then, using the above continuity propertyeofvith
respect tal/, we get that| A7y — zz| — e, whencel| A7y — 2| < e infinitely
often, a contradiction to the optimality QS’”. We deduce that™) — e.

Now (yén)) is a bounded sequence. We show that every subsequence of it has a
further sub-subsequence converging in nornydothis will imply that the original
sequence also converges in nornygoNow suppose by passing to a subsequence and

relabelling thatyé") converges weakly tg’; then

A (n) A
converges weakly t !
( A ) ges weakly a( A )

and it follows that|| Ay’ — zz|| < e and||By’ — z7| < M, hencey’ = yo. Also
1Ay 27|l — | Ayo—azl| and|| ByS"” —z7|| — ||Byo— x|, implying thatAyg"” —

Ay and similarIyByé") — Buyo. HenceHyé") —yo|| — 0. The result follows. O

The following result enables one to find an appropriate parameter inr@imed.6
(and this will be used again in Corollary 2.9) by an interval-halving search

Proposition 2.8. In Theorem 2.6, the paramet&f depends continuously and monoton-
ically on+, and vice-versa.

Proof. Since(A*A — vB*B)~! depends continuously onfor v < 0, we see thajo,
and hencell also, depends continuously enlt is impossible for two different values
of ~ to yield the sameyy, as otherwise we would havB* By, = B*z 7, implying
that the samey is a solution to Problem 2.5 faeveryvalue of~, which is clearly
impossible. Thus the mapping fromto M is continuous and also monotonic (since
injective), and hence the same is true of its inverse. O

2.3. Solution to Problem 2.2

Back to Problem 2.2, let us now také = H?, 7 = L2(I),andJ = L3(J) @ L3(J)
(the L? direct sum), all regarded asal Hilbert spaces. The real inner product A is
just Rehy, ho), where(h, hy) is the usual inner product. The real-linear operatbrs
and B are defined by

Ag = (Reg)|,,  Bg=(aReg,5Imyg)| ,

for g € H. Moreover,zy = (a¢., 8¢;) andzz = f. The desired solutiopy is the
same as Oud.

To see that condition (2.2) is satisfied we may use the theorem of M. Riasthéh
Hilbert transform is a contraction, as in Lemma 3 of [20] where it is shtivah there
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is an absolute constaat > 0 such that, for alh € H?, one has
[2]] < € max{]|Allz, [ Im A}
On exchanging the roles df and J, and replacing: by ih, one arrives easily at an

inequality equivalent to (2.2).
The adjoint operatord* : 7 — H andB* : J — 'H are given by

A*f=P(fVv0), B*(¢1,¢2) = P(OV (ag1 + iB¢2)).
Corollary 2.9. The solution to Problem 2.2 is given by
P(Regoxr — v(a®Rego+i6%1m go)xs) = P(fx1 — v(e®, +iF2¢i)xs), (2.4)
wherey < 0is the unique constant such thet| Rego—¢,.||3+8?|| Im go— 4|3 = M2,

Proof. This is now a simple consequence of Theorem 2.6, using the identifications
above. O

LetT : H?> — H? be the Toeplitz operator defined by
Tg=Pxsyg.
Introduce the Hankel operatéf : H? — H’ defined by
Hg = Px;g.

Put
A=1+~a? <1, pw=n~p?<0. (2.5)

Define L
Frg=g+90) —A+u)Tg—(A—p)Hg,

for g € H? (observe thatfg = Py ;g = Py g). Write
F =2P(fx1 —v(0®¢r +i8°¢i)xs)-

It can be deduced from (2.4) that

Mgo=F.

Forg € H? let§ € 13(C) denote the sequence of its Fourier coefficients. Introduce
now the linear operatorsr and H oni%(C) defined by:

Trg=Tg, Hpg=Hg.

It follows that, witheg = (1,0,...) € i3(C):

—~

Fg=9+9(0e0— A+ u)Trg—(A—p)Hrg. (2.6)
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This allows us to write:

o~

Fg=T,Rej+il;Img,

wherel,. andrl; are real linear operators on real sequencé$(iR).
Taking real and imaginary parts in (2.6) leads to:

MNa=a+a(0)eg— (A+p)Tra— (N—p)Hra, (2.7)

Fa=a+a(0)ey— AN+ u)Tra+ (A—p)Hpa, (2.8)
for a € I2(R). Then

Regy = M- *ReF, Imgo=rtimF. (2.9)

2.4. More on Problem 2.4

For Problem 2.4, we tak&l = H?, T = L?(I), J = L3(J), and use the real-linear
operatorsd and B defined by

,» Bg=(mg)| .

In [20], it was conjectured that the analogous problemifet and H>° might be
ill-posed. This is in fact the case, as the following example shows.

Ag=yg

Example 2.10. Let I be the arc{z € T : |argz| < =/4}, andJ = T \ I as usual.
Define f(z) = log ((1 —iz)/(1+ iz)), where we take analytic continuation from the
branch of log withf(0) = log 1 = 0. This function has the following properties:
Sincez — (1—1iz)/(1+:z)is a conformal bijection between the did@nd the right
half planeC., and log(re?’) = logr + if, we see thatim f| < 7/2 onT, whereasf
is unbounded. Indeeflis in H2 but notH>. However,f is bounded od.
Now takeM = 7/2 and¢ = 0. We claim that

inf{llg = fllze) g€ H®, [IMmg = oo (s) < M} =0.

For if we write f = u + v (real and imaginary parts), thehcan be approximated
arbitrarily closely onl by the Fejéer meang, = u,, + iv,, of its Fourier series, which
in this case are just polynomials in This follows becausg is continuous ol and
f € L}XT). Moreover,v, is just the Fejer mean of the Fourier series dpand, by
well-known properties of the Fejér kernel [26, p. 8}, || < ||v]|co = 7/2.

On the other hand, it is clear that there is no funcgon H*° such thayy = f in I,
sincel is a set of uniqueness 2.

3. Algorithmic and numerical results

3.1. An algorithm for Problem 2.2

A mat | ab version of the described algorithm (Section 2.3) has been implemented.
Analytic functions, as well as Hankel and Toeplitz operators, are appaded on
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the Fourier basis, keeping only a finite numbérof Fourier coefficients. In all the
following examples N = 512.

Searching for the good value ¢fis done iteratively: starting with an initial predic-
tion v = ~o, we compute the analytic functiay = go(vy) given by equations (2.9)
together with (2.5), (2.7), (2.8).

We then decide to increase or decreasecording to the value bf

es(7) = o?||Rego(7) = |5 + B2 Im go(v) — 415 :
if es(y) > M? thenincrease 7,
if es(y) < M? then decrease~.

Convergence is guaranteed in view of the continuous monotonic relatiowe dxey
and M established in Proposition 2.8.

In fact, without further information, the choice of the control paraméfeis likely
to be heuristic; however, an unsuitable choice would be reflected in @asomable
error achieved in the approximation problem. A slight modification of tlezgxling
algorithm has been implemented, allowing one to control a dimensionlesms peark
which is the ratio of the errot; () on J introduced above to the approximation error
onl:er(y) = |lgo(y) — fl?. These two quantities vary in a monotonic opposite way
wheny varies, and the final value feris found by an interval-halving procedure. Then,
for a givenk, the actual minimization problem is: mife;(v) | es(y) — kes(y) < O}.
Good values fok lie in a neighbourhood of 1, typically € [1/10, 10], which means
that the errors o andJ havethe same order of magnitude

3.2. Inverse problem examples
The following examples show results for

+ the crack inverse problem with partial boundary data (Examples 1 and 2)
+ the dipolar sources inverse problem with partial boundary data (Exar8zed 4),

as described in Section 1.2. There are actually two issues here: fisterg of miss-

ing boundary data, which is achieved by the resolution of Problem 2cBndge more
ambitiously, attempting to find the approximate location of the singularities, which
done by besL.? rational approximation methods that are justified elsewhere [6, 8, 17].
Pretty good “recovery” capacity of the combined algorithm is demonstiayethese
examples. Note that Theorem 2.7 guarantees the robustness oftthie finwith respect

to available (possibly noisy) data, while strong continuity properties of tbenskstep

are established in [6].

3.2.1 Cracks

For crack examples, we apply the following procedure. First we sotvédinect prob-
lem”: the 2D domain is the unit disk. Cracks are modelled by thin subdomains.

1To be more precisey is allowed to vary in the intervdl—oo, 0. Instead, we map this interval to the bounded
interval [0, 1] by puttingy = r/(r — 1), and we look for the appropriate valuesf [0, 1].
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Given a boundary flusp satisfying the zero-mean value property, the Neumann prob-
lem defined by (1.1) is solved for the zero-mean solutiorFor this we use a PDE
integration library. The same equations with same boundary fluare solved on

a safe (no crack) domain and this gives the zero-mean value soltioBoundary
values of the error function — «? are picked on thé subarc and used as “measures”.

Then, we solve the “inverse problem” of finding the missing imaginary gasub-
arcI and the missing data on subarof the error function. This is done by solving for
the analytic functiory of Section 1.2, a solution to Problem 2.2. We tgke: u — u”
on I and we choose as reference constraint functioa 0 on.J. Finally, a bestL?
rational approximation of the conjugajef the analytic extensionis performed [17].
The computed poles are seen to accumulate on geodesic arcs, whichsaoé circles
orthogonal to the boundary, as expected for piecewise analytic cracks; see [8, 11]
where the result is established for an analytic crack. Of course, in@dhe crack is
not a geodesic arc, but there is such an arc which joins the endpoints ofatk (or
the endpoints of its analytic parts), and this assists in locating the crack.

In Examples 1 and 2 of Section 3.3, we identify cracks. The flux is chusée a
trigonometric polynomial of low degre®(z,y) = z . The solutiong of the inverse
problem forf = u — u” is seen in the first plot of Figures 2 and 4, respectively. We
note that it is virtually indistinguishable from the data, where the latter is gien.
the subsequent rational approximation step, the number of poles giphexénant is
decided according to the? error observed.

In both examples, significant poles accumulate near the geodesicgssingh the
extremities of the crack. The supposed unknown crack is drawn fopadson (heavy
line). A number of poles also accumulate on arcs of circles joining theaamispof /
and.J. However, their residues are small and they are a result of the fpah:@mation
step, which induces a discontinuity gfat these points. This is linked to the choice
of M and an alternative approach would be to work with other constraints, asich
those given by Hardy—Sobolev or uniform norms.

3.2.2 Dipoles

For dipole examples, we apply the following procedure. We solve thectdim@blem”
in D: the fundamental solutiof' (null at infinity) of the dipole distribution is explicitly
given (£ = ReS, see equation 1.6) and we compute a harmonic funétisa that the
solutionu = h + E has normal derivative ofi equal tod.

Here we take again = 0 as constraint reference oh so thatu’ = 0 andf = u
onI. Then, we solve the “inverse problem” by solving Problem 2, just asrfacks,
thus gettingg, shown in the second plot of Figures 5 and 7, for Examples 3 and 4 of
Section 3.3. Again it matches the given data very well, where the latterilalaiea

Once more, in the subsequent rational approximation step, the nurhpeles of
the approximant is decided according to tireerror observed. The most significant
poles of the besk? rational approximant tg are seen to be located at the true dipoles,
as established in [7]. This is a direct consequence of the facStimtational. (Note
that in [7] the case of monopolar sources is also considered, whigs gise to a

2Themat | ab R13 pde t ool box
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function S with logarithmic singularities; in this case the poles would accumulate in a
manner similar to that in the situation of a crack, as described above.)entaning
poles accumulate on an arc of circle orthogonal to the boun@argontaining the
endpoints of the subardsand J. However, once again these additional poles have
residues much smaller than the others, which are located near the traesou

3.3. Numerical results

We present the results of some numerical experiments: in each oagseasons of
space, we demonstrate the results obtained with a single chofee @learly, further
choices would help in locating the singularities in question. There is, honavésue
of identifiability here: for example, it is necessary that the cracks ddismatong the
level lines of the associated solution.

Example 1. This example shows how the data extend analytically, and how rational
approximation can help to locate the crack as previously explained (S&c#d).

Problem 2.2 is solved with a subaf@orresponding tdr /6, 117 /6] and with f =
u—u” and¢ = 0. The valuesy = 0.01, 3 = 1 of the numerical parameters give rise
to the errors:; = || f — Regol|r = 2.8e—2 onI ande; = M = 6e—2 onJ.

Example 2. In this example, the boundary dafa= u — u? (still with ¢ = 0) are
additionally corrupted by an additive noise (signal/noise = 20), and thibarc where
data are measured is only/3,5r/3]. The error values are then = 0.65¢c—2 on 1
ande; = 1.5¢—2 onJ. We can see that the poles of the rational approximant still help
to locate the crack.

Example 3. This example illustrates how one can locate positions and estimate
moments of 2 dipolar sources, as described in Section 3.2.2 Data: (and¢ = 0
whenceu? = 0) of the inverse problem are picked within the subdres [r/4, 7 /4]
and(r/3, 57 /3] where we solve for Problem 2.2. Resulting errorsagre- 0.21 on/
ande; = 0.45 onJ. The first poles#{ = 2, and 8) of the rational approximant are
shown with their corresponding residue.

1 08 06 04 02 0 02 04 05 08 1 0 pird pir2 Fpi pi Sed Gpi2  7pid 2pi
3

Figure 1. Example 1. Direct problem: domain with level curves tgrboundary
solutionsu andw?, and error function: — «°
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Figure 2. Example 1. Inverse problem: analytic extensign’ = [r/6,11r/6] and
poles of the rational approximant gfn = 8
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Figure 3. Example 2. Direct problem: domain with level curves fgrboundary
solutionsu and«?, and error function: — "

Figure 4. Example 2. Inverse problem: analytic extensipn = [r/3,57/3] and
poles of the rational approximant gfn = 8
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Figure 5. Example 3. Domain with level curves far(direct problem); analytic exten-
siong of boundary solution] = [r/4, 7m /4]

05 05 1

Figure 6. Example 3. Inverse problent:= [r/4, 7w /4], and[r/3, 57 /3], poles of the
rational approximant of, n = 2, and 8
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Figure 7. Example 4. Domain with level curves far(direct problem); analytic exten-
siong of boundary solution] = [r/6, 117 /6]

05 1

Figure 8. Example 4. Inverse problem?: = [r/6,11x/6], poles of the rational ap-
proximant ofg, n = 4, and 12

Example 4. This example illustrates the case of 4 dipolar sources. Patau
(¢ = 0,u” = 0) of the inverse problem are picked within the subee [r/6, 117 /6]
where Problem 2.2 is solved, with errars= 3e—2 onI ande; = 7e—2 on.J. The
first poles ¢ = 4, and 12) of the rational approximant are shown with their correspond
ing residue.

4. Conclusions

We have seen that the methods of constrained approximation provideerionally
efficient technique for certain inverse diffusion problems on the digthé strategy
of recovering an analytic function from measurements of its real pag subset of
the circle. By means of a conformal equivalence it is possible to parforalogous
calculations in other simply-connected two-dimensional domains.
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Although we have established a significant stability result (Theorem Bdtyiag
the robustness of the solution with respect to the given data, it remainswipether
one has continuity of the solutiap given by Theorem 2.6, when all af;, 7 andM
are allowed to vary simultaneously.

An extension of some of the ideas of this paper to multiply-connected demain
such as the annulus, is a topic of current investigation [23]: it requiféiianal tools,
such as the notion of a harmonic conjugate in a non-simply connectechyegic the
analysis of the Hardy spaces of an annulus.
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