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Abstract
We establish some global stability results together with logarithmic estimates in
Sobolev norms for the inverse problem of recovering a Robin coefficient on part
of the boundary of a smooth 2D domain from overdetermined measurements
on the complementary part of a solution to the Laplace equation in the domain,
using tools from analytic function theory.

1. Introduction

We are concerned here with stability properties and estimates for the inverse problem (PR) of
identifying a Robin coefficient on some nonaccessible part of the boundary of a smooth 2D
domain from available overdetermined data on the other part of the boundary corresponding
to solutions to the Laplace equation. We establish some global isotropic stability properties,
of logarithmic type, by using tools from complex analysis, analytic functions theory, and
Hardy spaces. Isotropic stability means that the stability coefficient does not depend on the
perturbation direction, unlike the local Lipschitz stability results established in [14]. In return,
the stability obtained here is much weaker, namely of logarithmic type. In this framework, the
present study can be seen as a sequel of [16], where a constructive procedure is provided in
order to solve for (PR), that relies on bounded extremal problems and best approximation in
Hardy spaces.

Such an issue arises for example in corrosion detection by electrical impedance
tomography, which can be modelled by an effective nonlinear boundary condition for the
Laplace equation. In the simplest linear case, the knowledge of the corrosion effects can be
reduced to that of a function defined on the corroded boundary part, which is usually called
the Robin coefficient [22, 25, 26].
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The stability of the inverse problem of identifying Robin’s coefficient by means of
boundary measurements has already been the topic of numerous works, among them the
following. A local and directional result of Lipschitz type stability is established in [20] for
the 2D case. Both local and ‘monotone’ Lipschitz type stability results have been proved
in [14] for 2D or 3D domains with smooth boundaries; identifiability (uniqueness) results are
also available there. Recently, a local isotropic stability result has been established in [17, 18],
together with logarithmic estimates.

The stability results of the present work are also isotropic and logarithmic but global.
Actually, for smooth 2D domains and a number of Sobolev norms, if the Robin coefficients
to be recovered are a priori known to be smooth and bounded (which is a feasible physical
assumption), these results mean that the discrepancy between them is controlled by the uniform
or quadratic norm of the discrepancy between the measurements. The regularity of the
boundary, together with that of the Robin problem (1),provide us with that crucial boundedness
property. Assuming smoothness on the original boundary is restrictive but reasonable, since
one should not expect to get stability in the most general case. The Robin function itself must
be sufficiently smooth. In fact, this function will be assumed to belong to an admissible set
of bounded and smooth functions, where the bounds are physically linked with the corrosion
properties of the material. Recently, while this paper was in the submission process, similar
uniform stability estimates were published in [2].

Concerning inverse problems of geometrical type, when an unknown part of the boundary
itself is to be recovered, analogous logarithmic stability results were established for subsets of
the boundary in [1] (where it is shown that estimates cannot be better than log type ones) and
in [11] (where logarithmic estimates are provided, under a priori assumptions on the unknown
part of the boundary).

The outline of this work is as follows. First, we define some notation. In section 2, we
introduce the inverse Robin problem, give some preliminary results, and then state the stability
theorems. Section 3 contains some basic facts about harmonic conjugation and Hardy classes,
together with boundary norm estimates which are the main tools for the proofs of the stability
results, given in section 4. We draw conclusions in section 5.

1.1. Notation

Let D be a simply connected bounded domain of R
2 with boundary T , a C1,β Jordan closed

curve, for β ∈ (0, 1) (T is said to be Cn,β smooth if it admits a Cn,β parametrization [23]).
The Lebesgue measure on T will be denoted µ; however, for T = T, the unit circle, we

shall write dθ for the Lebesgue measure on [0, 2π). For n � 0 and 0 � β � 1, we note
Cn,β(D) for the space of functions f on D whose derivatives f (k) are of Hölder class with
order β for 0 � k � n. We put Cn,0 = Cn .

For any connected open subset E ⊂ T , let χE be the characteristic function of E ; traces
on E of both functions and spaces will be indicated by |E . The Hilbert space L2(E) of square
summable functions with respect to µ on E is equipped with the classical norm and inner
product, which we simply write as ‖ ‖L2(E) and ( , )L2(E), respectively. We assume them to be
normalized on T : ‖1‖L2(T ) = 1.

For n ∈ N, the norm on W n,2(E) is the usual one:

‖ f ‖2
W n,2(E) =

n∑
k=0

‖ f (k)‖2
L2(E),

where f (k) is the kth derivative of f with respect to arclength on E . Note, as usual, that
W 0,2(E) = L2(E). For s > 0, the Sobolev Hilbert space W s,2(D) and its norm are classically
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defined. We put Cn
0 (E) for the subset of Cn(E) consisting of functions f that vanish at ∂ E

together with their derivatives f (k), k = 1, . . . , n, if n � 1. The set W n,2
0 (E) stands for

the W n,2(E) closure of Cn
0 (E). The Sobolev Banach space W n,∞(E) consists of functions

belonging to L∞(E) together with their derivatives up to order n.

2. Statement of the problem, stability results

Let γ , K be two nonempty disjoint open subsets of T , satisfying T = γ ∪ K .

2.1. A 2D Robin inverse problem, identifiability, smoothness

We are concerned with the following inverse problem:
(PR) Given a prescribed flux φ together with measurements um on K , recover the

function q on γ such that the solution u to

�u = 0 in D,

∂u

∂n
= φ on K ,

∂u

∂n
+ qu = 0 on γ,

(1)

satisfies u|K = um .
In what follows, we assume that both the measurement part K ⊂ T and the corroded

part γ = T \ K have positive Lebesgue measure and finitely many connected components, the
simplest case being the one where K is an arc of T .

In this case, additional measurements are available on a set K of positive measure, and
the solution to the above inverse problem is unique, provided that φ is sufficiently bounded,
as we shall recall in theorem 1.

We address here stability issues that can be expressed as continuity properties in suitable
spaces and norms of the map um �→ q or, more generally, of (um, φ) �→ (u, ∂u/∂n)|γ .

Note that (PR) could be considered in slightly more general forms; one may for instance
take K to be a disjoint union of, say, K1 and K2, put the above Neumann boundary condition on
K1 only while adding a Dirichlet one on K2, see [2, 16]. One can also assume that additional
measurements um are available on K1 only. The results of the present work would remain
valid. We stick, however, to the above model (PR), for simplicity.

We now state and discuss a number of prior assumptions.

The boundary T . We have already assumed T to be a C1,β Jordan closed curve, and K and γ

to have positive measure and finitely many connected components. A number of results below
will extend to order n, n � 2, if T is Cn,β smooth. As already discussed in the introduction,
this assumption is not so severe a restriction, as it mainly means that the initially noncorroded
domain D should be smooth.

This first set of assumptions thus concerns T (whence K and γ ) and is related to the
values of n � 1 and β ∈ (0, 1), as well as to the Lebesgue measure of K and γ ,
since 0 < µ(K )/µ(T ) < 1. The set B = (T, K , γ ; n, β) will be used to denote these
quantities related to the boundary.

The flux φ. We should take care here that the flux φ should not change the sign of K and we
will assume that φ � 0 there (with φ �≡ 0). Although this corresponds to an actual physical
restriction, this can be imposed on K where φ is chosen. This condition, needed in order to
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get a non-vanishing solution u, see lemma 1, is weakened in [2] where the flux φ is allowed
to have variable sign on K while its oscillating character is then assumed to be limited; this
allows control of the possible vanishing rate of u. The flux φ is another item of the prior data;
it will also be subject to smoothness assumptions still described by the value of the above
parameter n.

The Robin coefficient q. Let c, c′ > 0 and K be a non-empty connected subset of γ , the
boundary of which does not intersect that of γ . Define classes Qn

ad of admissible smooth
Robin coefficients, for n � 0:

Qn
ad = Qn

ad(n; γ ; c, c′,K) = {q ∈ Cn
0 (γ )/|q(k)| � c′, 0 � k � n, and q � cχK}.

The restrictions then brought to the sought impedances q by a priori assuming that they belong
to admissible Qn

ad classes are of two kinds.

• Boundedness. The lower bound expresses that the corrosion, on the part of the boundary
where it is likely to occur, does not turn the boundary condition to perfectly insulating.
In fact, corrosion makes the material less conductive, and this assumption can thus be
seen as a limitation of the corrosion effects level we are seeking to recover. As for the
upper bound, it is derived from the physical knowledge of the interaction between the two
materials present.

• Smoothness. This assumption is indeed restrictive. In fact, corrosion might break the
original impedance smoothness in the same time as it alters its value. However, avoiding
this assumption in our proof scheme seems impossible so far.

We then have the following identifiability result.

Theorem 1 ([14, theorem 1]). Let φ ∈ L2(K ) with non-negative values a.e. and for i = 1, 2,
let qi ∈ Q0

ad. Let ui ∈ C0(D) be the unique solution of (1) associated with q = qi . It holds
that, if u1|K = u2|K , then q1 = q2 on γ .

The solution u to the Neumann–Robin problem (1) carries additional smoothness
properties provided the coefficient q possesses sufficient regularity itself. This is established
in [16, theorem 2], and recalled below, as a consequence of the following lemma.

Lemma 1 ([14, lemma 1]). Let φ ∈ L2(K ) with non-negative values a.e. and uq be the
solution of problem (1) associated with q. Therefore,

(i) ∀q ∈ Q0
ad, there exists a constant 	 = 	(B, φ, Q0

ad) > 0 such that uq > 	 in D.
(ii) Let q1, q2 ∈ Q0

ad, such that q1 � q2 in γ . Then uq1 � uq2 in D.
(iii) Let us denote by uc the solution of (1) for q = c on K and q = 0 on γ \ K and uc′ the

solution for q = c′ on γ . Then, ∀ q ∈ Q0
ad, 0 < uc′ � uq � uc.

The smoothness result is then as follows.

Theorem 2 ([16, theorem 2]). If φ ∈ W 1,2
0 (K ), φ � 0, and q ∈ Q1

ad, then the solution uq

to (1) belongs to W
5
2 ,2(D); moreover, its trace uq|T belongs to W 2,2(T ) and there exists a

constant κ = κ(B, φ, Q1
ad) > 0 (which does not depend on q) such that ‖uq‖W 2,2(T ) � κ .

Further, if φ ∈ W 2,2
0 (K ) and q ∈ Q2

ad, then uq|T ∈ W 3,2(T ).

Note that [16, theorem 2] more generally asserts that, if T is Cn,β smooth for n � 1,
φ ∈ W n,2

0 (K ), φ �≡ 0, φ � 0, and q ∈ Qn
ad, then uq ∈ Cn,1/2(D) and uq|T ∈ W n+1,2(T ), its

norm there being bounded by some constant κ = κ(B, φ, Qn
ad) > 0.



Logarithmic stability estimates for a Robin coefficient in 2D Laplace inverse problems 51

2.2. Stability estimates

We are now in a position to state the following stability property and logarithmic estimates
for (PR), whose proofs (given in section 4) strongly rely on Hardy spaces and the functional
analysis tools of section 3.3.

Theorem 3. Let φ ∈ W 1,2
0 (K ), φ �≡ 0 with non-negative values,and assume that q1, q2 ∈ Q1

ad;
let u1, u2 be the associated solutions to problem (1). There exist constants ρ = ρ(B) ∈ (0, 1),
C, τ > 0 depending on (B, φ, Qn

ad), τ being small enough, and an increasing function
ε = ερ : R+ → R+ that goes to 0 at 0 and satisfies

ε(x) � 2 + log(ρ| log x |)
ρ| log x | , for x � e−1/ρ,

such that

‖q1 − q2‖L2(γ ) � Cε(‖u1 − u2‖L2(K )), (2)

provided that ‖u1 − u2‖W 1,2(K ) � τ .

In fact, the above constants ρ, C and τ also depend on the choice of some conformal
mapping C from D into the unit disc D, see the proof in section 4.

Some uniform bounds can also be obtained.

Corollary 1. Assume T to be C2,β smooth, φ ∈ W 2,2
0 (K ), φ �≡ 0, φ � 0, and q1, q2 ∈ Q2

ad.
Then, there exist constants ρ, τ , a function ε = ερ as in theorem 3 and, for every a ∈ (0, 1/2),
a constant Ca > 0 depending on (a,B, φ, Q2

ad) and such that

‖q1 − q2‖L∞(γ ) � Ca[ε(‖u1 − u2‖L∞(K ))]
a, (3)

provided that ‖u1 − u2‖W 1,∞(K ) � τ .

Remark 1. The above bound on ε near 0 may not be sharp, as we must have that

ε(x) � c

| log x | , for small x,

and some c = c(T, K ) > 0, see [8]. This statement is strengthened by the recent paper [2]
where similar estimates have been obtained for weaker smoothness assumptions. It seems,
however, that higher order stability estimates, such as those of corollary 2, would require more
regularity.

Remark 2. The above results are stability properties, not robustness ones. Robustness would
require dealing with noisy data, which definitely cannot be assumed to be smooth. Moreover,
this issue cannot be tackled regardless of the recovery algorithm [15, 16]. On the other hand,
stability involves comparison of close solutions to the Robin problem, whose smoothness
proceeds from that of the boundary and of the data. The following counter-example shows
how the stability results may fail if smoothness is lacking.

Remark 3. An explicit counter-example for which the above conclusion fails can be set
as follows. Consider the (non-smooth) square domain D =] − 1, 0[×]0, 1[ with K =
[−1, 0] × {0} ∪ [−1, 0] × {1} and γ = {0} × [0, 1] ∪ {−1} × [0, 1]. Take the flux φ to
be

φ(x, y) =
{

0 on [−1, 0] × {0}
2 on [−1, 0] × {1}.
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Let q be defined on γ by

q(x, y) = 1

1 + y2
.

The corresponding solution of the direct problem is then given by u(x, y) = y2 − x2 − x + 1
and

u|K (x, y) =
{−x2 − x + 1 on [−1, 0] × {0}

−x2 − x + 2 on [−1, 0] × {1}.
Consider now

un(x, y) = u(x, y) − 1

nπ
enπ x cos(nπy); n ∈ N.

Such a un is the solution associated with the above φ and to qn given on γ by

qn(x, y) =




1 + cos(nπy)

y2 + 1 − (cos(nπy)/nπ)
on {0} × [0, 1]

1 − (cos(nπy)/enπ)

y2 + 1 − (cos(nπy)/nπenπ )
on {−1} × [0, 1].

One can check that ‖u − un‖L∞(K ) → 0 though q − qn has no uniform limit on γ .

The above stability estimates are more generally valid at ‘order n’.

Corollary 2. Assume T to be Cn,β smooth for n � 2, φ ∈ W n,2
0 (K ), φ �≡ 0, φ � 0, and

q1, q2 ∈ Qn
ad. Then, there exist constants ρ, τ , Cn depending on (B, φ, Qn

ad) and ∀a ∈ (0, 1/2),
Cn,a > 0 depending on (a,B, φ, Qn

ad) together with a function ε as in theorem 3, such that

‖q1 − q2‖W n−1,2(γ ) � Cnε(‖u1 − u2‖L2(K )), (4)

provided that ‖u1 − u2‖L2(K ) � τ , and ∀a ∈ (0, 1/2);

‖q1 − q2‖W n−2,∞(γ ) � Cn,a[ε(‖u1 − u2‖L∞(K ))]
a, (5)

provided that ‖u1 − u2‖L∞(K ) � τ .

Remark 4. Theorem 3 and corollaries 1 and 2 are still valid if u1, u2 are respectively associated
with two different fluxes φ1, φ2. In particular, corollary 1 then ensures that

‖q1 − q2‖L∞(γ ) � Ca[ε(max(‖u1 − u2‖L∞(K ), ‖φ1 − φ2‖L∞(K )))]
a,

provided that max(‖u1 − u2‖W 1,∞(K ), ‖φ1 − φ2‖L∞(K )) � τ .

3. Hardy classes

3.1. Conformal mapping, from D to D

A preliminary technical step of the proof is to express problem (PR) in the unit disc D, in order
to work within a classical framework for Hardy spaces.

Whenever D possesses a Cn,β boundary T for some n � 0, β ∈ (0, 1), the Kellogg–
Warschawski theorem [23, theorem 3.6] means that there exists a conformal mapping from the
unit disc D into D having a Cn,β extension to D. In the present case, this guarantees that the
conformal mapping D → D admits a C1,β extension D → D and allows one to express (PR)
as a Robin problem in D, see [13].

In the next two sections, we thus assume that D = D and T = T = γ ∪ K .
The inverse problem (PR) can now be approached using the classical Hardy spaces H p

of D, among which is the Hilbert space H 2, that we introduce now.
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3.2. More notation and properties

In the following, in order to deal with analytic functions, we isometrically identify R2 � C.
For Hardy spaces of the unit disc D ⊂ C, we refer to [19, 24] for their definitions and

properties. In the Hilbertian framework, H 2 = H 2(D) can be viewed as the space of functions
analytic in D that are square-summable on circles of radius less than 1 centred at 0. It is a
consequence of this definition that traces on the unit circle T of H 2 functions belong to L2(T),
whence H 2 inherits the normalized L2(T) inner product. Thus, H 2

|T can also be described as
the subspace of L2(T) consisting of functions whose Fourier coefficients of negative order
vanish. Hence, from Parseval’s equality and because supr<1

∑
p�0 r p|gp|2 = ∑

p�0 |gp|2,

H 2 =
{

g(z) =
∑
p�0

gpz p,
∑
p�0

|gp|2 < ∞
}

with ‖g‖H 2 = ‖g|T‖L2(T) =
(∑

p�0

|gp|2
)1/2

.

A further equivalent definition of H 2 asserts that it is the space of complex valued functions
whose real and imaginary parts are both harmonic in D and such that their L2 norm on circles
of radius r < 1 remains bounded as r → 1.

The Banach space H ∞ = H ∞(D) is defined to be the space of functions analytic in D

that are essentially bounded on circles of radius less than 1 centred at 0:

H ∞ =
{

g(z) =
∑
p�0

gpz p, sup
r<1

sup
θ∈[0,2π)

|g(reiθ )| < ∞
}
.

In fact,

‖g‖H ∞ = sup
r<1

sup
θ∈[0,2π)

|g(reiθ )| = sup
θ∈[0,2π)

|g|T(e
iθ )| = ‖g|T‖L∞(T),

and H ∞
|T ⊂ L∞(T) can equivalently be described as the subspace of L∞(T) consisting of

functions whose Fourier coefficients of negative order vanish. Note that H ∞ ⊂ H 2.
For p = 2,∞, we finally introduce the Hardy–Sobolev space Hn,p:

Hn,p = {g ∈ H p such that g(k) ∈ H p, 0 � k � n},
(here, g(k) is the kth derivative of g with respect to the variable z in D) equipped with the norm
‖‖W n,p (T); of course H0,p = H p.

Lemma 2. For n � 0,

(i) Hn,2
|T = H 2

|T ∩ W n,2(T);
(ii) if u is harmonic in D and u|T ∈ W n,2(T), then u = Re g for functions g ∈ Hn,2 defined

by (6) and (7).

Proof. For n = 0, (ii) is essentially M Riesz’ theorem that guarantees in particular the L2

boundedness of the conjugation operator [19, theorem 4.1]. For n = 1, this is [19, theorem 3.11]
while (i) is [5, lemma 1]. Both (i) and (ii) remain true for n � 1, by iteration. �

The following basic uniqueness result in Hardy spaces will also be of interest here.

Proposition 1 ([19, 24]). Let K be an nonempty subset of T such that µ(K ) > 0 and let
g ∈ H 2 verifying g|K = 0; then g ≡ 0 on the whole unit disc D.

Finally, we state here a Gagliardo–Nirenberg interpolation inequality which we make
crucial use of in the last steps of the proofs of our results from section 2.2.

Proposition 2 ([12, chapter VIII]). Let K ⊂ T such that γ = T \ K has non-empty interior.
For p = 2,∞, we have

‖u′‖L p(K ) � Cp,K ‖u‖1/2
W 2,p(K )

‖u‖1/2
L p(K ), ∀u ∈ W 2,p(K ).
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3.3. From harmonic functions to Hardy classes

Returning to (1), assume now that φ and q satisfy the assumptions of theorem 3: φ ∈ W 1,2
0 (K )

and q ∈ Q1
ad ⊂ C1(γ ). It then follows from theorem 2 that u|T ∈ W 2,2(T) ⊂ C1,1/2(T).

From the knowledge of φ ∈ W 1,2
0 (K ) ⊂ L2(K ) and um ∈ W 2,2(K ) ⊂ C1,1/2(K ) in

problem (PR), we can build the trace on K ⊂ T of a function which is analytic in D. This
holds because u is harmonic in D and Cauchy–Riemann equations ensure that, if ω is a harmonic
function in D satisfying

∂ω

∂θ
= ∂u

∂n
on T, (6)

namely if ω is the harmonic conjugate function of u, then

gq = u + iω (7)

is an analytic function in D, see [3]; thus, u = Re gq in D. Such an analytic function is unique
up to an additional imaginary constant.

Equation (6) together with the boundary conditions in (1) mean that, on K ,

ω|K =
∫

φ dθ

if we denote by
∫

φ dθ some primitive of φ on K . The trace of gq on K is therefore given by

gq|K = um + i
∫

φ dθ, (8)

and is, at least in principle, completely determined (up to an additional imaginary constant) by
the available boundary data on K , in problem (PR). Next, it follows from (6), (7) that

q = − 1

Re gq

∂ Im gq

∂θ
on γ, (9)

where the above equality should be properly understood (non-tangential limits of the right-
hand side). Now, q is the expected solution to (PR) on γ . Thus, recovering gq|γ from the
knowledge of gq|K would solve for (PR).

This is the basis of the recovery procedure which is tackled in [16] for identification
purposes. Indeed, constructive approximation procedures in Hardy spaces make it possible to
reconstruct the function gq from the knowledge of its trace on K given by (8), see [5, 6].

Further, this allows us to establish the stability properties of the map um �→ q we are
looking for, by using some norm estimates from [9]. This will be the topic of the next sections,
after stating two additional results:

From lemma 2 and because u ∈ W 2,2(T), then gq actually belongs to H2,2 ⊂ H 2 and is
thus uniquely determined by its trace on K , in view of proposition 1.

3.4. Convergence estimates in Hardy–Sobolev classes

The proof of the stability theorem 3 strongly relies on the following estimate.

Theorem 4 ([9, lemma 4.2]). Assume that µ(K ) = 2πρ, 0 < ρ < 1. Any g ∈ H1,2 such that
‖g‖W 1,2(T) � 1 and ‖g‖L2(K ) � e−1/ρ also satisfies

‖g‖L2(T) � ε(‖g‖L2(K )), (10)

for some increasing function ε = εT,K : R+ → R+ that goes to 0 at 0 such that

ε(x) � 2 + log(ρ| log x |)
ρ| log x | , for x � e−1/ρ .
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Observe that the above estimate concerning ε may not be sharp, see remark 1.
Note also that the above conclusion is false in the general case where g ∈ H 2 only.

Indeed, a bounded sequence of H 2 functions (gn) such that ‖gn‖L2(K ) → 0 will necessarily
verify ‖gn‖L2(T) → 0 but this can generally happen arbitrarily slowly on T \ K even if the
decay rate is prescribed on K .

The next corollary will be the main ingredient for our proof of theorem 3.

Corollary 3. For n � 1, and any g ∈ Hn+1,2 such that ‖g‖W n+1,2(T) � κ for some κ > 0
and ‖g‖W n,2(K ) � κe−1/ρ , there exist constants αn, αn > 0 depending on (n; κ) and
τ = τ (n; K ; κ, ρ) > 0 such that

‖g‖W n,2(T) � αnε(‖g‖W n,2(K )). (11)

If, further, ‖g‖L2(K ) � τ , then

‖g‖W n,2(T) � αnε(‖g‖L2(K )). (12)

Proof. Let n = 1. If κ > 1, we have by hypothesis that g/κ and g′/κ satisfy the assumptions
of theorem 4. It follows from lemma 2 and theorem 4 that∥∥∥∥ g

κ

∥∥∥∥
2

W 1,2(T)

=
∥∥∥∥ g

κ

∥∥∥∥
2

L2(T)

+

∥∥∥∥ g′

κ

∥∥∥∥
2

L2(T)

� ε2

(∥∥∥∥g

κ

∥∥∥∥
L2(K )

)
+ ε2

(∥∥∥∥g′

κ

∥∥∥∥
L2(K )

)
� 2ε2(‖g‖W 1,2(K )),

the function ε being a non-decreasing function of x � e−1/ρ . If κ � 1, the result follows
even more directly, by applying the above argument to g itself, leading to ‖g‖2

W 1,2(T)
�

2ε2(‖g‖W 1,2(K )). This proves the inequality (11) for n = 1 with α1 = √
2 max(κ, 1).

Concerning (12), we get from proposition 2 with p = 2, putting CK = C2,K , that

‖g‖2
W 1,2(K )

� ‖g‖L2(K )(‖g‖L2(K ) + CK ‖g‖W 2,2(K )) � κ(1 + CK )‖g‖L2(K ). (13)

Choose τ = e−2/ρ/κ(1 + CK ). By hypothesis, ‖g‖L2(K ) � τ whence

[κ(1 + CK )‖g‖L2(K )]
1/2 � e−1/ρ

and, from theorem 4, ε can be chosen there such that

ε
(
κ(1 + CK )‖g‖1/2

L2(K )

)
� c(K ; κ)ε(‖g‖L2(K )),

for some constant c(K ; κ) depending on CK and κ . Finally, (12) follows from (11), (13) with
α1 = α1 max(1, c(K ; κ)).

The cases n � 2 follow by iteration, with some care in adjusting the various constants. �
The following corollary is the basis of corollary 1.

Corollary 4. Let n � 0. Let g ∈ Hn+1,∞ such that ‖g‖W n+1,∞(T) � κ and ‖g‖W n,∞(K ) � κe−1/ρ

for some κ > 0 and µ(K ) = 2πρ, 0 < ρ < 1. Then, there exist a function ε as in theorem 4
and, ∀a ∈ (0, 1/2), a constant αa > 0 depending on (a; n; κ) such that

‖g‖W n,∞(T) � αa[ε(‖g‖W n,∞(K ))]a. (14)

If, further, ‖g‖L∞(K ) � τ , for some τ = τ (n; K ; κ) > 0 then

‖g‖W n,∞(T) � αa[ε(‖g‖L∞(K ))]a . (15)

Proof. Let first n = 0. Since H ∞ ⊂ H 2, it holds from lemma 2 that g ∈ H1,2. Also

‖g‖W 1,2(T) � ‖g‖W 1,∞(T) � κ, ‖g‖L2(K ) � ‖g‖L∞(K ) � κe−1/ρ,

which implies, in view of theorem 4 (see also the proof of corollary 3),

‖g‖L2(T) � max(κ, 1)ε(‖g‖L2(K )). (16)
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The second step uses the subspace H 2
β of H 2 defined for β � 0 by

H 2
β =

{
g ∈ H 2, g(z) =

∞∑
k=0

akzk such that
∞∑

k=0

|ak |2(1 + k2)β < ∞
}
,

which is a Banach space, endowed with the norm

‖ f ‖β =
( ∞∑

k=0

|ak |2(1 + k2)β
)1/2

.

If we pick β = 1 − a > 1/2, we get for g ∈ H 2
1−a that

‖g‖1−a � ‖g‖a
L2(T)

‖g‖1−a
W 1,2(T)

. (17)

Indeed,

‖g‖2
1−a =

∞∑
k=0

|ak |2(1 + k2)1−a =
∞∑

k=0

|ak |2a|ak |2(1−a)(1 + k2)1−a .

Applying then the Hölder inequality to the above series with exponents 1/a and 1/1 − a leads
to

‖g‖2
1−a �

( ∞∑
k=0

|ak |2
)a( ∞∑

k=0

|ak |2(1 + k2)

)1−a

,

which is (17). Now, because ‖g‖W 1,2(T) � κ and from (16), (17),

‖g‖1−a � κ1−a[max(κ, 1)]a(ε(‖g‖L2(K )))
a � ca(ε(‖g‖L∞(K )))

a, (18)

since ε is non-decreasing and putting ca = κ1−a[max(κ, 1)]a . Further, there exists a positive
constant Ka such that

‖g‖L∞(T) � Ka‖g‖1−a, ∀g ∈ H 2
1−a. (19)

It is given by

K 2
a =

∑
k�0

1

(1 + k2)1−a
.

Finally, in view of (18) and (19) we conclude that

‖g‖L∞(T) � ca Ka[ε(‖g‖L∞(K ))]a,

which is (14) or (15) for n = 0 with αa = ca Ka ; see also [9, corollary 4.4] and [21] for more
details.

Take now n = 1. Both g and g′ satisfy the assumptions of the present corollary with
n = 0, whence

‖g(i)‖L∞(T) � αa[ε(‖g(i)‖L∞(K ))]a, i = 0, 1,

and

‖g‖W 1,∞(T) = max
i=0,1

‖g(i)‖L∞(T) � αa[ε(‖g‖W 1,∞(K ))]
a .

Next, proposition 2 with p = ∞ and CK = C∞K means that

‖g′‖2
L∞(K ) � κCK ‖g‖L∞(K ),

and if we choose τ = e−2/ρ/κCK , we obtain, as in the proof of the previous corollary, that

ε(‖g′‖L∞(K )) � c(K ; κ)ε(‖g‖L∞(K )),

for some constant c(K ; κ) depending on CK and κ . Finally,

‖g‖W 1,∞(T) � αa max(1, (c(K ; κ))a)[ε(‖g‖L∞(K ))]
a.

The proof for n � 2 follows, by induction. �
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4. Proofs of stability properties for (PR)

Proof of theorem 3. It follows from theorem 2 that, for j = 1, 2, the analytic functions g j

such that g j |K = u j + i
∫

φ belong to W 2,2(T ), whence also g = g1 − g2, which satisfies
g|K = u1 − u2. Theorem 2 also ensures that ‖g‖W 2,2(T ) � κ for some κ > 0 which does not
depend on q1, q2.

Using (9), we get

q1 − q2 = 1

Re g2

∂ Im g2

∂θ
− 1

Re g1

∂ Im g1

∂θ
= − 1

Re g1

∂ Im g

∂θ
+

∂ Im g2

∂θ

Re g

Re g1 Re g2
.

Now, lemma 1 ensures that u j = Re g j � 	 > 0 in D for some 	 > 0 whenever φ is non-
negative. Also, because ‖g2‖W 2,2(T) � κ , it follows from Gagliardo–Nirenberg inequalities,
see e.g. [12, corollary IX.13], that there exists M = Mγ > 0 such that∥∥∥∥∂ Im g2

∂θ

∥∥∥∥
L∞(γ )

� ‖g2‖W 1,∞(γ ) � M‖g2‖W 2,2(γ ) � M‖g2‖W 2,2(T) � Mκ.

We then get

‖q1 − q2‖L2(γ ) � 1

	
‖g‖W 1,2(γ ) +

Mκ

	2
‖g‖L2(γ ) �

(
Mκ

	2
+

1

	

)
‖g‖W 1,2(γ ). (20)

Assume now that D = D. From lemma 2, g ∈ H2,2. Hence, if ‖g‖W 1,2(K ) � e−1/ρ and
‖g‖L2(K ) � τ , we get from corollary 3 (with n = 1 and max(κ, 1) in place of κ) that

‖g‖W 1,2(γ ) � ‖g‖W 1,2(T) � α1ε(‖g‖W 1,2(K )) = α1ε(‖g‖W 1,2(K )),

and similarly

‖g‖W 1,2(γ ) � α1ε(‖g‖L2(K )).

Finally, (2) follows from (20), with

C = α1

(
Mκ

	2
+

1

	

)
.

Next, if D �= D but is a Jordan domain with C1,β boundary T , recall that the Kellogg–
Warschawski theorem [23, theorem 3.6] ensures that there exists a conformal mapping C from
D into the unit disc D having a C1,β extension to D; in particular, C is bounded on T and
C ′ �= 0 in D, from [23, theorem 3.5]. It also follows from lemma 2 that the function defined
on D by gD = g ◦ C−1 belongs to H2,2. Let KT = C(K ) ⊂ T and put

mC = m(C, T ) = max

(
‖C ′‖L∞(T ),

∥∥∥∥ 1

C ′

∥∥∥∥
L∞(T )

)
.

Then, straightforward computations show that ‖gD‖W 1,2(T) � mC‖g‖W 1,2(T ), ‖gD‖W n,2(KT) �
mC‖g‖W n,2(K ), for n = 0, 1, and ‖g‖W 1,2(T ) � mC‖gD‖W 1,2(T). Let then ρ = ρ(K , T, C) > 0
be such that

ρ � inf K |C ′|
‖C ′‖L∞(K )

µ(K )

µ(T )
.

Again, we directly see that ρ � ρT = µ(KT)/2π , and the hypothesis ‖g‖W 1,2(K ) � e−1/ρ

ensures that

‖gD‖W 1,2(KT) � mC e−1/ρT .
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Applying then corollary 3 to gD/mC , it is easily checked that

‖gD‖W 1,2(T) � mCα1ε

[‖gD‖W 1,2(KT)

mC

]
� mCα1ε(‖g‖W 1,2(K )),

ε being non-decreasing in (0, e−1/ρ). Now, corollary 3 asserts that there exists τ = τ (KT; κ)

such that if ‖g‖L2(K ) � τ/mC , then

‖gD‖W 1,2(T) � mCα1ε(‖g‖L2(K )),

Finally,

‖g‖W 1,2(γ ) � ‖g‖W 1,2(T ) � mC‖gD‖W 1,2(T) � m2
Cα1ε(‖g‖W 1,2(K )),

and (20) implies that

‖q1 − q2‖L2(γ ) � max(κ, 1)m2
Cα1

(
Mκ

	2
+

1

	

)
ε(‖g‖W 1,2(K )),

which is (2) with

C = max(κ, 1)m2
Cα1

(
Mκ

	2
+

1

	

)
.

�
Proof of corollary 1. The estimate (3) follows from corollary 4 with n = 1. Indeed, by
hypothesis, g ∈ W 3,2(T ) ⊂ W 2,∞(T ) and satisfies the assumptions of corollary 4, whence

‖q1 − q2‖L∞(γ ) �
(

κ

	2
+

1

	

)
‖g‖W 1,∞(T )

leads to the conclusion, with Ca = αa(
κ
	2 + 1

	
). �

Proof of corollary 2. Inequality (4) can be deduced either from the order n version of theorem 2
and corollary 3 as in the proof of theorem 3, or by induction from theorem 3 itself with a proper
choice of the constants. As to (5), it follows by induction from corollary 1 and proposition 2. �

5. Conclusion

We have derived a class of global logarithmic stability properties for the inverse problem (PR)
of determination of a boundary Robin coefficient arising in Laplace equation from results
concerning analytic functions and Hardy spaces.

Such tools have been applied to some other 2D inverse problems involving harmonic
functions. In [7, 10], the geometric inverse problems of crack recovery is approached with
tools from best analytic or meromorphic approximation, both for complete and incomplete
boundary data whereas the Robin inverse problem has also been solved using the same kind of
tools in [16]. The inverse source problem, as well as the Cauchy problem of determining an
unknown part of the boundary from available data on the complementary part, are currently
under study with these techniques [4].
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[12] Brézis H 1983 Analyse Fonctionnelle (Paris: Masson)
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