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Abstract

We are concerned with an inverse problem related to sources detection from
boundary data in a 2D medium with piecewise constant conductivity. It stands
as a 2D version of the inverse problem of electroencephalography, where pointwise
sources model epilepsy foci, with the so-called multi-layer spherical model of the
head (scalp, skull, brain). When overdetermined electrical measurements (poten-
tial and current flux) are available on the scalp, one wants to recover the current
sources (conductivity defaults) located in the brain (inner boundary). This recovery
issue reduces to a number of inverse problems, where the sources identification pro-
cess makes use of best rational approximation in the disk, whereas the preliminary
cortical mapping step (Cauchy type issue) relies on best constrained harmonic or
analytic approximation in an annulus (bounded extremal problems).

Classification numbers (AMS): 22E46, 53C35, 57S20

1 Introduction and motivation

We approach here the inverse problem of determining buried pointwise electrical sources
from overspecified boundary data of the solution of heterogeneous electrical conduction
equations.
Our main application is borrowed to the bioengineering communauty. It focuses on the
identification of the location of epileptic centers in a human brain and of their correspond-
ing electrical intensities. This inverse problem is known as the EEG (encephalography)
one, where the data are values of the potential measured at a number of points on the
scalp by electrodes. This method is the oldest one for the investigation of brain activity
or deceases. It is the best known among the non invasive method and has been performed
since 1929.
It allows to measure spontaneous electrical activity of the brain (electroencephalogram),
either on the scalp, or directly (and invasively) in the brain (stereo-EEG). The identifi-
cation of sources involved in epileptic spikes in such an electroencephalogram is clinically
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crucial for the diagnosis and treatement. It is also used for the functional exploration of
the brain.
The physical principle of such a method consists in considering the electrical activity gen-
erated by bioelectrical sources in the brain which corresponds to the dynamics of a large
neuron population having the capacity to work in syncron. Notice that the fundamental
feature of EEG relies on the fact that it follows the dynamics of the brain’s activity up to
a temporary scale of milliseconds order, which is the one of cognitive processes, contrarily
to others well-known neuro-imaging modalities such that MRI or MST-DT.
We approach here the inverse problem of recovering bioelectric sources on the cerebral
cortex, from the potential generated by these sources on the scalp. We refer to [15] for
different statements. A classical one, known to be relevent in the case of epilepsy - at least
at the first stage of the decease - is to take a pointwise dipolar model for the distribution
of cortical current sources ( [2], [17]).
We thus consider the inverse problem of Laplace operator which consists in recovering
pointwise sources distributed in a 2D domain from available measurements of the solution
on the boundary. This is as mensioned above, related to the inverse electroencephalog-
raphy problem in spherical 3D domains ( [17]), which gives simple models of the human
head, assumed to be a ball made of (at least) three concentric spherical homogeneous
layers Ωi, i = 0, 1, 2, of constant conductivity (corresponding to the scalp, the skull, and
the brain), see Figure 1. From the mathematical viewpoint, this inverse problem is known
to be well-posed: uniqueness as well as weak stability results has been established ([6],
[8], [11], [14]).
Of course, more realistic models could be obtained from anatomic MRI images, but the

Figure 1: Realistic head model

actual spherical model is already suitable and allows explicit bases and analytical solu-
tions for the potential problem.
In this setting, overdetermined electrical measurements (potential and current flux) are
available on the scalp (external boundary), from which one wants to recover some current
sources (conductivity defaults) located in the brain (inner layer). The situation where
the data are already known on the boundary ∂Ω0 of the inner layer has been handled
in [6], [8], in 2 and 3D. To test the capacity of the following proposed identification pocess
we here restrict ourseves to a 2D situation, mainly in order to constructively solve the
first cortical mapping step, since then, the problem may be solved using best analytic
approximation. The propagation of outer Cauchy data to the interior interface is there-
fore handled using best approximation tools in Hardy classes of an annulus, as described
in [19]. The sources are then located as the poles of a rational function, recovered from
boundary data by best rational or meromorphic approximation algorithms ( [6]).

2



The steady state electric potential is assumed to be the solution to

(NP )


−∇.(σ∇u) = F =

N∑
k=1

pk.∇ δck in Ω,

σ∂nu = Φ on ∂Ω ,

∫
∂Ω

Φ = 0

where n represents the outward unit normal vector to ∂Ω and σ is a piecewise constant
conductivity which is equal to σi on both annuli Ωi \ Ω̄i−1, i = 1, 2, and to σ0 on the disk
Ω0. Being given measures (pointwise values, or a smooth enough interpolating function)
ub of u on the outer boundary ∂Ω, the issue is to recover the location of N pointwise
dipolar sources ck located in the inner domain Ω0, and their moment pk, for k = 1, .., N .
This involves harmonic data propagation from the outer boundary to the inner one as
a preliminary step, after which the singularities are to be recovered. Indeed, on each
circular layer:

∆u = 0 , in Ωi \ Ωi−1 , i = 1, 2, −∆u = F/σ0 , in Ω0,

and transmission condition are required on connected components on the boundaries
Γi ∩ Γi−1 = ∂Ωi, i = 1, 2: 

u|Γi−1
= u|Γi

,

σi−1 ∂nu|Γi−1
= σi ∂nu|Γi

.

We handle the issue of harmonic data propogation in a family of annuli. We use a
constraint analytic approximation scheme from [19], [25], by solving a bounded extremal
problem there on both annulus Ω2 \Ω1 = RD \ rD and Ω1 \Ω0 = rD \D to propogate the
data onto the internal layer’s boundary Γ0 = T, for R > r > 1 (λD is the disk of radius
λ > 1). Once data are available on the inner boundary Γ0, best meromorphic or rational
approximation schemes are used in order to approximately locate {ck}, as in [6], [8].
This paper is outlined as follows: section 2 deals with the harmonic approximation which
maps the Cauchy data from the scalp to the surface of the brain (cortical mapping step).
In Section 3, we describe a best L2 meromorphic approximation scheme as a tool for
recovering the electrical sources as well as their intensities.
Section 4 is devoted to numerical results and we end up with some comments.

2 Harmonic approximation on an annulus: cortical

mapping

The first step of the identification process consists in extending the available over-determined
data on the exterior boundary ∂Ω of the domain Ω to the internal layer ∂Ω0. To this end,
we choose to solve two consecutive bounded extremal problems on the annuli Ω2 and Ω1

(see also [2] where a boundary elements method is used). We describe explicit formulas
allowing to extend the data on the innermost layer.
Let G = rD \ sD ⊂ C ' R2, 0 < s < r, be an annulus, its boundary ∂G = sT ∪ rT being
equipped with the Lebesgue measure normalized so that the circles rT and sT each have
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unit measure.
We consider the intermediary problem: given two functions ub and Φ defined on rT, or a
number of their pointwise measurements, with Φ 6≡ 0 such that

∆u = 0 in G
u = ub on rT
∂n u = Φ on rT

(1)

where ∂n stands for the partial derivative w.r.t. the outer normal unit vector to ∂G. We
refer to [20] for the following properties of the solution.
Let Φ ∈ L2(rT), then u|∂G

∈ W 1,2(∂G). Moreover, there exists a locally single-valued
function v harmonic in G such that ∂θ v = ∂n u on ∂G, where ∂θ stands for the tangential
partial derivative on ∂G, from the Cauchy–Riemann equations.
Note that, from (1), the conjugate function v is given on rT up to a constant by:

v|rT(re
iθ) =

∫ θ

θ0

Φ(reiτ ) dτ ,

for an arbitrary reiθ0 ∈ rT, and that v|∂G
∈ W 1,2(∂G). Thus, f̃ = u+ i v is analytic (and

multiply-valued) in G; it is given on rT by

f̃(reiθ) = ub(re
iθ) + i

∫ θ

θ0

Φ(reiτ ) dτ . (2)

However, since the annulus is not simply-connected, it may not be possible to define f̃
globally in G as a single-valued function. In this case, there is a single-valued analytic
function f defined on G such that

f(z) = f̃(z)− c

2π
log z , (3)

hence u(z) = Re f(z) + c
2π log |z|, where

c =

∫ 2π

0

Φ(reiθ) dθ . (4)

Introduce H2(λD) the Hardy space of analytic functions in the disk λD whose L2 norms
on circles centered at 0 of radius smaller than λ are bounded ( [13], [16], [18], [24]).
Let H̄2

0 (λD) be its orthogonal complement in L2(λT), which consists in functions analytic
outside D, vanishing at ∞, and whose L2 norms on circles centered at 0 of radius greater
than λ are bounded. From the above mentionned regularity properties, the function f
is bounded in L2(rT), and we then find an extension of f in the so-called Hardy space
denoted by H2(G) = H2(rD) ⊕ H̄2

0 (sD) defined in [24]. It is also possible to define the
Hardy spaces H2(∂G), as the closure in L2(∂G) of the set RG of rational functions whose
poles lie in C \G. The spaces H2(G) and H2(∂G) are then isomorphic in a natural way,
and so we identify the two spaces, see [4], [12].
For m ≥ 1, introduce Hm,2(G) = H2(G) ∩Wm,2(∂G), the Hardy-Sobolev space of the
annulus G, with the Wm,2(∂G) norm:

‖g‖Hm,2(G) = ‖g‖Wn,2(∂G) =
∑
p∈Z

|gp|2 [wm,pr
2p + µm,ps

2p] ,

4



for functions g ∈ Hm,2(G), g(z) =
∑

p∈Z gp z
p, z ∈ G, and{

wm,p = 1 + p2r−2 + · · ·+ p2 (p− 1)2 · · · (p−m+ 1)2r−2p ,
µm,p = 1 + p2 s−2 + · · ·+ p2 (p− 1)2 · · · (p−m+ 1)2 s−2p .

(5)

For consistency of notation, we shall also write H0,2(G) for H2(G) and W 0,2(∂G) for
L2(∂G).
For fixed m, the family

em,n :=
zn√

wm,nr2n + µm,ns2n
, z ∈ G, n ∈ Z (6)

is an orthogonal basis of Hm,2(G).
Let m ≥ 1. We solve the minimization problem (bounded extremal problem):

(BEP )


Given f ∈ Wm,2(rT) \Hm,2(G) and M > 0,
find a function g ∈ Hm,2(G) such that ‖g‖Wm,2(sT) ≤M and
‖f − g‖Wm,2(rT) = inf{‖f − ψ‖Wm,2(rT) : ψ ∈ Hm,2(G) , ‖ψ‖Wm,2(sT) ≤M}.

From [12], the (BEP) problem admits a unique solution when m = 0 which can be
obtained by solving a spectral equation for the Toeplitz operator T with symbol χsT, the
characteristic function of the component sT:

g = (Id+ λ T )−1 PH2(G) f , (7)

for the unique λ > −1 such that

‖g‖L2(sT) = M , (8)

where

T : H2(G) → H2(G)

g 7→ PH2(G) χsT g ,

and PH2(G) : L2(∂G) → H2(G) is the orthogonal projection. Analogous results are still
available for m ≥ 1, that we establish now.

Proposition 1 Let m ≥ 0 and f ∈ Wm,2(rT) \Hm,2(G):

f(reiθ) =
∑
n∈Z

anr
n einθ a. e. on rT ,

then, problem (BEP) admits a unique solution:

gm(z) =
∑
n∈Z

wm,nr
2nan

wm,nr2n + (1 + λ)µm,ns2n
zn, (9)

for z ∈ G, where λ > −1 is the unique constant such that

∑
n∈Z

w2
m,n |an|

2 s2nr4n

(wm,nr2n + (1 + λ)µm,ns2n)2 = M2 .
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For the proof, we need the following lemma.

Lemma 2 Let h ∈ Wm,2(∂G) be given by

h(reiθ) =
∑
n∈Z

anr
n einθ a. e. on rT ,

and h(seiθ) =
∑
n∈Z

bns
neinθ a. e. on sT .

Then

PHm,2(G)h(z) =
∑
n∈Z

wm,nr
2nan + µm,ns

2nbn
lm,n

zn, z ∈ G, (10)

where lm,n = wm,nr
2n + µm,ns

2n.

Proof : Let h ∈ Wm,2(∂G):

PHm,2(G)h(z) =
∑
n∈Z

cn z
n , {cn} ⊂ C .

The family

{
em,n(z) =

zm√
lm,n

}
being a total basis of the Hilbert spaceHm,2(G), therefore

h− PHm,2(G)h ⊥ em,n, for all n ∈ Z.
On the other hand,

h−PHm,2(G)h(re
iθ) =

∑
n∈Z

(an − cn) r
n einθ and h−PHm,2(G)h(se

iθ) =
∑
n∈Z

(bn − cn) s
neinθ ,

then

0 = <h− PHm,2(G)h, em(z)>Wm,2(∂G)

= <h− PH2(G)h, em,n(z)>Wm,2(rT) +<h− PH2(G)h, em,n(z)>Wm,2(sT)

=
1√
lm,n

[
wm,n (an − cn) r

2n + µm,n (bn − cn) s
2n

]
.

The result follows.
Proof of Proposition 1: Thanks to Ref. [12], the solution gm is given by

(1 + λ T ) g = PHm,2(G) f.

Let h = f on rT and h = 0 on sT. From Lemma 2, for all z ∈ G

PHm,2(G)h(z) =
∑
n∈Z

wm,nr
2nan

lm,n
zn .

On the other hand, if gm(z) =
∑

n∈Z cnz
n, z ∈ G, then from Lemma 2, we have

T g(z) =
∑
n∈Z

µm,ns
2ncn

lm,n
zn .
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Since

cn +
λµm,ns

2ncn
lm,n

=
wm,nr

2nan
lm,n

,

we obtain

cn =
wm,nr

2nan
wm,nr2n + (1 + λ)µm,ns2n

.

From [12], the parameter λ > −1 is determined by the condition

‖ gm ‖Wm,2(sT) = M .

Therefore,

M2 =

∥∥∥∥∥∑
n∈Z

wm,nr
2n (an − bn)

wm,nr2n + (1 + λ)µm,ns2n
zn

∥∥∥∥∥
2

Wm,2(sT)

=
∑
n∈Z

w2
m,nr

4n |an|2 s2n

(wm,nr2n + (1 + λ)µm,ns2n)2 .

Once g = gm is computed, one gets Cauchy data on sT by taking u = Re g and ∂nu =
∂θ Im g.

3 Pointwise sources identification process: best ra-

tional approximation

Once the overdetermined computed boundary values (electric potential and current flux),
available on the outer boundary ∂Ω, are propagated to the inner boundary T = ∂Ω0 by
the techniques from the previous section, we are ready to handle the problem of recovering
the source term from the data

u|∂Ω0 = u0 and ∂nu|∂Ω0 = Φ0 (11)

of a solution u to (assuming that σ0 = 1)

−∆u = F in Ω0.

There exists a function A analytic in the unit disk D such that, if we define:

f(z) = A(z)−
N∑
k=1

pk
2π (z − ck)

, (12)

then
u(z) = Re(f(z)) , z ∈ D \ {ck} .

Moreover, f is given on T (up to an additive constant) by

f(z) = u0(z) + i

∫ z

ξ0

Φ0(ξ)ds(ξ), (13)

for every z ∈ T, where ξ0 ∈ T is fixed once and for all.
As in [6] The inverse source problem in D can then be formulated as that of locating the
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singularities of the function f given by (12) from its values on the boundary T, available
by (13) from the Cauchy data u0,Φ0, see (11).
In the case where there are no sources in D, i.e m = 0, the function u is the real part of
the analytic function A = f which is known on T. This provides the basis of a test to
establish the presence of sources in the domain. Indeed, some distance on T between f
and the set of boundary values of analytic functions in D can be constructively computed,
at least for quadratic and uniform norms ( [1], [7], [9], [23]).
If this distance is strictly positive (not too small, in practice) f does necessarily possess
singularities in D and we are led to the determination of the number of sources, their
positions and their moments. This issue can be approached through the study of the
behaviour of the poles of rational or meromorphic approximants on the unit circle T.
Best L2 meromorphic approximation on the boundary is used for the recovery of the
singularities in D from available data on T, because equation (12) defines a function
f −A that belongs to H̄2

0 .
Indeed, let Rn ⊂ H̄2

0 be the set of strictly proper rational functions with at most n poles
in D, none on T. For functions h ∈ L2(T), the issue of finding the best L2 meromorphic
approximation to h with less than n poles in D amounts to get ψn ∈ H2 +Rn such that

‖h− ψn‖L2(T) = min
ψ∈H2+Rn

‖h− ψ‖L2(T) .

It can be expressed in terms of the best rational approximation as follows. Let PH2 denote
the orthogonal projection from L2(T) onto H2 and PH̄2

0
denote the one from L2(T) onto

H̄2
0 . Put h− = PH̄2

0
h.

Now, being given a function h− ∈ H̄2
0 , one can look for its best L2 rational approximation

of degree less than n in H̄2
0 : find polynomials πn, qn, with deg(qn) ≤ n, such that πn/qn ∈

H̄2
0 (this forces deg(πn) < deg(qn)), that minimizes ‖h−−p/q‖L2(T) among such functions,

see Ref. [9]: ∥∥∥∥h− − πn
qn

∥∥∥∥
L2(T)

= min
deg(p)<deg(q)=n

∥∥∥∥h− − p

q

∥∥∥∥
L2(T)

.

It then holds that ψn = PH2h+ πn/qn.
The existence of such a minimum is established in [5]. In fact, qn will have degree n,
except if h− is already a rational H̄2

0 function of degree strictly less than n (normality
property, [9]).
As to uniqueness of the best rational approximant, it is known to be true for an open and
dense subset of H̄2

0 . Whenever h− is already a rational function of degree n in H̄2, the
unique minimum at order n is h itself, a consequence of the consistency property from [10]
(which is to the effect that h− is the unique critical point of the criterion).
Concerning constructive aspects, algorithms to generate local minima can be obtained
using Schur parametrization which induces a map on the manifold consisting in rational
H̄2

0 functions of given degree and of uniform norm equal to 1 on T. Computing the
gradient and the Hessian of the criterion with this parametrization produces an efficient
resolution scheme ([22]).
When the function h to be approximated already possesses N poles as singularities in D,
which is the case in the present situation, that is when the anti-analytic part h− = PH̄2

0
h

belongs to RN , the best rational approximant πn/qn of degree n will coincide with h− and
provide 0 as error value, as soon as n ≥ N . This occurs in the case of dipolar sources
since then f −A ∈ RN . This allows us to recover the number N of poles, together with
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their locations and residues. Indeed, if n > N , πn/qn possesses n poles, among which
n−N have a residue equal to zero.
Observe that for more general cases of functions with branched singularities, some results
concerning the convergence of the poles of the rational approximants to these singularities
are available, that are discussed in [8].

4 Numerical trials

We consider the 2D configuration of the so-called spherical (here circular) model of the
head, where the domain is a disk Ω made up of 3 disjoint homogeneous connected circu-
lar/annular layers Ωi, i = 0, 1, 2, (corresponding to brain, skull and scalp) of radii s = 1,
r = 1.0574 and R = 1.1494, delimiting surfaces with conductivities σ0 = 1, σ1 = 0.0125
and σ2 = 1, from inside towards outside, see [2].
The steady state electric potential is a solution to problem (NP), where σ is constant in
each layer (in particular σ = σ2 on ∂Ω = RT ⊂ ∂Ω2) and ck ∈ D, pk ∈ R2.
We first solve the direct Neumann problem (NP), for a situation where N = 4 pointwise
dipoles are modelled. The domain Ω is meshed using P1 finite elements. The boundary
∂Ω is discretized with 512 points at which we compute the potential u associated with
the boundary current Φ = 0. This example is illustrated in figure 2, where the domain is
shown with level curves for the numerical solution u to the direct problem.
Now, we extend the function f , given on ∂Ω = RT by (2), (3), (4), to each inner layer,

Figure 2: Domain Ω = RD with level curves for u; solution to Neumann direct problem.

first rT, then T, by using the technics of harmonic approximation described in section 2
and Proposition 1, with m = 2. Let us note that λ plays the role of a Lagrange multi-
plier which makes implicit the dependence of the solution on the bound M ; this can be
adjusted by dichotomy. Indeed, the error e(λ) := ‖f − g(λ)‖L2(sT) smoothly decreases to
0 as λ → −1, and λ → M(λ) is C1, bijective and decreasing on ] − 1,+∞[→]0,+∞[,
see Ref. [26]. The determination of the actual bound M is achieved by functional min-
imization (Ref. [19]). The numerical tests are produced by the software AEAD1 which
runs the procedure described in section 2 in order to compute the best harmonic H2,2

approximants to the function f . Figure 3 shows the reconstruction data on the innermost
layer. The gap, in L2-norm between the reconstructed data and the actual one is equal
to 2, 23× 10−2. Notice that, due to the small value of the specific conductivity σ1, infor-
mation is lost on the innermost layer.

1Analytic Extension on Annular Domain: developed at LAMSIN and INRIA (APICS team) using
Matlab 7.
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As a second step, once the Cauchy data u = Re g and ∂nu = ∂θ Im g are available on the

Figure 3: Real part of analytic extension g of boundary solution (actual/computed u) on the
inner layer ∂Ω0 = T.

inner boundary T, meromorphic or rational approximation schemes, described in section
3, are used in order to approximately locate {ck}, as in Ref. [6]. They are run by the
software Rarl22 which uses the procedure described in section 3, relying on Schur param-
eters, in order to compute the best rational H̄2

0 approximants πn/qn of given degree n to
the function h− = PH̄2

0
g = g −A ∈ H̄2

0 , see (12).
In the following experiments, the original sources are represented by (small) ∗, the re-
covered poles by the ◦ (which are often superposed on the ∗, which makes them look
like single black circles), while the lines are the moments for both functions (symbolized
by a dot when equal to 0 or sufficiently small). Figure 4 shows how the relative error
on the moments, the absolute error of the sources location, and the relative error on the
extended data on ∂Ω0 = T increase as the N = 1 dipolar current source gets closer to
the boundary T. The source is a unitary current dipole with moment p1 = (1 + i)/

√
2

and located at a distance from the origine equals to 49%, 78%, 88%, 93%, or 97% of the
radius of the innermost layer (s = 1, at the moment).
Figure 5 shows the evolution of the errors as the ratio σ1/σ0 increases, for the conductiv-

Figure 4: Errors w.r.t. dipole position.

ity σ1 of the intermediate layer of our three layer model, and the two others that satisfy
σ0 = σ2. Note that in the above case, we had σ1/σ0 = 80.
Figure 6 illustrates how the computation of the poles of best L2 rational approximants

2Developed jointly at INRIA (Miaou team) and Ecole des Mines de Paris (CMA) using Matlab 6.
This software also performs AAK (best uniform meromorphic) approximation, using singular value de-
compositions together with state space representations. This is used in order to initialize the present L2

scheme.
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Figure 5: Errors w.r.t. ratio of conductivities between neighboring layers, for N = 1 dipole at
radius .97.

of g −A on T allows to recover the dipoles centers.

Figure 6: N = 1, 2, 3, 4.

We now consider the robustness properties of our identification processes. Noise is gen-
erated by a random variable whose uniform norm ranges from 1% to 20% of ‖f‖L∞(∂Ω).
Figure 8 shows the evaluation of the absolute error on the sources and the relative error
for the moments.

5 Comments

This work shows that analytic and meromorphic approximation tools from complex and
functional analysis provide a relevent and costless method in order to solve some 2D
non-destructive control issues, and in particular dipolar sources recovery from boundary
data, a problem arising in medical engineering (inverse EEG problem). See [6] where the
detection of small inclusions is also handled by these techniques.
Generalization to 3D situations for the three sphere model as well as for more realistic
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Figure 7: N = 1, 2, 3, 4 and n = 3, 5, 6, 7.

Figure 8: Errors with respect to the noise level for N = 1.
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geometries is under consideration. Note that the main difficulty is to constructively solve
the first cortical mapping step: even if gradients of harmonic functions are still analytic
functions in 3D, one needs to compute the solution on a basis of spherical harmonic.
This leads to a number of numerical difficulties, mainly in realistic medical situations
where data are missing on a part of ∂Ω (see [3] and [21] where ellipsoidal geometries
are considered). However, the second step of sources recovery is already performing well
enough in 3D, by looking for meromorphic approximants on 2D sections of the inner
domain Ω0, see [8].
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[26] N. Torkhani, Contribution à l’identification fréquentielle robuste des systèmes dy-
namiques linéaires, Ph.D. thesis, École Nationale des Ponts de Chaussées Paris, 1995.

15


