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Abstract

We study Hardy spaces of solutions to the conjugate Beltrami equation with Lipschitz coefficient on
Dini-smooth simply connected planar domains, in the range of exponents 1 < p < ∞. We analyse their
boundary behaviour and certain density properties of their traces. We derive on the way an analog of the
Fatou theorem for the Dirichlet and Neumann problems associated with the equation div(σ∇u) = 0 with
Lp boundary data.
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1. Background and motivation

Classical Hardy spaces of the disk or the half-plane lie at the crossroads between complex and
Fourier analysis, and many developments in spectral theory and harmonic analysis originate in
them [50,59,60].

From a spectral-theoretic point of view, the shift operator and its various compressions play
a fundamental role and stress deep connections between function theory on the one hand, con-
trol, approximation, and prediction theory on the other hand [51–53]. In particular, Hankel and
Toeplitz operators on Hardy classes team up with standard functional analytic tools to solve ex-
tremal problems where a function, given on part or all of the boundary, is to be approximated by
traces of analytic or meromorphic functions [1,12,13,15,16,19,26,45,55]. Such techniques are of
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particular relevance to identification and design of linear control systems [4,17,29,35,45,53,58].
In recent years, on regarding the Laplace equation as a compatibility condition for the Cauchy–
Riemann system, analogous extremal problems were set up to handle inverse Dirichlet–Neumann
issues for 2-D harmonic functions [11,14,18,42,43]. Laying grounds for a similar approach to in-
verse problems involving more general diffusion elliptic equations in the plane has been the
initial motivation for the authors to undertake the present study. The equations we have in mind
are of the form

div(σ∇u) = 0, σ real-valued, 0 < c < σ < C, (1)

which may be viewed, upon setting ν = (1 − σ)/(1 + σ), as a compatibility condition for the
conjugate Beltrami equation

∂f = ν∂f , f = u + iv, ν ∈ R, |ν| < κ < 1. (2)

This connection between (1) and (2) was instrumental in [7] for the solution of Calderón’s con-
jecture in dimension 2. Eq. (2) breaks up into a system of two real equations that reduces to the
Cauchy–Riemann system when σ = 1. It differs considerably from the better known Beltrami
equation: ∂f = ν∂f whose solutions are the so-called quasi-regular mappings, which are com-
plex linear and have been extensively studied by many authors, see [3,5,6,22,27,28,37,39–41,
46,49].

An interesting example of a free boundary inverse problem involving an equation like (1)
– albeit in doubly connected geometry – arises when trying to recover the surface of the plasma
in plane sections of a toroidal tokamak from the so-called Grad–Shafranov equation [21].

In the present paper, we limit ourselves to the case when σ is Lipschitz continuous. Moreover,
we merely consider analogs H

p
ν to the classical Hardy spaces Hp in the range 1 < p < ∞, on

Dini-smooth simply connected domains. From the perspective of harmonic analysis, the main
features of Hardy space theory in this range of exponents [30,33] are perhaps the Fatou theorem
on non-tangential boundary values, the p-summability of the non-tangential maximal function,
the boundedness of the conjugation operator, which is the prototype of a convolution operator
of Calderón–Zygmund type, and the fact that subsets of positive measure of the boundary are
uniqueness sets (this is false in dimension greater than 2 [23]). In this work, we show that Hardy
solutions to (2) enjoy similar properties, and we use them to establish the density of the traces
of such solutions in Lp(Γ ) whenever Γ is a subset of non-full measure of the boundary. This
fact, whose proof is straightforward for classical Hardy spaces [13] and can be generalized to
harmonic gradients in higher dimensions when Γ is closed [9], is of fundamental importance
in extremal problems with incomplete boundary data and one of the main outcome of the pa-
per.

The generalized Hilbert transform Hν involved in (2), that maps the boundary values of u

to the boundary values of v, was introduced and studied in [7,8] when p = 2 for less smooth
(i.e. measurable bounded) σ but smoother (i.e. Sobolev W 1/2,2) arguments. Here, we shall prove
its Lp and W 1,p boundedness and compare it to the classical conjugation operator. In addition,
studying its adjoint will lead us to a representation theorem for the dual of H

p
ν which generalizes

the classical one. The latter is again of much importance when studying extremal problems.
On our way to the proof of the density theorem, we establish regularity results for the so-

lutions of (1) which are not entirely classical. For example, we obtain an analog of the Fatou
theorem concerning solutions of the Dirichlet problem for (1) with Lp boundary data, includ-
ing Lp-estimates for the non-tangential maximal function. Also, the gradient of a solution to
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the Neumann problem with Lp data has Lp non-tangential boundary values a.e. as well as Lp-
summable non-tangential maximal function. For the ordinary Laplacian this is known to hold on
C1 domains in all dimensions [31], and on Lipschitz domains for restricted range of p [44]. But
for diffusion equations of the form (1), the authors could not locate such a result in the literature,
even in dimension two; when p = 2 and σ is smooth, it follows from [47, Ch. II, Thms. 7.3, 8.1]
that this gradient converges radially in L2 on (parallel transportations of ) the boundary, and
the result could be carried over to any p ∈ (1,∞) using the methods of [36], but no pointwise
estimates are obtained this way.1

The definition of generalized Hardy spaces that we use – see (10) below – dwells on the
existence of harmonic majorants for |f |p , and also on the boundedness of Lp-norms of f on
Jordan curves tending to the boundary of the domain [30]. As in the classical case, these two
definitions of Hardy spaces coincide on Dini-smooth domains (the only case of study below) but
not over non-smooth domains – where arclength on the boundary and harmonic measure are no
longer mutually absolutely continuous.

Although Eq. (2) is real linear only, our methods of investigation rely on complex analytic
tools. In particular, we elaborate on ideas and techniques from [20] and we use standard facts
from classical Hardy space theory together with well-known properties of the Beurling transform.
This entails that higher dimensional analogs of our results, if true at all, require new ideas to be
proven.

We made no attempt at expounding the limiting cases p = 1,∞. These have generated the
deepest developments in the classical theory, centering around BMO and Fefferman duality, but
trying to generalize them would have made the paper unbalanced and they are left here for further
research.

Finally, we did not consider Hardy spaces over doubly connected domains, in spite of the fact
that the above-mentioned application to free boundary problems in plasma control takes place in
an annular geometry. Including these would have made for a lengthy paper, but the results below
lay ground for such a study.

2. Notations for function spaces

Throughout, D is the open unit disk and T the unit circle in the complex plane C. We let Dr

and Tr stand for the open disk and the circle centered at 0 with radius r . For I an open subset
of T, endowed with its natural differentiable structure, we put D(I ) for the space of C∞ complex
functions supported on I .

If Ω ⊂ C is a smooth domain (the meaning of “smooth” will be clear from the context), we
say that a sequence ξn ∈ Ω approaches ξ ∈ ∂Ω non-tangentially if it converges to ξ while no
limit point of (ξn − ξ)/|ξn − ξ | is tangent to ∂Ω at ξ . A function f on Ω has non-tangential
limit 
 at ξ if f (ξn) tends to 
 for any sequence ξn which approaches ξ non-tangentially.

2.1. Hölder spaces

If Ω ⊂ R2 is open, Ck,γ (Ω) indicates the subspace of complex functions whose derivatives
are bounded and continuous up to order k, while those of order k satisfy a Hölder condition of

1 In other respects the results of [47] are of course much more general since they deal with arbitrary non-homogeneous
elliptic equations in any dimension and can handle distributional boundary conditions.
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exponent γ ∈ (0,1]. Such functions extend continuously to Ω together with their derivatives of
order at most k. A complete norm on Ck,γ (Ω) is obtained by putting

‖f ‖Ck,γ (Ω) := sup
0�|λ|�k

∥∥f (λ)
∥∥

L∞(Ω)
+ sup

|λ|=k
ξ 	=ζ

|f (λ)(ξ) − f (λ)(ζ )|
|ξ − ζ |γ ,

where λ = (λ1, λ2) is a multi-index, |λ| = λ1 + λ2, and f (λ) is the corresponding derivative. The
space C∞(Ω) = ⋂

k Ck,1(Ω) of smooth functions up to the boundary of Ω is topologized with

the semi-norms ‖ ‖Ck,1(Ω), where k ranges over N. We put C
k,γ

loc (Ω) for the functions whose

restriction to any relatively compact open subset Ω0 of Ω lies in Ck,γ (Ω0). A family of semi-
norms making C

k,γ

loc (Ω) into a Fréchet space is given by ‖ ‖Ck,γ (Ωn), with Ωn a sequence of
relatively compact open subsets exhausting Ω .

2.2. Lebesgue and Sobolev spaces

We coordinatize R2 
 C by ξ = x + iy and denote interchangeably the (differential of ) planar
Lebesgue measure by

dm(ξ) = dx dy = (i/2) dξ ∧ dξ,

where dξ = dx + i dy and dξ = dx − i dy. For 1 � p � +∞ and E a measurable subset of C,
we put Lp(E) for the familiar Lebesgue space with respect to dm.

Let D(Ω) be the space of complex C∞-functions with compact support in Ω , endowed with
the inductive topology. Its dual D′(Ω) is the usual space of distributions on Ω . Whenever T ∈
D′(Ω), we use the standard notations:

∂T = ∂zT = 1

2
(∂x − i∂y)T and ∂T = ∂zT = 1

2
(∂x + i∂y)T ,

and record the obvious identity: ∂T = ∂T .
We denote by W 1,p(Ω) the Sobolev space of those f ∈ Lp(Ω) whose distributional deriva-

tives ∂f and ∂f also belong to Lp(Ω). The norm on W 1,p(Ω) is defined by

‖f ‖p

W 1,p(Ω)
:= ‖f ‖p

Lp(Ω) + ‖∂f ‖p

Lp(Ω) + ‖∂f ‖p

Lp(Ω).

When Ω is smooth, any function f ∈ W 1,p(Ω) has a trace on ∂Ω (all the domains under con-
sideration in the present paper are smooth enough for this to be true) which will be denoted
by trf .

The symbol W
1,p

loc (Ω) refers to those distributions whose restriction to any relatively compact

open subset Ω0 of Ω lies in W 1,p(Ω0). Equipped with the semi-norms ‖ ‖W 1,p(Ωn), W
1,p

loc (Ω) is
a Fréchet space.

The space W 1,∞(Ω) is isomorphic to C0,1(Ω) [59, Ch. VI, Sec. 6.2]. In particular, every
f ∈ W 1,∞(Ω) extends (Lipschitz) continuously to the boundary ∂Ω of Ω .

A C1-smooth Jordan curve is the injective image of T under a nonsingular continuously dif-
ferentiable map from T into C. For Γ an open subset of such a curve, we denote by Lp(Γ ) the
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Lebesgue space with respect to (normalized) arclength (there should be no confusion with our
previous notation Lp(E), as the context will always remain clear) and by W 1,p(Γ ) the Sobolev
space of those absolutely continuous ϕ ∈ Lp(Γ ) whose tangential derivative ∂tϕ with respect to
arclength again lies in Lp(Γ ). A complete norm on W 1,p(Γ ) is given by

‖ϕ‖p

W 1,p(Γ )
:= ‖ϕ‖p

Lp(Γ ) + ‖∂tϕ‖p

Lp(Γ ).

Note that, on T, the tangential derivative ∂th coincides with ∂θh/(2π) where ∂θh indicates the
derivative with respect to θ when ϕ is written as a function of eiθ .

We shall have an occasion to deal with W 2,p(Ω), comprised of W 1,p(Ω)-functions whose
first derivatives again lie in W 1,p(Ω). A norm on W 2,p(Ω) is obtained by setting

‖f ‖p

W 2,p(Ω)
= ‖f ‖p

Lp(Ω) + ‖∂f ‖p

W 1,p(Ω)
+ ‖∂f ‖p

W 1,p(Ω)
.

As is customary, we indicate with a subscript “0” the closure of C∞ compactly supported
functions in an ambient space.

Finally, we indicate with a subscript “R”, like in L
p

R(Ω), the real subspace of real-valued
functions in a given space.

3. Definition of Hardy spaces

3.1. An elliptic equation

In the present paper, we investigate the Lp boundary behaviour of solutions to a second order
elliptic equation in divergence form on a planar domain. More precisely, let Ω ⊂ R2 be a smooth
simply connected domain (most of the time, we will take Ω = D, except in Section 6, where Ω

will be assumed to be Dini-smooth) and σ ∈ W 1,∞(Ω) be such that, for two constants c,C, one
has

0 < c � σ � C. (3)

With the standard notation ∇u := (∂xu, ∂yu)T and divg = ∂xg + ∂yg, where the superscript “T ”
means “transpose”, the elliptic equation that we will consider is

div(σ∇u) = 0 a.e. in Ω. (4)

Our approach to (4) proceeds via the study of a complex elliptic equation of the first order, namely
the conjugate Beltrami equation:

∂f = ν∂f a.e. in Ω, (5)

where ν ∈ W 1,∞(Ω) is a real-valued function that satisfies

‖ν‖L∞(Ω) � κ for some κ ∈ (0,1). (6)
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Formally, Eq. (5) decomposes into a system of two real elliptic equations of the second order in
divergence form. Indeed, for f = u+ iv a solution to (5) with real-valued u, v, we see on putting
σ = (1 − ν)/(1 + ν) that u satisfies Eq. (4) while v satisfies

div

(
1

σ
∇v

)
= 0 a.e. in Ω. (7)

Note also, from the definition of σ , that (6) implies (3). Conversely, let u be a real-valued solution
to (4). Then, since ∂y(−σ∂yu) = ∂x(σ∂xu) and Ω is simply connected, there is a real-valued
function v, such that {

∂xv = −σ∂yu,

∂yv = σ∂xu,
(8)

hence f = u + iv satisfies (5) with ν = (1 − σ)/(1 + σ). Moreover, (3) implies (6).
In the present work, we consider several classes of solutions to (5) for which the formal ma-

nipulations above will be given a precise meaning. All classes we shall deal with are embedded
in Lp(Ω) for some p ∈ (1,∞), in which case the solutions to (4), (5), and (7) can be understood
in the distributional sense. This only requires defining distributions like σ∂xu, which is done
naturally using Leibniz’s rule2 when σ ∈ W 1,∞(Ω) and u ∈ Lp(Ω) [27].

It will turn out that our solutions actually lie in W
1,p

loc (Ω) for some p ∈ (1,∞), in which
case (5) may as well be interpreted in the pointwise sense while (4) becomes equivalent to∫

Ω

σ∇u.∇g dm = 0, g ∈ DR(Ω), (9)

where the dot indicates the Euclidean scalar product in R2. This follows easily from the fact that
the product of a function in W 1,∞(Ω) by a function in W

1,p

loc (Ω) again lies in W
1,p

loc (Ω) and its
distributional derivative can be computed according to the Leibniz rule. We shall make use of
these observations without further notice.

To find u with prescribed trace on ∂Ω is known as the Dirichlet problem for (4) in Ω . In light
of the previous discussion, we slightly abuse terminology and still refer to the issue of finding f

with prescribed Ref on ∂Ω as being the Dirichlet problem for (5).
For simplicity, we shall work entirely over the unit disk D and only later, in Section 6, shall

we indicate how one can carry our results over to Dini-smooth domains. As became customary
in analysis, we tend to use the same symbol to mean possibly different constants, with subscripts
indicating the dependence of the constant under examination.

When ν ∈ W 1,∞(D), the solvability in W 1,p(D) of the Dirichlet problem for (5) with bound-
ary data in the fractional Sobolev space W

1−1/p,p

R (T) (an intrinsic definition of which can be

2 For instance if f ∈ Lp(Ω) and ν ∈ W
1,∞
R (Ω), we define by ν∂f to be the distribution

〈ν∂f ,φ〉 = −
∫
Ω

(νf ∂φ + ∂νf φ)dm, ∀φ ∈D(Ω).
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found in [2, Thm. 7.48]) is a straightforward consequence of the known solvability of the corre-
sponding Dirichlet problem for Eq. (4) [24]. We shall however state and establish this fact which
is our point of departure (see Theorem 4.1.1 in Section 4 below).

Below, we relax the assumptions on the boundary data, assuming only they belong to Lp(T).
Of course, the solution of the Dirichlet problem will no longer belong to W 1,p(D) in general,
but rather to some generalized Hardy space H

p
ν (D) that we shall define and study throughout the

paper, starting in the next section.

3.2. Definition of Hardy spaces

For 1 < p < ∞, we denote by Hp(D) the classical Hardy space of holomorphic functions f

on D such that

‖f ‖Hp(D) := ess sup0<r<1 ‖f ‖Lp(Tr ) < +∞, (10)

where

‖f ‖Lp(Tr ) :=
(

1

2π

2π∫
0

∣∣f (
reiθ

)∣∣p dθ

)1/p

,

by our convention that arclength gets normalized, see [30,33].
Of course Hp can be introduced for p = 1,∞ as well, but we do not consider such expo-

nents here. We extend the previous definition to two classes of generalized analytic functions as
follows.

3.2.1. The class H
p
ν (D)

If ν ∈ W
1,∞
R (D) satisfies (6), and 1 < p < +∞, we define a generalized Hardy space H

p
ν (D)

to consist of those Lebesgue measurable functions f on D satisfying

‖f ‖H
p
ν (D) := ess sup0<r<1 ‖f ‖Lp(Tr ) < +∞ (11)

that solve (5) in the sense of distributions on D; note that (11) implies f ∈ Lp(D). It is not
difficult to see that ‖ · ‖H

p
ν (D) is a norm making H

p
ν (D) into a real Banach space.

When ν = 0, then H
p
ν (D) = Hp(D) viewed as a real vector space.

As we will see in Proposition 4.3.1, each f ∈ H
p
ν (D) has a non-tangential limit a.e. on T

that we call the trace of f , denoted by trf (see Section 2 for the definition of the non-tangential
limit). This definition causes no discrepancy since, as we shall see in Proposition 4.3.3 below,
any solution of (5) in W 1,p(D) belongs to H

p
ν (D) and, for an arbitrary function f ∈ W 1,p(D),

the non-tangential limit of f , when it exists, coincides with the trace of f in the Sobolev sense. It
turns out that, for all f ∈ H

p
ν (D), trf lies in Lp(T) and ‖trf ‖Lp(T) defines an equivalent norm

on H
p
ν (D).

We single out the subspace H
p,0
ν of H

p
ν consisting of those f for which

2π∫
0

Im
(
trf

(
eiθ

))
dθ = 0 (12)
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holds. We further let H
p,00
ν be the subspace of functions f ∈ H

p,0
ν such that

2π∫
0

trf
(
eiθ

)
dθ = 0. (13)

Remark 3.2.1. In what follows, we make use of both H
p
ν (D) and Hp(D). For simplicity, we

drop the dependence on D and denote them by H
p
ν and Hp , respectively. In particular, Hp (no

subscript) always stands for the classical holomorphic Hardy space of the disk.

3.2.2. The class G
p
α(D)

For α ∈ L∞(D) and 1 < p < ∞ (note that α may be complex-valued here), we define another
space G

p
α(D) = G

p
α , consisting of those Lebesgue measurable functions w on D such that:

‖w‖G
p
α

:= ess sup0<r<1 ‖w‖Lp(Tr ) < +∞
and

∂w = αw (14)

in the sense of distributions on D. Note that ‖ · ‖H
p
ν (D) and ‖ · ‖G

p
α(D) formally coincide, but

Eqs. (5) and (14) are different. Again ‖ · ‖G
p
α(D) makes G

p
α into a real Banach space. The reason

why we introduce G
p
α is the tight connection it has with H

p
ν when we set α := −∂ν/(1 − ν2), as

shown in Proposition 3.2.3.1 below. From Eq. (16) below, we see that α has this form for some
ν ∈ W

1,∞
R meeting (6) if, and only if α = ∂h for some h ∈ W

1,∞
R (D). Making such an assumption

in the definition would be artificial, since most of the properties of G
p
α to come are valid as soon

as α ∈ L∞(D). However, if (16) holds and only in this case (see Section 3.2.3 below), we shall
find it convenient to introduce the space G

p,0
α of those w ∈ G

p
α normalized by

1

2π

2π∫
0

(
σ 1/2 Im trw

)(
eiθ

)
dθ = 0. (15)

3.2.3. The link between H
p
ν and G

p
α

The explicit connection between H
p
ν and G

p
α is given by the following result, which relies on

a transformation introduced in [20]:

Proposition 3.2.3.1. Let ν ∈ W
1,∞
R (D) satisfy (6) and define σ ∈ W

1,∞
R (D), α ∈ L∞(D) by

σ = 1 − ν

1 + ν
, α := − ∂ν

1 − ν2
= ∂σ

2σ
= ∂ logσ 1/2. (16)

Then f ∈ Lp(D) solves (5) in the distributional sense if, and only if the function w, defined by

w := (f − νf )/
√

1 − ν2 = σ 1/2u + iσ−1/2v (17)

does for (14). Moreover,
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(a) f = u + iv lies in H
p
ν (resp. H

p,0
ν ) if, and only if the function w given by (17) lies in G

p
α

(resp. G
p,0
α ).

(b) f ∈ W 1,p(D) solves (5) if, and only if w given by (17) solves (14) in W 1,p(D).

The proof is a straightforward computation, using that the distributional derivatives of (f −
νf )/

√
1 − ν2 can be computed by Leibniz’s rule under our standing assumptions, and the fact

that (17) can also be rewritten as

f = w + νw√
1 − ν2

. (18)

Observe that every constant c ∈ C is a solution to (5), the associated w via (17) being σ 1/2 Re c+
iσ−1/2 Im c, which lies in W 1,∞(D) and solves (14).

4. Statement of the results

Throughout, we assume 1 < p < ∞, and we let ν ∈ W
1,∞
R (D) satisfy ‖ν‖L∞(D) � κ < 1.

4.1. Solvability in Sobolev spaces

Our first result deals with the solvability of the Dirichlet problem for (5) with boundary data
in W 1−1/p,p(T):

Theorem 4.1.1. Let p ∈ (1,+∞) and ν ∈ W
1,∞
R (D) satisfy (6).

(a) To each ϕ ∈ W
1−1/p,p

R (T), there is f ∈ W 1,p(D) solving (5) in D and such that Re(trf ) = ϕ

on T. Such an f is unique up to an additive pure imaginary constant.
(b) There exists Cp,ν > 0 such that the function f in (a), when normalized by (12), satisfies

‖f ‖W 1,p(D) � Cp,ν‖ϕ‖W 1−1/p,p(T). (19)

Remark 4.1.1. Although we will not use it, let us point out that Theorem 4.1.1 still holds if we
merely assume ν ∈ VMO(D), provided (5) is understood in the pointwise sense. The proof is
similar, appealing to [10] rather than [24] to solve the Dirichlet problem for (4).

Remark 4.1.2. When ϕ ∈ W
1−1/p,p

R (T) and u ∈ W
1,p

R (D) is the solution to (9) such that tru = ϕ

granted by [24], the normal derivative ∂nu is classically defined as the unique member of the dual
space W

−1/p,p

R (T) = (W
1−1/q,q

R (T))∗ such that

〈∂nu,σψ〉 =
∫
D

σ∇u.∇g dm, ψ ∈ W
1−1/q,q

R (T), g ∈ W 1,q(D), trg = ψ, (20)

where g is any representative of the coset tr−1 ψ in W
1,p

R (D)/W
1,p

0,R (D). That ∂nu is well defined

via (20) depends on the fact that Mσ , the multiplication by σ , is an isomorphism of W
1−1/q,q

R (T);

this follows by interpolation since Mσ is an isomorphism both of L
q

R(T) and W
1,q

R (T). Now, if
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f = u + iv ∈ W 1,p(D) is a solution to (5) such that Re(trf ) = ϕ as provided by Theorem 4.1.1,
it is a straightforward consequence of (8) that ∂nu = (∂θ trv)/σ .

The results below generalize to H
p
ν and G

p
α , defined in Section 3.2, some fundamental proper-

ties of holomorphic Hardy classes [30,33]. Observe that, on D, as the above definition shows (see
Section 2), f has a non-tangential (“n.t.”) limit 
 at eiθ ∈ T if, and only if for every 0 < β < π/2,
f (z) tends to 
 as z → eiθ inside any sector Γeiθ ,β with vertex eiθ , of angle 2β , which is sym-
metric with respect to the ray (0, eiθ ). The non-tangential maximal function of f at ξ ∈ T is

Mf (ξ) := sup
z∈D∩Γξ,β

∣∣f (z)
∣∣, (21)

where we dropped the dependence of Mf on β .
We first mention properties of the class G

p
α , from which those of the class H

p
ν will be deduced

using Proposition 3.2.3.1.

4.2. Properties of G
p
α

We fix α ∈ L∞(D). To proceed with the statements, we need to introduce two operators that
will be of constant use in the paper. First, for ψ ∈ L1(T), we define a holomorphic function in D
through the Cauchy operator:

Cψ(z) = 1

2πi

∫
T

ψ(ξ)

ξ − z
dξ, z ∈ D.

It follows from a theorem of M. Riesz that C maps Lp(T) onto Hp , see the discussion after [33,
Ch. 3, Thm. 1.5]; this would fail if p = 1,∞.

Second, for p ∈ (1,+∞) and w ∈ Lp(D), we define

T w(z) = 1

2πi

∫ ∫
D

w(ξ)

ξ − z
dξ ∧ dξ, z ∈ D.

The following representation theorem for functions in G
p
α was implicit in [20] for continuous

W 1,2(D)-solutions to (14):

Theorem 4.2.1. Let w ∈ Lp(D) be a distributional solution to (14). Then w can be represented
as

w(z) = exp
(
s(z)

)
F(z), z ∈ D, (22)

where s ∈ W 1,l(D) for all l ∈ (1,+∞) and F is holomorphic in D. Moreover, s can be chosen
such that its real part (or else its imaginary part) is 0 on T and

‖s‖L∞(D) � 4‖α‖L∞(D). (23)

In particular w ∈ W
1,l
loc (D) for all l ∈ (1,+∞), and w ∈ G

p
α if, and only if F ∈ Hp in some,

hence any factorization of the form (22). Moreover, w ∈ Lp1(D), for all p1 ∈ [p,2p).
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Remark 4.2.1. By the Sobolev imbedding theorem [2, Thm. 5.4, Part II], s ∈ C0,γ (D) and w ∈
C

0,γ

loc (D) for all γ ∈ (0,1).

Theorem 4.2.1 will allow for us to carry over to G
p
α the essentials of the boundary behaviour

of holomorphic Hardy functions:

Proposition 4.2.1.

1. If w ∈ G
p
α , then

trw
(
eiθ

) := lim
ξ∈D, ξ→eiθ n.t.

w(ξ) (24)

exists for almost every θ and

‖trw‖Lp(T) � ‖w‖G
p
α

� cα‖trw‖Lp(T) (25)

for some cα > 0. Moreover,

lim
r→1

2π∫
0

∣∣w(
reiθ

) − trw
(
eiθ

)∣∣p dθ = 0 (26)

and, for any aperture β ∈ (0,π/2) of the sectors used in definition (21), there is a constant
Cp,α,β such that

‖Mw‖Lp(T) � Cp,α,β‖trw‖Lp(T). (27)

2. If w ∈ G
p
α and w 	≡ 0, then log|trw| ∈ L1(T); moreover the zeros of w are isolated in D, and

numbering them as α1, α2, . . . , counting repeated multiplicities, it holds that

∞∑
j=1

(
1 − |αj |

)
< +∞. (28)

3. Let w ∈ Lp(D). Then w ∈ G
p
α if, and only if there is a function ϕ ∈ Lp(T) such that

w = Cϕ + T (αw), a.e. in D. (29)

In this situation,

‖w‖G
p
α

� Cp,α

(‖w‖Lp(D) + ‖ϕ‖Lp(T)

)
. (30)

A valid choice in (29) is ϕ = trw.
4. If w ∈ G

p
α satisfies (12) and Re trw = 0 a.e. on T, then w ≡ 0 in D. When (16) holds, the

same is true if w ∈ G
p,0
α .
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Remark 4.2.2. From (25) and the completeness of G
p
α , we see that trGp

α is a closed subspace of
Lp(T). We also observe, in view of the M. Riesz theorem, that assertion 3 can be recapped as:
w ∈ G

p
α ⇔ w − T (αw) ∈ Hp .

Theorem 4.2.1 and Proposition 4.2.1 are proven in Section 5.3.

4.3. Properties of the Hardy class H
p
ν

Proposition 4.3.1. The following statements hold true.

(a) If f ∈ H
p
ν , then f has a non-tangential limit a.e. on T, denoted by trf , the Lp(T)-norm of

which is equivalent to the H
p
ν -norm of f :

‖trf ‖Lp(T) � ‖f ‖H
p
ν (D) � cν‖trf ‖Lp(T). (31)

Moreover

lim
r→1

2π∫
0

∣∣f (
reiθ

) − trf
(
eiθ

)∣∣p dθ = 0,

and we have that f ∈ Lp1(D) for p � p1 < 2p.
(b) The image space trHp

ν (resp. trHp,0
ν ) is closed in Lp(T).

(c) Each f ∈ H
p
ν is such that log|trf | ∈ L1(T) unless f ≡ 0.

(d) If f ∈ H
p
ν and f 	≡ 0, then its zeros are isolated in D; if we enumerate them as α1, α2, . . . ,

counting repeated multiplicities, then (28) holds.
(e) For any aperture β ∈ (0,π/2) of the sectors used in definition (21), there is a constant Cp,ν,β

such that

‖Mf ‖Lp(T) � Cp,ν,β‖trf ‖Lp(T).

(f) Each f ∈ H
p
ν satisfies the maximum principle, i.e. |f | cannot assume a relative maximum

in D unless it is constant. More generally, a non-constant function in H
p
ν is open and dis-

crete.3

It is rather easy to deduce Proposition 4.3.1 from the corresponding properties for the G
p
α(D)

class. Indeed, by (6) and Proposition 3.2.3.1 we can invert (17) by (18), so that items (a)–(e)
follow at once from Proposition 4.2.1, Remark 4.2.2, and the fact that f and w share the same
zeros because

w = f − νf√
1 − ν2

.

3 A map is discrete if the preimage of any value is a discrete subset of its domain.
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To prove (f), observe from Theorem 4.2.1 that w, thus also f belongs to W
1,l
loc (D) for each

1 < l < ∞. Moreover if we let νf (z) := ν(z)∂f (z)/∂f (z) if ∂f (z) 	= 0 and νf (z) = 0 otherwise,
then f is a pointwise a.e. solution in D of the classical Beltrami equation:

∂f = νf ∂f, |νf | � κ < 1. (32)

Indeed, |ν(z)| � κ for all z ∈ D and |∂f (z)/∂f (z)| = 1 when ∂f (z) 	= 0. It is then a standard
result [40, Thm. 11.1.2] that f = G(h(z)), where h is a quasi-conformal topological map D → C
satisfying (32) and G a holomorphic function on h(D). The conclusion follows at once from the
corresponding properties of holomorphic functions.

Remark 4.3.1. When ν = 0, that is, when dealing with holomorphic Hardy spaces, the best con-
stant in (31) is c0 = 1 because ‖f ‖Lp(Tr ) increases with r , and then equality holds throughout.
For general ν, a bound on cν depending solely on ‖ν‖W 1,∞(D) is easily derived from Proposi-
tion 3.2.3.1 and Theorem 4.2.1, but the authors do not know of a sharp estimate.

Remark 4.3.2. Assertion (c) in Proposition 4.3.1 implies that a function f ∈ H
p
ν (D) whose trace

is zero on a subset of T having positive Lebesgue measure must vanish identically.

As in the holomorphic case, a function in H
p,0
ν is uniquely defined by its real part on T:

Proposition 4.3.2. Let f ∈ H
p,0
ν be such that Re(trf ) = 0 a.e. on T. Then f ≡ 0.

Proof. Let f ∈ H
p,0
ν (D) satisfy Re trf = 0 a.e. on T. If we define w through (17), then w ∈ G

p,0
α

by Proposition 3.2.3.1 and clearly Re trw = 0 a.e. on T. Therefore w ≡ 0 in view of Proposi-
tion 4.2.1, assertion 4, whence f ≡ 0 in D. �

The next result shows that H
p
ν contains all W 1,p(D)-solutions to (5). That this inclusion is a

strict one follows at once from Theorem 4.4.2.1 to come.

Proposition 4.3.3. Let f ∈ W 1,p(D) be a solution to (5). Then f ∈ H
p
ν (D), and there exists

Cν,p > 0 such that,

‖f ‖H
p
ν (D) � Cν,p‖f ‖W 1,p(D). (33)

Moreover, the trace of f considered as an element of W 1,p(D) coincides with its trace seen as
an element of H

p
ν (D).

Note that (33) follows immediately from (31) and the continuity of the trace operator from
W 1,p(D) into Lp(T), once it is known that f ∈ H

p
ν .

The proof of Proposition 4.3.3 is given in Section 5.4.
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4.4. Regularity of the Dirichlet problem

4.4.1. Solvability of the Dirichlet problem in G
p
α(D)

We first focus on a slight variation of the Dirichlet problem for the G
p
α(D) class. Let us

introduce one more piece of notation by letting

P+ψ = tr(Cψ)

where the trace is a non-tangential limit. As is well known, P+ψ exists a.e. on T as soon as ψ ∈
L1(T), but it may not lie in L1(T). If, however, 1 < p < ∞, then P+ is a continuous projection
from Lp(T) onto trHp called the analytic projection [33, Ch. III, Sec. 1]. It is an interesting
variant of the Dirichlet problem to solve Eq. (14) while prescribing the analytic projection of the
solution on T. As the next theorem shows, G

p
α is a natural space for this.

Theorem 4.4.1.1. For α ∈ L∞(D) and g ∈ Hp , there is a unique w ∈ G
p
α such that

P+(trw) = trg. (34)

This solution satisfies

w = g + T (αw), a.e. in D, (35)

and it holds that

‖w‖G
p
α

� Cp,α‖g‖Hp(D). (36)

Here is now the solution of the (usual) Dirichlet problem for the class G
p
α :

Theorem 4.4.1.2. Let α ∈ L∞(D) and ψ ∈ L
p

R(T).

(a) To each c ∈ R, there uniquely exists w ∈ G
p
α such that Re(trw) = ψ a.e. on T and∫ 2π

0 Im trw(eiθ ) dθ = 2πc. Moreover there are constants cp,α and c′
p,α such that

‖trw‖Lp(T) � cp,α‖ψ‖Lp(T) + c′
p,α|c|. (37)

(b) When (16) holds, there uniquely exists w ∈ G
p,0
α such that Re(trw) = ψ a.e. on T. Further-

more, there is a constant c′′
p,α such that

‖trw‖Lp(T) � c′′
p,α‖ψ‖Lp(T). (38)

The proofs of Theorems 4.4.1.1–4.4.1.2 are given in Section 5.5.

4.4.2. Solvability of the Dirichlet problem in H
p
ν (D)

The following result shows that H
p
ν is the natural space to consider when handling Lp bound-

ary data in (5) and (4).
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Theorem 4.4.2.1. For all ϕ ∈ L
p

R(T), there uniquely exists f ∈ H
p,0
ν such that, a.e. on T:

Re(trf ) = ϕ. (39)

Moreover, there exists cp,ν > 0 such that:

‖f ‖H
p
ν (D) � cp,ν‖ϕ‖Lp(T). (40)

From Proposition 4.3.3, Theorem 4.4.2.1 clearly extends Theorem 4.1.1 when the boundary
data belong to Lp(T).

Let us give at once the proof of Theorem 4.4.2.1, which is quite easy to deduce from pre-
vious statements. Define α through (16) and put ψ = ϕσ 1/2 ∈ L

p

R(T). Apply Theorem 4.4.1.2,

point (b), to obtain w ∈ G
p,0
α such that Re(trw) = ψ . If we let f be given by (18), then f ∈ H

p,0
ν

by Proposition 3.2.3.1, point (a). Moreover, from (17), we see that (39) holds. The uniqueness
of f comes from Proposition 4.3.2. Inequality (40) follows from (18), (3), (38) and (25).

Dwelling on Proposition 4.3.1 and Theorem 4.4.2.1, we are now able to derive an analog of
the Fatou theory [33, Ch. I, Sec. 5] for (4), at least when 1 < p < ∞. It should be compared to
classical results on the Dirichlet problem in Sobolev classes [24,34]. For once, we recall all the
assumptions to ease this comparison.

Theorem 4.4.2.2. Let 1 < p < ∞ and σ ∈ W
1,∞
R (D) satisfy (3). Any u ∈ L

p

R(D) satisfying (4) in

the sense of distributions lies in W
1,l
R,loc

(D) for all l ∈ (1,∞). If, moreover,

‖u‖F,p := ess sup0<r<1 ‖u‖Lp(Tr ) < +∞, (41)

then u has a non-tangential limit tru a.e. on T which is also the limit of eiθ �→ u(reiθ ) in L
p

R(T)

as r → 1−. In this case, for M|u| the non-tangential maximal function, we have

‖tru‖L
p

R(T) � ‖u‖F,p � cp,ν‖M|u|‖Lp(T) � Cp,ν‖tru‖L
p

R(T).

Conversely, each member of L
p

R(T) is uniquely the non-tangential limit of some distributional
solution u ∈ Lp(D) of (4) satisfying ‖u‖F,p < +∞.

The proof of Theorem 4.4.2.2 is carried out in Section 5.6.
Theorem 4.4.2.1 allows one to define a generalized conjugation operator Hν from Lp(T) into

itself, that was introduced on W 1/2,2(T) in [8] as the ν-Hilbert transform. More precisely, to
each ϕ ∈ L

p

R(T), we associate the unique function f ∈ H
p,0
ν such that Re trf = ϕ, and we set

Hνϕ = Im trf ∈ Lp(T). It now follows from Theorems 4.1.1 and 4.4.2.1 that:

Corollary 4.4.2.1. The operator Hν is bounded both on L
p

R(T) and on W
1−1/p,p

R (T).

When ν = 0, we observe that H0ϕ is just the harmonic conjugate4 of ϕ normalized to have
zero mean on T. That the operator H0 is continuous from L

p

R(T) into itself is the well-known
M. Riesz theorem [33, Ch. III, Thm. 2.3]. Corollary 4.4.2.1 thus generalizes the latter.

4 Though it has the same behaviour, it is distinct from the Hilbert transform, see [33, Ch. III, So. 1].
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4.4.3. Improved regularity results for the Dirichlet problem
We turn to higher regularity for solutions to (5). More precisely, we shall study the improve-

ment in the conclusion of Theorem 4.4.2.1 when the boundary condition lies in W
1,p

R (T) ⊂
W

1−1/p,p

R (T). First, the generalized conjugation operator preserves this smoothness class (com-
pare Corollary 4.4.2.1):

Proposition 4.4.3.1. The operator Hν is bounded on W
1,p

R (T).

Next, assuming in Theorem 4.4.2.1 that ϕ ∈ W
1,p

R (T), not only does f belong to W 1,p(D), as
predicted by Theorem 4.1.1, but the derivatives of f satisfy a condition of Hardy type:

Theorem 4.4.3.1. Let ϕ ∈ W
1,p

R (T) and f ∈ W 1,p(D) be the unique solution to (5) on D satis-
fying Re(trf ) = ϕ and such that (12) holds. Then:

(a) trf ∈ W 1,p(T), and it holds that

‖trf ‖W 1,p(T) � Cp,ν‖ϕ‖W 1,p(T). (42)

(b) The functions ∂f and ∂f satisfy a Hardy condition of the form

ess sup0<r<1 ‖∂f ‖Lp(Tr ) � Cp,ν‖trf ‖W 1,p(T), (43)

ess sup0<r<1 ‖∂f ‖Lp(Tr ) � Cp,ν‖trf ‖W 1,p(T), (44)

and for the non-tangential maximal function of ‖∇f ‖, it holds that

‖M‖∇f ‖‖Lp(T) � Cp,ν,β‖trf ‖W 1,p(T), (45)

where ∇f (ξ) ∈ C2 is the gradient of f and β the aperture of the sectors in (21).
(c) If we define Φ ∈ Lp(T) by

Φ
(
eiθ

) := −ie−iθ ∂θ (trf )(eiθ ) − ν(eiθ )∂θ (trf )(eiθ )

1 − ν2(eiθ )
, (46)

then ∂f and ∂f have non-tangential limit Φ and νΦ a.e. on T, and ∂f (reiθ ), ∂f (reiθ )

converge in Lp(T) to their respective non-tangential limits as r → 1.

Clearly, (a) is a rephrasing of Proposition 4.4.3.1.
As a corollary of Theorem 4.4.3.1, we obtain the following result (compare [31]), which plays

for the Neumann problem the same role as Theorem 4.4.2.2 does for the Dirichlet problem:

Corollary 4.4.3.1.

1. Let u ∈ W
1,p

R (D) be a solution of div(σ∇u) = 0 in D such that ∇u satisfies the following
Hardy condition:

ess sup0<r<1 ‖∇u‖Lp(Tr ) < +∞. (47)
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Then tru ∈ W 1,p(T) and u ∈ W
1,p1
R (D) for every p1 ∈ (p,2p). Moreover, M‖∇u‖ ∈ Lp(T),

and there exists a vector field Φ ∈ Lp(T,Rn) such that ∇u → Φ n.t. almost everywhere
on T. In particular, ∂nu ∈ Lp(T), and one has

∫
T σ∂nu = 0.

2. Conversely, if g ∈ L
p

R(T) satisfies
∫

T σg = 0, there exists a function u ∈ W
1,p

R (D) solving
div(σ∇u) = 0 in D such that ∇u satisfies a Hardy condition of the form (47), M‖∇u‖ ∈
Lp(T) and ∂nu = g on T. Moreover, u is unique up to an additive constant.

All these results will be established in Section 5.7.

4.5. Density of traces

We come to some density properties of traces of solutions to (5). Loosely speaking, they assert
that if E ⊂ T is not too large, then every complex function on E can be approximated by the trace
of a solution to (5) on D.

4.5.1. Density in Sobolev spaces
We say that an open subset I of T has the extension property if every function in W 1,p(I ) is

the restriction to I of some function in W 1,p(T). If I is a proper open subset of T, it decomposes
into a countable union of disjoint open arcs (aj , bj ) and the extension property is equivalent to
the fact that no aj (resp. bj ) is a limit point of the sequence (bk) (resp. (ak)).

We begin with a density property of Sobolev solutions to (5) on proper extension subsets:

Theorem 4.5.1.1. Let I 	= T be an open subset of T having the extension property. Then, the
restrictions to I of traces of W 1,p(D)-solutions to (5) form a dense subspace of W 1−1/p,p(I ).

This should be held in contrast with the fact that the traces on T of W 1,p(D)-solutions to (5)
form a proper closed subspace of W 1−1/p,p(T).

The proof of Theorem 4.5.1.1 is given in Section 5.8.1.

4.5.2. Density in Lebesgue spaces
By the density of W 1−1/p,p(I ) in Lp(I), Theorem 4.5.1.1 easily implies that (trHp

ν )|I is a
dense subset of Lp(I) for I a proper open subset of T having the extension property. The fact
that this remains true as soon as I is not of full measure lies a little deeper:

Theorem 4.5.2.1. Let I ⊂ T be a measurable subset such that T \ I has positive Lebesgue
measure. The restrictions to I of traces of H

p
ν -functions are dense in Lp(I).

Remark 4.5.2.1. When I ⊂ T is not of full measure and φ ∈ Lp(I), Theorem 4.5.2.1 entails
there is a sequence of functions fk ∈ H

p
ν whose trace on I converges to φ in Lp(I). Now, since

balls in trHp
ν are weakly compact by Proposition 4.3.1 point (b), it must be that either φ is the

trace on I of a H
p
ν -function or ‖trfk‖Lp(T\I ) → +∞ with k. In view of Theorem 4.5.1.1, the

corresponding remark applies when I is an open subset of T with the extension property and
ϕ ∈ W 1−1/p,p(I ) gets approximated in this space by a sequence of traces of W 1,p(D)-solutions
to (5).

It is worth recasting Remark 4.5.2.1 in terms of ill-posedness of the inverse Dirichlet–
Neumann problem from incomplete boundary data. Indeed, assume that u satisfies (4) and, say,
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tru ∈ W 1,p(T). Observe that the normal derivative ∂nu exists as a non-tangential limit in Lp(T)

by Theorem 4.4.3.1. Thus, upon rewriting (8) on T in the form{
∂nv = −σ∂θu,

∂θv = σ∂nu,
(48)

we see that the knowledge of tru and tr ∂nu on some arc I ⊂ T is equivalent to the knowledge
on I of trf where f = u + iv meets (5) with boundary conditions Ref = u and, say,

∫
I
v = 0.

Note from Proposition 4.3.1 that this determines f completely. Now, if the knowledge of trf
gets corrupted by measurements and rounding off errors, as is the case in computational and
engineering practice, it can still be approximated arbitrarily well in W 1−1/p,p(I ) by a solution
to (5) but the trace of the latter will grow large in Lp(T \ I ), a fortiori in W 1−1/p,p(T \ I ) when
the approximation error gets small.

The proof of Theorem 4.5.2.1 is carried out in Section 5.8.2.

4.6. Duality

Keeping in mind that 1 < p < ∞ and 1/p + 1/q = 1, we introduce a duality pairing on
Lp(T) × Lq(T), viewed as real vector spaces, by the formula:

〈f,g〉 = Re

2π∫
0

fg
dθ

2π
. (49)

Clearly this pairing isometrically identifies Lq(T) with the dual of Lp(T). The fact that Hp is
the orthogonal space to eiθHq under (49) is basic to the dual approach of extremal problems in
holomorphic Hardy spaces [30, Ch. 8]. In this section, we derive the corresponding results for
the spaces H

p
ν . Recall that ∂t = ∂θ/2π on T.

Proposition 4.6.1. The orthogonal to trHp
ν under the duality pairing defined in (49) is(

trHp
ν

)⊥ = ∂θ

(
trHq

−ν ∩ W 1,q (T)
)
.

Proposition 4.6.1 and the Hahn–Banach theorem now team up to yield:

Theorem 4.6.1.

(i) Under the pairing (49), the dual space (trHp
ν )∗ of trHp

ν is naturally isometric to the quo-
tient space Lq(T)/(trHp

ν )⊥, that is(
trHp

ν

)∗ ∼ Lq(T)/
(
∂θ

(
trHq

−ν ∩ W 1,q(T)
))

.

(ii) For each Φ ∈ Lq(T), it holds the duality relation

inf
g∈∂θ (trHq

−ν∩W 1,q (T))

‖Φ − g‖Lq(T) = sup
f ∈H

p
ν‖trf ‖Lp(T)=1

1

2π
Re

2π∫
0

Φ trf dθ. (50)
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(iii) For each Ψ ∈ Lp(T), it holds the duality relation

inf
f ∈H

p
ν

‖Ψ − trf ‖Lp(T) = sup
g∈trHq

−ν∩W 1,q (T)

‖∂θ g‖Lq (T)=1

1

2π
Re

2π∫
0

Ψ ∂θg dθ. (51)

Granted Proposition 4.6.1, Theorem 4.6.1 is a standard application of the Hahn–Banach the-
orem [30, Thms. 7.1, 7.2].

Remark 4.6.1. It is easy to check (compare [30, Thm. 3.11]) that ∂θ (trHq ∩W 1,q(T)) = eiθHq ,
hence (50)–(51) reduce to standard duality relations in Hardy spaces when ν = 0.

The proofs of Proposition 4.6.1 and Theorem 4.6.1 will be given in Section 5.9.

5. Proofs

5.1. The Dirichlet problem in Sobolev spaces

Let us give first the proof of Theorem 4.1.1. Put σ = (1 − ν)/(1 + ν), so that σ ∈ W 1,∞(D)

satisfies (3). By [24], there uniquely exists u ∈ W 1,p(D) meeting tru = ϕ for which (9) holds
with Ω = D; moreover, by the open mapping theorem, one has

‖u‖W 1,p(D) � cp,ν‖ϕ‖W 1−1/p,p(T). (52)

Put

G0,p := {∇g; g ∈ W
1,p

0,R (D)
}

and Dq := {
(∂yh,−∂xh)T ; h ∈ W

1,q

R (D)
}
. (53)

Proceeding by density on the divergence formula for smooth functions, we easily get

〈G,D〉 :=
∫
D

G.D dm = 0, G ∈ G0,p, D ∈ Dq . (54)

Now, by Hodge theory [40, Thm. 10.5.1],5 each vector field in Lp(D) × Lp(D) (resp. Lq(D) ×
Lq(D)) is uniquely the sum of a member of G0,p (resp. G0,q ) and a member of Dp (resp. Dq ). If
we set accordingly σ∇u = G + D, we gather by density from (9) and (54) that 〈G,V 〉 = 0 for
every V ∈ Lq(D) × Lq(D), implying that σ∇u ∈ Dp . In other words there is v ∈ W

1,p

R (D) for
which (8) holds, thus by inspection f = u+ iv ∈ W 1,p(D) satisfies (5) pointwise a.e. on D. Then,
f satisfies (5) in the distributional sense as well. To check f is unique, subject to Re trf = ϕ, up
to an additive pure imaginary constant, observe if f ∈ W 1,p(D) satisfies (5) that u = Ref and
v = Imf both lie in W

1,p

R (D) and that (8) holds. Therefore σ∇u ∈ Dp and, in view of (54), we
see that (9) holds with Ω = D. As such a u is uniquely defined by tru = ϕ, we conclude that v is
uniquely defined by (8), up to an additive constant.

5 The result is stated there using the language of differential forms that we did not introduce here.
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Next, we observe from (8) and (3) that ‖∇v‖Lp(D) � C‖∇u‖Lp(D). Therefore, if v gets nor-
malized by (12), it follows from (52) and the Poincaré inequality [62, Ch. 4, Ex. 4.10] that

‖v‖W 1,p(D) � Cp‖∇v‖Lp(D) � CCpcp,ν‖ϕ‖W 1−1/p,p(T)

so that (19) indeed holds.

5.2. Preliminaries on spaces and operators

In the present subsection, we recall some properties of the operators C and T , introduced in
Section 4.2, and of the Beurling operator appearing in Eq. (55) below.

For h ∈ Lp(C), we define the operator T̆ by

T̆ h(z) = 1

2πi

∫ ∫
D

h(ξ)

ξ − z
dξ ∧ dξ, z ∈ C.

If w ∈ Lp(D) and w̆ is the extension of w by 0 outside D, then obviously (T̆ w̆)|D = T w. Next,
for u ∈ Lp(C), we denote by S the Beurling operator:

Su(z) = lim
ε→0+

1

2πi

∫ ∫
ξ∈C, |ξ−z|�ε

u(ξ)

(ξ − z)2
dξ ∧ dξ, a.e. z ∈ C. (55)

The existence of Su a.e. follows from the Calderón–Zygmund theory of singular integral opera-
tors [59, Ch. II, Thm. 4]. Here are the properties of C, T̆ , T and S that we use:

Proposition 5.2.1. Let as usual 1 < p < +∞. Then the following assertions hold.

1. The Cauchy operator C is bounded from Lp(T) onto Hp(D) and from W 1−1/p,p(T) to
W 1,p(D).

2. The Beurling operator S is bounded from Lp(C) into itself.
3. The operator T̆ maps Lp(C) continuously into W

1,p

loc (C).
4. The operator T is bounded from Lp(D) into W 1,p(D), and is compact from Lp(D) to Lp(D).

Moreover ∂T w = w and ∂T w = (Sw̆)|D for all w ∈ Lp(D). For any α ∈ L∞(D) the opera-
tor w �→ w − T (αw) is an isomorphism of Lp(D).

The next result will be of technical importance to establish the regularity properties of G
p
α -

functions, compare Remark 4.2.2.

Lemma 5.2.1. Let p ∈ (1,+∞) as always, and α ∈ L∞(D).

1. If g ∈ Hp(D), then g ∈ Lp1(D) for p1 ∈ [p,2p).
2. If w ∈ Lp(D) and if w −T (αw) ∈ Hp , then there is p∗ > 2 such that T (αw) ∈ W 1,p∗

(D) ⊂
C0,1−2/p∗

(D) and T̆ ( ˘αw) ∈ W
1,p∗
loc (C) ⊂ C

0,1−2/p∗
loc (C). Moreover,∥∥T (αw)

∥∥
W 1,p∗

(D)
� Cp,α

(‖w‖Lp(D) + ∥∥w − T (αw)
∥∥

Hp(D)

)
. (56)
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In order not to disrupt the reading, we postpone the proofs of Proposition 5.2.1 and
Lemma 5.2.1 to Appendix A.

5.3. Factorization and boundary behaviour in G
p
α

This section is devoted to the proof of Theorem 4.2.1 and Proposition 4.2.1. In the proof of
the former, we make use of the following lemma.

Lemma 5.3.1. Let r ∈ L∞(C) be supported in D. Then, the function

u(z) =
∫ ∫

D

zr(ζ )

1 − ζz
dζ ∧ dζ , z ∈ C,

is holomorphic in D and belongs to W
1,l
loc (C) for all l ∈ (1,+∞).

Proof. The function u is clearly holomorphic in D, a fortiori u ∈ W
1,l
loc (D). It is therefore enough

to show, say, that u ∈ W
1,l
loc (C \ D1/2) for all l ∈ (1,+∞). In turn, it is sufficient to prove that

u(1/z) = −
∫
D

r(ζ )

z − ζ
dζ ∧ dζ ,

lies in W 1,l(D2). The conclusion now follows from assertion 3 in Proposition 5.2.1. �
Proof of Theorem 4.2.1. Put r(z) = α(z)w(z)/w(z) if w(z) 	= 0 and r(z) = 0 if w(z) = 0 or
z /∈ D. Then r ∈ L∞(C) and ‖r‖L∞(D) � ‖α‖L∞(D). Define

s(z) = 1

2πi

∫ ∫
D

(
r(ζ )

ζ − z
+ zr(ζ )

1 − ζz

)
dζ ∧ dζ , for z ∈ C (57)

and observe, from Lemma 5.3.1 and assertion 3 in Proposition 5.2.1, that s ∈ W
1,l
loc (C) for all

l ∈ (1,+∞). In particular s is continuous and, since 1/z = z for z ∈ T, we see from (57) that
Im s(z) = 0 there. Also, assertion 4 of Proposition 5.2.1 and Lemma 5.3.1 show that ∂s = r in D.
Furthermore, a straightforward majorization gives us for z ∈ C

∣∣s(z)∣∣ � ‖α‖L∞(D)

π

∫ ∫
D

(
1

|ζ − z| + 1

|ζ − 1/z|
)

dm � 4‖α‖L∞(D), (58)

thus (23) holds. Next, we put F = e−sw and claim that F is holomorphic in D. Indeed,
F ∈ Lp(D) hence, by Weyl’s lemma [32, Thm. 24.9], it is enough to check that ∂F = 0 on D
in the sense of distributions. Let ψ ∈ D(D) and ψn a sequence in D(R2)|D converging to s in
W 1,l(D) for some l > max(q,2). Thus ψn converges boundedly to s in W 1,q (D) by the Sobolev
imbedding theorem and Hölder’s inequality. Then, by dominated convergence,
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〈∂F,ψ〉 = −〈
e−sw, ∂ψ

〉 = − lim
n

〈
w,e−ψn∂ψ

〉 = − lim
n

〈
w,∂

(
e−ψnψ

) + ψe−ψn∂ψn

〉
= lim

n

〈
αw,e−ψnψ

〉 − lim
n

〈
w,ψe−ψn∂ψn

〉 = 〈
e−s(αw − w∂s),ψ

〉 = 0

since w∂s = wr = αw, where we used in the fourth equality that e−ψnψ ∈ D(D). This proves the
claim and provides us with (22) where Im tr s = 0. Now, by the Sobolev imbedding theorem, s is
bounded, and since exp is locally Lipschitz on C it follows that w ∈ W

1,l
loc (D) for all l ∈ (1,∞).

Finally, by the boundedness of s, it is clear from the definitions that w ∈ G
p
α if, and only if

F ∈ Hp . In this case, it follows from Lemma 5.2.1, point 1, that w = esF ∈ Lp1(D) for all
p1 ∈ [p,2p).

To obtain from (22) another factorization w = es1F1, where this time Re tr s1 = 0, it is enough
to change the “+” sign into a “−” one in the definition (57) of s. �

For the proof of Proposition 4.2.1, we need the following version of the Cauchy–Green for-
mula.

Lemma 5.3.2. When ψ ∈ W 1,p(D), it holds for almost every z ∈ D that

ψ(z) = C(trψ)(z) + 1

2πi

∫ ∫
D

∂ψ(ξ)

ξ − z
dξ ∧ dξ. (59)

Proof. Note that (59) means ψ = C(trψ) + T (∂ψ). For ψ ∈ D(R2), this is standard [38,
Thm. 1.2.1]. In general ψ is the limit in W 1,p(D) of a sequence (ψn)n∈N ∈ D(R2)|D. By continu-
ity of the trace and Proposition 5.2.1, items 1, 4, the conclusion follows from taking a pointwise
convergent subsequence of the Lp(D) convergent sequence T (∂ψn). �
Proof of Proposition 4.2.1. Let w ∈ G

p
α . By Theorem 4.2.1, we have w = esF where s ∈

W 1,l(D), 1 < l < ∞ and F ∈ Hp . As s is continuous on D, hence the existence of the non-
tangential limit (24) and the majorization (27) follow from the corresponding properties of
Hp-functions [33, Thm. 3.1]. From Fatou’s lemma, we then get the first half of (25), and since
‖F‖Lp(Tr ) � ‖trF‖Lp(T) for F ∈ Hp [30, Thm. 1.5], we obtain by (23)

‖w‖Lp(Tr ) � e2‖s‖L∞(D)‖trw‖Lp(T) � e8‖α‖L∞(D)‖trw‖Lp(T),

which yields the second half of (25). Finally, (26) follows from the continuity of s and the corre-
sponding property for Hp-functions [30, Thm. 2.6]. This demonstrates assertion 1.

Since es is continuous and never zero on D, as noticed in Remark 4.2.1, assertion 2 is a
consequence of (22) and of the corresponding properties for Hp-functions [30, Thms. 2.2, 2.3].

We turn to the proof of assertion 3. Assume first that w ∈ Lp(D) satisfies w = Cϕ + T (αw)

for some ϕ ∈ Lp(T). As ∂Cϕ = 0 on D because Cϕ is holomorphic there, we know from Propo-
sition 5.2.1, point 4, that ∂w = αw on D. Further, the M. Riesz theorem yields

‖Cϕ‖Hp(D) � Cp‖ϕ‖Lp(T)

hence w − T (αw) ∈ Hp . Lemma 5.2.1 now provides us with the chain of inequalities:
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∥∥T (αw)
∥∥

Lp(Tr )
�

∥∥T (αw)
∥∥

L∞(D)
� C′

p

∥∥T (αw)
∥∥

W 1,p∗
(D)

� C′′
p

(‖w‖Lp(D) + ‖Cϕ‖Hp(D)

)
,

where we used the Sobolev imbedding theorem. Therefore w ∈ G
p
α and (30) holds.

Conversely, let w ∈ G
p
α . Then ∂w = αw ∈ Lp(D) and Proposition 5.2.1, assertion 4, tells us

that the Lp(D)-function w − T (αw) annihilates ∂ in the distributional sense, hence is holomor-
phic on D by Weyl’s lemma. From Proposition 5.2.1, point 4 again, this entails w ∈ W

1,p

loc (D).
Appealing to Lemma 5.3.2, with rD in place of D, we obtain

w(z) = 1

2πi

∫
Tr

w(ζ )

ζ − z
dζ + T (αwχDr

)(z), |z| < r < 1,

and letting r → 1 we get by dominated convergence, (26), and Proposition 5.2.1, point 4, that

w = C(trw) + T (αw) a.e. in D. (60)

Assertion 3 is now completely proven.
Finally, assume that w ∈ G

p
α satisfies Re trw = 0. By Theorem 4.2.1 we can write w = esF ,

where s is continuous on D and real on T, while F ∈ Hp(D). Thus Re trF is zero on T, and
by the Poisson representation of Hp-functions it follows that ReF ≡ 0 on D thus F is a pure
imaginary constant, say, c [30, Thm. 3.1]. Since w = ces , it has zero mean on T if and only if
c = 0. When (16) holds, condition (15) likewise implies that c = 0. �
5.4. Comparison between Sobolev and Hardy solutions

In this section, we prove Proposition 4.3.3.

Proof of Proposition 4.3.3. We first check that W 1,p(D) ⊂ H
p
ν (D) and that (33) holds. De-

fine α through (16). In view of (18) and Proposition 3.2.3.1, point (b), it is enough to check
the corresponding property for G

p
α . But if w ∈ W 1,p(D) meets (14), then Lemma 5.3.2 yields

w = C(trw) + T (αw), and since trw ∈ W 1−1/p,p(T) ⊂ Lp(T) we get from Proposition 5.2.1,
point 1, that w−T (αw) = C(trw) lies in Hp , implying that w ∈ G

p
α by Remark 4.2.2. Moreover,

it follows from (30) and the trace theorem that ‖w‖G
p
α

� Cp,α‖w‖W 1,p(D), as desired.

To end the proof of Proposition 4.3.3, we establish the more general fact that, if f ∈ W 1,p(D)

has a non-tangential limit almost everywhere on T, then this non-tangential limit coincides with
the trace of f in the Sobolev sense. We provide an argument because we could not locate this
“elementary” result in the literature. Note that, when p > 2, each f ∈ W 1,p(Ω) (has a representa-
tive which) extends continuously to Ω by the Sobolev imbedding theorem, so the non-tangential
limit exists everywhere on ∂Ω and is in fact an unrestricted limit.

Assume now that p � 2. Notice that f is the restriction to D of some f̃ ∈ W 1,p(R2) with
compact support [2, Thm. 4.26]. By Hölder’s inequality f̃ ∈ W 1,s(R2) with some s ∈ (1,2),
hence the non-Lebesgue points of f̃ have Hausdorff 1-dimension zero [62, Thms. 3.3.3, 2.6.16].
In particular, for each r > 0 we have that reiθ is a Lebesgue point of f̃ for a.e. θ . Then, regular-
izing f̃ yields a sequence of D(R2)-functions converging to f̃ both in W 1,p(R2) and pointwise
a.e. on every circle Tr [62, Thm. 1.6.1]. Consequently if we put fr(ξ) := f (rξ) for 0 < r < 1
and ξ ∈ D, we deduce that trfr(ζ ) = f (rζ ) for a.e. ζ ∈ T, and since fr tends to f in W 1,p(D) as
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r → 1 we get that f (rζ ) → trf (ζ ) in W 1−1/p,p(T). Finally, as any W 1−1/p,p(T)-converging se-
quence has a pointwise a.e. converging subsequence, there is rn → 1 such that f (rnζ ) → trf (ζ )

for a.e. ζ ∈ T, hence trf must be the radial (a fortiori non-tangential) limit of f when the latter
exists. �
Remark 5.4.1. Since Sobolev functions can be redefined on a set of zero measure so as to be ab-
solutely continuous on almost every line [62, Rem. 2.1.5], it is easy to see (use polar coordinates)
that any function in W 1,p(D) has a radial limit almost everywhere on T. Note, however, that a
function in W 1,2(D) may have no non-tangential limit at all (see [25]). Note also that a more
precise result involving capacity was proven for continuous functions in W 1,p(D), see [48,56].

5.5. The Dirichlet problem in the class G
p
α

Proof of Theorem 4.4.1.1. Let g ∈ Hp . By assertion 3 of Proposition 4.2.1 and Remark 4.2.2,
together with the Cauchy formula for Hp-functions, we see that w ∈ Lp(D) belongs to G

p
α and

satisfies P+(trw) = trg if, and only if w−T (αw) = g. But since g a fortiori lies in Lp(D), there
is a unique w ∈ Lp(D) to meet the latter equation as follows from Proposition 5.2.1, assertion 4.
Moreover, by the same assertion, it holds that

‖w‖Lp(D) � Cp,α‖g‖Lp(D) � Cp,α‖g‖Hp,

hence (36) holds in view of (30). �
Proof of Theorem 4.4.1.2. For each pair (ϕ, c) ∈ L

p

R(T) × R, set

A(ϕ, c) :=
(

Re(trwϕ.c), Im
1

2π

2π∫
0

trwϕ.c

(
eiθ

)
dθ

)
∈ L

p

R(T) × R,

where wϕ,c is the unique function in G
p
α such that P+(trwϕ,c) = ϕ + i(H0ϕ + c).

Observe from the M. Riesz theorem that ϕ �→ ϕ + iH0ϕ is continuous from L
p

R(T) into
trHp,0 ⊂ Lp(T), hence A is well defined and continuous from L

p

R(T)×R into itself by (25) and
Theorem 4.4.1.1.

Put for simplicity Tα(w) = T (αw). In view of (35), we have that (I − Tα)wϕ,c = g where
g ∈ Hp satisfies trg = ϕ + i(H0ϕ + c), hence A(ϕ, c) = (ϕ, c) + B(ϕ, c) where

B(ϕ, c) :=
(

Re
(
trTα(wϕ,c)

)
, Im

1

2π

2π∫
0

trwϕ,c

(
eiθ

)
dθ − c

)
.

Since the G
p
α -norm is finer than the Lp(D)-norm, we see from Theorem 4.4.1.1 and Proposi-

tion 5.2.1, point 4, that (ϕ, c) �→ Tα(wϕ,c) is continuous from Lp(T) × R into W 1,p(D), so the
first component of B is continuous from Lp(T) × R into W 1−1/p,p(T). Therefore it is com-
pact from Lp(T) × R into Lp(T) and, since the second component is R-valued and continuous,
B is compact from Lp(T) × R into itself. Moreover, A is injective by Proposition 4.2.1, point 4,
consequently it is an isomorphism of Lp(T) × R (see e.g. [61, Ch. XVII, Prop. 2.3]) thereby
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establishing the existence and uniqueness part of (a). To establish (37), put trw = ψ + iv, where
v ∈ L

p

R(T) in view of Proposition 4.2.1. Thanks to Theorem 4.2.1, we can write ψ + iv = etr sF

where F ∈ Hp(D) and tr s is real-valued, s ∈ C0,γ (D) for 0 � γ < 1 (cf. Remark 4.2.1). By def-
inition trF = h + iH0h + ib, where h ∈ L

p

R(T) and b is a real constant. Thus v = etr s(H0h + b)

and ψ = etr sh, which gives us

v = etr sH0
(
e− tr sψ

) + betr s . (61)

Since, v has mean c on T, we get from (23) and the M. Riesz theorem that

|b| � e4‖α‖L∞(D)
(
cpe8‖α‖L∞(D)‖ψ‖Lp(T) + |c|),

where cp is the norm of H0 on Lp(T). Plugging this in (61) implies now

‖v‖Lp(T) � e8‖α‖L∞(D)
(|c| + (

1 + e8‖α‖L∞(D)
)
cp‖ψ‖Lp(T)

)
from which (37) follows immediately. This concludes the proof of (a).

Assume next that (16) holds and let w1 ∈ G
p
α , satisfy Re(trw1) = ψ a.e. on T. Such a w1

exists by (a). From the observation made after Proposition 3.2.3.1, we see that the function w

defined as

w := w1 − iσ−1/2 1

2π

2π∫
0

(
σ 1/2 Im trw1

)(
eiθ

)
dθ

lies in G
p
α , and since it readily satisfies (15) we deduce that w ∈ G

p,0
α . Clearly w has the same

real part as w1, and by Proposition 4.2.1 point 4 it is the only member of G
p,0
α with this property.

This settles the existence and uniqueness part in (b).
The reasoning leading to (37) is easily adapted to yield (38), upon trading the mean-equal-to-c

condition for (15) and taking (3) into account. This completes the proof. �
5.6. A Fatou theorem for ReH

p
ν

As a preparation for the proof of Theorem 4.4.2.2, we establish the following Hodge type
lemma.

Lemma 5.6.1. Define two subspaces G0,∞ and D0,∞ of C∞
R (D) × C∞

R (D) by

G0,∞ := {∇g; g ∈ C∞
R (D), trg = 0

}
, D0,∞ := {

(∂yh,−∂xh)T ; h ∈ C∞
R (D), trh = 0

}
.

Then, each V ∈ C∞
R (D) × C∞

R (D) that vanishes on T can be written uniquely in the form V =
G + D, where G ∈ G0,∞ and D ∈ D0,∞. Moreover, it holds for some constant Cp that

‖G‖Lp(D) + ‖D‖Lp(D) � Cp‖V ‖Lp(D), (62)

where the subscript Lp(D) refers here to the norm of an R2-valued mapping.
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Proof. Recall from (53) the Hodge decomposition V = G + D, with G ∈ G0,p and D ∈ Dp , for
which (62) is known to hold [40, Thm. 10.5.1]. Put G = (∂xg, ∂yg)T and D = (∂yh,−∂xh)T with

g ∈ W
1,p

0,R (D) and h ∈ W
1,p

R (D). Since V ∈ C∞
R (D) × C∞

R (D), the same is true of G and D [40,

Sec. 10.5], hence g,h ∈ C∞
R (D) and trg = 0. Then, all we have to show is that h|T is constant,

because substracting this constant will produce a new h with vanishing trace on T, as desired.
Now, because trg = 0 we deduce that G is normal to T there, and since V|T = 0 it follows that

D is also a normal vector field on T. Consequently x∂yh(x, y) − y∂xh(x, y) = 0 for x + iy ∈ T,
which means exactly that h is constant on T. �
Proof of Theorem 4.4.2.2. Since ∂x(σ∂xu) = ∂y(−σ∂yu) by (4), there is a distribution v on D
such that (8) holds [57, Ch. II, Sec. 6, Thm. VI]. Then, for Φ ∈ DR(D), we obtain

〈v, ∂xΦ〉 = 〈σ∂yu,Φ〉 = −〈u,σ∂yΦ + Φ∂yσ 〉,
〈v, ∂yΦ〉 = −〈σ∂xu,Φ〉 = 〈u,σ∂xΦ + Φ∂xσ 〉,

which entails by (3), Hölder’s inequality, and the Poincaré inequality that∣∣〈v, ∂xΦ〉∣∣ � ‖u‖Lp(D)Cp,σ ‖∇Φ‖Lq(D),
∣∣〈v, ∂yΦ〉∣∣ � ‖u‖Lp(D)Cp,σ ‖∇Φ‖Lq(D). (63)

Next, we observe that any g ∈ C∞
R (D) satisfying trg = 0 lies in W

1,q

0,R(D), therefore it is the

limit in W
1,q

R (D) of some sequence Φn ∈ DR(D). In particular ∇Φn converges to ∇g in Lq(D),
implying in view of (63) that (Φ1,Φ2) �→ 〈v,Φ1 +Φ2〉 is a bounded functional on both G0,∞ and
D0,∞ when endowed with the Lq(D)-norm. By Lemma 5.6.1, this functional is Lq(D) × Lq(D)

bounded on the subspace of C∞
R (D) × C∞

R (D) comprising those vector fields that vanish on T.
Therefore, by density, (Φ1,Φ2) �→ 〈v,Φ1 + Φ2〉 is a bounded functional on L

q

R(D) × L
q

R(D),

so that in fact v ∈ L
p

R(D). If we put f = u + iv ∈ Lp(D) and ν = (1 − σ)/(1 + σ) ∈ W
1,∞
R (D),

it is now a mechanical consequence of (8) that Eq. (5) is satisfied in the distributional sense.
Defining w ∈ Lp(D) and α ∈ L∞(D) through (17) and (16), we see from Proposition 3.2.3.1 that
w solves (14). Hence Theorem 4.2.1 applies to the effect that w, thus also f and a fortiori u,
lie in W

1,l
loc for l ∈ (1,∞). Moreover, we may write (22) with Im tr s = 0 and, say, F = a + ib

a holomorphic function in D. As s lies in C0,γ (D), for each ε > 0 we can pick r0 such that
|Im exp(s(z))| < ε| exp(s(z))| as soon as r0 < |z| � 1, and for such z we deduce from (23) that

Rew(z) � e−4‖α‖L∞(D)
((

1 − ε2)1/2∣∣a(z)
∣∣ − ε

∣∣b(z)
∣∣).

Since br = H0(ar ) (recall that br(z) = b(rz), respectively ar(z) = a(rz), for all z ∈ T), we obtain
from the M. Riesz theorem when r0 < r < 1 that∥∥Rew(z)

∥∥
Lp(Tr )

� e−4‖α‖L∞(D)
((

1 − ε2)1/2 − εcp

)∥∥a(z)
∥∥

Lp(Tr )
,

and picking ε so small that ((1 − ε2)1/2 − εcp) = C > 0 we conclude by (17) that

‖b‖L
p
r (T) � cp‖a‖L

p
r (T) � Cp,σ,u

∥∥Rew(z)
∥∥

Lp(Tr )
� C′

p,σ,u‖u‖Lp(Tr ), r0 < r < 1.
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Consequently, if ‖u‖F,p < ∞, then F = a + ib ∈ Hp so that w ∈ G
p
α by Theorem 4.2.1, whence

f ∈ H
p
ν by Proposition 3.2.3.1. All the assertions now readily follow from Theorems 4.2.1

and 4.4.2.1. �
5.7. Higher regularity

In order to prove Theorem 4.4.3.1, we shall make use of the following observation:

Lemma 5.7.1. Let ϕ ∈ W
1−1/p,p

R (T), and f ∈ W 1,p(D) be the unique solution to (5) satisfying
Re(trf ) = ϕ and (12), cf. Theorem 4.1.1. Then W = (1 − ν2)1/2∂f ∈ Lp(D) is a solution to (14)
with α = ∂ν/(1 − ν2), that is to say

∂W = ∂ν

1 − ν2
W (64)

in the sense of distributions. Moreover, it holds that

∂f = esF (65)

where F is holomorphic in D, s ∈ C0,γ (D) for every 0 < γ < 1, and for some constant cκ we
have ‖s‖L∞(D) � cκ‖ν‖W 1,∞(D).

Proof. As ν ∈ W 1,∞(D), observe that the distributional derivative of ν∂f ∈ Lp(D) can be com-
puted according to Leibniz’s rule:

∂(ν∂f ) = ∂ν∂f + ν∂(∂f ), (66)

where we emphasize that the second summand in the right-hand side of (66) is to be interpreted as
indicated in the footnote before Theorem 4.1.1. Indeed, pick a function ϕ ∈ D(D). By definition,

〈ν∂f , ∂ϕ〉 = −〈νf , ∂∂ϕ〉 − 〈∂νf , ∂ϕ〉.
By the Leibniz rule

−〈νf , ∂∂ϕ〉 = −〈f , ν∂∂ϕ〉 = −〈
f , ∂(ν∂ϕ) − ∂ν∂ϕ

〉
.

It follows that

〈ν∂f , ∂ϕ〉 = −〈
f , ∂(ν∂ϕ)

〉 = 〈∂f , ν∂ϕ〉 = 〈
∂f , ∂(νϕ) − ϕ∂ν

〉
= −〈∂∂f , νϕ〉 − 〈∂ν∂f ,ϕ〉 = −〈ν∂∂f ,ϕ〉 − 〈∂ν∂f ,ϕ〉,

which is the desired conclusion.
Setting G := ∂f and applying ∂ to (5), we thus obtain, since ∂ and ∂ commute, that ∂G =

ν∂G+ (∂ν)G. As ν is real, conjugating this last equation provides us with an expression for ∂G,
and solving for ∂G after substituting back yields

∂G = ν∂ν

1 − ν2
G + ∂ν

1 − ν2
G
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from which we deduce that W = (1 − ν2)1/2G satisfies (64), as ∂W can in turn be computed
by the chain rule because (1 − ν2)1/2 ∈ W 1,∞(D). The remaining assertions follow from Theo-
rem 4.2.1 upon setting α = ∂ν/(1 − ν2) ∈ L∞(D). �
Proof of Proposition 4.4.3.1. Let u ∈ W

1,p

R (T) ⊂ W
1−1/p,p

R (T) and put v = Hνu. We must

show that v ∈ W
1,p

R (T), and for this we may assume that u has zero mean on T for adding a
constant to u does not affect v. Then, v = Hνu becomes equivalent to u = −H−νv as follows
immediately from the fact that f satisfies (5) if, and only if if satisfies a similar equation with ν

replaced by −ν. From Theorem 4.1.1 we know that v ∈ W
1−1/p,p

R (T), so let vn be a sequence
of C∞(T)-functions converging to v there and set un = −H−νvn. Since vn converges to v in
W 1−1/p,p(T), we get from Corollary 4.4.2.1 that un converges to u there. By the definition of Hν ,
we have that un + ivn is the trace on T of the solution to (5) in W 1,p(D) whose real part on T
is un. With a slight abuse of notation, we still designate by un, vn the real and imaginary parts
of that solution in W

1,p

R (D). By inspection, the generalized Cauchy–Riemann equations (8) do
hold with u replaced by un and v by vn, so that un, vn may as well be characterized respectively
as the unique solutions in D to (4), (7) whose traces on T are our previous un and vn [24].

Now, we know that un, vn lie in W 1,p(D); however, since un is smooth on T, it follows
from [34, Thm. 9.15] that in fact un ∈ W

2,r
R (D) for all r ∈ (1,∞). In view of (8), we deduce

that the same is true of vn as σ ∈ W
1,∞
R (D). Pick any ϕ ∈ C∞(T) and put ψ = Hνϕ with

ν-conjugate ψ . The W 2,r (D) regularity just mentioned allows us by density to apply the di-
vergence formula so as to obtain∫

T

vn∂θϕ dθ = −2π

∫
T

vn∂nψ/σ dθ = −2π

∫
T

∂nvnψ/σ dθ =
∫
T

∂θunψ dθ,

where we used (48). As un, vn converge to u, v in W 1−1/p,p(T), we get in the limit, since
differentiation is continuous W 1−1/p,p(T) → W−1/p,p(T), that∫

T

v∂θϕ dθ =
∫
T

∂θuψ dθ,

where ∂θu is to be understood as a member of W−1/p,p . However, we have by assumption that
in fact ∂θu ∈ Lp(T), therefore from Hölder’s inequality∣∣∣∣∫

T

v∂θϕ dθ

∣∣∣∣ � ‖∂θu‖Lp(T)‖ψ‖Lq(T).

But from Corollary 4.4.2.1 we know that ‖ψ‖Lq(T) � Cν‖ϕ‖Lq(T), so the distribution ∂θv in fact
lies in Lp(T) and the conclusion holds. �
Proof of Theorem 4.4.3.1. Write f = u + iv to indicate the real and imaginary parts of f . By
Proposition 4.4.3.1, trf ∈ W 1,p(T). First we shall prove that the left-hand sides of (43) and (44)
are finite, that is, we show ∂f and ∂f satisfy a Hardy condition of order p. To this effect, we
consider w = (f − νf )/

√
1 − ν2 and we establish the equivalent fact that both ∂w and ∂w

satisfy a Hardy condition of order p. We first notice:
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Lemma 5.7.2. If p1 ∈ [p,2p) then f,w ∈ W 1,p1(D); in particular f,w ∈ C0,1−2/p0(D) for some
p0 > 2.

Proof. Note that trw ∈ W 1,p(T) since trf does. As we will see in the proof of Proposition 5.2.1
in Appendix A (cf. (85)), it entails ∂(C trw) ∈ Hp , and since ∂(C trw) = 0 we see from the
Poincaré inequality and Lemma 5.2.1, point 1, that (C trw) lies in W 1,p1(D). As w, thus αw be-
longs to Lp1(D) by Theorem 4.2.1, we get from Proposition 5.2.1, point 4, that Tαw ∈ W 1,p1(D).
Since

w = C(trw) + Tαw,

we see that w, therefore also f is in w ∈ W 1,p1(D). As 2p > 2, the last assertion now follows
from the Sobolev imbedding theorem. �

Back to proof of Theorem 4.4.3.1 we observe that, to prove the finiteness of the left-hand
sides in (43) and (44), we may as well add a real constant to f . Since the latter is (even Hölder)
continuous on D by Lemma 5.7.2, we may thus assume that its real part is larger than a positive
constant. Then, the same is true of w = (f −νf )/

√
1 − ν2, say, Rew(z) � c0 > 0 for z ∈ D. This

results in w/w being Hölder continuous of exponent 1−2/p0 in D. Now, consider the function s

introduced in Theorem 4.2.1. Letting B(z, ε) indicate the ball of center z with radius ε, we gather
from (57) that, for a.e. z ∈ D,

∂s(z) = lim
ε→0

1

2πi

∫ ∫
D\B(z,ε)

r(ζ )

(ζ − z)2
dζ ∧ dζ + 1

2πi

∫ ∫
D

r(ζ )

(1 − ζz)2
dζ ∧ dζ , (67)

where the function r was defined as r = αw/w and the existence of the limit a.e. comes from
the existence of the Beurling transform as a singular integral operator of Calderón–Zygmund
type. To evaluate the first integral in (67), we establish a lemma which is best stated in terms
of the space BMOA(D), comprised of those H 2-functions whose trace on T has bounded mean
oscillation, see e.g. [30, p. 240]. To us, the important fact will be that BMOA(D) ⊂ Hp for all
p < ∞.

Lemma 5.7.3. There exist a function b ∈ L∞(D) and a function ψ ∈ BMOA(D) such that, for
a.e. z ∈ D,

lim
ε→0

1

2πi

∫ ∫
D\B(z,ε)

r(ζ )

(ζ − z)2
dζ ∧ dζ = b(z) + ψ(z). (68)

Proof. We may rewrite the first integral in the right-hand side of (67) as

1

2πi

∫ ∫
D\B(z,ε)

r(ζ )

(ζ − z)2
dζ ∧ dζ = 1

2πi

∫ ∫
D\B(z,ε)

α(ζ )((w/w)(ζ ) − (w/w)(z))

(ζ − z)2
dζ ∧ dζ

+ (w/w(z))

2πi

∫ ∫
D\B(z,ε)

α(ζ )

(ζ − z)2
dζ ∧ dζ .
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Since α is bounded and w/w is Hölder continuous of order 1 − 2/p0, the first integral in the
right-hand side is majorized by

Cν,w

∫ ∫
D

|ζ − z|−1−2/p0 dζ ∧ dζ � Cν,w

∫ ∫
|ξ |�2

|ξ |−1−2/p0 dm(ξ) < +∞.

As to the second integral, we put for simplicity Φ := log(σ 1/2) and we recall from (16) that
α = ∂Φ , whence by Stoke’s theorem

1

2πi

∫ ∫
D\B(z,ε)

α(ζ )

(ζ − z)2
dζ ∧ dζ = − 1

2iπ

∫
T

Φ(ζ)dζ

(ζ − z)2
+ 1

2iπ

∫
∂B(z,ε)

Φ(ζ ) dζ

(ζ − z)2
. (69)

Since

1

2iπ

∫
∂B(z,ε)

Φ(ζ ) dζ

(ζ − z)2
= 1

2iπ

∫
∂B(z,ε)

(Φ(ζ ) − Φ(z)) dζ

(ζ − z)2
,

and Φ is Lipschitz continuous with constant, say, K (because σ ∈ W 1,∞(D) and in view of (3))
we get ∣∣∣∣ 1

2iπ

∫
∂B(z,ε)

(Φ(ζ ) − Φ(z)) dζ

(ζ − z)2

∣∣∣∣ � Kε

2π

∫
∂B(z,ε)

|dζ |
|ζ − z|2 = K.

Thus the second integral in the right-hand side of (69) is uniformly bounded. As to the first, we
observe by the Lipschitz character of Φ that Φ|T is absolutely continuous on T with derivative
ϕ := ∂θΦ(eiθ ) which is bounded in modulus by K for a.e. θ . Therefore, integrating by parts, we
get

1

2iπ

∫
T

Φ(ζ)dζ

(ζ − z)2
= 1

2iπ

∫
T

ϕ(ζ ) dζ

(ζ − z)

which is the Cauchy integral of a bounded function and therefore belongs BMOA(D) [33, Ch. VI,
Cor. 2.5]. �
Lemma 5.7.4. The function ∂s satisfies a Hardy condition of order l for all l ∈ (1,+∞).

Proof. Let ψ be as in Lemma 5.7.3 and a(z) be the holomorphic integral vanishing at 0 of ψ ,
namely ∂a(z) = ψ(z) and ∂a(z) = 0 for z ∈ D. If we set

B(z) := 1

2πi

∫ ∫
D

r(ζ )

ζ − z
dζ ∧ dζ , for z ∈ D,

we find by (68) and Proposition 5.2.1, point 4, that the bounded function B − a has bounded
partial derivatives ∂(B − a)(z) = r(z) and ∂(B − a)(z) = b(z), thus it lies in W 1,∞(D) hence it
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is Lipschitz continuous. But the second summand in the right-hand side of (67) is, by our very
construction, the derivative of the holomorphic function

H(z) = 1

2πi

∫ ∫
D

zr(ζ )

1 − ζz
dζ ∧ dζ , z ∈ D

that vanishes at 0 and whose real part on T is Υ = −ReB|T , see the discussion after (57).
Writing −B = −(B − a) − a, we have that Υ = Υ1 + Υ2 where Υ1 is Lipschitz continuous and
thus absolutely continuous with bounded derivative on T, while Υ2 = −Re(tra). Consequently
tr(H + a) = Υ1 + iH0(Υ1) where we recall that H0 denotes the usual conjugation operator.
Now, Υ1 is a fortiori in W 1,l(T) for all 1 < l < ∞, therefore the same is true of H0(Υ1) by
Proposition 4.4.3.1 applied with ν = 0. Consequently (H + a)′ = H ′ + ψ lies in Hl for all
1 < l < ∞, and finally so does H ′ since it is the case of ψ ∈ BMOA(D). Altogether, considering
separately the summands in the right-hand side of (67) and recalling Lemma 5.7.3, we have
proven that ∂s satisfies a Hardy condition of any order in (1,+∞). �

Now, let us turn to the holomorphic function F ∈ Hp(D) in the factorization w = esF of
Theorem 4.2.1. We claim:

Lemma 5.7.5. The function F ′ ∈ Hp(D).

Proof. Observe, since Re s = 0 on T, that |F | = |w| there. Moreover, by Lemma 5.7.2 and Re-
mark 4.2.1, F = e−sw is (Hölder) continuous on D and it does not vanish there by our assumption
on w. Therefore F can have no inner factor in its inner-outer decomposition [33, Ch. II, Cor. 5.7,
Thms. 6.2, 6.3] thus it is an outer function:

F(z) = ξ0 exp

{
1

2π

2π∫
0

eiθ + z

eiθ − z
log

∣∣w(
eiθ

)∣∣dθ

}
(70)

with ξ0 a unimodular constant. As trw ∈ W 1,p(T) is bounded in modulus from above and be-
low by strictly positive constants, log |w(eiθ )| also lies in W 1,p(T). Hence, in view of (85) in
Appendix A below, the derivative of the holomorphic function of z defined by

1

2π

2π∫
0

eiθ + z

eiθ − z
log

∣∣w(
eiθ

)∣∣dθ = − 1

2π

∫
T

log
∣∣w(

eiθ
)∣∣dθ + 1

iπ

∫
T

log |w(ξ)|
ξ − z

dξ

lies in Hp , and by (70) so does the derivative of F since the latter is bounded. That is, we have
proven that F ′ ∈ Hp . �

Now, since

∂w = es∂sF + esF ′,

we see by the boundedness of F , s, and the Hardy character of ∂s, F ′ just established that ∂w

satisfies a Hardy condition of order p. Besides, ∂w = αw is bounded, being the product of an
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L∞(D)-function and a Hölder continuous one. Thus both ∂w and ∂w satisfy a Hardy condition
of order p, and since w is bounded it follows that ∂f and ∂f also satisfy a Hardy condition of
order p, that is, the left-hand sides of (43) and (44) are finite, as announced.

From this, in view of Lemma 5.7.1, we deduce that W = (1 − ν)1/2∂f lies in G
p
α1 with

α1 = ∂ν/(1 − ν2). Clearly α1 lies in L∞(D), hence by (6) and the relation ∂f = ν∂f we de-
duce from Proposition 4.2.1 that ∂f and ∂f have non-tangential limits, say, Φ1 and Φ2 = ν|TΦ1
to which ∂f (reiθ ) and ∂f (reiθ ) converge in Lp(T) as r → 1. It only remains for us to estab-
lish the explicit expression (46) for tr ∂f , because the latter readily implies that ‖tr ∂f ‖Lp(T) �
Cν‖trf ‖W 1,p(T), hence assertions (b) and (c) of Theorem 4.4.3.1 will follow from Proposi-
tion 4.2.1 as applied to W , and since we already pointed out that (a) is a rephrasing of Proposi-
tion 4.4.3.1 the proof will be complete.

To establish (46), observe by the absolute continuity on a.e. coordinate line characterizing
Sobolev functions (choose polar coordinates) that

f
(
reiθ1

) − f
(
reiθ2

) = −
θ2∫

θ1

(
r sin θ(∂f + ∂f ) − ir cos θ(∂f − ∂f )

)(
reiθ

)
dθ

for a.e. r ∈ (0,1) and all θ1, θ2. Letting r → 1, we obtain by the continuity of f and the Lp(T)-
convergence of ∂f (reiθ ) and ∂f (reiθ ) to Φ1 and Φ2 that

f
(
eiθ1

) − f
(
eiθ2

) = −
θ2∫

θ1

(
sin θ(Φ1 + Φ2) − i cos θ(Φ1 − Φ2)

)(
eiθ

)
dθ,

thereby showing that

∂θf
(
eiθ

) = ieiθΦ1
(
eiθ

) − ie−iθΦ2
(
eiθ

) = ieiθΦ1
(
eiθ

) − ie−iθ ν
(
eiθ

)
Φ1

(
eiθ

)
.

Conjugating this identity, we obtain since ν is real-valued that

∂θf
(
eiθ

) = −ie−iθΦ1
(
eiθ

) + ieiθ ν
(
eiθ

)
Φ1

(
eiθ

)
,

whence

∂θf
(
eiθ

) − ν
(
eiθ

)
∂θf

(
eiθ

) = (
1 − ν2)ieiθΦ1

(
eiθ

)
which is (46). �
Proof of Corollary 4.4.3.1. Let f = u + iv ∈ W 1,p(D) be the solution to (5) satisfying (12)
granted by Theorem 4.1.1. By (47) and (8), f meets

ess sup0<r<1 ‖∇f ‖Lp(Tr ) < +∞. (71)

If W := (1−ν2)1/2∂f , we saw in the proof of Lemma 5.7.1 that ∂W = αW for some α ∈ L∞(D).
Thus W ∈ G

p
α(D) by (71), hence it belongs both to W

1,l
loc (D) for 1 < l < ∞ and to Lp1(D), for

p1 ∈ (p,2p) in view of Theorem 4.2.1. Clearly the same is true of ∂f and ∂f = ν∂f , in particular
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f ∈ W 1,p2(D) for some p2 > 2, hence is Hölder continuous on D. By the Sobolev embedding
theorem as applied to its derivatives, f is moreover continuously differentiable in D, so we get
for every reiθ ′ ∈ D that:

f
(
reiθ ′) − f (r) =

θ ′∫
0

(∂θf )
(
reiθ

)
dθ (72)

where (∂θf )(z) = i(z∂f (z) − zν∂f (z)). Now, by Proposition 4.2.1 applied to W , the deriva-
tives ∂f and ∂f have non-tangential limits h and νh respectively, where h ∈ Lp(T), and by (26):

lim
r→1

2π∫
0

∣∣∂f (
reiθ

) − h
(
eiθ

)∣∣p dθ = lim
r→1

2π∫
0

∣∣∂f
(
reiθ

) − νh
(
eiθ

)∣∣p dθ = 0.

Passing to the limit as r → 1 in (72) yields that trf is absolutely continuous on T with tangential
derivative i(eiθh − e−iθ νh) ∈ Lp(T), proving that trf ∈ W 1,p(T).

Since ∂f ∈ G
p
α(D), Proposition 4.2.1 implies M∂f ∈ Lp(T). The same is true of M∂f be-

cause of (5) and the boundedness of ν, therefore M‖∇f ‖ ∈ Lp(T). Moreover, since ∂f and ∂f

both have non-tangential limits in Lp(T), so does ∇f . The same conclusions then hold for
u = Ref . In addition, the Green–Riemann formula ensures that

0 =
∫
D

div(σ∇u)(x) dx =
∫
T

σ∂n tru.

This establishes point 1.
As to point 2, let v ∈ W

1,p

R (T) be such that ∂θv = σg. By Theorem 4.1.1, there exists f ∈
W 1,p(D) such that (5) holds and Im trf = v on T. Then, Theorem 4.4.3.1 implies that u := Ref

fulfills all the requirements.
To prove uniqueness up to an additive constant, consider u ∈ W

1,p

R (D) with div(σ∇u) = 0
in D and ∂nu = 0 on T. Put f = u + iv for a solution to (5) in W 1,p(D) such that u = Ref . By
Remark 4.1.2 ∂θv = σ∂nu = 0 on T, which means that trv is constant, i.e. Im trf is constant. By
Theorem 4.1.1, u is constant in D. �
5.8. Proofs of the density results

5.8.1. Density for Sobolev traces
For the proof of Theorem 4.5.1.1, we need two lemmas. Below, for I an open subset of T, the

symbol 〈·,·〉I stands for the duality bracket between W
−1/p,p

R (I ) and W
1−1/q,q

0,R (I ). We drop the
subscript when I = T.

Lemma 5.8.1.1. For ϕ ∈ W
1−1/p,p

R (T) and ψ ∈ W
1−1/q,q

R (T), one has〈
∂θ (Hνϕ),ψ

〉 = 〈
ϕ, ∂θ (Hνψ)

〉
. (73)
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Proof. Assume first that ϕ and ψ lie in C∞(T). Let f and g be the solutions to (5) on D, normal-
ized as in (12), such that Re(trf ) = ϕ and Re(trg) = ψ respectively. By definition of Hν , it holds
that Im(trf ) = Hνϕ and Im(trg) = Hνψ . As pointed out in the proof of Proposition 4.4.3.1, the
functions f and g lie in W 2,r (D) for all r ∈ (1,∞) by [34, Thm. 9.15]. Put u = Ref and
u1 = Reg. By the divergence formula

0 =
∫
D

(
div(σ∇u)u1 − div(σ∇u1)u

)
dm =

∫
T

σ
(
(∂nu)u1 − (∂nu1)u

)
dθ,

and from (48) we see that σ∂nu = ∂θHνϕ while σ∂nu1 = ∂θHνψ . This yields the desired conclu-
sion for smooth ϕ and ψ . In the general case, pick two sequences (ϕk)k�1, (ψk)k�1 of smooth
functions converging respectively to ϕ in W 1−1/p,p(T) and to ψ in W 1−1/q,q(T). By Corol-
lary 4.4.2.1, we have that Hνϕk → Hνϕ in W 1−1/p,p(T) and Hνψk → Hνψ in W 1−1/q,q(T),
therefore ∂θ (Hνϕk) → ∂θ (Hnuϕ) in W−1/p,p(T) and ∂θ (Hνψk) → ∂θ (Hνψ) in W−1/q,q(T).
Identity (73) now follows from the first part of the proof by a limiting argument. �

To proceed with the second lemma, we introduce the following piece of notation that will be
of use in the next section as well: whenever I ⊂ T and J = T \ I is the complementary subset,
then for uI (resp. uJ ) a function on I (resp. J ) we put uI ∨ uJ for the concatenated function
on T which is uI (resp. uJ ) on I (resp. J ).

Let now I , J be proper open subsets of T such that J = T \ I 	= ∅. For any function uJ ∈
W

1−1/p,p

0,R (J ), we form the concatenated function 0 ∨ uJ and we set

AuJ = ∂θ

(Hν(0 ∨ uJ )
)
|I . (74)

Note that 0 ∨ uJ ∈ W
1−1/p,p

R (T), so that A :W 1−1/p,p

0,R (J ) → W
−1/p,p

R (I ) is well defined and

bounded by Corollary 4.4.2.1 and the boundedness of ∂θ from W 1−1/p,p(I ) into W−1/p,p(I ).

Lemma 5.8.1.2. The operator A defined in (74) has dense range.

Proof. It is equivalent to show that the adjoint operator A∗ :W 1−1/q,q

0,R (I ) → W
−1/q,q

R (J ) is one-

to-one. Now, for uI ∈ W
1−1/q,q

0,R (I ) and uJ ∈ W
1−1/p,p

0,R (J ), we get by Lemma 5.8.1.1〈
A∗uI ,uJ

〉
J

= 〈uI ,AuJ 〉I = 〈
uI , ∂θ

(Hν(0 ∨ uJ )
)
|I
〉
I
= 〈

(uI ∨ 0), ∂θHν(0 ∨ uJ )
〉

= 〈
(0 ∨ uJ ), ∂θHν(uI ∨ 0)

〉 = 〈
uJ , ∂θ

(Hν(uI ∨ 0)
)
|J

〉
J
,

hence A∗uI = ∂θ (Hν(uI ∨ 0))|J . Thus the relation A∗uI = 0 means that Hν(uI ∨ 0) is constant
on each component of J . Let J0 be such a component and f be the solution of (5) in W 1,p(D)

such that Re(trf ) = uI ∨ 0, normalized as in (12) so that Im(trf ) = Hν(uI ∨ 0). Since uI ∨ 0
vanishes on J , there exists c ∈ R such that trf = ic on J0. Therefore f ≡ ic in D by Propo-
sition 4.3.3 and Proposition 4.3.1, point (c). In particular Re(trf ) = 0 on T, hence uI = 0 as
desired. �
Proof of Theorem 4.5.1.1. By definition of an extension set, we can write I = ⋃

j (aj , bj ) where
each aj lies at positive distance from the bk , therefore also from the ak for k 	= j . This implies
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there is an open arc I1 with I1 	= T such that I ⊂ I1. By the extension property and a smooth
partition of unity argument, each function in W 1−1/p(I ) extends to a function in W

1−1/p

0 (I1).

Thus, upon trading I for I1, it is enough to prove that any function in W
1−1/p,p

0 (I ) can be
approximated in W 1−1/p,p(I ) by the trace of a solution of (5).

Let ε > 0 and ϕI ∈ W
1−1/p,p

0 (I ) with ϕI = uI + ivI , where uI and vI are real-valued. Set

v = (vI − Hν(uI ∨ 0))|I ∈ W
1−1/p,p

R (I ). By Lemma 5.8.1.2, there exists uJ ∈ W
1−1/p,p

0,R (J )

satisfying ∥∥∂θv − ∂θHν(0 ∨ uJ )
∥∥

W−1/p,p(I )
� ε, (75)

from which it follows by elementary integration and the Poincaré inequality on I that, for some
cv ∈ R and some CI independent of v,∥∥v − Hν(0 ∨ uJ ) − cv

∥∥
W 1−1/p,p(I )

� CIε. (76)

Consider now the concatenated function (uI ∨ uJ ) ∈ W 1−1/p(T), and define

ψ = (uI ∨ uJ ) + iHν(uI ∨ uJ ) + icv.

Then ψ ∈ W 1−1/p,p(T) by Corollary 4.4.2.1, and by construction it is the trace on T of a solution
to (5). Since

ψ = (uI ∨ 0) + (0 ∨ uJ ) + iHν(uI ∨ 0) + iHν(0 ∨ uJ ) + icv,

it follows from (76) that

‖ϕI − ψ‖W 1−1/p,p(I ) � CIε. �
5.8.2. Density for Hardy traces

The proof of Theorem 4.5.2.1 resembles that of Theorem 4.5.1.1, but makes use of different
operators. Hereafter, the symbol 〈·,·〉 indicates not only the duality between W

−1/p,p

R (T) and

W
1−1/q,q

0,R (T), as in Lemma 5.8.1.1, but also the L
p

R − L
q

R and the W
1,p

R − W
−1,q

R duality. This
should cause no confusion.

First, we will need the following version of Lemma 5.8.1.1:

Lemma 5.8.2.1. For all ϕ ∈ W
1,p

R (T) and all ψ ∈ L
q

R(T), one has〈
∂θ (Hνϕ),ψ

〉 = 〈
ϕ, ∂θ (Hνψ)

〉
.

Proof. When ϕ and ψ are smooth the result is contained in Lemma 5.8.1.1, and the general
case then follows by a limiting argument, using the continuity properties of ∂θ together with
Corollary 4.4.2.1 and Proposition 4.4.3.1. �

From Lemma 5.8.2.1, we deduce a relation between Hν :Lp

R(T) → L
p

R(T) and its adjoint
H∗

ν :Lq

R(T) → L
q

R(T).
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Lemma 5.8.2.2. For any function u ∈ L
q

R(T), it holds that

H∗
νu = −∂θHνU,

where U ∈ W
1,q

R (T) is any function such that

∂θU = u − 1

2π

2π∫
0

u
(
eiθ

)
dθ. (77)

Proof. Let u ∈ L
q

R(T), v ∈ L
p

R(T), and consider U ∈ W
1,q

R (T) such that (77) holds. Then, since
Hνv has zero mean on T, we get from Lemma 5.8.2.1

〈H∗
νu, v

〉 = 〈u,Hνv〉 =
〈
u − 1

2π

2π∫
0

u
(
eiθ

)
dθ,Hνv

〉

= 〈∂θU,Hνv〉 = −〈U,∂θHνv〉 = −〈∂θHνU, v〉. �
Remark 5.8.2.1. If we restrict Hν to the space of L

q

R(T)-functions with zero mean, which is
mapped into itself by Hν , we may summarize the content of Lemma 5.8.2.2 as H∗

ν = −∂θHν∂
−1
θ .

Let I ⊂ T be as in Theorem 4.5.2.1 and put J = T \ I . For uJ ∈ L
p

R(J ), let us define

BuJ = (Hν(0 ∨ uJ )
)∣∣

I
.

Corollary 5.8.2.1. The operator B is bounded from L
p

R(J ) to L
p

R(I )/R and has dense range.

Note that we consider B as a mapping from L
p

R(J ) into the quotient space L
p

R(I )/R rather
than L

p

R(I ). That B has dense range means: given v ∈ L
p

R(I ) and ε > 0, there exist uJ ∈ L
p

R(J )

and cv ∈ R such that ∥∥v − Hν(0 ∨ uJ ) − cv

∥∥
Lp(I)

� ε. (78)

Proof. Clearly B is well defined and bounded by Corollary 4.4.2.1. To prove it has dense range,
it is enough to check that B∗ :Lq,0

R (I ) → Lq(J ) is one-to-one; here, by L
q,0
R (I ), we mean the

subspace of L
q

R(I ) comprised of functions with zero mean. For ϕI ∈ L
q,0
R (I ), we deduce from

Lemma 5.8.2.2 that

B∗ϕI = −(∂θHνΨ )|J , (79)

where Ψ ∈ W
1,q

R (T) is such that

∂θΨ = ϕI ∨ 0. (80)

Consider the solution f ∈ W 1,p(D) to (5) satisfying Re(trf ) = Ψ on T, normalized so that (12)
holds. By (80) it holds that ∂θΨ = 0 a.e. on J , and if B∗ϕI = 0 we get in addition from (79)
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that ∂θHνΨ = 0 a.e. on J . As trf = Ψ + iHνΨ , it entails altogether that ∂θ (trf ) = 0 a.e.
on J . But from Theorem 4.4.3.1 point (c) we know that ∂f admits a non-tangential limit a.e.
on T, and by (46) we now see that tr ∂f = 0 a.e. on J . But Theorem 4.4.3.1 point (b) and
Lemma 5.7.1 Eq. (65) together imply that ∂f = esF , where s is continuous on D while F ∈ Hp .
Necessarily then, trF = 0 on J which has positive measure, hence F ≡ 0 implying that ∂f =
∂f ≡ 0. Therefore f is constant, in particular 0 = ∂θ Re(trf ) = ∂θΨ = ϕI ∨ 0 on T. Therefore
ϕI ≡ 0 thus B∗ is injective, as desired. �
Proof of Theorem 4.5.2.1. Let ε > 0 and ϕI ∈ Lp(I) with ϕI = uI + ivI where uI , vI ∈ L

p

R(I ).
Set v = vI − Hν(uI ∨ 0) and observe from (78) that∥∥v − Hν(0 ∨ uJ ) − cv

∥∥
Lp(I)

� ε (81)

for some uJ ∈ L
p

R(J ) and cv ∈ R. Define

ψ = (uI ∨ uJ ) + iHν(uI ∨ uJ ) + icv.

By construction ψ is the trace on T of a H
p
ν -function, and since

ψ = (uI ∨ 0) + (0 ∨ uJ ) + iHν(uI ∨ 0) + iHν(0 ∨ uJ ) + icv,

it follows from (81) that

‖ϕI − ψ‖Lp(I) � ε.

The proof is now complete. �
5.9. A characterization of (trHp

ν )⊥

The expression for H∗
ν obtained in Lemma 5.8.2.2 enables us to characterize the orthogonal

space (trHp
ν )⊥ of trHp

ν for the duality product (49), hereafter denoted by 〈·,·〉.

Proof of Proposition 4.6.1. Let ϕ = ϕ1 + iϕ2, with ϕk ∈ L
q

R(T). In view of Theorem 4.4.2.1,
we get that ϕ ∈ (trHp

ν )⊥ if, and only if

Re〈ϕ1 + iϕ2, u + iHνu + ic〉 = 0, u ∈ L
p

R(T), c ∈ R. (82)

Picking for u an arbitrary constant shows that ϕ1 and ϕ2 have zero mean on T, hence there are
Φ1,Φ2 ∈ W

1,q

R (T) such that Φ := Φ1 + iΦ2 satisfies ∂θΦ = ϕ; we may impose in addition that
Φ itself has zero mean. Now, from (82) we get for every u ∈ L

p

R(T) that

0 = Re〈u + iHνu,ϕ1 + iϕ2〉 = 〈u,ϕ1〉 − 〈
u,H∗

νϕ2
〉
,

which means ϕ1 = H∗
νϕ2 or else Φ1 = −HνΦ2, by elementary integration and using Lem-

ma 5.8.2.2. Therefore Φ = i(Φ2 + iHνΦ2) lies in i trHq
ν = trHq

−ν , and since ∂θΦ = ϕ we
conclude that (

trHp
ν

)⊥ ⊂ ∂θ

(
trHq

−ν ∩ W 1,q (T)
)
.
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Conversely let ϕ = ∂θΦ for some Φ ∈ (trHq
−ν ∩ W 1,q(T)). We can write Φ = γ + iH−νγ

for some γ ∈ W
1,q

R (T), and from Lemma 5.8.2.2 applied with −ν rather than ν we obtain for
u ∈ L

p

R(T)

Re〈ϕ,u + iHνu〉 = 〈∂θγ,u〉 − 〈
∂θ (H−νγ ),Hνu

〉
= 〈∂θγ,u〉 + 〈H∗−ν(∂θγ ),Hνu

〉 = 〈∂θγ,u〉 + 〈
∂θγ,H−ν(Hνu)

〉
=

〈
∂θγ,

2π∫
0

udθ

〉
= 0,

since H−ν(Hνu) = −u + ∫ 2π

0 udθ as follows immediately from the fact that iH
p
ν = H

p
−ν . �

Remark 5.9.1. In order to extend the definition of Hν to complex-valued functions, it is natural
to set (cf. [7,8])

Hν(iu) = iH−ν(u),

for we then have

iu + iHν(iu) = i
(
u + iH−ν(u)

)
,

which is indeed a solution to (5). With this definition, we recap Proposition 4.6.1 by saying that
ϕ ∈ Lq(T) belongs to (trHp

ν )⊥ if and only if ϕ = ∂θΦ , where Φ ∈ W 1,q (T) satisfies

H−νΦ = −iΦ. (83)

Note that if ν = 0 then (83) characterizes traces of holomorphic functions with zero mean. In this
case (82) follows readily from the Cauchy formula.

6. Hardy spaces over Dini-smooth domains

In this final section, we indicate how the spaces H
p
ν that we studied on the disk can be defined

more generally on Dini-smooth domains.
Recall that a function h is called Dini-continuous if

∫ ε

0 (ωh(t)/t) dt < +∞ for some, hence
any ε > 0, where ωh is the modulus of continuity of h. A function is said to be Dini-smooth
if it has Dini-continuous derivative. A bounded planar domain in C is termed Dini-smooth if
its boundary is a Jordan curve with nonsingular Dini-smooth parametrization. Such domains Ω

have the property that any conformal map from D onto Ω extends continuously from D onto Ω

together with its derivative, in such a way that the latter is never zero [54, Thm. 3.5], and that is
why we are able to generalize our previous results to this class of domains.

Let Ω ⊂ C be a simply connected Dini-smooth domain, as defined in the introduction, and
assume that ν ∈ W 1,∞(Ω) with ‖ν‖L∞(Ω) � κ < 1. Any conformal transformation ψ from D
onto Ω has a C1(D) conformal extension onto Ω that we still denote by ψ [54, Thm. 3.5]. In-
troduce the Hardy classes H

p
ν (Ω) as the space of functions f on Ω such that f ◦ ψ ∈ H

p
ν◦ψ(D).

A straightforward computation [3, Ch. 1, C] shows that this class does not depend on the partic-
ular choice of ψ and consists of distributional solutions to (5). Note that ν ◦ ψ ∈ W 1,∞(D) with
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‖ν ◦ ψ‖L∞(D) � κ < 1. Similarly, the class G
p
α(Ω) consists of those functions g on Ω such that

g ◦ ψ ∈ G
p
α◦ψ(D).

As in the classical case of holomorphic Hardy spaces over simply connected domains [30],
it appears that w ∈ G

p
α(Ω) if and only if it is a solution to (14) such that |w|p has a harmonic

majorant (we insist that harmonic is understood here in the usual sense). Indeed, it is enough to
check this property in D, since it is preserved by composition with conformal maps. Then, it is a
consequence of Theorem 4.2.1 that functions in G

p
α(D) possess this property. For the converse,

observe that any solution w to (14) can be factorized as w = esF , where s ∈ C(D) and F is
holomorphic in D. Since |F |p = e−p Re s |w|p , it admits a harmonic majorant, and therefore it
belongs to Hp(D), which immediately yields that w ∈ G

p
α(D).

Another possibility to generalize H
p
ν to a Dini-smooth simply connected domain Ω is to

parallel the definition of the so-called Smirnov classes [30, Ch. 10]. Namely, one requires the
uniform boundedness of the Lp-norm on a sequence of rectifiable contours eventually encom-
passing every compact subset of Ω . For Dini-smooth domains, the two generalizations turn out
to be equivalent.

The results of Sections 4.2, 4.3, 4.4, and 4.5 remain valid in this framework, as can be seen
easily by composing with ψ and appealing to the regularity of ψ−1.

7. Conclusion

This paper took a few steps towards a theory of two-dimensional Hardy spaces for the conju-
gate Beltrami equation on simply connected domains. Conspicuously missing is a factorization
theory, whose starting point should be a characterization of those pairs (s,F ) for which (22)
holds. Also, we did not pursue the solution to the extremal problems stated in Theorem 4.6.1,
points (ii)–(iii). Finally, the case of multiply connected domains, that motivated in part the present
study (cf. the introduction), was not touched upon. It is to be hoped that suitable deepening of
the present techniques will enable one to approach such issues.
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Appendix A. Proof of technical results

We establish here Proposition 5.2.1 and Lemma 5.2.1.

Proof of Proposition 5.2.1. The boundedness of C from Lp(T) onto Hp(D) follows from the
M. Riesz theorem, mentioned already. To establish the second half of 1, let ϕ ∈ Lp(T). From the
definition of the Hp-norm and the M. Riesz theorem, we get for each r ∈ (0,1) and every ε > 0
that

‖Cϕ‖Lp(Tr ) � Cp‖ϕ‖Lp(T) � Cp

(1 − r)ε
‖ϕ‖Lp(T),
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where the last inequality is trivial. It then follows from [30, Thm. 5.5] that

‖∂Cϕ‖Lp(Tr ) � Cε,p

(1 − r)1+ε
‖ϕ‖Lp(T). (84)

If moreover ϕ ∈ W 1,p(T), integrating by parts the Cauchy formula gives us

∂Cϕ(z) = 1

2iπ

∫
T

ϕ(ξ)

(ξ − z)2
dξ = 1

i

∫
T

∂tϕ(ξ)

ξ(ξ − z)
dξ,

from which it follows by the M. Riesz theorem again that

‖∂Cϕ‖Lp(Tr ) � Cp‖ϕ‖W 1,p(T). (85)

Introduce the operators A1
r : W 1,p(T) → Lp(Tr ) and A0

r :Lp(T) → Lp(Tr ), where in both cases
Ai

rϕ = (∂Cϕ)|Tr
. We gather from (85) and (84) that

∣∣∣∣∣∣A1
r

∣∣∣∣∣∣ � Cp while
∣∣∣∣∣∣A0

r

∣∣∣∣∣∣ � Cε,p

(1 − r)1+ε
.

Since W 1−1/p,p(T) = [W 1,p(T),Lp(T)]1/p , interpolating between A1
r and A0

r yields

‖∂Cϕ‖Lp(Tr ) �
C′

ε,p

(1 − r)(1+ε)/p
‖ϕ‖W 1−1/p,p(T).

Choosing ε so small that p > 1 + ε, the above right-hand side is integrable w.r.t. r ∈ (0,1), so by
Fubini’s theorem ∂Cϕ ∈ Lp(D) as soon as ϕ ∈ W 1−1/p,p(T). Since ∂Cϕ = 0, this establishes 1.

Assertion 2 is a consequence of the fact that S is an L2(C)-isometric Calderón–Zygmund
operator, see [3, Ch. V, Sec. D] or [59, Ch. II, Thm. 3].

Next, observe that if K ⊂ C and w ∈ Lp(C), we have for z ∈ K

T̆ w(z) = 1

π

(
(χDw) ∗ gK

)
(z), with gK(ξ) := χK+D(ξ)

ξ
,

where χE denotes the characteristic function of a set E. Clearly gK ∈ L1(C) when K is compact,
showing that T̆ is bounded from Lp(C) into L

p

loc(C). We claim that ∂T̆ w = χDw and ∂T̆ w =
S(χDw) in the sense of distributions. When w is C2-smooth and compactly supported in D,
whence χDw = w, this is a simple computation [3, Ch. V, Lem. 2]. In the general case, pick a
sequence of functions vn ∈ D(D) converging to χDw in Lp(C). By what precedes T̆ vn converges
to T̆ (χDw) = T̆ w in L

p

loc(C), hence as distributions

∂(T̆ w) = lim
n

∂(T̆ vn) = lim
n

vn = χDw, (86)

where the last limit holds in Lp(C) thus a fortiori in the distributional sense. Using the Lp(C)

boundedness of S, a similar argument yields
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∂(T̆ w) = lim
n

∂(T̆ vn) = lim
n

S(vn) = S(χDw), (87)

proving the claim. Since ‖∂T̆ w‖Lp(C) = ‖S(χDw)‖Lp(C) � C‖w‖Lp(D), assertion 3 holds.
As to assertion 4, the boundedness of T from Lp(D) to W 1,p(D) follows from 3 and the

identity (T̆ w̆)|D = T w, and so do the relations ∂T w = w and ∂T w = (Sw̆)|D in view of (86)
and (87). The compactness of T :Lp(D) → Lp(D) then follows from the compactness of the
injection W 1,p(D) → Lp(D) [2, Ch. VI, Thm 6.2].

Finally, set Tαw = T (αw). By a theorem of F. Riesz, to see that I − Tα is an isomorphism
of Lp(D), it is enough since Tα is compact to check that I − Tα is one-to-one. Let w ∈ Lp(D)

be such that (I − Tα)w = 0 and set u = T̆ ( ˘αw) ∈ W
1,p

loc (C). Observe there is p1 > 2 such that

u ∈ L
p1
loc(C). Indeed, by the Sobolev imbedding theorem, if p < 2 then W

1,p

loc (C) is embedded

in L
p∗
loc(C), with p∗ = 2p

2−p
, whereas if p � 2 then W

1,p

loc (C) is embedded in Lλ
loc(C) for every

λ ∈ (2,∞).
Now, since w = Tαw, we have u = w in D and so w ∈ Lp1(D) hence ˘αw ∈ Lp1(C). Thus, by

assertion 3, we get that u ∈ W
1,p1
loc (C). Moreover, from (86) and since u = w in D, it holds in the

sense of distributions that

∂u = ˘αw = ᾰu a.e. in C. (88)

In addition, u(z) clearly goes to 0 when |z| goes to +∞. It now follows from the generalized
Liouville theorem [7, Prop. 3.3] that u = 0, therefore w = 0. �
Proof of Lemma 5.2.1. It is a result by Hardy and Littlewood [30, Thm. 5.9] that for any g ∈ Hp

‖g‖Lp1 (Tr ) � Cp‖g‖Lp(Tr )(1 − r)1/p1−1/p, 0 < r < 1, p � p1 � ∞. (89)

Taking p1 ∈ [p,2p) and raising (89) to the power p1, we obtain upon integrating with respect
to r

‖g‖p1
Lp1 (D)

� Cp,p1‖trg‖p1
Lp(T)

thereby proving 1. For the rest of the proof, we fix p1 ∈ (2,2p).
Assume now that w − T (αw) = g ∈ Hp . By Proposition 5.2.1, point 4, we get T (αw) ∈

W 1,p(D). Moreover, as already stressed in the proof of that proposition, we know from the
Sobolev imbedding theorem that W 1,p(D) ⊂ Lp2(D) for some p2 > 2. Thus, by point 1 and
Hölder’s inequality, w = g + T (αw) belongs to Lp∗

(D) with p∗ = min{p1,p2} > 2, and con-
sequently T (αw) ∈ W 1,p∗

(D) ⊂ C0,1−2/p∗
(D) by the Sobolev imbedding theorem again. Using

Proposition 5.2.1, point 3, we establish similarly that T̆ ( ˘αw) ∈ W
1,p∗
loc (C) ⊂ C

0,1−2/p∗
loc (C). Re-

capping what we just did, we obtain∥∥T (αw)
∥∥

W 1,p∗
(D)

� cp,α‖w‖Lp∗
(D) = cp,α

∥∥g + T (αw)
∥∥

Lp∗
(D)

� c′
p,α

(∥∥T (αw)
∥∥

Lp2 (D)
+ ‖g‖Lp1 (D)

)
� c′′

pα

(∥∥T (αw)
∥∥

W 1,p(D)
+ ‖g‖Hp(D)

)
� c′′′

p,α

(‖w‖Lp(D) + ‖g‖Hp(D)

)
which is (56). �
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