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Abstract
We consider the inverse problems of locating pointwise or small size
conductivity defaults in a plane domain, from overdetermined boundary
measurements of solutions to the Laplace equation. We express these issues in
terms of best rational or meromorphic approximation problems on the boundary,
with poles constrained to belong to the domain. This approach furnishes
efficient and original resolution schemes.

1. Introduction: models

We approach here the classical inverse problem of determining, from boundary Cauchy data
of solutions to the Laplace equation, hidden pointwise or small size conductivity defaults in a
plane domain.

A first practical motivation lies with the inverse source problem in R
3 of locating epileptic

foci in the human brain, the so-called inverse electroencephalography (EEG) problem.
Epilepsy is related to electrical discharges that originate from a small volume, hence epilepsy
foci are usually approximated by pointwise current dipoles. In that case a classical though
strongly simplified model is the spherical one [36] that we sketch below to lend perspective
to the discussion. There, the inverse source problem consists in determining the location
within a ball of a finite number of dipoles together with their moments from available data on
the sphere. Actually, this in not the question treated in the present paper where only planar
domains are considered. However, beyond the interest of the two-dimensional (2D) case in
its own right (particularly for 3D axisymmetric situations), the approach that we propose, in
order to recover both monopolar and dipolar pointwise sources in a plane domain, provides
a platform to handle the problem in a ball of R

3 by considering a family of 2D problems on
planar cross sections of the ball. Note that this requires no symmetry assumptions and could
be further extended to more general 3D volumes surrounded by parametrized surfaces [9].
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Further motivation arises from the need to detect regular small size inclusions scattered
in a planar matrix phase of known background conductivity. The non-destructive techniques
used for recovering the conductivity distribution inside a body from boundary measurements
of the voltage potential and the current flows are called impedance electrical tomography
(EIT). This method has a wide range of applications especially in medical imaging and
nondestructive control of materials, see [25]. Impedance tomography gives rise to nonlinear
and severely ill-posed problems. The situation changes when we have a priori knowledge
about the conductivity, which allows one to determine other specific features of the medium,
with high resolution.

We consider here two particular geometrical elliptic inverse problems, related to the
Laplace operator, consisting, as described above, in recovering conductivity defaults (either
sources or inhomogeneities) from boundary measurements. We approach and solve them in
2D, using approximation schemes for complex variable functions built on the boundary data.
The originality of this work is mainly in linking these mathematical problematics together,
leading to new and costless algorithms to solve for Laplace inverse problems; in particular,
they do not require multiple resolution of the associated direct problem. Note that these are
theoretical (as well as constructive) approximation algorithms in the sense that convergence
properties are available for the classes of functions arising here, which, together with their
numerical efficiency, is an advantage over other approaches (such as classical discrete least-
squares for pointwise boundary data computed with finite elements). In fact, we propose here
a somewhat dual approach that consists in best approximating (functions interpolated on) the
boundary data rather than the involved Laplace operator, on appropriate classes of harmonic
or analytic functions whose singularities (poles) describe those of the expected solution in a
suitable way, in order to make the problem well posed and the scheme convergent.

1.1. Overview

This paper is thus devoted to the presentation of a theoretical and constructive inversion
process exploiting the best meromorphic and rational approximation of boundary data for two
particular elliptic inverse problems, described in sections 1.2 and 1.3, with some survey of
available related results. In section 2.2, we give more details about our inverse source problem
and we express it as a problem of locating the singularities of a complex-valued function from
knowledge on the boundary, using harmonic conjugation. In section 2.3, we make use of an
asymptotic expansion for the difference between the solution to (5) and that of the associated
homogeneous problem whose dominant term is a rational function. In sections 3.1 and 3.2,
we present the construction and some properties of the best L2(T2) and L∞(T2) meromorphic
approximants and the behaviour of their poles with respect to the singularities of the function
to be approximated. We then show in section 4.1 how they are related to the source parameters
and give some numerical results to check the accuracy of the proposed method. This is
then applied in section 4.2 to the problem of identification of small size inclusions, where
computational experiments tend to demonstrate its viability to locate such inhomogeneities.

1.2. Pointwise sources and inverse EEG problem

The so-called spherical model of the head consists of a ball � ⊂ R
3 which is assumed to

be made up of three (or more) disjoint homogeneous connected layers (corresponding to
scalp, skull and brain) denoted by �i, i = 0, 1, 2, with spherical boundaries and constant
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conductivities σi . We assume that �0 (the brain) is the unit ball B3 of R
3, whose boundary

∂B3 is denoted by T3, and we let the source term F be of the form

F =
m1∑
j=1

λjδSj
+

m2∑
k=1

pk · ∇δCk
, (1)

with Sj , Ck ∈ �0, λj ∈ R, pk ∈ R
3. The steady-state electric potential u associated with

the current flux φ and the source term F [27, 36] is, in a sense to be clarified presently, a
solution of 


−∇ · (σ∇u) = F in �

σ
∂u

∂ν |∂�

= φ
(2)

where ν represents the outward unit normal vector to ∂�, and σ is a piecewise constant
conductivity which is equal to σi on �i, i = 0, 1, 2. Assume that additional measurements of
the solution are available on a part of the boundary γ∗ ⊂ ∂�, where we have u|γ∗ = g. From
measurements of g on γ∗ and φ on ∂�, the inverse EEG problem is that of finding F verifying
(1) (supported in �0 = B3 ⊂ �) such that (2) holds.

The identifiability result [29, theorem 1] ensures that the above inverse problem is well
posed in the following sense. Let u1 and u2 be two solutions of (2) associated with the same
Neumann condition φ on ∂� and to source terms F1, F2 of the form (1), respectively. Then,
if u1 = u2 on some subset γ∗ of ∂� that possesses an interior point, then F1 = F2. In other
words, if two measured potentials associated with the same flux coincide on γ∗, then they are
generated by the same source term of the form (1).

Moreover, u is harmonic in �2 and �1, and the Cauchy problem can be solved there, from
available data on ∂� ⊂ ∂�2, in order to get the value of u and ∂u

∂ν
on the ‘inner’ boundary

∂�0 = ∂B3, see [40] (proposition 1 of section 2.2 below indeed allows us to transform (2)
into a succession of problems in �i with transmission conditions at the interfaces ∂�i , for
i = 0, 1). We do not approach this important issue in the present work, and we merely consider
in the following that data are available on the surface of the subdomain �0 containing the
source terms (brain), which is the ‘inner’ boundary ∂�0. If the constant conductivity σ0 = 1,
we are then led to the n = 3 situation of problems (3) and (4) below (else, divide F and φ there
by σ0).

More generally, the equations to come can be used to model pointwise conductivity
defaults, in n-dimensional domains. Let Bn be the unit ball of R

n, Tn = ∂Bn its boundary, and
ν denote the outward unit normal vector to Tn. We want to solve in Bn the inverse problem
of determining a source term of the form (1), with Sj , Ck ∈ Bn, λj ∈ R, pk ∈ R

n, from
overdetermined boundary data

u|Tn
= g and

∂u

∂ν |Tn

= φ, (3)

of a solution u to

−	u = F in Bn. (4)

Despite uniqueness holding from [29, theorem 1], let us point out that very little is known
mathematically about the stability of such a problem. For the 2D case of dipolar sources, it
has been studied in [21], where logarithmic stability estimates are established, assuming in
addition the boundedness of the intensities and the property that poles are well separated. The
problem is rephrased in [47], in terms of finding simple poles in the complex plane, where a
sharper stability result—actually a Hölder type one—is given. Stability results in 3D situations
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and for monopolar sources are contained in [53], where a Hölder-type stability result is proved
from partial overdetermined data, under a priori assumptions of boundedness on the potentials
and further on the distribution of sources. This result is improved into a Lipschitz one when
complete data are available on the outer boundary. Note that, to our knowledge, there are no
other available stability properties, whence no analogous results for dipolar sources.

The final issue in studying such an inverse problem is the inversion process for the
recovery itself. We shall be concerned with the number of sources, their location, their
intensities and moments. In [47], a least square method under constraints is proposed in order
to identify dipolar sources. In [31], a variational adjoint state approach is used to approach
the EEG inverse problem. The algorithm given in [23, 29] is an algebraic method based on
the reciprocity gap principle, introduced in [5] for the inverse planar crack problem. The
limitation of this method is that it does not apply to mixed combinations of monopolar and
dipolar sources and also that we have to know a priori the number of sources. It was used
for other operators such as the heat equation in [30] or the Helmholtz equation in [2], and
successfully extended to the transient case and to homogeneous elastic bodies.

We approach here 2D situations, where R
2 � C, for which we will show that the issue

can be expressed as a rational or meromorphic approximation problem on the boundary T2

with poles constrained to belong to B2. We will see in section 2.2, see (12), that harmonic
conjugation defines a complex-valued function f , depending on the boundary data (g, φ) on
T2, analytic in B2, excepted at sources, whose real part coincides with the solution u to (3),
(4) there. Its best meromorphic approximants, with poles in B2, can be computed for some
Lp(T2) norms; these poles are strongly related to the singularities of f that are the sources
to be recovered (they even coincide for dipolar sources, but this allows us in all cases to treat
monopolar and dipolar sources on an equal footing at this approximation step).

1.3. Small size inclusions

For the purpose of mine detection, mines are considered to be small with respect to the
prospected area and to have a significantly higher (metal) or lower (plastic) conductivity than
the surrounding soil. Taking advantage of the smallness of the inclusions, asymptotic analyses
were developed in order to design reconstruction algorithms.

In the 2D case, in the presence of small inhomogeneities of size ε, the voltage potential
uε is a solution of


div(γε∇uε) = 0 in B2,

∂uε

∂ν |T2

= φ.
(5)

The conductivity γε is assumed to be equal to 1 in the safe part of the domain B2\∪m
j=1ω

j
ε while

on the j th inclusion ω
j
ε , we have γε = kj , for some constant kj ∈ R

∗
+. The inhomogeneities

are assumed to be of the form

ωj
ε = εωj + zj ⊂ B2. (6)

The points zj ∈ B2 determine the location of the imperfections whereas the domains ωj ⊂ R
2,

which describe their relative shapes, are bounded, smooth, strictly star shaped, and contain
the origin 0. The parameter ε measures the common order of magnitude of the diameter
of the inclusions: it is sufficiently small, so that the inclusions are distant enough from the
boundary T2.

Now, given additional measurements of the potential on the boundary: uε|T2
= gε, the

inverse problem consists in recovering the inclusion parameters kj , zj , ωj and ε. In mine
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detection, however, as in some other applications, the information of real interest is the
positions zj of the inclusions, and it is not always necessary to reconstruct the precise value
of their conductivity nor their shape.

The asymptotic expansion of the voltage potential, derived in [32], was the fundamental
step in the design of an identification procedure which consists in a discrete least square
minimization method. It was also used in [3] with a variationally method based on a reciprocity
gap principle. The idea was to form the integral of the measured boundary data against
harmonic test functions and to choose the currents so as to reduce the reconstruction problem to
the inversion of some Fourier transforms. Another algorithm that makes use of the asymptotic
expansion of the voltage potential has been derived in [20] which is in the spirit of the linear
sampling method of [26]. For accurate reconstruction of the location of m inhomogeneities,
this method requires knowledge of the subspace spanned by the first 2m eigenvectors of the
incremental Dirichlet to Neumann data operator. A more realistic real-time algorithm based
on the observation of the pattern of a simple weighted combination of a constant input current
and the corresponding output voltage is proposed in [42]. This algorithm was improved in
[4], using a few more measurements, based on a new asymptotic formula and the observation
in both the near and the far field of the pattern of a simple weighted combination of the input
currents and the output voltages. In all of these algorithms, the locations of the inclusions are
found with an error of the order of the size of the inhomogeneities.

These asymptotics, stated in section 2.3, together with harmonic conjugation, provide
approximation formulae for uε, for small ε, by (the real part of) a meromorphic function fε

in B2, defined on T2 by the available boundary data (gε, φ). The poles of fε then coincide
with the centres zj of the inclusions to be recovered, while their residues are explicitly linked
to their parameters kj , ωj and ε. Hence, recovering fε in B2 from its boundary values on
T2, which we approach using the best meromorphic approximation there, will solve for the
inverse problem of recovering the centres of the small inclusions and their conductivities kj ,
assuming that their shapes ωj and common length ε are known.

2. Expressions of the solutions in terms of rational functions

We first set up regularity properties of the solutions u = u2 and uε to the direct Neumann
problems associated with (3) and (4) for n = 2, and (5), which allow us to give partially
explicit representations for these and for the associated complex-valued functions f and fε in
terms of the parameters of the sources or inclusions.

2.1. Notation

We denote by W 1,p(�) the familiar Sobolev space of Lp(�) functions whose distributional
derivatives of first order again lie in Lp(�), p ∈ [1,∞]. We put W

1,p

0 (�) to denote the
subspace of W 1,p(�) consisting of functions whose traces on the boundary ∂� vanish
[35, 48]. Here, W−1,p(�) is the dual of W

1,q

0 (�) with 1/p + 1/q = 1. Let W−1/2,2(∂�) be
the dual space of W

1/2,2
0 (∂�), the latter being most easily described as the interpolation space

(of exponent 1/2) between W
1,2
0 (∂�) and L2(∂�), [44, theorem 11.6].

2.2. The case of pointwise sources

To begin, we prove a preliminary regularity result for the solution to the extended direct
Neumann problem (2) which is needed in order to express it as (4) on �0 = Bn.



56 L Baratchart et al

Proposition 1. If φ ∈ W−1/2,2(∂�) and F given by (1) are linked by

−
∫

∂�

φ ds =
∫

�0

F(z) dz =
m1∑
j=1

λj , (7)

then there exists a solution u to (2), Hölder continuous in �̄\{Sj , Ck}, and unique up to an
additive constant.

The above integral of the distribution F over �0 is of course to be understood as the duality
product 〈F, 1〉�0 .

Proof. Let En be a fundamental solution associated with the Laplace operator (−	) in R
n

[27, 38]. We introduce the function

v(x) = − 1

σ0
En ∗ F

which satifies −σ0	v = F , in �. Because F defined by (1) is a distribution supported
by {Sj , Ck} ∈ �0, the above function v is harmonic and smooth outside �0. In particular,
v ∈ C∞(�\�̄0) so that, a fortiori, ∇ · ((σ − σ0)∇v) ∈ W−1,p(�) for all p. If we consider
w = u − v, we get


−∇ · (σ∇w) = ∇ · ((σ − σ0)∇v) in �

σ
∂w

∂ν |∂�

= φ − σ
∂v

∂ν |∂�

.
(8)

If φ ∈ W−1/2,2(∂�), the compatibility condition∫
∂�

(
φ − σ

∂v

∂ν

)
ds =

∫
�

∇ · ((σ − σ0)∇v) dz,

which, from Ostrogradski’s formula and Gauss’s theorem, together with the above definition
of v, simply becomes (7) and is sufficient to ensure the existence of a weak (or generalized)
solution w ∈ W 1,2(�) to the direct Neumann problem (8). This follows from classical
existence results concerning strictly elliptic second-order problems in bounded smooth
domains, see [27, II.8.4, proposition 10].

For n � 2 however, Sobolev’s imbedding theorems do not ensure the continuity of
functions in W 1,2(�) which indeed contains discontinuous elements. However, the De Giorgi–
Nash theorem asserts that a solution w ∈ W 1,2(�) to the above divergence form (8) is in fact
Hölder continuous in �̄, see [27, II.8.3, proposition 6], [34, theorem 8.22]. In particular,
w is continuous through the different layers. This shows that a solution u to (2) is Hölder
continuous in �̄\{Sj , Ck}, and is unique up to an additive constant. �

We now see that (2) can be rewritten as

−	u = 0 in �i, i = 1, 2, −	u = F in �0 = Bn,

which contains (4), whence, thanks to proposition 1, u is smooth enough for the following
transmission conditions to hold, in addition to those acting on the outer boundary ∂� = ∂�2:

u+ = u− and σi

∂u

∂ν

+

= σi−1
∂u

∂ν

−
on ∂�i ∩ ∂�i−1, i = 1, 2,

where superscripts ‘+’ and ‘−’ indicate the limiting values as we approach ∂�i ∩ ∂�i−1 from
�i (outside) and �i−1 (inside), respectively. This allows us to express the boundary condition
on ∂�0 = Tn as (3). We thus turn to Laplace equation (4), for which the following corollary
of proposition 1, see also [27, II.8.3, proposition 6], holds.
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Corollary 1. Assume φ ∈ W−1/2,2(Tn). If the compatibility condition

−
∫

Tn

φ ds =
m1∑
j=1

λj =
∫

Bn

F (z) dz (9)

holds, the solution to the direct Neumann problem associated with (4) is unique up to an
additive constant and Hölder continuous in Bn\{Sj , Ck} .

Assume now that n = 2.

Proposition 2. There exists a function A analytic in B2 such that, if we define

f (z) = A(z) −
m1∑
j=1

λj

2π
log(z − Sj ) −

m2∑
k=1

pk

2π(z − Ck)
, (10)

then

u2(z) = Re(f (z)), z ∈ B2\{Sj , Ck}.
Moreover, if ∫

T2

φ ds = 0, (11)

then f is given on T2 (up to an additive constant) by

f (z) = g(z) + i
∫ z

ξ0

φ(ξ) ds(ξ), (12)

for every z ∈ T2, where ξ0 ∈ T2 is fixed once and for all.

Proof. Any solution u = un to (4) can be written as

un(z) = hn(z) +
∫

Bn

En(z, x)F (x) dx,

for z ∈ Bn\{Sj , Ck}, where hn is a harmonic function in Bn [27, 38]. The radial fundamental
solution of −	 in R

2\{0}, E2(z, x) = E2(z − x) is given by

E2(z) = − 1

2π
log |z|, (13)

so we get the following expressions for the solution to (4) in the case n = 2 to which we stick
in the following:

u2(z) = h2(z) −
m1∑
j=1

λj

2π
log |z − Sj | −

m2∑
k=1

pk · (z − Ck)

2π |z − Ck|2 . (14)

We now turn to the complex framework, where the vector z = t (z1, z2) ∈ R
2 is identified with

the complex number z = z1 + iz2 ∈ C, for simplicity. With this notation, (14) becomes

u2(z) = Re(f (z)), z ∈ B2\{Sj , Ck},
with f defined by (10), where A is a function analytic in B2 such that h2 = ReA. The
function f is thus analytic on an annulus in B2 surrounded by T2 that does not contain any
source {Sj , Ck}. Hence, thanks to Cauchy–Riemann equations, it holds from the boundary
conditions (3) and (11) that f is given on T2 up to an additive constant by (12). �

The inverse source problem in B2 can then be formulated as that of locating the singularities
of the function f given by (10) from its values on the boundary T2 of B2, available from (12)
from Cauchy data g, φ (3).
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In the case where there are no sources in B2, i.e m1 = m2 = 0, the function u2 is the real
part of the analytic function A = f which is known on T2. This provides the basis of a test to
establish the presence of sources in the domain. Indeed, some distance on T2 between f and
the set of boundary values of analytic functions in B2 can be constructively computed, at least
for quadratic and uniform norms [1, 7, 13, 50].

This is where Hardy spaces Hp come in. If this distance is strictly positive (not too small,
in practice) f does necessarily possess singularities in B2 and we are led to the determination
of the number of sources, their positions and their moments. This issue can be approached
through the study of the behaviour of the poles of rational or meromorphic approximants
on T2.

2.3. The case of small inclusions

When the number m and the size ε of the inclusions are small enough, the solution uε to (5)
is close to the background potential u which is a solution to the homogeneous problem


	u = 0 in B2,

∂u

∂ν |T2

= φ,
(15)

provided that both satisfy the same normalization condition∫
T2

u ds =
∫

T2

uε ds = 0, (16)

which ensures uniqueness. Observe that the existence of solutions u and uε to (16) and (5) is
guaranteed by the compatibility condition (11).

Also, if φ ∈ W−1/2,2(T2), then u, uε ∈ W 1,2(B2) and are Hölder continuous in �̄; this
follows, as in proposition 1, from the De Giorgi–Nash theorem [27, II.8.3, proposition 6],
[34, theorem 8.22].

Let E2 be the fundamental solution of the 2D Laplace operator given by (13), and
∂E2

∂νx

(x, z) = ∇xE2(x, z) · ν.

Theorem 1 ([18], [32]). When B2 contains m well-separated circular inclusions, ωi
ε =

zi + εB2, with conductivity ki , then for z ∈ T2

uε(z) − u(z) + 2
∫

T2

(uε(x) − u(x))
∂E2

∂νx

(x, z) ds(x)

= −ε2 1

π

m∑
i=1

z − zi

|z − zi |2 · Ai∇u(zi) + O(ε5/2). (17)

The polarization tensor Ai = (
a

(i)
j l

)
corresponding to the ith inhomogeneity is given by

a
(i)
j l = π

1 − ki

1 + ki

δjl, j, l = 1, 2. (18)

where δjl denotes the Kronecker symbol. For a domain with two close-to-touching circular
inclusions of common size ε and conductivity k, separated by 2δε, δ � 0, we have for z ∈ T2:

uε(z) − u(z) + 2
∫

T2

(uε(x) − u(x))
∂E2

∂νx

(x, z) ds(x) = −ε2 1

π

z − z0

|z − z0|2 · A∇u(z0) + O(ε3)

(19)
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where z0 is a point in the convex hull of the union of the two inclusions and A = (ajl) is equal
to

ajl =




16a2π
∑
n�1

n
ρ2n

� + (−1)jρ2n
δjl, if δ �= 0,

(−1)j+14π
∑
n�1

(−1)(j+1)n

�nn2
δjl, if δ = 0,

j, l = 1, 2, (20)

where � = k+1
k−1 , a = √

δ(2 + δ), ρ = a−δ
a+δ

.

Therefore, u is the first term in the asymptotic expansion of uε, as ε → 0. The correction of
order two for this expansion was derived in [32] for a domain with a finite number of small
well-separated inclusions and in [18] for two small close-to-touching inclusions, in terms of
their properties (location, shape and conductivity), through the so-called polarization tensors.

Remark 1. Expression (17) is still valid for more general configurations [32, theorem 2]. In
fact, consider an open bounded smooth domain � in R

n, n � 2, of conductivity 1. Assume that
� contains m well-separated inclusions ωi

ε = zi +εωi , where ωi ⊂ R
n is a strictly star-shaped,

bounded, smooth domain containing the origin, with conductivity ki , then formula (17) holds
true for every z ∈ ∂�. In this case, the polarization tensor Ai = (

a
(i)
j l

)
, associated with ωi , is

a symmetric matrix (see [51]) given by

a
(i)
j l = 1 − ki

ki

(
|ωi |δjl +

∫
∂ωi

∂φ
(i)+
j

∂ν(i)
(y)yl ds(y)

)
, j, l = 1, . . . , n, (21)

where |ωi | denotes the Lebesgue measure of the domain ωi , ν
(i)
j the jth component of the

outward unit normal vector to ∂ωi , and φ
(i)
j is the solution of the following free space Laplace

equation: 


	φ
(i)
j = 0 in ωi, 	φ

(i)
j = 0 in R

2\ωi,

φ
(i)
j is continuous across ∂ωi and lim

|y|→∞
φ

(i)
j (y) = 0,

1

ki

∂φ
(i)+
j

∂ν(i)
− ∂φ

(i)−
j

∂ν(i)
= 1 − ki

ki

ν
(i)
j on ∂ωi,

where superscripts ‘+’ and ‘−’ indicate the limiting values as we approach ∂ωi from outside
and inside ωi , respectively.

Remark 2. If the inclusions are ‘well separated’ and of smooth shape, the gradient of the
potential uε (which represents the stress in this case) is uniformly bounded. Such a picture
could deteriorate when some inclusions get close-to-touch, forming narrow channels where
currents could concentrate. For finite and strictly positive conductivity, it has been shown
in [19, 43] that, when � and the inclusions are bounded domains with C1,α boundaries,
0 < α < 1, the function uε is in W 1,∞(�). The bound on the stress depends on kj , the size
and the shape of the inhomogeneities (on the C1,α modulus of the total boundary of all the
subdomains). This result is optimal in terms of global regularity, since ∇uε is generically
discontinuous at the interfaces between the inclusions and the background domain.

Proposition 3. There exists a unique function fε meromorphic in B2 with poles at {zi} such
that

uε(z) = Re(fε(z)), z ∈ T2,
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where fε admits expression (23) or (24), Moreover, if φ satisfies (11), then fε is given on T2

by

fε(z) = gε(z) + i
∫ z

ξ0

φ(ξ) ds(ξ), (22)

for every z ∈ T2 and some fixed ξ0 ∈ T2.

Proof. Thanks to expressions (17) and (19), it holds that uε = Refε on T2, for fε defined in
B2\{zi} by

fε(z) = Cε(z) − ε2 1

π

m∑
i=1

Ai∇u(zi)

z − zi

+ O(ε5/2), (23)

in the case of m separate inclusions or, for two close inclusions, by

fε(z) = Cε(z) − ε2 1

π

A∇u(z0)

z − z0
+ O(ε3), (24)

for some function Cε analytic inside B2 such that, on T2,

Re Cε(z) = u(z) + 2
∫

T2

(u(x) − uε(x))
∂E2

∂νx

(x, z) ds(x).

Thanks again to Cauchy–Riemann equations, and from the boundary conditions, fε is given
on T2 by (22). �

We can then approximately reduce the inverse conductivity problem for small size inclusions
to that of locating the singularities of a meromorphic function fε, whose real part is equal to
uε, from knowledge of it on the boundary T2. From (23) and (24), we indeed see that the
localization of the inclusions in B2 can still be expressed as finding the poles of a function fε

from knowledge of it (22) on the boundary T2, given by that of the boundary data gε, φ; the
associated residues then give the unknown conductivities.

3. Hardy classes and best meromorphic approximation

We denote by H 2 the Hardy space of analytic functions in the unit disc B2 of the complex
plane C whose L2 norms on circles of radius less then 1 are bounded. It (or its trace on T2) can
alternatively and equivalently be defined as the subspace of L2(T2) of functions with vanishing
Fourier coefficients of negative index. Let H̄ 2

0 be its orthogonal complement in L2(T2), which
consists in functions analytic outside B2, vanishing at ∞, and whose L2 norms on circles of
radius greater than 1 are bounded [28, 33, 39]. From Parseval’s equality:

H 2 =
{ ∑

n�0

anz
n, z ∈ B2,

∑
n�0

|an|2 < ∞
}

,

H̄ 2
0 =

{∑
n<0

anz
n, z ∈ B2,

∑
n<0

|an|2 < ∞
}

.

Lemma 1. Equations (10), (23) and (24) define functions f − A and fε − Cε that belong
to H̄ 2

0.

Proof. Consider the first expression (10) for the function f . Because f is given on T2 by (12),
proposition 1 ensures that f belongs to L2(T2) as soon as the boundary data φ ∈ W−1/2,2(T2).
We can thus recover its Fourier coefficients, hence those of its antianalytic part f − A which
belongs to H̄ 2

0. Indeed, the compatibility condition (9) together with (11) imply that5

5 If
∑m1

j=1 λj �= 0, one can use the trick of adding an fictitious source with a moment λ0 = −∑m1
j=1 λj .



Recovery of pointwise sources or small inclusions in 2D domains and rational approximation 61

m1∑
j=1

λj = 0, (25)

whence f − A vanishes at infinity:

f (z) − A(z) =
m1∑
j=1

λj

2π
log

z − Sj

z − b
+

m2∑
k=1

pk

2π(z − Ck)
, (26)

for some arbitrary b ∈ B2, because of (25). Since h = f − A is also analytic outside D and
bounded in L2(T2), it finally belongs to H̄ 2

0.
Concerning expressions (23) and (24), one analogously proves that fε − Cε ∈ H̄ 2

0, for
φ ∈ W−1,2(T2), see section 2.3. �

This is how meromorphic approximation on the boundary comes in, for the recovery of these
singularities in B2 from available data on T2. Note that the singularities of the functions to be
approximated are either poles or essential singularities (log) for f (or f − A), depending on
whether m1 = 0 or not, or close to the poles of some rational function for fε (or fε − Cε).

The next three sections consist in a survey of existing and referenced results about
meromorphic approximation with constrained poles. We choose to stick to a somewhat
informal presentation that we expect to briefly present the theoretical and constructive bases
of the numerical schemes used in section 4.

3.1. Rational L2 approximation

Let Rn ⊂ H̄ 2
0 be the set of rational functions with at most n poles in B2, none on T2. For

functions h ∈ L2(T2), the issue of the best L2 meromorphic approximation to h with less than
n poles in B2 amounts to finding ψn ∈ H 2 + Rn such that

‖h − ψn‖L2(T2) = min
ψ∈H 2+Rn

‖h − ψ‖L2(T2).

It can be expressed in terms of the best rational approximation as follows. Let PH 2 denote the
orthogonal projection from L2(T2) onto H 2 and PH̄ 2

0
denote the one from L2(T2) onto H̄ 2

0.
Put h− = PH̄ 2

0
h.

Now, being given a function h− ∈ H̄ 2
0, one can look for its best L2 rational approximation

of degree less than n in H̄ 2
0: find polynomials πn, qn, with deg qn � n, such that πn/qn ∈ H̄ 2

0
(this forces deg πn < deg qn), that minimizes ‖h− − p/q‖L2(T2) among such functions, see
[13]: ∥∥∥∥h− − πn

qn

∥∥∥∥
L2(T2)

= min
degp<degq=n

∥∥∥∥h− − p

q

∥∥∥∥
L2(T2)

.

It then holds that ψn = PH 2h + πn/qn.
The existence of such a minimum is established in [6]. In fact, qn will have degree n,

except if h− is already a rational H̄ 2
0 function of degree strictly less than n (normality property)

[13].
As to uniqueness of the best rational approximant, it is known to be true for an open and

dense subset of H̄ 2
0. Whenever h− itself is a rational function of degree n in H̄ 2

0, the unique
minimum at order n is h itself, a consequence of the consistency property from [12] (which
is to the effect that h− is the unique critical point of the criterion). In general, however, local
minima do exist.

Concerning constructive aspects, algorithms to generate local minima can be obtained
using Schur parametrization which induces a map on the manifold consisting in rational
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H̄ 2
0 functions of given degree (possibly high, in order to model or closely approximate the

given function, and equal to n for the solution) and of uniform norm equal to 1 on T2 [46].
Computing the gradient and the Hessian of the criterion with this parametrization produces an
efficient resolution scheme, see section 4.

3.2. Best uniform meromorphic approximation

The following extremal issue of best uniform meromorphic approximation on T2 is the so-called
Adamjan–Arov–Krein (AAK) problem [1, 50, 54]. Being given some function h ∈ L∞(T2),
find a best approximant ψn to h in L∞(T2)-norm among the set H∞ + Rn of functions
meromorphic with at most n poles in B2 and bounded near T2:

min
ψ∈H∞+Rn

‖h − ψ‖L∞(T2) = ‖h − ψn‖L∞(T2). (27)

Although (27) admits solutions for every h ∈ L∞(T2), the uniqueness is only ensured whenever
h ∈ H∞ + C(T2), that is when h− ∈ C(T2).

In this case, the Hankel operator Hh of symbol h defined on H 2 by

Hhψ = PH̄ 2
0
(hψ), ∀ψ ∈ H 2

is compact [54]. Note thatHh = Hh− , since the H∞ part of the symbol. The best meromorphic
approximant with at most n poles in B2, also called the AAK approximant of order n, to a
function h ∈ H∞ + C(T2) is given by

ψn = h − Hhvn

vn

, (28)

for the first element vn of the (n + 1)th Schmidt pair of Hh, see [50, 54]. Moreover, the error
is circular: |h − ψn| = σn a.e. on T2, σn being the (n + 1)th singular value of Hh. Since Hh

is compact, we can equivalently define
(
σ 2

n , vn

)
as the eigenvalues and eigenvectors of the

self-adjoint compact operator H∗
hHh:

H∗
hHhvn = σ 2

n vn.

For meromorphic symbols h ∈ H∞ + RN , that is h− ∈ RN,Hh = Hh− has finite rank and
the above procedure can be made constructive by building its singular values decomposition.
Continuity properties from [49] show that it remains generically effective (robust) when h− is
Hölder smooth on T2 and can be approximated there by rationals in the Hölder norm.

This uniform approximation procedure may be used either directly as an alternative to the
quadratic one explained in section 3.1 or in order to initialize it at the target degree. We mainly
use it in this second way, since the L2 scheme carries additional robustness and smoothness
properties, with respect to noise, see section 4.

3.3. Behaviour of poles

When the function h to be approximated is already meromorphic with poles in B2, that is
when the antianalytic part h− = PH̄ 2

0
h belongs to Rm or is already rational of degree m, the

best rational approximant πn/qn of degree n will coincide with h− and provide 0 as error
value, as soon as n � m. This occurs in the case of dipolar sources where m1 = 0, since then
f − A ∈ Rm2 from (10), and is ‘almost’ true concerning small inclusions, since fε − Cε is
close to Rm from (23) or (24), with m = 1. This allows us to recover the number m of poles
(even in cases where it is high enough), together with their locations and residues. Indeed, if
n > m, πn/qn possesses n poles, among which n − m have a residue equal to zero. The same
phenomenon occurs with the AAK approximation.

When the function h to be approximated is not meromorphic, this is no longer true, since
the latter no longer belongs to the approximating class. However, when h has branchpoints as
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singularities, such as log-type ones, for example as in (10) above, some weaker information is
still available about their location from the behaviour of the poles of best approximants.

Concerning pointwise sources, in the purely monopolar case where m1 = 2 and m2 = 0
and where λ1 = −λ2, from the compatibility condition (25), the antianalytic part h− = f −A
of the function f defined by (10) can be written as

h−(z) = −λ2

∫
γ

dξ

z − ξ
,

for any curve γ joining S1 and S2 in B2. It can then be proved as a consequence of potential
theory, see [10, 11, 14, 41, 45], that the counting measure of the poles of the best L2 or L∞

rational approximant (namely the probability measure having equal mass at each of these poles)
converges in the weak-∗ sense when n goes to infinity to the Green equilibrium distribution of
the circle orthogonal to T2 joining S1 and S2 in B2.

Because equilibrium distributions charge the endpoints, S1 and S2 will be accumulation
points of the poles and should therefore be detected.

Note that the arc of the circle orthogonal to T2 joining S1 and S2 in B2 is the hyperbolic
geodesic arc between these points, which is the reason why it appears in this context6.

Further, it is conjectured that this holds for more than two points, namely the counting
measure of the poles of the best approximants to the singular part of (10)—more generally
to functions belonging to a class of Cauchy integrals on some contour joining the m2 points
Sj —converges in the weak-∗ sense when n goes to infinity to the equilibrium distribution on
the contour J connecting the Sj that minimizes the capacity of the condensor (T2,J ). This
is illustrated by the numerical experiments of sections 4.1.2 and 4.1.3.

Hence, the behaviour of the best meromorphic approximants gives weaker information
about the location sources in the monopolar case than in the dipolar one, although the above
convergence result indicates that the efficiency of the best approximation schemes in order
to recover such singularities depends strongly on the number of numerically computed poles,
since they only accumulate towards the Sj . This property however allows us at least to
get a first estimation of the monopolar sources location and possibly initialize existing more
appropriate but expensive localization procedures. See also [8] where this property is used for
cracks recovery and [16] where the AAK approximation is used in order to build extensions
of partial boundary data for solving inverse problems for cracks.

4. Numerical experiments

They are produced by the software Rarl27 which uses the procedure described in section 3.1,
relying on Schur parameters, in order to compute the best rational H̄ 2

0 approximants πn/qn of
given degree n to the function h ∈ H̄ 2

0. This software also performs the AAK approximation,
as described in section 3.2, using singular value decompositions together with state space
representations.

4.1. Pointwise sources

We first solve the direct Neumann problem (3), (4) for n = 2. The domain B2 is meshed
using P1 finite elements from the Matlab toolkit PDEtool. The boundary T2 is discretized
with 512 points. We compute the values at these points of the potential u2 associated with
the following boundary currents on T2: φ1(θ) = cos2 θ sin θ − 1/2, φ2(θ) = cos θ and the
6 More can be said, namely the sum of the angles under which the poles see this arc of circle is bounded by an
absolute constant, see [41, 45].
7 Developed jointly at INRIA (Miaou team) and Ecole des Mines de Paris (CMA) using Matlab 6.
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Figure 1. m2 = n = 4; m2 = n = 7; m2 = 5, n = 5, 12.

piecewise continuous flux φ3(θ) equal to 1 when θ ∈ [0, π/2[, to −1 if θ ∈ [π, 3π/2[ and to 0
otherwise. We then build from (12) pointwise values on T2 of a function f whose expression is
given by (10) and the associated Fourier series (usually with 500 coefficients). Its antianalytic
part h− = f −A is then obtained by keeping the Fourier coefficients of negative indices (250
coefficients).

In the following figures, the original sources are represented by (small) ∗, the recovered
poles by the ◦ (which are often superposed on the ∗, which makes them look like single black
circles), while the lines are the moments for both functions (symbolized by a dot when equal
to 0 or sufficiently small).

4.1.1. Dipolar sources, m1 = 0. In that case, the function h− = f − A to be approximated
is already rational of degree m2. Whenever n = m2, the best L2 rational approximant πn/qn

of degree n as well as the AAK approximant ψn will coincide with h− itself and provide a
vanishing, numerically small, error value, as explained in section 3.3. This scheme also allows
us to recover the number m2 of dipoles (even in cases where it is high enough), their locations
Ck and moments pk (given by residues at poles Ck), k = 1, . . . , m2, since, if n > m2, πn/qn

and ψn possess n poles in B2, among which n − m2 have a moment (or residue) close to zero.
Figures 1 to 3 illustrate how the computation of the poles of best L2 rational approximants to
h− on T2 (antianalytic part of boundary data) allows us to recover the dipoles. Only the last
plot in figure 3 concerns the AAK approximation. Except in figure 2, we have φ = φ1.
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Figure 2. m2 = 5; flux φ2, φ3.
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Figure 3. m2 = 3; noise 1% using L2; noise 10% using L2 and AAK.

In figure 1, we see that this method is efficient even for a relatively large number of
dipoles and that it also allows us to find the number m2 of dipoles. In fact, if m2 is unknown,
we increase the degree n of the rational approximant until the appearance of a pole with zero
residue. The number m2 of dipoles is then equal to the number of poles with nonzero residue
(see the last plot).

An analysis of the l2 error in the location of the recovered dipoles confirms the accuracy
of our method, although the error increases with the number of sources. In fact, it varies
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Figure 4. m1 = 2, n = 4, 8; m1 = 3, n = 6; m1 = 4, n = 8.

from 3 × 10−3 for a configuration with m2 = 2 to 6 × 10−3 and 10−2 for m2 = 5, 7,
respectively.

The same remark is valid when we study the relative l2 error for the moments of the
sources. The error is equal to 2 × 10−4 for m2 = 2 dipoles, to 9 × 10−3 for m2 = 5, and to
3 × 10−2 for m2 = 7, in figure 1.

We have also tested this identification process with respect to different fluxes. Figure 2 is
obtained using the fluxes φ2 and φ3. All these fluxes allow us to identify the sources but, for
these configurations, the results associated with the fluxes φ1 and φ2 are more accurate than
those computed using the piecewise constant flux φ3, which is due to the error arising from the
truncation of the Fourier series. In fact, for the test with five dipoles in figure 2, the relative
l2 error for the moments is equal to 9 × 10−3 for the two first fluxes and to 6 × 10−2 for φ3,
whereas the errors in the locations are respectively 6 × 10−3 and 10−2.

We now consider the robustness properties of our identification processes. We obtain
good results for perturbed data with an additive random noise whose amplitude is taken to be
equal to x% of the uniform norm of (the available pointwise values of) u2 on T2.

Our choice of the rational L2 approximation instead of the best uniform meromorphic one
is motivated by the fact that the first one is much more robust than the second approximation,
as discussed in section 3.2. Although the robustness of both algorithms deteriorates as the
number of sources increases, the L2 method is strongly stable when the domain contains only
a small number of dipolar sources. This is already shown in figure 3, where an AAK procedure
is run instead of the L2 one, in the last plot.
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Figure 5. m1 = 2, n = 4; m1 = 4, n = 8; noise 1% and 5%.

4.1.2. Monopolar sources, m2 = 0. We follow the same steps as for the identification of
dipolar sources in 4.1.1. In this case, the function h− = f − A to be approximated is no
longer rational but has branchpoints. The behaviour of the poles of the best approximants to
h− is described in section 3.3 and confirmed by the numerical tests.

In fact, we clearly see in figure 4 how the poles of the best approximant accumulate
towards {Sj }1�j�m1 , on the contour γ joining the Sj which minimizes the capacity of the
condensor (T2, γ ).

For noisy data, we lose a part of the information, since we have fewer poles on the contour
joining the sources, but we still get an idea about their behaviour, see figure 5.

Assuming that the sources (Sj ), 1 � j � m1 are determined, the following relations
allow us to compute the associated moments (λj ), if (25) holds. Let w be an analytic function
in B2 and let a ∈ B2 such that the lines between a and Sj are two by two distinct. From (26),∫

T2

w(z)f (z) dz =
∫

T2

w(z)h−(z) dz

=
∫

T2

w(z)

m1∑
j=1

λj

2π
log

z − a

z − Sj

dz =
∫

∪�j

w(z)

m1∑
j=1

λj

2π
log

z − a

z − Sj

dz

where ∪m1
j=1�j is a closed path surrounding the segments [aSj ], j = 1, . . . , m1, from Cauchy’s

theorem. The last integral is independent of the choice of the point a and the paths �j ; assuming
that the lines (0Sj ) are two by two distinct, we can thus choose a = 0, the origin, and a closed
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Figure 6. m1 = n = 4, noise 0%, 1%, 5%; m1 = n = 6.

path ∪m1
j=1�j surrounding ∪m1

j=1[0Sj ]. So, because the determinations of the log term above
differ by 2iπ on both sides of [0Sj ], we obtain that∫

T2

w(z)f (z) dz =
m1∑
j=1

iλj

∫
�j

w(z) dz =
m1∑
j=1

iλjSj

∫ 1

0
w(tSj ) dt.

The above equation allows us to compute the m1 monopolar source moments (λj ) by taking
m1 suitable analytic functions ωl, 1 � l � m1 and by solving the corresponding linear system
of equations.

A possible trick, in order to get more information about the location of monopolar sources,
is to compute rational approximants to the derivative of h− on T2, which is a rational function of
degree m1 that belongs to L2(T2)—thus to H̄ 2

0—for smooth enough boundary data (φ ∈ L2(T2)

is enough). The related numerical trials are illustrated by figure 6 which indicates that this
indeed allows us to localize the monopolar sources and to recover their moments, in cases
without too much noise.

4.1.3. Mono/di-polar sources, m1,m2 �= 0. The above schemes also allow us to treat these
mixed cases as shown in figure 7 (also for noisy data).

As noted in sections 4.1.1 and 4.1.2, we recover the dipolar sources but we only get weak
information about the monopolar ones. So, once the dipoles and their parameters (m2, pk

and Ck) are identified, it would be possible to compute, as in section 4.1.2, the best rational
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Figure 7. m1 = 2, m2 = 1, n = 5; m1 = 3, m2 = 2, n = 8; with noise 0% and 1%.

approximation to the derivative of the function h−−∑m2
k=1

pk

2π(z−Ck)
, which is rational of degree

m1 with simple poles.

4.2. Small size inclusions

We now want to detect regular inclusions of small size ε, scattered in a matrix phase of known
background conductivity, taken to be equal to 1. Consider then the function fε − Cε whose
expression is given by (23) or (24) and whose trace on T2 is computed from (22). For our
numerical tests, the imposed boundary current flux is φ(θ) = cos θ . This implies that the
corresponding background voltage potential is u(z1, z2) = z1 = r cos θ with z1 + iz2 = r eiθ .
The potential uε is numerically generated by solving the direct Neumann problem (5) using a
finite element method. We take 500 uniformly spaced points on the outer boundary T2.

Because the underlying functions fε (23) or (24) are close to meromorphics, the best
approximation method allows us to determine the number and the locations of the inclusions.
Indeed, the number m of inhomogeneities is a priori unknown. If we look for a rational
approximant of degree n > m, it has n − m poles of null residue. The procedure is then
to increase n until we only obtain poles with null moment (residue), and to keep m equal to
the largest value of n providing a non-vanishing residue. Moreover, if the conductivities are
known and the imperfections are well separated discs, their size could be computed too, since
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Figure 8. m = 5 identical discs, n = 5, 10; m = n = 3 discs; m = n = 2 inclusions.

we have the following relation between the fibre’s size, its conductivity kj and the residue rj

of the corresponding pole:

rj = ε2

π
a

(j)

11 = ε2 1 − kj

1 + kj

,

from (18), (23). This is due to the particular choice of g which implies that ∇u(z) = (1
0

)
,

∀z ∈ �.
The recovered poles are represented by o. Their moments (residues) are designated by a

line. They are symbolized by a dot when equal to 0. The domain is the unit ball B2 and the
small discs are the inclusions.

In the first two plots of figure 8, the domain contains five well-separated circular
imperfections of radius 0.05 and conductivity 10. We see that they are well detected even
in the case where their number is a priori unknown. Our method is also accurate for other
geometries of the inclusions, as shown in the last two plots of figure 8 where we consider, in
the third test, a domain containing three circular imperfections of radii 0.1, 0.05 and 0.05 and
corresponding conductivities 0.1, 0.5 and 10, and, in the fourth one, a domain containing both
a square and a half-disc inclusion.

In the first two plots of figure 9, we clearly see that for a configuration with two close
circular inclusions of radius 0.05 and conductivity 10, separated by a distance equal to 0.02,
the interaction is very strong so that we detect one equivalent conductivity imperfection as
suggested by formula (24). This is also the case for touching inclusions as shown in the third
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Figure 9. m = 2 close discs; m = 2 tangent discs; m = 3 discs, among which 2 close.

plot of figure 9 and, in the last picture, for a mixed situation with two close inclusions and an
additional separated one, which does not interact too much with the others.

The location of the centres of circular inclusions, for a configuration with three inclusions
of area π × 10−2 and conductivity equal to 10, are found with an error equal to 2.2 × 10−3. It
is equal to 3.5 × 10−3, for five inclusions.

This error decreases as the contrast 1/ki between the background conductivity and the
conductivities of the inclusions approaches zero (for metals) and increases (for plastic). In
fact, for a domain containing three inclusions, it is equal to 1.5 × 10−2 when the contrast is
equal to 1/2 and to 1.6 × 10−3 for a contrast of 1/50.

This algorithm, applied for the detection of inclusions, is very sensitive to noise, since the
pole residues are very small, of order ε2. The example associated with figure 10 consists of a
domain containing two inclusions, of radius 0.1 and conductivity equal to 50. The results are
obtained using data without noise and with 0.1%, 1% and 5% respectively.

5. Comments

This work shows that rational or meromorphic approximation techniques provide tools for
solving inverse problems of detecting and locating pointwise conductivity defaults or small
inhomogeneities in 2D domains from complete overdetermined boundary data for the Laplace
equation. Such problems originate from biomedical applications, issues in the environment,
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Figure 10. m = 2 with 0%, 0.1%, 1% and 5% noise.

such as the detection of polluting sources, or in structural mechanics. These tools should also
be valuable to establish stability properties in Hardy–Sobolev spaces as in [22].

However several related issues remain to be explored, of which we list only two. The
first one appears in the realistic situation where the available boundary data are incomplete
(for instance, when the solution is measured on a strict subset of the boundary). One then
needs either to recover the missing data or else to directly run singularity recovery schemes
from partial data. Both strategies may be addressed as bounded extremal problems, as in
[8, 16], which provides an approach at a very low computational cost. The second issue that
we want to mention is the propagation of (possibly incomplete) outer Cauchy data to interior
interfaces which are needed for EEG problems (2). This could in principle be handled using
best approximation tools in Hardy classes of an annulus described in [17].

A 3D recovery algorithm for pointwise sources in a ball, that dwells on the 2D approach
of the present paper, is currently under study [9]. It consists in solving for a sequence of
2D problems obtained by intersecting the ball with a family of planes. Indeed, the trace
of the anti-harmonic part ue of the 3D solution on the boundaries of planar cross sections
of the ball B3 (circles) admits expression as a function of two real variables, hence of the
complex variable. The singularities of this family of functions are then related to those
of the function ue itself, while they can be computed in each disc as in a classical 2D
situation. Preliminary experiments indicate that it is performing well enough. The case
of more general 3D domains with parametrized boundary, those for which the plane cross
sections are conformally equivalent to the disc, can also be handled that way, see [37] where
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computations are done for ellipsoids. To our knowledge, genuine 3D best approximation tools
are yet not available for bounded harmonic nor ‘analytic’ functions (following [52], a vector
field in R

3 would be called analytic if it is the gradient of a harmonic function). Finally, it is
to be hoped that the techniques of the present paper could also be used in other contexts, for
instance the Helmholtz equation.
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[49] Peller V V 1991 Hankel operators and continuity properties of the operators of best approximation Leningrad

Math. J. 2 139–60
[50] Peller V V 2003 Hankel Operators and Their Applications (Berlinm: Springer)
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