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Abstract
We consider the inverse problem of localizing dipolar sources in an ellipsoid
from boundary data, which we approach and constructively solve with
techniques from harmonic and complex analysis. We use ellipsoidal harmonics
to isolate the singular part of the solution, which we consider on a family of
two-dimensional sections of the domain. We then use approximation theory to
locate its singularities, and provide an algorithm which allows us to recover the
sources from these singularities. We provide numerical illustrations related
to the localization of pointwise dipolar sources in the human brain from
electroencephalography (EEG).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A classical inverse problem for the Laplace operator will be considered in this paper. It consists
of the recovery of finitely many dipolar sources located in a 3D domain from measurements
of their potential and current flux (normal derivative) on the boundary, see [20, 28, 33, 40].

For instance, in medical engineering, the inverse EEG (electroencephalography) problem
involves detecting pointwise dipolar current sources, modeling epileptic foci located in the
brain, from measurements of the electrical potential on the scalp, see [15, 21, 22].

The problem covers geophysics interests too, more precisely the determination of the
mass–density distribution of the earth, which can be approximated by an ellipsoid, or that of
equipotential surfaces (geoids), from measurements of the gravitational potential at the earth’s
surface (see, for example [24–26]).

Concerning the EEG issue, the so-called spherical model, where the 3D domain is a ball,
has been handled in [5] where it appears that this recovery issue reduces to a sequence of 2D
inverse problems. All 2D issues concern the recovery of the branchpoints and singularities
of some holomorphic function in a disk. These problems may then be solved using the best
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rational or meromorphic approximation algorithms, see, for instance [1]. Finally, those 2D
singularities are strongly linked with the original dipolar sources, which they allow us to
approximately locate.

Though various possible approaches to this inverse problem exist, they mainly deal with
the iterative resolution of the associated direct problem, see, e.g. [28]. We will describe here an
efficient algorithm based on meromorphic approximation in families of planar cross-sections
of �. Those are costless since they run with boundary data only.

We will investigate in this paper the case where the 3D domain is an ellipsoid. Concerning
the EEG inverse problems, this is a first step toward a more realistic geometry for the brain, see
[29] for the computation of solutions to the direct problem, [38] for basic potential problems
in electrostatics and [24–26] for geodetic applications.

We will show that if the 3D domain is an ellipsoid, then the issue can still be approached
by a sequence of 2D inverse problems in a family of ellipses (cross-sections), hence in a family
of disks as in the spherical case, using the fact that the boundary of an ellipse is the image by
a rational function of the unit circle. We will then face once again the issue of recovering the
singularities that a holomorphic function has in a disk.

Let us first briefly recall how the problem is solved in the case where � = B is the unit
ball and ∂� = S is the unit sphere. Let v(X) be the difference of potential with respect to
X ∈ �̄. The following equation with mixed boundary conditions arises when studying the
EEG inverse problem, and assuming the conductivity of the head to be constant:⎧⎪⎪⎨⎪⎪⎩

�v = F in R
3

v = g on ∂�

∂v

∂�n = φ on ∂�,

where g ∈ L2(∂�) and φ ∈ L2(∂�) are the given measurements of the difference of the
potential and current flux on (the scalp) ∂�, with∫

∂�

φ ds = 0,

and

F =
m∑

k=1

〈
pk,∇δck

〉
is the distribution corresponding to the pointwise dipolar sources located at ck ∈ � with
moments pk ∈ R

3.
Since

E(X) = 1

4π‖X‖
is a fundamental solution of the Laplacian in R

3, we get that

v(X) = h(X) +
m∑

k=1

〈pk,X − ck〉
4π‖X − ck‖3

, X ∈ �, (1)

where h is a harmonic function in R
3.

The decomposition of a harmonic function in a neighborhood of the unit sphere in terms of
spherical harmonics using the knowledge of the function and normal derivative gives an explicit
decomposition of this function as the sum of two functions, one harmonic in a neighborhood
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of the unit ball, and the other one harmonic outside a compact set included in the unit ball
(cf [2, theorem 9.6]). This explicit decomposition gives exactly the singular term

u(X) =
m∑

k=1

〈pk,X − ck〉
4π‖X − ck‖3

.

Then we aim at recovering the singularities of u2(x, y, zp) for a family of cross-sections
{z = zp} of the sphere � from its values on the 2D boundaries (circles). This is done by
means of the best meromorphic approximation of the function [u|{z=zp }]

2 on the corresponding
circle. The poles of such an approximant allow us to approximately locate the m singularities
of [u|{z=zp } ]

2 in D which finally enable us to recover the location of the sources ck [5].
If � is an ellipsoid, the above decomposition v = h + u can still be explicitly computed

with an expansion into ellipsoidal harmonics. The next step will also consist in recovering the
singularities of u2(x, y, zp) for a family of cross-sections {z = zp} of � from its values on the
2D boundaries (ellipses).

This is done by using a rational correspondence ϕp between these ellipses {z = zp} ∩ ∂�

and the unit circle T, and then, as in the spherical situation, by means of the best meromorphic
approximation of the function fp = [u|{z=zp } ◦ ϕp]2 on T. Again, the poles of the approximant
allow us to approximately locate the 2m singularities of fp in D and, finally, the sources ck .

Let us specify that the singularities of u2(x, y, zp) induced by the dipolar sources will
appear also as polar singularities of order 3, whence in the expression of u(x, y, zp), they
appear only as ramified singularities of order 3/2. This is a framework in which the above
rational approximation algorithms are more efficient.

The main steps of the recovery algorithm that we consider in this work are thus summarized
as follows:

Step 1: get the (trace on the boundary of the) singular part u|∂�
from the data v|∂�

=
g, (∂v/∂�n)|∂�

= φ, using ellipsoidal harmonics;
Step 2: find (approximately) the singularities (branchpoints) ζ k,p of fp = [u|{z=zp } ◦ϕp]2 using

(2.i) a rational correspondence ϕp between the ellipse {z = zp} ∩ ∂� and the circle T,
(2.ii) the best approximation on T by meromorphic functions in the disk;
Step 3: recover ck from the estimated ζ k,p.

The ellipsoidal harmonics (required for step 1) will be briefly explained in section 2,
which accounts for a synthesis of available results in the literature [14, 23, 41].

In section 3, we briefly recall some results about the best meromorphic approximation
and potential theory in the complex plane, see [5] and references therein, that are to the effect
that the poles of the approximants converge (in a sense to be made precise) to the singularities
as the degree increases; this is the basis of step (2.ii).

We will then be back to the inverse problem in section 4, and explain how to localize the
sources inside the ellipsoid from related 2D singularities in disks, which is step 3, using the
fact that the boundaries of ellipses are the images under rational mappings of the unit circle,
for step (2.i).

We end up in section 5 with a numerical illustration of the above scheme and some
concluding comments in section 6.

2. Ellipsoidal harmonics

In this section, we will give a precise definition of ellipsoidal harmonics. The reader may be
referred to [14, 16, 17, 23, 41] for a more complete treatment and [30, so.2] for a self-contained
exposition of what we need precisely in this paper.
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Now let ∂� = E be the ellipsoid whose Cartesian equation is

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

= 1, (2)

where a1 > a2 > a3 > 0. Let h1 > 0, h2 > 0 and h3 > 0 be the semifocal distances defined
by

h2
1 = a2

2 − a2
3, h2

2 = a2
1 − a2

3, h2
3 = a2

1 − a2
2 .

For (λ1, λ2, λ3) ∈ R
3 such that 0 < λ2

3 < h2
3 < λ2

2 < h2
2 < λ2

1, we consider the following three
surfaces (ellipsoid, hyperboloı̈d of one sheet and hyperboloı̈d of two sheets) whose equations
are

(Eλ1) :
x2

1

λ2
1

+
x2

2

λ2
1 − h2

3

+
x2

3

λ2
1 − h2

2

= 1,

x2
1

λ2
2

+
x2

2

λ2
2 − h2

3

− x2
3

h2
2 − λ2

2

= 1, (3)

x2
1

λ2
3

− x2
2

h2
3 − λ2

3

− x2
3

h2
2 − λ2

3

= 1.

Denoting k2
1 = 0, k2

2 = h2
3 and k2

3 = h2
2, one can write these three equations under the form

3∑
j=1

x2
j

λ2
i − k2

j

= 1, i = 1, 2, 3, (4)

and we find that for i = 1, 2, 3

x2
i =

∏3
j=1

(
λ2

j − k2
i

)∏
j=1,2,3

j 	=i

(
k2
j − k2

i

) . (5)

We then say that (λ1, λ2, λ3) are the ellipsoidal coordinates of the point (x1, x2, x3).
In this ellipsoidal coordinates system, the equation �V = 0 can be rewritten as

�′
λ(V ) := (

λ2
2 − λ2

3

) [(
λ2

1 − h2
2

)(
λ2

1 − h2
3

)∂2V

∂λ2
1

+ λ1
(
2λ2

1 − h2
2 − h2

3

) ∂V

∂λ1

]
+
(
λ2

3 − λ2
1

) [(
λ2

2 − h2
2

)(
λ2

2 − h2
3

)∂2V

∂λ2
2

+ λ2
(
2λ2

2 − h2
2 − h2

3

) ∂V

∂λ2

]
+
(
λ2

1 − λ2
2

) [(
λ2

3 − h2
2

)(
λ2

3 − h2
3

)∂2V

∂λ2
3

+ λ3
(
2λ2

3 − h2
2 − h2

3

) ∂V

∂λ3

]
= 0. (6)

Applying the method of separation of variables, we obtain that, for every natural integer
n, there are 2n + 1 linearly independent functions E

pn
k

n for k = 1, . . . , 2n + 1 which are
polynomials of degree n in λ,

√
λ2 − h2

2 and
√

λ2 − h2
3 such that

E
pn

k
n (λ1)E

pn
k

n (λ2)E
pn

k
n (λ3)

are solutions to (6).
These functions are called the ellipsoidal harmonics of the first kind.
For a given n, the 2n + 1 functions

E
pn

k
n (λ1)E

pn
k

n (λ2)E
pn

k
n (λ3), k = 1, . . . , 2n + 1,

are polynomials of degree n with respect to the Cartesian coordinates.
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With respect to ellipsoidal coordinates, the normal derivative of a function f at some
point (x1, x2, x3) ∈ Eλ1 is(√(

λ2
1 − h2

2

)(
λ2

1 − h2
3

)(
λ2

1 − λ2
2

)(
λ2

1 − λ2
3

)) ∂f

∂λ1
(λ1, λ2, λ3). (7)

The following propositions and theorem close this section. Let dS be the Lebesgue surface
measure on Eλ1 .

Proposition 2.1. Let λ1 ∈ ]h2, +∞[. For two real-valued functions f and g defined and
continuous on the ellipsoid Eλ1 , we define

〈f, g〉λ1 =
∫
Eλ1

fg dS.

Then for every λ1 ∈ ]h2, +∞[, the family of polynomials{
E

pn
k

n (λ1)E
pn

k
n (λ2)E

pn
k

n (λ3)
}

n,k
= {

V
pn

k
n (x1, x2, x3)

}
n,pn

k

is orthogonal with respect to 〈·, ·〉λ1 .

Proposition 2.2. Let λ1 > h2. Then every function f ∈ L2
(
Eλ1 , dS

)
can be written as

f (λ2, λ3) =
∞∑

n=0

2n+1∑
k=1

αk
nE

pn
k

n (λ2)E
pn

k
n (λ3),

where

αk
n =

〈
f,E

pn
k

n (λ2)E
pn

k
n (λ3)

〉
λ1〈

E
pn

k
n (λ2)E

pn
k

n (λ3), E
pn

k
n (λ2)E

pn
k

n (λ3)
〉
λ1

.

Theorem 2.1. Every function f harmonic in a neighborhood of the ellipsoid E = Ea1 can be
written in ellipsoidal coordinates in the form

f (λ1, λ2, λ3) =
∞∑

n=0

2n+1∑
k=1

αk
nE

pn
k

n (λ1)E
pn

k
n (λ2)E

pn
k

n (λ3) +
∞∑

n=0

2n+1∑
k=1

βk
nF

pn
k

n (λ1)E
pn

k
n (λ2)E

pn
k

n (λ3),

where

Fp
n (λ1) = (2n + 1)Ep

n (λ1)

∫ ∞

λ1

dξ√(
ξ 2 − h2

2

)(
ξ 2 − h2

3

)[
E

p
n (ξ)

]2 . (8)

Moreover, there exists r1 and r2 such that r1 < 1 < r2 and such that the first sum converges
uniformly to a harmonic function inside the solid ellipsoid

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

< r2, (9)

and such that the second sum converges uniformly to a harmonic function outside the solid
ellipsoid

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

< r1. (10)

The functions F
pn

k
n (λ1)E

pn
k

n (λ2)E
pn

k
n (λ3) are called the ellipsoidal harmonics of second

kind. Observe that, in the above results, the quantities involving pn
k are explicitly available

only for small values of n, while they must be numerically computed for larger n. This is
feasible, however, since the pn

k are the roots of explicit polynomials and because E
pn

k
n satisfy

(also explicit) recurrence formulae, see [16, 30] and related comments in section 6.
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3. About meromorphic approximation in D

3.1. The best meromorphic approximation

Let H 2 and H∞ be the familiar Hardy spaces of the disk:

H 2 =
{
f analytic in D, sup

r<1

∫ 2π

0
|f (r eiθ )|2 dθ < +∞

}

=
{

f ∈ L2(T), f ( eiθ ) =
∞∑

n=0

an einθ , (an) ∈ �2

}
and

H∞ =
{
f analytic in D, sup

r eiθ ∈D

|f (r eiθ )| < +∞
}

.

We denote by H̄ 2
0 the orthogonal subspace of H 2 in L2(T). Let Rn = Rn(D) be the set of

rational fractions having at most n poles in D. Introduce the set H
q
n of meromorphic function

with at most n poles in D by setting, for q = 2,∞,

Hq
n = Hq + Rn.

Let now f ∈ Lq(T), for q = 2,∞. A best meromorphic Lq(T)-approximant to f with at
most n poles is a function Rn ∈ H

q
n such that

‖f − Rn‖Lq(T) = inf
R∈H

q
n

‖f − R‖Lq(T). (11)

For p = ∞, by the Adamyan–Arov–Krein theory [1, 35, 36, 42], a best meromorphic
approximant with at most n poles uniquely exists provided that f ∈ H∞ + C(T). Moreover,
it can be computed from the singular value decomposition of the Hankel operator with the
symbol f . More precisely, let P+ (resp. P−) be the orthogonal (analytic) projection from
L2(T) into H 2 (resp. H̄ 2

0 ), and �f be the Hankel operator defined by

�f : H 2 → H̄ 2
0 , g 
→ P−(fg).

It follows from Hartman’s theorem [35, theorem 2.2.5] that �f is compact if, and only if,
f ∈ H∞ + C(T), and from Kronecker’s theorem [35, theorem 2.4.4] that �f is of finite rank
if, and only if, f ∈ H∞ + RN , for some N � 0.

Assume that f ∈ H∞ + C(T). If we take the sequence of singular values σm of �f

arranged decreasingly, and the associated singular vectors vm satisfying the following:

�∗
f �f (vm) = σ 2

mvm

((σm, vm) is the so-called nth Schmidt pair of �f ), we get that the solution Rn to (11) (with
q = ∞) is given by

Rn = f − �f vn

vn

= P+(f vn)

vn

.

Further, |f − Rn| = σn a.e. on T (circular error). Hence, Rn can be computed using the
singular value decomposition of the Hankel operator �f .

Additional results concerning the convergence properties of Rn and the continuity
properties of the best approximation operator may be found in [36].

For q = 2 and f ∈ L2(T), the existence and uniqueness properties of solutions to (11) are
discussed in [3, 6, 7, 10]. Constructive algorithms to generate local minima can be obtained
using Schur parametrization [31, 32].

Note that such approximants are more generally studied in [9] for every q � 2.
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3.2. Behavior of poles

Let Aε ⊂ D be the annulus,

Aε = {z ∈ D, 1 − ε < |z|},
and BP be the class of functions that are continuous in Āε and holomorphic in Aε, for
some e > 0, and that can be analytically extended to D except for finitely many poles and
branchpoints.

Theorem 3.1 [7, 37]. If f ∈ BP , there exists a unique connected open Vf ⊂ D̄ with
Āε ⊂ Vf such that f extends holomorphically to Vf which has the properties that D\Vf is of
minimal Green capacity among such sets and that Vf contains every such sets. Furthermore,
D\Vf consists of the poles and branchpoints of f and finitely many analytic cuts (between
branchpoints, with no loops).

Recall that the Green capacity CK � 0 of a compact set K ⊂ D is defined by
1

CK

= inf
µ∈PK

∫ ∫
log

∣∣∣∣1 − t̄ z

z − t

∣∣∣∣ dµ(t) dµ(z),

where PK is the set of all probability measures supported on K. If Ck > 0, there exists a unique
measure in PK which achieves the above infimum: it is the Green equilibrium measure of K.

The set Vf is the so-called extremal domain associated with f .
Denote by (sj,n)j=1,...,n the poles in D, counted with their multiplicities, of the solution

Rn = Rn(f ) to (11). Define the sequence of their counting probability measure by

µn = µn(f ) = 1

n

n∑
j=1

δsj,n
.

Theorem 3.2 [8]. If f ∈ BP is not single valued, then the measure µn converges weak-* to
the Green equilibrium distribution of D\Vf as n → ∞.

Note that analogous results have been recently obtained in [11, 12] for classes of functions
that are proper subsets of BP , namely sums of Cauchy-type integrals and rational functions;
they still concern the behavior of poles, but also convergence properties of the approximants
themselves.

We use theorem 3.2 to approach the inverse source problem, which consists in recovering
singularities that appear both as branchpoints and poles of f . Indeed, the counting measure
µn will asymptotically charge the endpoints of D\Vf , because the equilibrium distribution
is infinite there. By theorem 3.1, D\Vf includes the poles and branchpoints of f , whence
computing µn for increasing values of n will allow us to approximately locate them. Of course,
one has to keep in mind that computations are in practice restricted to limited values of n, thus
the quality of the recovery scheme will strongly depend on how fast the poles converge.

4. Localization of the sources

Recall from section 1 that we aim at recovering the sources ck ∈ � being given the values of
the function v of the form (1) and that of its normal derivative on the ellipsoid E = ∂�. We
now explain how to handle this issue in several steps, using the results of sections 2 and 3.

4.1. The use of ellipsoidal harmonics for computing the singular part: step 1

Thanks to theorem 2.1, we can compute the singular part u of v on ∂�. Indeed, using the
ellipsoidal harmonics and ellipsoidal coordinates λi , we get that

7
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v(λ1, λ2, λ3) =
∞∑

n=0

2n+1∑
k=1

αk
nE

pn
k

n (λ1)E
pn

k
n (λ2)E

pn
k

n (λ3) +
∞∑

n=0

2n+1∑
k=1

βk
nF

pn
k

n (λ1)E
pn

k
n (λ2)E

pn
k

n (λ3).

Also, the given data g and φ on ∂� allow us to compute the following expressions (thanks to
proposition 2.2):

g(λ2, λ3) =
∞∑

n=0

2n+1∑
k=1

γ k
n E

pn
k

n (λ2)E
pn

k
n (λ3)

and √(
a2

1 − λ2
2

)(
a2

1 − λ2
3

)(
a2

1 − h2
2

)(
a2

1 − h2
3

)φ(λ2, λ3) =
∞∑

n=0

2n+1∑
k=1

φk
nE

pn
k

n (λ2)E
pn

k
n (λ3).

Identifying v(a1, λ2, λ3) to g(λ2, λ3), we first get

αk
nE

pn
k

n (a1) + βk
nF

pn
k

n (a1) = γ k
n .

Next, appealing to (7) and identifying the normal derivative of v to φ on ∂�, we obtain

αk
nE

pn
k

n

′
(a1) + βk

nF
pn

k
n

′
(a1) = φk

n.

We thus get the following system:{
αk

nE
pn

k
n (a1) + βk

nF
pn

k
n (a1) = γ k

n

αk
nE

pn
k

n

′
(a1) + βk

nF
pn

k
n

′
(a1) = φk

n.

Observe that its determinant (see theorem 2.1)

E
pn

k
n (a1)F

pn
k

n

′
(a1) − F

pn
k

n (a1)E
pn

k
n

′
(a1) =

(
E

pn
k

n (a1)
)2
(

F
pn

k
n

E
pn

k
n

)′
(a1)

= − 2n + 1√(
a2

1 − h2
2

)(
a2

1 − h2
3

) 	= 0,

thus one can compute the coefficients βk
n in the above expression of v and obtain its singular

part:

u(X) =
m∑

k=1

〈pk,X − ck〉
4π‖X − ck‖3

=
∞∑

n=0

2n+1∑
k=1

βk
nF

pn
k

n (a1)E
pn

k
n (λ2)E

pn
k

n (λ3), (12)

where X ∈ ∂� = E has the ellipsoidal coordinates (a1, λ2, λ3).

4.2. Expressions on the boundary of the slices z = zp: from ellipses to circles: step (2.i)

The next step will consist in recovering the singularities of u2(x, y, zp) for a family of cross-
sections {z = zp} of � from its values on the 2D boundaries (ellipses). This is done by
using a rational correspondence ϕp between these ellipses {z = zp} ∩ ∂� and the unit circle
T, and then, as in the spherical situation, by means of the best meromorphic approximation
of the function fp = [u|{z=zp } ◦ ϕp]2 on T. Again, the poles of the approximant allow us to
approximately locate the 2m singularities of fp in D and, finally, the sources ck .

We hence have

u2(X) = �(X)∏m
k=1 ‖X − ck‖6

= �(X)

Q(X)
,

8



Inverse Problems 24 (2008) 035017 J Leblond et al

where

�(X) =

⎡⎢⎣ 1

4π

m∑
k=1

⎛⎜⎝〈pk,X − ck〉
m∏
i=1
i 	=k

‖X − ci‖3

⎞⎟⎠
⎤⎥⎦

2

(13)

is continuous on �. In every horizontal slice {z = zp}, we have

Q(X) =
m∏

k=1

Qk(X),

where

Qk(X)=[(x − xk)
2+(y − yk)

2+(zp − zk)
2
]3

, ck = (xk, yk, zk).

Denoting

hk,p = zp − zk, w = x + iy, wk = xk + iyk,

we then get

Qk(X) = [|w − wk|2 + h2
k,p

]3
.

The intersection of the ellipsoid ∂�, whose equation is given by (2), and the plane
{z = zp}, is the ellipse whose equation is

x2

a2
1,p

+
y2

a2
2,p

= 1,

with

a1,p = a1

√
1 − z2

p

a2
3

and a2,p = a2

√
1 − z2

p

a2
3

.

On this ellipse, we have

w = a1,px + ia2,py = a1,p

ζ + 1
ζ

2
+ a2,p

ζ − 1
ζ

2︸ ︷︷ ︸
=ϕp(ζ )

,

with ζ ∈ T. We have

ϕp(ζ ) = αpζ 2 + βp

ζ
,

where

αp = 1
2 (a1,p + a2,p) and βp = 1

2 (a1,p − a2,p).

Observe that βp > 0 since, by assumption, a1 > a2. If we denote by

Qk,p(ζ ) = ζ 2[Qk(ϕp(ζ ), zp)]
1
3 ,

then

Qk,p(ζ ) = ζ 2
[
(ϕp(ζ ) − wk)(ϕp(ζ ) − wk) + h2

k,p

]
= ζ 2

[(
αpζ 2 + βp

ζ
− wk

)(
αpζ̄ 2 + βp

ζ̄
− wk

)
+ h2

k,p

]
.

Using the fact that, for ζ ∈ T, we have

ζ̄ = 1

ζ
,

9
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we get

Qk,p(ζ ) = (αpζ 2 + βp − wkζ )(αp + βpζ 2 − w̄kζ ) + h2
k,pζ 2

= αpβpζ 4 − (αpw̄k + βpwk)ζ
3 + (α2

p + β2
p + |wk|2 + h2

k,p)ζ 2

− (αpwk + βpw̄k)ζ + αpβp

= αpβpζ 4 + �
k,p

3 ζ 3 + �
k,p

2 ζ 2 + �
k,p

3 ζ + αpβp, (14)

with

�
k,p

2 = α2
p + β2

p + |wk|2 + h2
k,p, �

k,p

3 = −(αpw̄k + βpwk).

Thus, on T, and ∀p,

u2(ϕp(ζ ), zp) = ζ 6m�(ϕp(ζ ), zp)∏m
k=1 Q3

k,p(ζ )
. (15)

Put pk = (pkx, pky, pkz) for the moments, and πk = pkx + ipky for their affix in the plane
z = zp. In the situation where m = 1, we get from (13) that

�(X) =
[

1

4π
〈p1, X − c1〉

]2

,

whence

(4π)2�(ϕp(ζ ), zp) = [Re(π̄1(ϕp(ζ ) − w1)) + p1zh1,p]2.

Observe now that on T, if we denote by �2
1,p(ζ ) the function

4ζ 6(4π)2�(ϕp(ζ ), zp)

then we get (using the same computational trick as before, namely that on T, ζ̄ = 1/ζ ):

�1,p(ζ ) = ζ 2
(
(π1βp + π̄1αp)ζ 2 + 2(h1,pp1,z − Re(π1w̄1))ζ + π1αp + π̄1βp

)
.

In this single source situation, u2(ϕp(ζ ), zp) thus coincides on T with a rational function
whose numerator is equal to �2

1,p(ζ ), the polynomial of degree 8, and whose denominator is
Q3

1,p(ζ ), of degree 12 (up to multiplication by a constant).
Whenever m > 1, we get from (13) that

(4π)2�(ϕp(ζ ), zp) =

⎡⎢⎣ m∑
k=1

[Re(π̄k(ϕp(ζ ) − wk)) + pkzhk,p]
m∏
i=1
i 	=k

[|ϕp(ζ ) − wi |2 + h2
i,p

]3/2

⎤⎥⎦
2

= 1

4ζ 6m−4

⎡⎢⎣ m∑
k=1

�k,p(ζ )

m∏
i=1
i 	=k

Qi(ζ )3/2

⎤⎥⎦
2

on T.

Let now

�k,p(ζ ) = ζ 2
(
(πkβp + π̄kαp)ζ 2 + 2(hk,ppk,z − Re(πkw̄k))ζ + πkαp + π̄kβp

)
,

and

�2
p(ζ ) = 4(4π)2�(ϕp(ζ ), zp)ζ 6m = ζ 4

⎡⎢⎣ m∑
k=1

�k,p(ζ )

m∏
i=1
i 	=k

Qi(ζ )3/2

⎤⎥⎦
2

.

Finally, we obtain from (15) that u2(ϕp(ζ ), zp) coincides on T with a function whose numerator
has both (triple) poles and branched singularities at the roots of

∏m
k=1 Qk:

u2(ϕp(ζ ), zp) = 1

4(4π)2

�2
p(ζ )∏m

k=1 Q3
k,p(ζ )

on T. (16)

10
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4.3. About the zeros of Qk,p and wk, zk: step (2.i) (ctn) and step 3

Proposition 4.1. At a fixed p, the polynomial Qk,p has two roots ζ
k,p

1 and ζ
k,p

2 inside D such

that argζ
k,p

1 = −argζ
k,p

2 , and two roots in C\D̄ given by 1
/
ζ

k,p

1 and 1
/
ζ

k,p

2 .

Proof. Let p and k be fixed at the moment.

• First of all, we get that the polynomial Qk,p is autoreciprocal, whence satisfies

Qk,p(ζ ) = ζ 4Qk,p

(
1

ζ̄

)
.

• Hence, if ζ is a root of Qk,p, then 1/ζ̄ is a root too.
• From the fact that there are no sources on ∂�, we get that Qk,p has no root of modulus 1.

In particular, Qk,p has two roots ζ
k,p

1 and ζ
k,p

2 inside the unit disk, whereas the other two

roots 1
/
ζ

k,p

1 and 1
/
ζ

k,p

2 are outside of the unit disk and have the same argument as ζ
k,p

1

and ζ
k,p

2 , respectively.
• The product of the roots of Qk,p is

ζ
k,p

1 ζ
k,p

2

1

ζ
k,p

1

1

ζ
k,p

2

= 1,

hence ζ
k,p

1 ζ
k,p

2 is real, which implies that the arguments of ζ
k,p

1 and ζ
k,p

2 are opposed or
complementary.

• We then have two cases:

ζ
k,p

1 = r
k,p

1 eiθk,p , ζ
k,p

2 = r
k,p

2 e−iθk,p or ζ
k,p

1 = r
k,p

1 eiθk,p , ζ
k,p

2 = −r
k,p

2 e−iθk,p .

In the second case, since the sum of the products two by two of the roots of the polynomial
Qk,p is equal on the one hand to

−
(

r
k,p

1 r
k,p

2 +
r

k,p

1

r
k,p

2

+
r

k,p

2

r
k,p

1

+
1

r
k,p

1 r
k,p

2

)
+ 2 cos 2θk,p � 0,

and on the other hand, from (14), to

�
k,p

2

αpβp

= α2
p + β2

p + |wk|2 + h2
k,p

αpβp

> 0,

we get a contradiction. Hence the first case holds which means that the roots of Qk,p(ζ )

in the unit disk have opposed arguments. �

Remark 4.1. Because ζ
k,p

1 = r
k,p

1 eiθk,p , ζ
k,p

2 = r
k,p

2 e−iθk,p , the coefficient �
k,p

3 of ζ 3 in
Qk,p(ζ ) is given by

�
k,p

3 =
(

r
k,p

1 +
1

r
k,p

1

)
eiθk,p +

(
r

k,p

2 +
1

r
k,p

2

)
e−iθk,p .

If we note wk = ρk eiϑk , we also get from (14) that

�
k,p

3 = (αpρk + βpρk) cos ϑk + i(αpρk − βpρk) sin ϑk.

This gives us

ϑk = arctan

(
αp + βp

αp − βp

tan arg �
k,p

3

)
,

11
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while

ρk = �
k,p

3

(αp + βp) cos ϑk + i(αp − βp) sin ϑk

.

In particular, since ϑk is independent of p, we deduce that the quantity

αp + βp

αp − βp

arctan

(
r

k,p

1 r
k,p

2 − 1

r
k,p

1 r
k,p

2 + 1

r
k,p

1 − r
k,p

2

r
k,p

1 + r
k,p

2

tan θk,p

)
does not depend on p. This allows us, at least in principle, to compute wk and then zk , from
the knowledge of ζ

k,p

1 , ζ
k,p

2 at some p. But we may also choose a variational approach, using
ζ

k,p

1 , ζ
k,p

2 for all p, which will be more robust in numerical computations, see section 4.5.

4.4. How to get (ζ k,p)k,p using AAK: step (2.ii)?

Let

fp(ζ ) = [u(ϕp(ζ ), zp)]2, for each p. (17)

We now look for the best meromorphic approximant Rp,N of degree N to fp, solution to (11)
on the circle T which is sent by ϕp onto the ellipse {z = zp} ∩ E .

We get from (16) and the computations of the previous section that, for all p, fp ∈
BP ⊂ C(T) and possesses 2m triple poles in D that coincide with branched singularities,(
ζ

k,p

1 , ζ
k,p

2

)
k=1,...,m

:

fp(ζ ) = Hm,p(ζ )∏m
k=1

(
ζ − ζ

k,p

1

)3(
ζ − ζ

k,p

2

)3 ∈ C(T),

where

Hm,p(ζ ) = 1

4(4π)2

�2
p(ζ )∏m

k=1

(
ζ − 1

/
ζ

k,p

1

)3(
ζ − 1

/
ζ

k,p

2

)3
∈ C(T).

It thus follows from the results of section 3 that, for each p, the N poles, say sj , of the best
rational (meromorphic) approximant Rp,N will asymptotically locate at ζ̃

k,p

i , i = 1, 2, k =
1, . . . , m, near the singularities ζ

k,p

i , i = 1, 2, k = 1, . . . , m: this allows us to approximately
locate them.

Let us discuss a bit more about the above scheme, in the two particular situations m = 0
(no source) and m = 1 (a single source). When m = 0, we clearly obtain that u = 0 because
v is then harmonic inside �.

More interesting is the case where m = 1, because then fp is a rational function of degree
12, which in fact belongs to R6, as follows from the above formula and from the computations
of section 4.2. We then get that the infimum in (11) is equal to 0 for n = 6, and thus that
R6 = fp: in this situation, the poles of the best approximants of degree 6 precisely coincide
with those of fp, thus allowing us to exactly recover the source.

Of course, this is no longer true in the general situation where m � 2 for which we can
only expect an approximate recovery, since the function fp to be approximated does no longer
belong to the class RN of rational functions.

4.5. How to get ck from (̃ζ k,p)p: step 3 (ctn)?

Let us now assume that the singularities ζ
k,p

i , i = 1, 2, k = 1, . . . , m, inside the unit disk
of the above function are (approximately) known from the above step, and that we are given
ζ̃ k,p, i = 1, 2, k = 1, . . . , m.

12
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Figure 1. Source c1 at (0.2, 0.5,−0.3).

For each p, we then have 2m triple poles inside the unit disk. We first class these 2m

poles by pairs for each p, using the remarks of section 4.3: we take a pair
(̃
ζ

1,p

1 , ζ̃
1,p

2

)
such

that their arguments are opposed. They correspond to a first source whose projection on the
plane z = zp has an affix w1.

We do the same thing for the other pairs: for k ∈ {2, . . . , m}, to the pair
(̃
ζ

k,p

1 , ζ̃
k,p

2

)
such that the arguments are opposed, we know that there exists a kth source. The affix of the
projection of this source on the plane z = zp is wk .

Doing this for every p, and using the above invariants, see remark 8, we can sort these
different pairs along the horizontal sections z = zp, since the pairs

(̃
ζ

k,p

1 , ζ̃
k,p

2

)
correspond to

the same (still unknown) source wk , for all p. We thus get the family
(̃
ζ

k,p

1 , ζ̃
k,p

2

)
p

for each k.
Hence, for each p and k, we can form the polynomials

qk,p(ζ ) = αpβp

(
ζ − ζ̃

k,p

1

)(
ζ − ζ̃

k,p

2

)(
ζ − 1

/
ζ̃

k,p

1

)(
ζ − 1

/
ζ̃

k,p

2

)
= αpβpζ 4 + �̃

k,p

3 ζ 3 + �̃
k,p

2 ζ 2 + �̃
k,p

3 ζ + αpβp,

where we use �̃
k,p

2 and �̃
k,p

3 to denote the coefficients of the polynomials qk,p. Because

qk,p(ζ ) ≈ Qk,p(ζ ),

we get

�̃
k,p

2 ≈ �
k,p

2 = α2
p + β2

p + |wk|2 + h2
k,p,

hence, for fixed k, the expression

�
k,p

2 − (
α2

p + β2
p

) � �̃
k,p

2 − (
α2

p + β2
p

)
(18)

is minimal among the indices p if and only if the slice {z = zp} contains the source wk .
Because also �̃

k,p

3 ≈ �
k,p

3 , the discussion of remark 8 allows us to reconstruct wk .

5. Numerical illustration

In order to provide a preliminary numerical illustration of the above scheme (implemented
with Matlab7), let us work with an ellipsoid E with average semi-axes equal to a1 = 3, a2 = 2
and a3 = 1 in (2). We will consider zp = −1, . . . , 1 with an increment of 0.1.

Assume further that we are in a single source situation (m = 1) where c1 =
(0.2, 0.5,−0.3), p1 = (0.7, 0,−0.7). In this case, we computed the singular part u given
by (12) of the associated solution to the EEG inverse problem. Figures 1–4 are related to this
case.

13
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Figure 2. The functions �
1,p

2 − (α2
p + β2

p) and �̃
1,p

2 − (α2
p + β2

p) (x-axis) w.r.t. the height zp of
the slice (y-axis).

Table 1. 2m estimated singularities in disks (m = 1 source).

zp ζ
1,p

1 ζ
2,p

1

ζ̃
1,p

1 ζ̃
2,p

1
−0.3 0.05 + 0.56i 0.03 − 0.35i

0.05 + 0.56i 0.03 − 0.35i
−0.6 0.06 + 0.62i 0.04 − 0.37i

0.06 + 0.58i 0.04 − 0.33i
0.8 0.06 + 0.46i 0.03 − 0.27i

0.06 + 0.46i 0.03 − 0.27i

Figure 1 shows the location of c1 in the interior ofE . Figure 2 shows (in abscissa) the formal
(left-hand side plot) and computed (right-hand side one) behavior of criterion (18), which
takes its minimal value at the slice zp = −0.3 containing the source c1. Figures 3 and 4, and
table 1, are related to the three values of p corresponding to the slices zp = −0.6, zp = −0.3
and zp = 0.8. The singularities ζ

1,p

1 , ζ
1,p

2 of fp are the *, while the six poles of its best
rational approximant Rp,6 are the black points · (there are three poles around or below each *,
and this accounts for the fact that those are the triple poles of fp). We can thus estimate the
positions ζ̃

1,p

1 , ζ̃
1,p

2 by computing the barycenters of those two groups of poles, plotted as ‘�’ in
figures 3 and 4; in this situation, the poles are so close to each other and to ζ

1,p

i that it is pretty
hard to distinguish between them all, except on the zoom around ζ

1,p

2 in figure 3.
This allows us to recover w1 � ϕp

(̃
ζ

2,p

1

) = 0.2 + 0.5i whence c1, up to a relative error
smaller than 10−3.

Considering a situation with two sources (m = 2) at c1 = (−0.5, 0.2,−0.5) and
c2 = (0.5,−0.5, 0.3), and associated moments p1 = (10, 0, 0), p2 = (0, 1, 0), see
figure 5, we show the behavior of criterion (18), in figures 6 for k = 1 and 7 for k = 2.
The left-hand side plots are derived from formal computations, while the right-hand side ones
come from numerical simulations; one can see if the minimum in figure 6 is achieved for
zp = −0.5 in both cases, this is not the case in figure 7. Indeed, the computed minimum of
(18) related to the source c2 is achieved for zp = 0.2 (close but not equal to its true value 0.3).

We also computed the singularities ζ
k,p

1 , ζ
k,p

2 of the function fp defined by (17) for the
three values of p corresponding to the slices zp = −0.5, zp = 0, zp = 0.2 and zp = 0.7

14
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Figure 3. Slice zp = −0.3, zoom around ζ
1,p

2 .

Figure 4. Slices zp = −0.6 and zp = 0.8.

Figure 5. Two sources c1 = (−0.5, 0.2,−0.5) and c2 = (0.5,−0.5, 0.3).

(see table 2). For zp = −0.5, 0, 0.7, they are plotted as * in figures 8 and 9, where the poles
of Rp,N are the black points · and their barycenters (which provide us with the estimates ζ̃

k,p

i )
are the �.

In all cases, one can check that ζ
k,p

1 and ζ
k,p

2 have opposed arguments (although the
arguments of ζ̃

1,p

1 , ζ̃
2,p

2 are in the present situation more accurately recovered than the others).
At zp = −0.5, we thus get ϕp

(̃
ζ

1,p

1

) � w1 and allows us to locate c1 with an error less
than 10−3.
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Figure 6. The functions �
1,p

2 − (α2
p + β2

p) and �̃
1,p

2 − (α2
p + β2

p) (x-axis) w.r.t. the height zp of
the slice (y-axis).

Figure 7. The functions �
2,p

2 − (α2
p + β2

p) and �̃
2,p

2 − (α2
p + β2

p) (x-axis) w.r.t. the height zp of
the slice (y-axis).

Table 2. 2m estimated singularities in disks (m = 2 sources).

zp ζ
1,p

1 ζ
2,p

1 ζ
1,p

2 ζ
2,p

2

ζ̃
1,p

1 ζ̃
2,p

1 ζ̃
1,p

2 ζ̃
2,p

2
−0.5 −0.13 + 0.48i −0.1 − 0.39i 0.08 + 0.32i 0.13 − 0.5i

−0.13 + 0.48i −0.12 − 0.4i 0.1 + 0.33i 0.13 − 0.5i
0 −0.11 + 0.47i −0.09 − 0.39i 0.08 + 0.35i 0.12 − 0.54i

−0.1 + 0.47i −0.12 − 0.4i 0.1 + 0.36i 0.13 − 0.56i
0.7 −0.11 + 0.39i −0.09 − 0.32i 0.09 + 0.3i 0.17 − 0.56i

−0.11 + 0.39i −0.11 − 0.35i 0.12 + 0.31i 0.17 − 0.56i
0.2 −0.1 + 0.46i −0.09 − 0.38i 0.08 + 0.35i 0.13 − 0.55i

−0.1 + 0.46i −0.12 − 0.4i 0.11 + 0.36i 0.14 − 0.57i

At zp = 0.2, we get ϕp

(̃
ζ

2,p

2

) = 0.52 − 0.5i � w2, whence we get (0.52,−0.5, 0.2) � c2

up to 10−1. Observe, however, that the efficiency of the algorithm should be improved by
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Figure 8. Singularities ζ
k,p

1 , ζ
k,p

2 for k = 1, 2 at zp = −0.5; poles of Rp,8 and Rp,10.

Figure 9. zp = 0.7, poles of Rp,10; zp = 0, poles of Rp,9.

refining the slicing along zp and by looking to more accurate approximants, namely rational
functions constrained to have triple poles, or more prospectively to functions with branched
singularities of order 3/2.

6. Conclusion

Numerous algorithmical and computational aspects of the present study remain to be
approached. Amongst them, we can list the computation of the moments pk , but also questions
related to the selection of the estimated singularities ζ̃

k,p

1 , ζ̃
k,p

2 for fixed k, as p varies. From
this numerical point of view, in order to be more precise, we have to reduce the increment
between two consecutive slices, to run the algorithm along slices which are parallel to other
directions, and then to cluster the estimated singularities.

The present computation requires to compute rational approximants of huge degree. This
is a numerical limitation which comes from the fact that the algorithm is mostly dedicated to
the recovery of simple poles. This point is reinforced by the fact that we have 2m singularities
to be recovered on each slice p, which is already twice the complexity of the spherical situation
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where there were only m singularities in each slice [5]. Furthermore, convergence properties
only ensure the asymptotic approximation of the singularities. More efficient would be a
scheme constrained to find triple poles, as well as the study of approximation by algebraic
functions, instead of rational ones.

Despite these numerical limitations, the extension of the present work to more general
geometries should in principle be feasible, at least for revolution domains whose plane sections
by the family {z = zp} are so-called quadrature domains, as described in [19]. These are 2D
simply connected domains whose boundaries can be described by a rational function defined
on the unit circle (which generalizes the rational map ϕp). Observe that the number of
singularities in each slice will then be equal to m times the degree of this rational function.

Also, for the EEG application, the preliminary cortical mapping step should be considered
in this ellipsoidal setup, using decompositions on ellipsoidal harmonics. This step consists
in solving a Cauchy-type issue for the potential v, which is practically given by pointwise
measurements (electrodes) on the scalp, together with a vanishing current flux there, and has
to be transmitted as a harmonic function up to the boundary of the brain, where the sources
are seeked. A classical model is to consider the head as made up of a number of layers of
constant conductivity (brain, skull, scalp).

Note also that computational difficulties will arise from the fact that the present scheme
may require large-order expansions of the solution in order to solve the cortical mapping step
with real data, as indicated in [27]. As already observed in section 2, the quantities involving pn

k

are explicitly available only for small values of n, and should be numerically computed for large
orders, see [16, 30]. These computations may be carried out numerically in a forthcoming work
[13], where more realistic situations with respect to the EEG application will be considered,
as the case of sources closer to the boundary than in the above numerical examples; multipolar
sources should also be considered, see [34], together with a fair comparison of available
resolution schemes.

A feasible way to handle this recovery problem directly in 3D, and no longer using this
slicing process and 2D approximation schemes, might be the use of quaternionic analysis
[39], although a number of definitions of analyticity are available in this framework and an
appropriate one needs to be chosen. These issues will also be the topics of a forthcoming
work.
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