
SOME EXTREMAL PROBLEMS LINKED WITHIDENTIFICATION FROM PARTIALFREQUENCY DATADaniel Alpay,Department of Mathematics, Ben{Gurion University of the Negev, POB 653, 84105Beer{Sheva, Isra�el,Laurent Baratchart, Juliette Leblond,INRIA, 2004 route des Lucioles, Sophia{Antipolis, 06565 Valbonne, France.AbstractWe aim at tackling a robust identi�cation problem for a linear dynamical controlsystem with incomplete frequency data. Its mathematical formulation is a general-ization of dual extremal problems inHp to a subarc of the unit circle TT. Speci�cally,if I is such a subarc and J its complement in TT, we study existence and uniquenessof a Hp function of bounded Lp(J) norm which is a best approximation to a givenfunction in Lp(I). Finally, we consider the problem of computing the solution inthe case p = 2.1 IntroductionThe author's motivation originates with some questions in identi�cation of linear dynam-ical control systems. Given a stable linear system with unknown transfer function F ,harmonic identi�cation procedures allow one to obtain, at least in principle, the values ofF at given frequencies. In practice, the frequencies !k's that are accessible in this waylie in a �nite interval 
 of the positive imaginary axis corresponding to the bandwidth ofthe system and one looks for some stable model accounting satisfactorily for these experi-ments. The type of stability which is sought depends of course on the applications one hasin mind. In this paper, we shall be interested in models whose transfer functions belongto some Hardy space Hp of the half plane for some p such that 1 � p � 1. Note thatthe behaviour of the model outside 
 is not regarded as very crucial in general, exceptbeing stable. Reasons include that frequencies not belonging to 
 often lie beyond therestitution power of the system or outside the validity domain of the linear approximation.Hence, to infer F from the values F(wk), k = 1; � � � ; N is an approximation problem in 
,still with an eye on what is going on outside 
, which can be tackled by various methods,a classical account of which can be found in [17].In this classical approach, the class of models is usually con�ned within some approxi-mating family re
ecting the preconception one has of the system. Optimization is thenperformed with respect to the parameters of this family. A popular class of models isfor example the rational one corresponding to �nite dimensional systems for which anextensive amount of control and observation devices has been derived (see e.g. [13], [1],[25], and [26]). In other instances, it may be necessary to include also exponential func-tions in order to account for delays. For the approximating family to be e�cient, it oughtto be more or less dense in the class of systems one is interested in, and this is to the



e�ect that the values F(wk) could always be matched by using su�ciently many parame-ters. Models are thus further discriminated by the trade{o� between their complexity andtheir behaviour in between the frequencies wk's. At �rst, it is tempting to minimize thecomplexity of the model but this may lead to serious di�culties. Well{known examplesare polynomial Lagrange interpolation or rational Pad�e approximation whose behaviourcan be very wild and sometimes fail to converge in many reasonable senses if additionalexperiments are performed, even in the ideal case where the data are noise free and thetransfer function F truly belongs to the closure of the model class (see e.g. [20], [18]).This not to mention the problem of keeping poles and zeroes in appropriate regions of thecomplex plane. To remedy this, one usually drops the requirement that the model shouldmatch the experimental values exactly since these, after all, are subject to measurementerrors. Keeping the complexity at a desired level, one rather tries to �t the experimentalpoints as well as possible while meeting some constraints on the global behaviour of themodel. One issue, however, remains unclear namely to what extend this global patterndepends on the original approximating family.To avoid dealing with all these constraints at the same time, two{steps algorithms havebeen recently advocated in [9] and [11] where a �rst identi�cation is performed in L1 andfurther approximated by a H1 one using Nehari extension. This allows one to pass fromdiscrete data to a continuous description of the behaviour of the system without havingto worry about the belonging of the model to the given class at this early stage. Pursuingthis point of view further, one may even argue that the identi�cation in the �rst stepabove need not be performed outside the bandwidth 
 where no data is available anyway.The second step amounts then to the following question : suppose the desired behaviouron all of 
 is explicitly speci�ed ; what is the best possible approximation satisfying thestability constraint ?Let us be more precise and assume we deal with a single{input single{output system whosedesired behaviour on 
 is given by some function f belonging to Lp(
). Assume furtherthat we want the model to be Hp stable. If we ask directly what is a function g 2 Hpwhich is closest to f in Lp(
), the question has usually no answer when p <1, unless fis already the trace on 
 of some Hp function. But if we recall that we do not want themodel to spread o� too much outside 
, and consequently if we bound the Lp norm of gon the complement of 
, the problem becomes well{posed. Suppose we solved it and let gbe a solution. Then g is a causal and stable model for the system. Furthermore, if f andg are not close enough in Lp(
), we know that the model cannot at the same time meetthe expected behaviour and still remain as small as we wanted outside 
. This might bean indication that further experiments have to be performed around certain frequenciesto determine wether this discrepancy is due to a loose description of the desired behaviouror to an overoptimistic estimation of the system's stability.A dual problem has been studied by Krein and Nudel'man in [15] for p = 2 : given afunction f 2 L2(
) and " > 0, they establish existence and uniqueness of a function inH2 which is closer than " to f and which minimizes the L2(i IR+ n 
) (or the L2(i IR+))norm. Although the above mentioned authors rely more on spectral theory than we do,the solution they derive for this dual problem is quite reminiscent of the approach insection 3 of the present paper. The main di�erence in their formulation is that it takesplace in time domain and thus leads to integral rather than spectral equations involvingsome implicit parameter � which is an analogue to the Lagrange parameter � that we



introduce in section 3.Of course, the above formulation is somewhat naive in practice. Indeed, one would cer-tainly plug in further constraints like bounds on the derivative of g to prevent the modelfrom oscillating too much as in [3], and modify the error criterion itself so as to weightfrequencies or explicitly include the feedback law as in [8]. From the point of view ofrobust identi�cation, a framework of which is proposed in [10] and [19], robustness withrespect to bounded perturbations should be analyzed. Nevertheless, we shall stick to thesimple formulation above except that we shall carry it over to the unit disk where it wouldcorrespond to parallel considerations for discrete time systems. By direct inspection orusing conformal mapping (see e.g. [12, chap.8]), the results we prove have their counter-parts in Hp but we shall not attempt to state them here.The issue under investigation may be considered as a generalization to a closed subarc ofthe unit circle TT of certain classical extremal problems in Hardy spaces Hp of the unitdisk ID which have already proved to be useful in control, especially the Nehari extension(see e.g. [6]). More precisely, if I is a subarc of TT, and J = TT n I, the question we adresscan be stated as follows :For p � 1, let f 2 Lp(I) be given together with some positive M . Find some functiong 2 Hp whose norm in Lp(J) does not exceed M and which is as close as possible to f inthe Lp(I) metric under this constraint.When I = TT, the constraint becomes void, and we recognize a classical dual extremalproblem (see e.g. [5, chap.8], [7, chap.IV], [14, chap.VII]). When I is a strict subset of TTand p <1, it is usually necessary to set M <1 for the problem to be well{posed. Butit is not so when p = 1, and the problem may still be nontrivially adressed in this caseeven if M = +1.Finally, observe that if f 2 Lp(I) is real, meaning that the arc I is symmetric and f(z) =f(�z) (this is the case for transfer functions), the Hp approximant g can be construed soas to be real since 12 (g(z) + g(�z)) does the job as well. When g is unique, which will turnout to be the case when p <1, this actually proves that it is real.The proofs in section 2 are omitted. Details will appear in [2].2 Bounded extremal problemsLet us begin with the following basic result. Recall C(I) is the space of continuousfunctions on I, Lp(I) is the Lebesgue space of functions whose modulus to the power p issummable on I, Hp is the familiar Hardy space of the unit disk for 1 � p � 1, and A isthe disk algebra.Theorem 1 Let I � TT be a closed arc of circle of length l(I) 2 (0; 2�).(i) Let f be in C(I). Then, for every " > 0, there exists ~h in A such thatkf � ~hkL1(I) � " :



(ii) Let 1 � p < 1, let f be in Lp(I). Then, for every " > 0, there exists ~h in Hp suchthat kf � ~hkLp(I) � " :In general, however, " cannot be taken to be 0.Theorem 1 is an easy consequence of the Runge theorem [23, thm.13.9], a classical resultin analytic function theory. It may also be deduced from deeper results in harmonicanalysis like Levinson's theorem [24, III.2,thm.II] or, for p � 2, the Szeg�o theorem [7,IV,thm.3.1].Statement (ii) asserts that traces of Hp functions are dense in Lp(I) for 1 � p <1. It isno longer so when p =1 :Proposition 1 The trace of H1 is not dense in L1(I).In fact, it can be shown that Blaschke products whose zeroes have an accumulation pointlying in the interior of I have an inverse (belonging to L1(I)) which is at distance biggerthan 1 to H1.The next result shows that the approximants provided by theorem 1 are bound to havewild behaviour outside I. In the sequel, I will always denote a proper closed subarc of TTas in theorem 1 while J will stand for the closure of TT n I.Proposition 2 Let 1 � p � 1. Let f be in Lp(I) and let (gn)n>0 be a sequence ofHp functions converging to f in Lp(I). If f is not the trace of an Hp function, thenlimn!1 kgnkLp(J) =1.A consequence of proposition 2 is that the Lp(J) norm of the approximant in theorem 1goes to in�nity as " goes to 0, unless f is already the trace of some function in Hp (resp.A ) in which case the whole question is very trivial. It is therefore natural, and servessystem{theoretic purposes as explained in the introduction, to bound the Lp(J) norm ofthe approximant so as to end up with a well{posed problem :Theorem 2 Let f be in Lp(I), for 1 � p � 1. For every M satisfying 0 � M < 1,there exists g0 2 Hp, such that kg0kLp(J) �M andkf � g0kLp(I) = ming2HpkgkLp(J)�M kf � gkLp(I) :(1)When 1 � p <1, such a g0 is unique and satis�es kg0kLp(J) = M unless f = g0 a.e. onI. When p =1, neither of these assertions need be true.Remark 1 For the classical extremal problem with p =1, it is well known that uniquenessholds whenever f is continuous on TT [7]. Moreover, g is known to belong to A if f isDini{continuous. We know no analogue of these results in our case.



3 Characterization in the L2 caseIn this section, we recast the case p = 2 in an operator{theoretic framework. This willlead us, on two occasions, to endow L2(TT) and H2 with the real Hilbert space structureinduced by the bilinear map Re (:; :)L2(TT). We shall make this distinction explicit whenneeded.For 0 < M <1, let�M = fg 2 H2 ; kgkL2(J) =Mg :We �rst claim that �M is a smooth submanifold of H2. Indeed, de�ne� : H2 �! IRg 7�! kgk2L2(J) :The map � is smooth and for any g 2 H2, u 2 H2,Dg �(u) = 2Re (g; u)L2(J) :It is plain that Dg � is surjective whenever g 6= 0. Being a closed subspace of the realHilbert space H2, KerDg � splits in H2 so that � is submersive on H2 n f0g and inparticular on �M = ��1(M2) thereby establishing the claim (see e.g. [16, II,2,prop.2]).Moreover, for any g 2 �M the tangent space to �M at g is TM (g) = KerDg �.Let CM = fgjI ; g 2 �Mg = fgjI ; g 2 H2 ; kgkL2(J) = Mg ;where gjI denotes restriction to I. It is easily shown that CM is a closed subset of L2(I).From now on, we assume that f 2 L2(I) n CM .We denote by � the orthogonal projection onto the closed convex subset CM of L2(I) andwe have that g0jI = � f is the unique solution of (1). De�ne � : H2 ! IR by�(g) = kf � gk2L2(I) :� induces a smooth function on �M and g 2 �M is a critical point of � if and only ifRe (f � g; u)L2(I) = 0 ; 8u 2 TM(g) :(2)Proposition 3 When p = 2, the best approximation g0 to f in the sense of (1) is theunique critical point of � on �M satisfyingRe (f � g0; g0)L2(I) � 0 :(3)



Proof : It is a well{known property of the projection (see e.g. [4, 2,I,prop.2]) that g0jI =� f is characterized byRe (f � g0; w � g0)L2(I) � 0 ; 8w 2 H2 such that wjI 2 CM :(4)Plugging w = 0 in (4) gives (3). On another hand, we know from theorem 2 that theconstraint is saturated, i.e. g0 2 �M . Since it is the minimum of � on �M , g0 is a criticalpoint.Conversely, let g be a critical point of � on �M satisfying (3). Take any w such thatwjI 2 CM and de�ne v 2 H2 byv = w � Re (w; g)L2(J)M2 g :We have Re (v; g)L2(J) = 0 so that v 2 TM(g). Hence Re (f � g; v)L2(I) = 0, which impliesRe (f � g; w� g)L2(I) = "Re (w; g)L2(J)M2 � 1# Re (f � g; g)L2(I) :Now, Re (w; g)L2(J) �M2 since wjI 2 CM . Together with (3) it implies (4) with g0 = g.Our next goal is to use proposition 3 to produce a more explicit formula for g0. Set~f = ( f on I0 on J :Let PH2 be the orthogonal projection from L2(TT) onto H2 and let further �H20 denote theorthogonal complement to H2 in L2(TT). The latter is nothing but the subspace of theHardy space of C n �ID consisting of functions vanishing at in�nity.Since members u 2 H2 of TM(g0) are characterized by the property :Re (g0; u)L2(J) = 0 ;it follows from proposition 3 and (2) that g0 satis�esRe ( ~f � g0; u)L2(TT) = 0 ; 8u 2 TM(g0) ; and Re ( ~f � g0; g0)L2(TT) � �M2 ;or, since u and g0 belong to H2,Re (PH2 ~f � g0; u)L2(TT) = 0 ; 8u 2 TM (g0) ; and Re (PH2 ~f � g0; g0)L2(TT) � �M2 :(5)Introducing �J to be the characteristic function of the arc J , de�ne � : H2 ! H2 to bethe Toeplitz operator with symbol �J :�(g) = PH2 (�J g) :The obvious virtue of � is that for all g; h 2 H2,(�(g); h)L2(TT) = (g; h)L2(J) :In particular,Re (�(g0); u)L2(TT) = 0 ; 8u 2 TM(g0) :(6)



Comparing (6) and (5) shows that �(g0) and PH2 ~f�g0 are two vectors of the real Hilbertspace H2 both orthogonal to TM (g0) whose real codimension is 1. Observe �(g0) 6� 0because � is injective since no non{zero function of �H20 can be 0 on I. Hence, there exists� 2 IR such that ��(g0) = PH2 ~f � g0, or equivalently such thatg0 + ��(g0) = PH2 ~f :(7)Moreover, from (7) :(PH2 ~f � g0; g0)L2(TT) = � (�(g0); g0)L2(TT) = � (g0; g0)L2(J) = �M2 :Therefore, in view of (5), � � �1. Now, the function �J 2 L1(TT) is real valued, piecewiseconstant, �J � 0, [ess inf �J ; ess sup�J ] = [0; 1], and k�JkL1(TT) = 1. Therefore, � is abounded self{adjoint positive operator with norm 1 and spectrum �(�) = [0; 1] (see e.g.[21, chap.3]).Thus, I + �� has a bounded inverse for � 2 (�1;+1). Hence,g0 = (1 + ��)�1 PH2 ~f ;(8)where � 2 (�1;+1) is a Lagrange multiplier adjusted so that kg0kL2(J) = M . Thedi�culty with this formula is of course its implicit character in �, and it seems to bea hard point to express � as a function of M . On another hand, it is easy to obtain adi�erential equation for �. To this e�ect, we shall now start to consider M as a variableranging over [0;+1), so that g0 and � become functions of M . This also entails thatf is not the trace on I of any H2 function so as to keep everything well{de�ned. Thishypothesis will remain in force untill the end of the paper.First, we claim that(f; g0)L2(I) = (1 + �)M2 + kg0k2L2(I) :(9)To establish this, simply take the scalar product of (7) with g0 on TT.On another hand, since � is a self{adjoint operator, it follows from (8) thatM2 = kg0k2L2(J) = (g0; g0)L2(J) = (� g0; g0)L2(TT)= (� (1 + ��)�2 PH2 ~f; PH2 ~f)L2(TT) :From the above equation observe that for � 2 (�1;+1), the function M2(�) is smooth .Di�erentiating with respect to � leads to :dM2d� = �2 (�2 (1 + ��)�3 PH2 ~f; PH2 ~f)L2(TT) < 0 ;where the inequality is a consequence of the spectral theorem (see e.g. [22]) and theinjectivity of �. Monotoneity implies that � is in turn a smooth function of M2 whosederivative is  dM2d� !�1. Therefore we get the



Proposition 4 As a function of M2, � satis�es the di�erential equation :d�dM2 = �12 (�2 (1 + ��)�3 PH2 ~f; PH2 ~f)L2(TT) ;with initial condition�(kPH2 ~fk2L2(J)) = 0 :This equation allows one in principle to compute � from M , but its practical value isunclear at this point. A more amenable way to look at the problem is perhaps to choose� as parameter and to estimate M , together with the L2(I) approximation error :e(�) = kf � g0k2L2(I)as functions of �. It is plain that e is increasing with �, because e obviously increaseswhen M decreases and we have seen that M decreases when � increases. Moreover, as wehave shown in theorem 1, e goes to 0 as M goes to 1, and so, from (9), as � goes to �1.These considerations suggest a tentative algorithm as follows :(i) Take some � > �1 but not too far from �1 and compute g0 given by (8).(ii) Compute M . If M is too big, increase �, if not, decrease it. Go to (i).An important issue is to estimate the behaviour of e(�) and M(�) as �! �1. While theauthors do not know yet of asymptotic formulae, there is a simple result showing thatM(�) cannot behave arbitrarily, an analogue of which can be found in [15]. On one hand,we have :e(�) = kP �H20 ~fk2L2(TT) + �2 (�2 (1 + ��)�2 PH2 ~f; PH2 ~f)L2(TT) �M2 ;and ded� = 2 (�+ 1) (�2 (1 + ��)�3 PH2 ~f; PH2 ~f)L2(TT) ;so thatded� = �(�+ 1) dM2d� :(10)On the other hand,�!1) 8>>>><>>>>: g ! 0 by (8)e(�)! kfk2L2(I)M(�)! 0�M2 ! 0 by (9) :(11)Moreover we also have from (9) thatlim�!�1(�+ 1)M2 = 0 :(12)Now, integrating (10) by parts between any �0; � 2 (�1;+1), and letting �0 ! �1, weobtaine(�) = �(� + 1)M2(�) + Z ��1M2(�) d� :(13)Letting �!1 in (13) and using (11) leads to the following result :



Proposition 5 The function M(�) belongs to L2(�1;+1) andZ +1�1 M2(�) d� = kfk2L2(I) :(14)In particular, the above proposition shows thatM cannot increase too fast as � approaches�1.4 ConclusionWe studied a class of approximation problems that was reminiscent of classical (dual)extremal problems in Hardy spaces. These questions are attractive from the point of viewof system identi�cation because they predict in some sense the stability of underspeci�edlinear models. They also o�er some interesting theoretical features. However, a numberof open questions still remain.From the function theoretic viewpoint, the characterization of the L1(I) closure of H1as well as the pending remark 1 are perhaps the major ones. On the computational side,the estimation of the convergence rate in the L2 case is still to be established in order toimplement an algorithm based on the procedure described here. In the L1 case, almosteverything remains to be done. This bears particular signi�cance if one observes that twomain classes of transfer functions are of particular interest in automatic control, namelyH2 transfer functions and H1 ones. The subclass A should further be singled out sinceit more or less corresponds to compact Hankel operators which are the ones that lendthemselves to rational approximation.A constructive procedure in the Hp case, for p <1, also remains to be found and couldprobably be given along the same lines than what we did here for p = 2. This mayasymptotically help study the H1 case.From the point of view of system theory, it is certainly sound to study such problems inmore restrictive functions spaces, for instance in Hardy{Sobolev spaces or in weighted Lpspaces. An account of the Hardy{Sobolev case of exponent 2 may be found in [3].Acknowledgments. Laurent Baratchart and Juliette Leblond acknowledge helpful dis-cussions with Jean{Pierre Kahane and Martin Zerner.References[1] Outils et mod�eles math�ematiques pour l'automatique, l'analyse des syst�emes et letraitement du signal, 1981. I.D. Landau ed.[2] D. Alpay, L. Baratchart, and J. Leblond. Hardy approximation in Lp spaces of anarc. In preparation.[3] L. Baratchart and J. Leblond. Identi�cation harmonique et trace des classes dehardy sur un arc de cercle. In Actes du Colloque en l'honneur du 60e anniversairedu professeur Jean C�ea, Sophia{Antipolis. CEPADUES, avril 1992. A paraitre.
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