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Abstract We consider inverse problems of source identification in electroencephalography,
modelled by elliptic partial differential equations. Being given boundary data that consist in
values of the current flux and of the electric potential on the scalp, the aim is to reconstruct
unknown current sources supported within the brain. For spherical layered models of the
head, and after a preliminary data transmission step, such inverse source problems are tack-
led using best rational approximation techniques on planar sections. Both theoretical and
constructive aspects are described, while numerical illustrations are provided.
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1 Introduction

We discuss some inverse identification problems that arise in medical engineering or in neu-
rosciences for functional and clinical brain analysis purposes. We focus on source recovery
issues from boundary data in electroencephalography (EEG).

Maxwell’s equations are to the effect that the electric potential within the head can be
modelled as a solution to some partial differential equation (PDE), in spherical or more
general 3-dimensional domains [14]. In particular, with the quasi-static assumption (time
derivatives of the electromagnetic fields are neglected), the EEG problem is modelled by
an elliptic Poisson–Laplace PDE that only involves the space variable. Boundary data are
furnished by a number of pointwise values of the electric potential on the scalp (measured
by electrodes on a part of the scalp, see Fig. 1), together with the (vanishing) current flux.
From such partial and overdetermined boundary measurements of the current flux and the
potential, the aim is to identify and to reconstruct:
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– non-measured boundary data (a Cauchy transmission problem, cortical mapping step),
– unknown current sources supported within the brain (singularities of the potential), that

correspond to the primary cerebral current.

These questions can be rephrased as identification or observation issues for infinite dimen-
sional systems, where the given boundary measurements (flux and potential) coincide with
the input and output of the system, of which the electric potential and the current flux inside
the head should be viewed as the state. We consider below these inverse potential problems
[13]. Related considerations in magnetoencephalography (MEG) will be briefly discussed
in conclusion, with others from electric impedance tomography (EIT). Observe further that
similar deconvolution issues also appear in automatic control (on the boundary of domains
of dimension 2, however), concerning harmonic identification in frequency domain [5].

For dipolar point sources, we review some identifiability results related to the EEG in-
verse problem [9], that we also formulate as observability properties. Algorithmical and
numerical aspects are described, most of them requiring (best constrained quadratic) op-
timization techniques. Our approach relies on harmonic analysis and function theory (the
link with holomorphy comes from harmonicity), as does the work [15]. Compared to other
methods (dipole fitting, MUSIC algorithms, [18]), it has the desired feature of providing an
estimate of the number of sources (sources that may be correlated, in time).

The overview of the article is as follows. Some notation and definitions are given in
Sect. 2. Models and inverse problems in EEG are discussed in Sect. 3. Section 4 is devoted
to a two step resolution scheme, which consists first in data transmission (Sect. 4.1), then in
source identification (Sect. 4.2). A conclusion is proposed in Sect. 5.

2 Notation, Definitions

We recall the definitions of gradient, divergence and Laplace operators for functions acting
on R

3, where the space variable is denoted by x = (x1, x2, x3) and the inner product by “·”.
The gradient and divergence operators are formally defined by:

grad = ∇ =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)t

, div = ∇·,

and the Laplace operator by:

� = ∇ · ∇ = ∂2

∂x1
2

+ ∂2

∂x2
2

+ ∂2

∂x3
2

(div acts on R
3-valued smooth functions, while grad and � act on R-valued ones).

We set Ω ⊂ R
3 to be a bounded domain with smooth boundary, and n the unit outer

normal vector on ∂Ω . The normal derivative on ∂Ω is then defined by:

∂u

∂n
(xb) = lim

x→xb∈∂Ω
∇u(x) · n(xb).

Functional Hilbert Lebesgue and Sobolev spaces, L2 and W 1,2, are classically defined on Ω

or ∂Ω , see e.g. [10], as well as C(Ω̄).
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3 Models, Inverse Problems in EEG

Maxwell Equations Maxwell equations in electrostatics, under quasi-static assumptions,
are to the effect that, if E stands for the electric field, and Ψ for the electric potential in the
head [14]:

∇ × E = 0 ⇒ E = −∇Ψ (Faraday’s law).

The brain is a non magnetic medium, while it is subject to an electric activity represented
by the current density J which satisfies

J = σE + J = −σ∇Ψ + J,

if J stands for the primary cerebral current density and σ for the electric conductivity of the
head Ω ⊂R

3. Hence,

∇ ·J = 0 (charge conservation) ⇒ ∇ · (σ∇Ψ ) = ∇ · J.

Note that J is supported in the domain Ω0 � Ω corresponding to the brain (there are no
current sources outside the brain).

Partial Differential Equation The electric potential Ψ = Ψ (x) is a real-valued function (or
distribution) of the space variable x ∈ R

3 which is solution to the following second order
elliptic PDE (to be understood in distribution or variational sense, see Sect. 4):

div(σ gradΨ ) = div J or ∇ · (σ∇Ψ ) = div J in R
3, whence

3∑
i=1

∂

∂xi

(
σ

∂Ψ

∂xi

)
=

3∑
i=1

∂J
∂xi

or ∇σ · ∇Ψ + σ�Ψ = ∇ · J, (1)

for the function or distribution J with values in R
3 and supported in the proper subset Ω0

of Ω with smooth boundary ∂Ω0 (and such that Ω0 ⊂ Ω). Note that the source distribution
div J is real-valued (or acts on real-valued functions).

In EEG, and in the present work as well, σ is often assumed to be isotropic (real-valued)
and piecewise constant whence the above PDE reduces to a set of Laplace–Poisson equations
(see Eq. (3)).

Inverse EEG Problem The inverse EEG problem consists in recovering J (at least its sup-
port in Ω0) in some class of source terms, from available boundary values of a solution Ψ
to Eq. (1):

u = ∂Ψ

∂n
on ∂Ω, y = (

Ψ (γi)
)t

, γi ∈ Γ � ∂Ω, i = 1, . . . ,L, (2)

u being the given current flux on the scalp ∂Ω , y the measured potential (or difference of
potentials), by L electrodes on the upper part of the scalp, located at positions γi on a part
Γ � ∂Ω of the boundary (see Fig. 1(l)).

The above inverse problem is basically ill-posed, and requires additional assumptions
concerning Ψ and J in order to admit a unique solution. Still, stability properties of the
solution are difficult to ensure, and only hold under further a priori assumptions on the
model and the data [13]. These well-posedness aspects will be discussed within the harmonic
framework of Sect. 4, having in mind that the available measurements u, y are incomplete
and may be corrupted, in practice.
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Fig. 1 Left (l): measures u provided by electrodes on the scalp ∂Ω ; right (r): head geometries Ω (Color
figure online)

Direct EEG Problem Concerning the associated direct problems, the source distribution
J is given (supported in Ω0), as well as boundary data of Dirichlet or Neumann type [10].
Dirichlet boundary data consists in the potential Ψ on the overall ∂Ω , while Neumann data
are furnished by ∂Ψ

∂n
. For smooth conductivities, these problems are well-posed, under the

following necessary and sufficient compatibility condition for the second one, with which
the solution is unique up to an additive constant:

∫∫
∂Ω

σ
∂Ψ

∂n
ds = 0,

with respect to the Lebesgue measure ds on the surface ∂Ω . This is a consequence of
Green’s formula together with the fact that J vanishes outside Ω0 hence on ∂Ω .

In particular, whenever Ψ is smooth enough on ∂Ω , then so is Ψ in Ω . Actually, for
smooth or piecewise constant conductivities σ , the boundary assumption Ψ ∈ W 1,2(∂Ω) is
enough to ensure that Ψ ∈ C(Ω̄), see e.g. [8] for constant σ .

Observability Issues The electric potential Ψ = Ψ (x), a real valued function (or distri-
bution) of the space variable x ∈ Ω ⊂ R

3 may be viewed as a state variable for the static
infinite dimensional state model (1). On the boundary ∂Ω , the current flux u corresponds
to the associated input, the potential y to the output. The inverse source problem consists in
finding the state or its singularities, given input/output data u and y, which is an observability
problem (in general, for EEG, u is assumed to vanish).

At this stage, we directly get from (2) that:

y = C(Ψ |∂Ω
),

where C denotes the pointwise evaluation operator at the L points γi ∈ Γ � ∂Ω , and cor-
responds to an observation operator. With the above smoothness assumptions, the linear
operator C is continuous, and it holds that:

|y| � ‖Ψ ‖L∞(∂Ω) � ‖u‖L∞(∂Ω).

Note that C has finite dimensional range and is formally defined on those continuous func-
tions on ∂Ω . Without further assumption, the reconstruction of the infinite dimensional state
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Fig. 2 (l): 3 layers spherical head model (planar cross section); (r): measured values y = y2 of Ψ by L = 128
electrodes on the upper part of the scalp, (x1, x2, x3) coordinates (Color figure online)

Ψ within the head with very few observations (the boundary measurements y) is lost in ad-
vance. We will see that it goes differently under suitable hypotheses, and that some quantities
become observable, at least approximately.

Similarly, the relations (1) and (2) may be expressed through Green formula, see (5)
and (8), as:

u = KJ(Ψ |∂Ω
), where KJ : Ψ |∂Ω

	→ ∂Ψ

∂n |∂Ω

,

for the so-called Dirichlet-to-Neumann operator KJ. In the present situation, a preliminary
step is required in order to build Ψ on ∂Ω from y, a step which would not be needed if the
measurements y were available on the whole boundary ∂Ω , rather than at points in Γ � ∂Ω .
Nevertheless, this only reinforces the strong ill-posedness property of the corresponding
observability issue, of building the state Ψ on Ω from u and y on ∂Ω , but unknown J, among
solutions to (1), an impossible task. Regularization schemes by constrained optimization
(best quadratic approximation) are then used in order to state and to solve these inversion
issues in several consecutive steps.

4 EEG Inverse Source Problem

Spherical head models are classically considered and supposed to be made of 3 spherical
homogeneous layers [9]. Put then Ω = B for the unit ball and ∂Ω = S for the unit sphere. Put
Ω0 = r0B for some 0 < r0 < 1 (brain), Ω1 (skull), Ω2 (scalp), such that Ω = Ω0 ∪ Ω̄1 ∪Ω2,
with ∂Ωi = Si−1 ∪ Si for i = 1,2 and spheres Si , see Fig. 2(l). In particular, we get S0 =
∂Ω0 = r0S and S2 = ∂Ω = S.

The head conductivity σ is assumed to be known and piecewise constant: on Ωk , σ =
σk > 0 (with σ0 = σ2 = 1 up to a renormalization, and 1/σ1 ∈ [20,80]). Further, because
R

3 \ Ω̄ (the air, the neck is ignored) is a non conductive medium, we have that σ vanishes
outside Ω .

Given u and y on ∂Ω from (2) (see Fig. 2(r)), we thus want to find J or at least its
support, such that Ψ satisfies (1). Of course, necessary assumptions are needed to ensure
well-posedness and observability properties, like hypothesis (9) below, to the effect that J is
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a finite sum of pointwise dipolar sources. In particular, we want to locate the singularities of
Ψ in Ω0. More precisely, we get from (1) that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�Ψ = 0 in (R3 \ Ω̄) ∪ Ω2 ∪ Ω1,

�Ψ = div J in Ω0,

Ψ and σ
∂Ψ

∂n
continuous across Si, i = 0,1,2.

(3)

The above transmission conditions (obtained from Green formula, see (5)) express the con-
tinuity of the potential and of the normal current across the interfaces Si . We use two main
consecutive steps for solving the EEG inverse source problem [9]:

– A first boundary data extension/transmission step (Cauchy type inverse problem), also
called “cortical mapping” step, in the present framework: the given boundary data are
transmitted from ∂Ω = S2 (scalp) to S0 (cortex), see Sect. 4.1.

– A second source localization step, in Ω0, for some class of J (geometric inverse problem):
from the above transmitted data on S0, locate the sources inside Ω0, see Sect. 4.2.

4.1 Data Transmission

Let S±
i denote the inner and outer sides of Si , for i = 0,1,2. From (3), we get in the outer-

most two layers Ωi , i = 1,2, with the convention σ3 = 0:

⎧⎪⎨
⎪⎩

�Ψ = 0 in Ωi, i = 1,2,

Ψ |
S
−
i

= Ψ |
S
+
i

, σi

∂Ψ

∂n |
S
−
i

= σi+1
∂Ψ

∂n |
S
+
i

.

In order to get the Cauchy data on S0, we thus face two consecutive Cauchy type trans-
mission problems in the spherical shells Ωi , from their outer boundaries S−

i to their inner
ones S+

i−1. Put y = y2, u = u2 = 0. The first transmission problem is the following. Given
y2 ∈ R

L such that:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�Ψ = 0 in Ω2,

(Ψ (γi))
t = y2 ∈R

L, γi ∈ Γ ⊂ S2, i = 1, . . . ,L,

∂Ψ

∂n |
S
−
2

= u2 = 0,

get on S+
1 :

y1 = Ψ |
S
+
1

and u1 = ∂Ψ

∂n |
S
+
1

,

recalling the normalization σ2 = 1. Once u1 and y1 have been computed on S+
1 (either by

their pointwise values at points from a mesh or by their spherical harmonics expansions
[10]), the second transmission problem in Ω1 can be stated as follows. Given u1, y1 on S−

1
such that:

�Ψ = 0 in Ω1, Ψ |
S
−
1

= y1, σ1
∂Ψ

∂n |
S
−
1

= u1,
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get on S0:

y0 = Ψ |
S
+
0

and u0 = σ1
∂Ψ

∂n |
S
+
0

.

Cauchy-Holmgren uniqueness result asserts that, for compatible (exact) data, there exists
a unique solution to the above transmission problem. Ill-posedness, however, comes from
unstability properties of such Cauchy type issues, though sufficient conditions for stability
are available [1, 21]. As soon as we turn to experimental (corrupted) data, an exact solution
may not even exist.

However, robust approximated identifiability/observability properties can be ensured as
follows, by regularization and approximation techniques, from which constructive resolution
schemes are derived. Let E3 be the radial fundamental solution of Laplace equation in R

3,
see [10]:

E3(x) = − 1

4π |x| , which satisfies �E3 = δ0 on R
3, (4)

if δC stands for the Dirac distribution (mass) at point C. Using Green formula for harmonic
functions, we get that for x /∈ Ωi and i = 1,2:

∫∫
∂Ωi

(
Ψ (y)

∂E3

∂n
(x − y) − E3(x − y)

∂Ψ

∂n
(y)

)
ds(y) = 0, (5)

where

∂E3

∂n
(x − y) = (x − y) · n(x)

4π |x − y|3 .

To handle this cortical mapping step, we use boundary elements methods (BEM) described
in [9]. The quantities Ψ , ∂Ψ

∂n
are discretized on the meshes and represented as a (big) vector

Ψ which represents (ui , yi ) at points on the spheres Si , i = 0,1,2. We then look for a vector
Ψ such that MΨ = (u2, y2) (the given data), for a measurement matrix M (depending on the
meshes). Further, we require that Ψ belongs to the kernel of some matrix H , a relation which
expresses formula (5) and that links ui , yi on Si to ui−1, yi−1 on Si−1, for i = 1,2. Formula
(5) however is solvable only for compatible (exact) data, whence we turn to optimization.
This raises the issue of minimizing the following discrete criterion on ∂Ωi [16]:

min
HΨ =0

∥∥MΨ − (u2,y2)
∥∥2

l2
+ λ‖RΨ ‖2

l2
, (6)

for some Lagrange parameter λ > 0 and an appropriate matrix R which expresses the con-
straints (Tikhonov regularization). This furnishes a regularized resolution scheme, even for
non-compatible data. Numerical illustrations are furnished in Fig. 3, which represents the
transmitted Cauchy data y0, u0 on the cortex S0 = ∂Ω0, at 642 points on the meshed spheres,
computed using boundary elements (BEM) from the electrodes pointwise data y = y2 on the
scalp ∂Ω2, see Fig. 2. There, and in Figs. 5, 6, 7 as well, we simulated direct data with J
as in (9) and K = 2 sources C1 = (0.5,0.5,0.5), C2 = (0.5,−0.5,−0.4). All the numerical
experiments were obtained using the software FindSources3D (matlab) [12].

Note that related bounded extremal problems (BEP) express a criterion similar to (6),
though expressed in L2(∂Ωi) norm, within Hardy classes of gradients of harmonic func-
tions [3]. There, expansions on bases of spherical harmonics may be used rather than point-
wise values for the discretization. In both cases, robust solutions are furnished from best
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Fig. 3 Potential and normal current transmitted on S0, (x1, x2, x3) coordinates: (l) y0; (r) u0 (Color figure
online)

quadratic approximation of the given boundary data, using discretizations of the Laplace op-
erator (BEM) or expansions of harmonic functions (BEP), together with regularizing norm
constraints.

4.2 Source Identification

From the cortical data y0, u0 on S0, the inverse source problem consists in finding the distri-
bution J (or its support inside the ball Ω0) such that:

⎧⎨
⎩

�Ψ = div J in Ω0,

Ψ |S0
= y0,

∂Ψ

∂n |S0

= u0.
(7)

Without further assumptions, this is still an ill-posed problem which admits infinitely many
solutions J.

The potential Ψ may be expressed in terms of J, by convolution with a fundamental
solution of Laplace equation in R

3, see [10]. Indeed, we get for x ∈ Ω0 \ supp J:

Ψ (x) = h(x) +
∫∫∫

Ω0

E3(x − y)div J(y)dy

= h(x) −
∫∫∫

Ω0

∇E3(x − y) · J(y)dy = h(x) + Ψ s(x), (8)

for some function h harmonic in Ω0, where Ψ s represents the singular part of Ψ and contains
all information about the source term. Note that Ψ s is harmonic outside Ω0 and vanishes
at ∞; it can be computed on S0 from u0 and y0 expanded on the spherical harmonic basis
[10].
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Fig. 4 Planar sections
Πp = {(x1, x2, x3p)} of Ω0 �
disks Dp ⊂ Πp , p = 1, . . . ,P

(Color figure online)

4.2.1 Dipolar Point Sources

The following hypothesis on J is classical in EEG, which amounts to assume that the poten-
tial Ψ is created by K dipolar point sources Ck ∈ Ω0 with associated moments pk ∈R

3:

J =
K∑

k=1

pkδCk
, whence �Ψ = div J =

K∑
k=1

pk · ∇δCk
. (9)

In this situation, we get from (4), (8), at x �= Ck in R
3:

Ψ s(x) = −1

4π

K∑
k=1

pk · (x − Ck)

|x − Ck|3 .

It ensures well-posedness of the above homogeneous inverse source problem (7), with un-
known K , Ck , pk , from Dirichlet-Neumann data on S0 [20, 21]. As a consequence, source
identifiability properties from scalp boundary data on ∂Ω hold true for the inverse EEG
problem (1), (2), provided that the Dirichlet data y2 is furnished on an open subset Γ ⊂ ∂Ω .
Whenever the potential values are only given at L points γi ∈ Γ , which is practically the
case, a first robust interpolation step is thus required. Uniqueness of J in the above class,
hence of K , pk , Ck , for k = 1, . . . ,K , is established in [11]. Such identifiability results from
boundary data can be viewed as observability properties. Again, constructive aspects and
robust resolution algorithms constitute the key points.

4.2.2 Source Localization Scheme

Given the function Ψ s on S0, we now show how to identify the 6K +1 real valued quantities
that characterize the sources (K itself, and Ck , pk , for k = 1, . . . ,K). We assume Ψ s to be
either expanded as a series on S0 or given by pointwise values at the mesh points there,
for computational purposes. The localization algorithm is described in [4, 9]. It consists in
singularities estimation by best quadratic rational approximation of Ψ s (actually, of Ψ 2

s ) on
the boundaries (circles) of families of planar sections of Ω0 (disks).

Singularities in Planar Sections Let, for instance, Π = {(x1, x2, x3), x3 = 0} denote the
(x1, x2) plane, and Πp = {(x1, x2, x3), x3 = x3p}, with the disk Dp = Πp ∩Ω0 and the circle
Tp = ∂Dp = Πp ∩ S0, p = 1, . . . ,P , for some integer P > 0 (see Fig. 4).

From Ψ s on S0, for each p = 1, . . . ,P , build the complex variable functions fp such
that, for z = x1 + ix2 ∈ Tp :

fp(z) = Ψ 2
s (x1, x2, x3p).
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It then holds that:

fp(z) =
[

K∑
k=1

φkp(z)

(z − zkp)3/2

]2

=
K∑

k=1

φ2
kp(z)

(z − zkp)3
+

K∑
j,k=1
j �=k

2φkp(z)φjp(z)

(z − zkp)3/2(z − zjp)3/2
, (10)

for functions φkp such that the products φkpφjp are holomorphic in Dp for j, k = 1, . . . ,K

and complex valued singularities zkp ∈ Dp .
Indeed, the denominator of Ψ s involves the quantities |x − Ck|3 that can be computed

as follows. If we write Ck = (x1k, x2k, x3k), zk = x1k + ix2k for the complex affix of Ck in

Π ∩ S0 
C, rp =
√

1 − x2
3k and hkp = x3k − x3p , we get:

|x − Ck|2 = |z − zk|2 + h2
kp = (z − zk)(z − zk) + h2

kp.

When x ∈ Tp , then z ∈ Tp and z = r2
p/z, whence

|x − Ck|2 = (z − zk)

(
r2
p

z
− zk

)
+ h2

kp.

Assume that zk �= 0, which generically holds if Ck �= 0 since zk only depends on Ck and Π .
Expanding the above rational function of z, we find:

−zk

z

(
z2 − r2

p + h2
kp + |zk|2
zk

z + zk

zk

r2
p

)
= −zk

z
(z − zkp)

(
z − z

(r)
kp

)
, (11)

for zkp ∈ Dp and z
(r)
kp /∈ Dp such that

∣∣zkpz
(r)
kp

∣∣ = r2
p,

in particular. This implies that, on Tp :

pk · (x − Ck)

|x − Ck|3 = φkp(z)

(z − zkp)3/2
, where φkp(z) =

√
zπkp(z)

(z − z
(r)
kp )3/2

,

where πkp is a polynomial of degree 2, which depends on pk , zk , hkp , rp . Because z
(r)
kp /∈ Dp ,

this shows that φkpφjp are holomorphic functions in Dp , for j, k = 1, . . . ,K , and establishes
(10). Observe that the functions φkp are multiply valued in Dp , due to the presence of

√
z in

their numerators, while this is no longer the case for the products φkpφjp ; this is the reason
why we consider the squared values Ψ 2

s of Ψ s .
As a consequence, we get that for each p, fp coincides on Tp with a function that admits

K singularities zkp in Dp . These singularities zkp are due to the sources, and related to
their parameters Ck , pk (and to x3p as well). Indeed, assuming that zk �= 0, the following
behaviour of zkp can be checked from (11).

(i) The complex arguments of the K singularities (zkp) of fp do not depend on p and
coincide with the argument of zk (because zkp/zk are real valued).
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Fig. 5 Sources Ck in Ω0 (big dots), singularities (zkp) (small dots), for k = 1,2; left (l): side view,
(x1, x2, x3) coordinates; right (r): from above (top of x3 axis), superimposed (x1, x2, x3p) planes (Color
figure online; there, yellow circles correspond to boundary circles Tp , big black dots to sources, small green
dots to singularities)

(ii) For fixed k, the modulus |zkp| is maximum w.r.t. p in the section Dp∗ closest to (or
containing) Ck , where zkp∗ = zk .

Whenever zk = 0, the corresponding term within fp in (11) degenerates and admits a
simple pole at zkp = 0, for p = 1, . . . ,P . Actually, it behaves as πkp/z.

These properties are illustrated in Fig. 5 with K = 2 sources C1, C2 as in Sect. 4.1 and
Fig. 3, and for P = 21 sections. They allow us to reduce the 3D inverse source problem to a
family of 2D boundary value problems, for p = 1, . . . ,P : being given fp on the boundary
Tp , recover its K singularities zkp ∈ Dp .

Poles of Rational Approximants For fixed p, we see from (10) that the singularities
zkp ∈ Dp appear both as K triple poles and as K branchpoints of fp . It then turns out that
they may be approximated by the poles in Dp of best quadratic rational approximants to fp

on Tp , defined as follows. Consider the best rational approximation (constrained optimiza-
tion) problem:

For n ≥ 0, find polynomials pn, qn with degree pn ≤ degree qn ≤ n and qn with less than
n zeroes in Dp , that minimize ∥∥∥∥fp − pn

qn

∥∥∥∥
L2(Tp)

among such functions [6].
Solutions pn/qn are the best quadratic rational approximants to fp on Tp of degree n.

Their poles in Dp , those zeroes of qn within Dp , accumulate (in some sense) to the singular-
ities zkp of fp as n increases, which is a deep result from potential theory established in [7].
Related resolution schemes are briefly described in [9] again. Hence, computing the zeroes
of qn for suitable values of n allows us to efficiently estimate the quantity K of sources and
to approximately localize the singularities zkp . Indeed, one first increases the degree n until
the value of the approximation criterion (the quadratic error on Tp) is small enough on Tp

(or stationary): this furnishes an estimation of K , a nice feature of this scheme. Then, for
such a degree n, one compute the solution pn/qn and its n poles, which are close to zkp . Sim-
ilarly, one computes best rational approximants with m triple poles within Dp , represented
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Fig. 6 Sources Ck in Ω0 (big
dots), singularities (zkp) (small
dots), for k = 1,2, single triple
pole (small dots) in 21 parallel
planar sections Πp (Color figure
online; there, yellow circles
correspond to boundary circles
Tp , big black dots to sources,
small green dots to singularities,
small red dots to triple poles)

as rationals p3m/(qm)3 in the above criterion. It appears that a single triple pole (m = 1)
already approximates well enough the singularities zkp . This property is established in [9,
Prop. 1] for the case K = 1 of a single source. It also numerically holds for K = 2 or more,
as illustrated by Fig. 6, where the algorithm is run by the software FindSources3D [12]. We
see there that in northern and southern planar sections Dp , the single triple pole is close to
the one of the two singularities zk,p (k = 1,2) which accounts for the closest source. This
property furnishes an estimate of the quantity K of sources from the behaviour of m = 1
triple pole (in the present example, K = 2), and—more approximately—there locations.
A further rational approximation step must then be performed similarly, looking for triple
poles at exact degree m = K (see Fig. 7).

From 2D to 3D The above planar rational approximation algorithm is then run at degree
m = K = 2 for planes Π along 12 different directions. Figure 7 shows the 12 correspond-
ing views from above of the singularities (zkp). These are estimated using the 2 triple poles
computed in sections Πp , for some values of p, together with a further step accounting for
the last sum in expression (10). In some of the 12 pictures, the estimated singularities are lo-
cated along 2 lines. We then select these most significant directions Π . The selected series of
estimated (zkp) then approximately intersect within the ball Ω0 at the sources locations Ck ,
as they should exactly do, see Fig. 8. We finally run a last clustering step, in order to refine
the estimation.

Source Estimation Algorithm, in Short

– Input: spherical meshed geometry of S0 and pointwise values of the singular part ΨS of
the potential (or coefficients of a spherical harmonic expansion; ΨS can be computed
from Ψ and ∂Ψ

∂n
); an integer P (quantity of parallel slices Πp for each of the 12 planar

sections Π ).
– For each section Π , get fp on Tp , for p = 1, . . . ,P .
– For some section Π , compute its best rational approximant with a single triple pole in Dp ,

p = 1, . . . ,P , and estimate the quantity K of sources.
– For each section Π :

– Compute the best rational approximant to fp on Tp with m = K triple poles in Dp , for
p = 1, . . . ,P ,

– estimate the singularities (zkp), k = 1, . . .K .
– Cluster the computed singularities, and find estimates of Ck , k = 1, . . . ,K .
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Fig. 7 For 12 different planes Π , views from above of superimposed estimated singularities (zkp), k = 1,2,
p ∈ {1, . . . ,21}, using 2 triple poles (Color figure online)

– Output: estimated source locations Ck , k = 1, . . . ,K .

Note that, once the source locations Ck are estimated, their moments pk can be recovered
by computation of the residues of the functions fp in the selected planar sections.

Numerical Illustrations For Figs. 8, 9, 10, the numerically generated data on S0 correspond
to J as in (9) and K = 2 sources C1 = (0.2,0.3,0.4), C2 = (−0.3,−0.2,0.4). Figures 9
and 10 show actual and estimated sources and moments. Though a small noise was added to
the cortical data, the results however remain good enough, with a small localization error for
the sources, as expected. In Fig. 10, the result is shown in a more realistic geometry (from
MRI data, then translated on spheres).

These numericals illustrate the robustness and the efficiency of the involved identification
schemes. They were all performed with the software FindSources3D [12]. It typically takes
a few minutes to compute a solution to the full inverse EEG problem (on a Linux laptop),
from L = 128 electrodes values to the estimation of K = 2 sources, with P = 21 planar
sections in 12 different directions.
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Fig. 8 Superposition of
estimated singularities in various
slicing directions; the coloured
series (lines) of singularities
intersect at (next to) the sources

Fig. 9 K = 2 actual and
estimated sources and moment,
spherical geometry (Color figure
online)

Fig. 10 K = 2 actual and estimated sources and moments, realistic geometry, with the courtesy of BESA
GmbH (Color figure online)
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5 Conclusion

Beyond the many inverse boundary value problems that arise in medical imaging, we dis-
cussed source recovery issues for EEG. In a spherical layered geometric head model, we
presented a robust resolution scheme (observer) in order to estimate the source locations
from the measured boundary data. It consists in a best rational approximation procedure
on planar sections, coupled with a boundary element method (BEM) for preliminary data
transmission steps. More realistic geometries can be considered with similar techniques,
though the numerical complexity increases (several planar singularities may be associated
to a single source) [17].

Further uniqueness/identifiability properties for geometric inverse problems of singular-
ity localization (they may be sources, defaults, cracks) from boundary data are currently un-
der study. In particular, a source term J is said to be silent in Ω0 if it not visible from outside
Ω0, and produces a potential that vanishes there: Ψ = 0 on R

3 \ Ω̄0. Silent (non-observable)
sources for the homogeneous EEG inverse problem are analyzed (they are never pointwise).
Taking the time variable into account within the model should also be done, using infinite-
dimensional linear system theory [19].

A somehow similar model is also valid for the magnetic potential, and the inverse source
problem in magnetoencephalography (MEG) can be tackled as well. There, the measured
data are pointwise values of the radial component of the magnetic field, taken on part of a
sphere located at some height above the scalp. Simultaneous EEG-MEG signals recordings
should be available, which will improve the source estimation. Analogous inverse source
problems also appear in geosciences and paleomagnetism [2], or for other physical potentials
solutions to Newton’s equations.

Concerning electric impedance tomography (EIT) related issues, the conductivity σ it-
self is unknown in (1) and is one of the quantities to be recovered (a question related to
Calderón’s inverse problem). One may then use the normal current u applied by electrodes
on the scalp as an effective control, in order to estimate the conductivity values and to look
for some optimal location of its support.
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