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Parameter identi¯cation for Laplace equation

and approximation in Hardy classes
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Abstract | We consider the inverse problem of identifying a Robin coe± cient on
some part of the boundary of a smooth 2D domain from overdetermined data available
on the other part of the boundary, for Laplace equation in the domain. Using tools
from complex analysis and analytic functions theory, we provide a constructive and
convergent identi¯cation scheme for this inverse problem, together with numerical
experiments.

1. INTRODUCTION

Several inverse problems may need to be solved that some lacking data on a
part of the boundary be recovered from overdetermined data on another part of
the boundary. In this paper, the issue we are interested in is the recovery of a
Robin coe¯ cient from measurements performed on some part of the boundary.
Such an issue arises for example in corrosion detection by electrical impedance
tomgraphy. An e¬ective non linear boundary condition that reduces the knowl-
edge of corrosion e¬ects to that of a function de­ ned on the corroded boundary
has been derived by using a multiscale analysis expansion by Santosa et al. [25].
In the simplest linear case, the parameter characterizing the damage caused by
corrosion is a Robin exchange coe¯ cient, the direct problem to be solved being a
Laplace equation. Sticking to this simple model, our purpose here is to set up a
numerical algorithm based on constructive approximation, using analytic func-
tions tools. Alternative algorithms have been investigated by several authors,
using quasi-reversibility or least squares approaches see [13, 15, 18, 20, 22].
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We ­ rst recall an identi­ ability result proved in [13], ensuring that the un-
known Robin coe¯ cient is uniquely determined in a proper class from the knowl-
edge of the Neumann data (prescribed current ®ux) and of additional Dirichlet
data (measured voltage potential), on a suitable proper part of the boundary.

We then approach constructively the issue of determining the unknown co-
e¯ cient from the available boundary data. The point here is that the above
problem amounts to that of recovering an analytic function from its trace on
a proper subset of the boundary of its analyticity domain. In order to ensure
robustness properties of the recovery procedure, we are led to turn this interpo-
lation issue into an approximation one in Hardy classes. After conformally map-
ping the involved domain into the unit disk D of the complex plane, we handle
these problems using complex analysis tools and analytic approximation results
[2, 4, 11]. The main di¯ culty one has to face in processing such an approach
is that related to instabilities characterizing data completion problems of this
kind, i. e. the solution of Cauchy problems for elliptic operators, which are well
known | since Hadamard around 1920 | to be severely ill-posed. As a matter
of fact, any given data may be ­ t as closely as desired on the prescribed part of
the boundary, provided that hectic behaviours are tolerated on the remaining
part of the boundary. Setting a bound on the data to be recovered, as proposed
in the bounded extremal extension approach [4], can avoid the extended solution
from blowing up away from the prescription part of the boundary. However,
doing so provides us with nothing but an approximate extension that saturates
the constraint, and is therefore arbitrary unless this constraint is close enough
to be the proper bound. The reconstruction algorithm thus needs to tackle in a
single movement both issues of determining the extended function and the right
bound. To this end, a cross validation procedure is set up, some part of the
available data being devoted to it. On the other hand, extending the function
would be hardly enough since, our purpose being to recover a Robin coe¯ cient
from extended data, accuracy is not only required on the function itself, but on
its normal derivative as well. This compels us to consider higher order methods,
based on the same extension process applied to the derivatives of the function
to be extended.

The kernel of the whole numerical process makes use of the approximation
software Hyperion | developped at INRIA | in order to compute the desired
coe¯ cient. This approach extends for the reconstruction of lacking data in
cracks recovery: in such a case, the data to recover are not harmonic, and
meromorphic extension is therefore used instead of the analytic one [5]. The
issues remain essentially the same, especially that related to the cross validation
stabilzation procedure.

The outline of the paper is the following. In Section 2, notations are set and
identi­ ability results are recalled; further regularity properties are also checked.
Section 3 is devoted to the presentation of the bounded extremal problems in
Hardy spaces, and a thorough study of their solutions continuity with respect
to the data and bounds is then conducted in Section 4. Section 5 is devoted to
the numerical methods and results. Appropriate recovery algorithms are ­ rst
described, and their robustness is established according to the continuity prop-
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erties of Section 4. A bunch of numerical experiments, highlighting accuracy
and robustness of the methods, eventually closes the issue.

2. STATEMENT OF THE PROBLEM, IDENTIFIABILITY,
AND SMOOTHNESS PROPERTIES

2.1. Notations

Let D be a bounded domain of R2 (or C ) with Jordan closed boundary T .

The kth derivative with respect to the ambient real or complex variable
of some function ¿ will be written as ¿ (k), k ¶ 0, with the usual convention
¿ 0 = ¿ (1) .

For n ¶ 0 and 0 µ ­ µ 1, we note C n;­ (D) for the space of functions f on D
whose derivatives f (k) are of H�older class with order ­ for 0 µ k µ n. We put
C n;0 = C n.

Also, D is said to have a C n;­ boundary if T admits a C n;­ parametriza-
tion [23].

The Lebesgue measure on T will be noted · in general. However, for T = T,
the unit circle, we shall write d· = d³ .

For any connected open subset E » T , let À E be the characteristic function
of E; traces on E of both functions and spaces will be indicated by jE .

The Hilbert space L2(E) of square summable functions with respect to ·
on E is equipped with the classical norm and inner product, that we simply
write k kE and ( ; )E , respectively.

For s > 0, the Sobolev Hilbert space W s;2(D) equipped with k ks;D is
classically de­ ned, see e.g. [14]. Whenever n 2 N, the norm on Wn;2(E) is the
usual one:

kfk2
n;E =

nX

k = 0

kf (k)k2
E ;

(here, f (k) is the kth derivative of h with respect to the complex variable z).
Note, as usual, that W 0;2(E) = L2(E) while k kE = k k0;E .

Whenever E ( T , C n
0 (E) is the subset of C n(E) consisting of functions f

that vanishes at @E together with their derivatives f (k), k = 0; ¢ ¢ ¢ ; n ¡ 1. The
set W n;2

0 (E) stands for the W n;2(E) closure of C n
0 (E). We also use the Sobolev

Banach space W n;1 (E) of functions belonging to L 1 (E) together with their
derivatives up to order n.

As to Hardy spaces of the unit disk D , H2 = H2(D ) can be viewed as the
space of functions analytic in D that are square-summable on circles of radius less
than 1 centered at 0. It is a consequence of this de­ nition that traces on the unit
circle T of H 2 functions belong to L2(T), and in this sense H 2 » L2(T) inherits
the inner product and can be described as the subspace of L2(T) consisting in
functions whose Fourier coe¯ cients of negative order do vanish:

H2 =
n

g(z) =
X

p¶0

apzp j
X

p¶0

japj2 < 1
o

; (1)
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see e.g. [16, 17, 24] for de­ nitions and properties of Hardy spaces. A further
equivalent de­ nition of H 2 is that it is the space of complex valued functions
whose real and imaginary parts are both harmonic in D and such that their L2

norm on circles of radius r < 1 remains bounded as r ! 1.

Note that H 2 strictly contains the functions that are analytic and uniformly
bounded in D .

We ­ nally let Hn;2 be the Hardy|Sobolev Hilbert space:

Hn;2 = fg 2 H2 j g(k) 2 H2; 0 µ k µ ng = H2 \ W n;2(T); (2)

(here, g(k) is the kth derivative of g with respect to z in D ) equipped with the
norm k kn;T; of course H0;2 = H2.

2.2. The 2D Robin inverse problem

Let D be a simply connected bounded domain of R2 with boundary T , a C 1;­

Jordan curve, for ­ 2 (0; 1). Let then ® , K be two nonempty open subsets of T ,
satisfying T = ® [ K .

We address the following inverse problem:

Being given a prescribed ®ux ¿ 6² 0 together with measurements um on K,
­ nd a function ’ on ® such that the solution u of

¢u = 0 in D;

@u

@n
= ¿ on K;

@u

@n
+ ’u = 0 on ® ; (PR)

also satis­ es ujK = um.

In the sequel, we assume that both the measurement part K » T and the
\Robin" part ® = T n K have positive Lebesgue measure and ¯nitely many com-
ponents, the simplest case being the one where K is an arc of T .

Remark. The present work is still valid if measurements um are available
on some subset of K only, provided it also has positive Lebesgue measure, or
(at least partially) if the Neumann boundary condition was replaced there by a
Dirichlet one. However, for sake of simplicity, we shall stick here to the above
case.

2.3. Identi¯ability

That the above inverse problem is well-posed (meaning that its solution is
unique) as soon as the additional measurements are available on any set K of
positive measure, is a result proved in [13] for classes of continuous Robin coef-
­ cients, and recalled herafter in Theorem 1. Intending to work out higher order
methods, we shall need however that Robin coe¯ cients hold more regularity,
which leads us to restrict somewhat the class of admissible Robin coe¯ cients
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used in [13]. Let c; c0 > 0, and K be a nonempty connected subset of ® the
boundary of which does not intersect that of ® . De­ ne then:

©n
ad = f’ 2 C n

0 ( ® ) j j’(k)j µ c0; 0 µ k µ n; and ’ ¶ cÀ K g: (3)

Recall that C n
0 is the set of n-times di¬erentiable functions, that vanish on

the boundary as well as their (n ¡ 1) ­ rst derivatives. The identi­ ability result
can then read as follows:

Theorem 1 [13, Theorem 1, Lemma 1]. Let ¿ 2 L2(K) and for i = 1; 2, let
’i 2 ©0

ad. Let ui 2 C 0(D) be the unique solution of (PR) associated to ’ = ’i.
It holds that, if u1jK

= u2jK
, then ’1 = ’2 on ® .

2.4. More regularity

More regularity on the solution of the Robin problem (PR), provided the coef-
­ cient ’ holds itself enough regularity, is needed in view of working out higher
order methods, which means methods based on analytic extensions of the deriva-
tives, not only of the prescribed data function. The following result then holds:

Theorem 2. If ¿ 2 W n;2
0 (K) and ’ 2 ©n

ad, then the solution u’ to (PR)
belongs to W n+ 3=2;2(D) » C n;1=2(D) and there exist some constant ® n > 0 such
that:

8’ 2 ©n
ad; ju(k)

’ (x) ¡ u(k)
’ (y)j µ ® njx ¡ yj1=2 8x; y 2 D 8k = 0; : : : ; n: (4)

The proof makes use of a bootstrap technique, supported by the precise
knowledge of the behaviour of the solution u’ of the Robin problem (PR) with
respect to ’ provided by the following lemma:

Lemma 1 [13]. Let ¿ be a non negative °ux, and u’ be the solution of
problem (PR) associated to ’. Therefore:

i) Positivity. 8’ 2 ©0
ad, there exists a constant % > 0 such that u’ > % in D.

ii) Monotonicity. Let ’1; ’2 2 ©0
ad, such that ’1 ¶ ’2 in ® . Then u’1

µ u’2

in D.

iii) Control. Let c and c0 be the two positive constants of ©0
ad. Let us denote

by uc the solution of (PR) for ’ = c on K and ’ = 0 on ® n K and uc 0 the
one for ’ = c0 on ® . Then, 8 ’ 2 ©0

ad, 0 < uc 0 µ u’ µ uc.

Proof of Theorem 2. Let u’ solve to (PR), and introduce:

¿ 2 =

(
¿ on K;

¡ ’u’ on ® :

Let now w’ solve the problem:

¢w’ = 0 in D;

@w’

@n
= ¿ 2 on T;

Z

T

w’ = 0: (5)
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Setting c’ =
R

T
u’ > 0, we derive immediately:

u’ = w’ + c’: (6)

Let us ­ rst notice that, as a constant, c’ can be controlled independently
of ’ by using the monotonicity result from Lemma 1: from ’ 2 ©0

ad, we derive
that u’ µ uc a.e. Hence, c’ =

R
T

ju’j µ
R

T
jucj := ­ , which puts an end to the

issue.
Theorem 2 will now be proved as soon as we establish that w’ belongs to

W n + 3=2;2(D), and that its norm in that space is controlled by some constant
Cn > 0 not depending on ’, namely:

9Cn > 0; ’ 2 ©n
ad and ¿ 2 W n;2

0 (K) =)
w’ 2 W n+ 3=2;2(D) and kw’kn+ 3=2;D µ Cn: (7)

° Let us prove (7) for n = 0. From Theorem 1, we get ’u’ 2 C0( ® ) » L2( ® ),
whence ¿ 2 2 L2(T ). Thanks to the shift theorem [14], the solution w’ of (5)
belongs to W 3=2;2(D) and there exists some constant c0 > 0 such that:

kw’k3=2;D µ c0 k¿ 2k2;T = c0(k ¿ k2
K + ku’’k2

® )1=2:

Since ’ 2 ©0
ad, it follows from Lemma 1 that: ku’’k ® µ c0kuck ® , which yields:

kw’k3=2;D µ C0 = c0(k ¿ k2
K + c02kuck2

® )1=2:

° Assume now that (7) holds for some n ¶ 0, and let us prove it to hold for
(n + 1).

Let ¿ 2 W n+ 1;2
0 (K) and ’ 2 ©n+ 1

ad » C n+ 1
0 (® ). We are claiming that ¿ 2 2

W n + 1;2(T ). Indeed:

k ¿ 2k2
n+ 1;T = k ¿ k2

n+ 1;K + k’u’k2
n+ 1;® : (8)

Because ©n+ 1
ad » ©n

ad, we get from (7) that w’ is bounded in W n+ 3=2;2(D) by
a constant independant on ’. It comes out that so is its trace in W n+ 1;2(T ),
which means that some positive constant ¬ n exists, such that:

kw’kn+ 1;T µ ¬ n: (9)

which, together with (6), yields:

ku’kn+ 1;T µ ¬ n + ­ : (10)

From (8) and (10), we derive the existence of a constant ­ n + 1 > 0 such that:

k ¿ 2k2
n+ 1;T µ k¿ k2

n+ 1;K + ­ n+ 1;

which proves the claim. Hence, thanks to the shift theorem [14], w’ belongs to
W n + 5=2;2(D) and some constant cn+ 1 > 0 exists, such that:

8’ 2 ©n+ 1
ad ; kw’kn+ 5=2;D µ cn+ 1k¿ 2kn + 1;T :
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Thus:

8’ 2 ©n+ 1
ad ; kw’kn+ 5=2;D µ cn + 1(k ¿ k2

n+ 1;K + ­ n+ 1)1=2:

Property (7) is then established at order n + 1, with Cn+ 1 = cn+ 1(k ¿ k2
n+ 1;K +

­ n+ 1)1=2.
Using now (6), we derive the existence of some constant ¯ n > 0 such that

8’ 2 ©n
ad, u’ 2 W n+ 3=2;2(D) and ku’kn + 3=2;D µ ¯ n: The Sobolev imbedding

W n + 3=2;2(D) » C n;1=2(D) with continuous injection [19], is the last argument
needed to derive (4).

3. PARAMETER IDENTIFICATION
AND APPROXIMATION IN HARDY CLASSES

Up to a conformal mapping, problem (PR) can be expressed in the unit disk D ,
in order to work with Hardy classes in one of their classical framework [11]. In-
deed, whenever D possesses a Cn;­ boundary for some ­ 2 (0; 1), the Kellogg|
Warschawski theorem [23, Theorems 3.5, 3.6] implies that there exists a confor-
mal mapping from the unit disk D into D having a Cn extension to D .

In the remainder of this section, we shall thus assume that D = D and
T = T = T n K [ K.

The inverse problem (PR) we are concerned with now takes place in the unit
disk where it can be constructively solved using interpolation / approximation
results in the Hardy space H2.

3.1. From harmonic functions to Hardy classes

Back to problem (PR), we assume now that ¿ 2 L2(K) and ’ 2 ©0
ad »

C 0(T n K). It then follows from Theorem 2 that u 2 C 0;1=2(T ).

3.1.1. Harmonic conjugation

From the knowledge of the ®ux ¿ 2 L2(K) and of the temperature um 2
C 0;1=2(K) in system (PR), we can in principle build the trace on K » ¡ N of a
function analytic in D. This holds because u is harmonic in D and Cauchy|
Riemann equations ensure that, if ! is a harmonic function in D satisfying

@!

@³
=

@u

@n
on T

(! is the harmonic conjugate of u), then f = u + i ! is an analytic function
in D. Thus, if we note

R
¿ d³ for some primitive of ¿ on K , then the function:

f = um + i

Z
¿ d³ on K;

is actually the trace on K of a (unique) function g analytic in D: f = gjK .
Moreover, smoothness preserving properties of the harmonic conjugation oper-
ator, namely Privalov’s theorem or the Carleson|Jacobs one, implies that g
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also belongs to the H�older class Cn;1=2(T ), see [1, 8, 17]. It thus belongs to
Hardy classes and in particular to Hn;2, see the de­ nitions in Section 2.1.

Our aim is then to recover g in the whole of D, or at least on ® = T n K,
from the knowledge of its trace f on K. Indeed, this function would solve for
(PR) since

u = Re g in D;

and then

’ = ¡ (Im g)0= Re g on ® ; (11)

where the above equality should be properly understood (non tangential limits
of the right hand side). Now, ’ is the expected solution to (PR) on ® .

Moreover, we want the recovery procedure to be convergent in order to carry
some stability and robustness properties. Our concern here is that, in practice,
one may not know exactly um nor f on K: for example, pointwise values of um

might only be available through experimental devices that necessarily induce
noises and perturbations of the measurements. Also, the knowledge of f requires
that of some \primitive of the ®ux", which is to be computed numerically.

A more realistic problem is thus to approximately and robustly recover g
in the whole of D from the knowledge of a perturbation f" of its trace f on
K » T , where " is a small parameter that stands for a (deterministic) measure
of the perturbation. However, classical analytic interpolation or extrapolation
results from data on part of the boundary (Carleman integrals, for example) do
not possess any stability properties on their own and are not suitable to ensure
robustness with respect to perturbations, as shows the next proposition from [6].
This is the reason why we need a constrained approximation framework.

Now, despite these recovery / approximation questions should be approached
in uniform norm (see e.g. [6, 7]), it is simpler to handle them in the Hardy
space H2 which possesses a Hilbertian structure. Also, for various reasons,
robustness properties are easier to ensure there.

3.1.2. Basic properties of the Hardy space H2

Recall ­ rst the following basic uniqueness result, in Hardy spaces.

Proposition 1 [16, 17, 24]. Let K be an nonempty subset of T such that
· (K) > 0 and let g 2 H2 verifying gjK

= 0; then:

g ² 0 on the whole unit disk D

Also, we have the density property:

Proposition 2 [6]. Let K » T such that K and T n K have positive
Lebesgue measure.

(i) H2
jK

is dense in L2(K).

(ii) Let h 2 L2(K) and suppose (gn) is a sequence of H2 converging to h in
L2(K). If h is not the trace of an H2 function, then kgnkT nK ! 1.
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In view of Proposition 2, we see that as soon as a perturbation is involved
in the measurements on K and prevents the data from being truly the trace
of an H2 function by loose of its analyticity property, any H2 interpolating
procedure from K only will exhibit a wild behavior outside K.

A remedy for this unstable behavior is to state our recovery problem as a
(best) constrained approximation issue which is a bounded generalization on
subsets of T of classical (dual) extremal problems in H2.

3.2. Best H2 approximation

We now explain how to robustly recover an H2 function on the whole D from
approximate measures of its boundary values on K.

To give some more feeling about this approach, assume for a while that we
want to solve the direct problem of ­ nding the solution v to

¢v = 0 in D;

v = um on T;
@v

@n
= ¿ on T:

Put f = um + i
R

¿ d³ on T . The considerations of Section 3.1.1 are in this case
also to the e¬ect that f coincides with the trace on the whole boundary T of
a (unique) function g ¤ analytic in D and bounded in L2 norm (at least if um,
¿ 2 L2(T )). Hence, f = g ¤ jT

, for the solution g ¤ 2 H2 of

kf ¡ g ¤ kT = min
g 2 H2

kf ¡ gkT ;

which is given by the orthogonal (analytic) projection of f onto H 2. Classical
(dual) extremal problems may thus be of constructive use to get v, since it holds
that v = Re g ¤ . Hence, best H2 approximation on the whole boundary already
provides a constructive way to solve for direct Dirichlet or Neumann problems.
Our purpose now will be to show that this is still the case for inverse problems;
moreover, partially overdetermined situations where um or ¿ are not available
on the whole boundary may be handled as well, since H 2 extremal problems can
be solved from data on part on the boundary only, if some rough information is
given on the complementary part.

3.2.1. Bounded extremal problems (BEP)

These are as follows, in the case of the Hardy space H2; observe that such issues
do also make sense in general Hardy classes Hp, 1 µ p µ 1 were they have also
been approached, see [4, 6, 7].

Given h 2 L2(K) and M > 0,

Find g = g(h; M ) 2 H2, kgkTnK µ M such that

kh ¡ gkK = min
! 2 H2

k!kT nK µM

kh ¡ !kK : (BEP)
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Under the norm constraint, this problem becomes well-posed. Existence and
uniqueness of solutions to (BEP) are established in [2, 4] as well as a constructive
formula to compute g0. Denote by PH2 : L2(T ) ! H 2 the orthogonal (analytic)
projection and by T the Toeplitz operator with symbol À T nK

T : H2 ! H2

! 7! PH2 ( À TnK !):

On the Fourier basis, the operator T is a semi-in­ nite Toeplitz matrix: Tk;l =
Tk¡l, k; l ¶ 0. Whenever T n K coincides with the arc (e¡i³ 0 ; ei³ 0 ), T can be
expressed as:

Tk;l = sin(k ¡ l) ³ 0=º (k ¡ l); for k 6= l; Tl;l = ³ 0=º :

Hence,
g = g( ¶ ) = (I + ¶ T )¡1PH2 ( À Kh); (12)

for the unique value of the (Lagrange type) parameter ¶ > ¡ 1 such that
kgkT nK = M , excepted if h already belongs to the approximant class (h 2 H2

jK
,

khkT nK µ M ) in which case g = h corresponds to ¶ = ¡ 1. Note that integral
formulas of Carleman type are also available to represent g( ¶ ), see [4].

The behavior with respect to ¶ of the error e( ¶ ) and of the constraint M ( ¶ )
de­ ned by:

e( ¶ ) = kh ¡ g( ¶ )k2
K ; M( ¶ ) = kg( ¶ )kT nK ;

is smooth and monotonous. In particular, as ¶ & ¡ 1,

e( ¶ ) & 0; M ( ¶ ) % 1; if h 62 H2
jK

; M( ¶ ) % khkTnK ; if h 2 H2
jK

:

Although these formulae remain implicit (the parameter ¶ being involved in
place of the norm constraint M ), they give rise to a robust algorithm that allow
to build g(h; M ), see Sections 4 and 5.

4. CONTINUITY OF THE (BEP) SOLUTIONS WITH RESPECT
TO THE DATA AND BOUNDS

In this section, we shall be concerned with continuity properties of the solutions
of (BEP) problems with respect to the data h and M . For h 2 H2

jK , we still

denote by h its unique H2 extension to the whole unit disk D (see Proposition 1).
Let:

D = f(h; M ) 2 H2
jK £ R¤

+ j khkT nK = Mg;

D¡ = f(h; M ) 2 H2
jK £ R¤

+ j khkT nK < Mg:

Let E the approximation or extension operator, which maps h 2 L2(K) and
M 2 R¤

+ onto the unique associated solution g(h; M ) = g to problem (BEP):

E : L2(K) £ R¤
+ 7¡ ! H 2

(h; M ) 7¡ ! g:
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Theorem 3. Let L2(K) £ R¤
+ be equipped with its usual norm. The

mapping E is continuous on the whole (L2(K) £ R¤
+ ) with respect to the weak

topology of H2, whereas it is only continuous on (L2(K) £ R¤
+ ) n D¡, with

respect to its strong topology.

The proof requires the following lemma.

Lemma 2. The map EK : (h; M ) 7! E(h; M )jK is continuous from L2(K) £
R¤

+ onto L2(K).

Proof. Let (hn; Mn) be a sequence of L2(K) £ R¤
+ strongly convergent to

(h; M ), and let gn and g solve the (BEP) problems related to (hn; Mn) and
(h; M ).

De­ ne now:

BM := fg 2 H2 j kgkT nK µ Mg; C M := fgjK j g 2 B M g;

Bn := BMn
; C n := C Mn

:

Being the best approximation of the data h in the closed convex subset BM

of the Hilbert space H2, the following classical characterization holds for g [10]:

Re ((w ¡ g); (g ¡ h))K ¶ 0; 8w 2 BM : (13)

We have:

kgn ¡ gkK µ kgn ¡ hnkK + khn ¡ gkK µ 2khnkK + kgkK

and therefore kgn ¡ gkK is bounded.
By the characteristic equation (13), we get for all n 2 N:

(
Re (wn ¡ gn; gn ¡ hn)K ¶ 0; 8wn 2 Bn

Re (w ¡ g; g ¡ h)K ¶ 0; 8w 2 BM

(14)

Let us choose some " 2]0; 1[. Therefore, there exists some integer N (") 2 N,
such that 8n ¶ N ("):

g" := (1 ¡ ")g 2 Bn and gn;" := (1 ¡ ")gn 2 BM :

Using then equation (13) with g" and gn;" as test functions, we get:

(
Re (g ¡ gn ¡ "g; gn ¡ hn)K ¶ 0 8n ¶ N (")

Re (gn ¡ g ¡ "gn; g ¡ h)K ¶ 0 8n ¶ N (")

and: (
Re (g ¡ gn; gn ¡ hn)K ¶ " Re (g; gn ¡ hn)K ;

Re (gn ¡ g; g ¡ h)K ¶ " Re (gn; g ¡ h)K :

From both the above inequations, we get:

Re (g ¡ gn; (gn ¡ g) + (h ¡ hn))K ¶ "[Re (g; gn ¡ hn)K + Re (gn; g ¡ h)K ]
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which yields:

Re (g ¡ gn; g ¡ gn)K µ Re (g ¡ gn; h ¡ hn)K

¡ "[Re (g; gn ¡ hn)K + Re (gn; g ¡ h)K ]: (15)

But kgnkK and khnkK are both real bounded sequences. There exists two
positive real numbers ¬ , ­ such that:

kgn ¡ gk2
K µ ¬ khn ¡ hkK + ­ "; 8n ¶ N ("):

Now, ¶ being any accumulation point of the bounded real sequence
kgn ¡ gkK, we derive by making n ! 1:

¶ µ ­ ":

Since this holds for any value of ", the real sequence kgn ¡ gkK has only 0 as
an accumulation point, and is thus convergent to 0, which proves gn to strongly
converge to g in L2(K).

Proof of Theorem 3. Let (hn; Mn) be a sequence of L2(K) £ R¤
+ such

that:
hn ¡ ! h0 in L2(K); Mn ¡ ! M > 0 in R+ :

Let gn and g be the solutions of the (BEP) problems related to the pairs (hn; Mn)
and (h; M ). From Lemma 2, we derive that gn ! g in L2(K), and kgnkK is
hence bounded. Since kgnkT nK µ Mn and limn ! 1 Mn = M , we get that
kgnkT is bounded. H2 being a Hilbert space, there exists some w 2 H2, and
a subsequence of (gn), still denoted by (gn), such that gn * w weakly in H 2.
Lemma 2 thus implies that w = g on K and, by Proposition 1, w = g on the
whole D. The subsequence gn then weakly converges to g in H2, which does
not depend on the chosen subsequence. Hence, gn weakly converges to g in H 2.
This establishes the ­ rst part of Theorem 3.

We now claim that, if h 62 C M or if (h; M ) 2 D (actually meaning (h; M ) 2
(L2(K) £ R¤

+ ) n D¡), then limn! 1 gn = g in H2. Indeed, according to lemma 2
and the already proved ­ rst part of the present theorem, we shall be done by
proving that limn! 1 kgnkT nK = kgkT nK . To this end, let (kg ¸ kTnK) be any
convergent subsequence of kgnkT nK , and let l ¶ 0 be its limit. But, whenever
h 62 C M , or (h; M ) 2 D, the constraint of the related (BEP) problem is saturated
and we thus get:

M = kgkT nK µ lim inf
¸ ! 1

kg ¸ kT nK = l µ lim
¸ ! 1

M ¸ = M:

It follows that l = M = kgkT nK , which means the sequence (kgnkT nK) has a sin-
gle accumulation point. In addition to being bounded, this makes it convergent
and proves the claim.

Finally, let us prove that, if (h; M ) 2 D¡, and limn! 1 gn = g in H 2,
then there exists some integer N such that 8n ¶ N , hn 2 Cn. Indeed, if
(h; M ) 2 D¡, then g = h, and moreover kgjK kT nK < M . Let (h ¸ ) be some
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subsequence of (hn), such that h ¸ 62 Ç . In such a case, kg ¸ kT nK = M ¸ . But
lim̧ ! 1 M ¸ = M , so that we get:

lim
¸ ! 1

kg ¸ kT nK > kgkT nK ;

which cannot hold, because g ¸ strongly converges to g in L2(T ).

In order to achieve convergence of the reconstruction scheme, continuity
ensured by Theorem 3 is hardly su¯ cient. Provided the available data are
smooth enough, higher order schemes, holding better continuity properties, can
be worked out in a similar way. To this end, Hn;2 being the Hardy|Sobolev
space of D as de­ ned in Section 2.1, let En be the mapping:

En: W n;2(K) £ R¤
+ 7¡ ! Hn;2

de­ ned by:

[En(h; M )](n) = E(h(n); M ); E (k)
n (h; M ) = h(k)(x0); 0 µ k µ n ¡ 1 (16)

for some ­ xed x0 2 K (all the derivatives are taken with respect to the ar-
clength ³ on T). Note that E0 = E . Solving the so-called (BEP)n problem thus
amounts to di¬erentiate n times the given data, solve the (BEP) problem for
the so obtained n-th derivative with bound M , and then integrate n times to
get En(h; M ) as a function of Hn;2. As expected, continuity on the derivatives,
up to the n ¡ th one, is gained this way.

Theorem 4. Let W n;2(K) £ R¤
+ be equipped with its usual norm. En is

therefore continuous as a mapping from W n;2(K) £ R¤
+ onto Hn;2, with respect

to its weak topology for all n ¶ 0, and it is continuous as a mapping from
W n;2(K) £ R¤

+ onto Hn¡1;2 with respect to its strong topology.

Theorem 4 is a straightforward consequence of Theorem 3 and the de­ nition
of En, by using the compactness of the imbedding of W n;2(T) into W n¡1;2(T)
for n ¶ 1 [10, Theorem IX.16].

5. COMPUTATIONAL ALGORITHMS
AND NUMERICAL RESULTS

In view of the results of Section 3, we are able to provide a constructive scheme to
solve for (PR). Under some smoothness assumptions, this procedure is e¬ective
and robust with respect to measurement noises. This will provide us with an
original and e¯ cient method that permits the Robin coe¯ cient recovery.

Assume that we are given some nonnegative ®ux ¿ such that ¿ 6² 0 and
let f be the measurements performed on K » T . When D = D , the successive
steps of a reconstruction algorithm for ’ on ® are the following. If D 6= D ,
a conformal transformation is required as preliminary and ­ nal steps. In the
sequel, we shall describe and study the method in the unit disk D .

1. Compute from the available data the restriction to K of the analytic func-
tion h = um + i

R
¿ d³ ;
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2. Solve the (BEP) problem related to the data h on K, and a suitable
constraint M > 0 on T n K . This gives gM = g(hjK ; M ) on D ;

3. Compute

’M = ¡ (Im gM)0= Re gM on T n K: (17)

This process is expected to end up with the actual solution to problem (PR),
provided the constraint M is properly chosen. In that case, expression (17)
makes sense thanks to Lemma 1, since the positivity of ¿ yields Re (gM ) > 0
on D .

Assuming h is indeed the restriction to K of some analytic function also
denoted by h, gM exactly ­ ts h whenever the bound M is larger than khkTnK .
However, this value is unknown and thus needs to be found out. A cross valida-
tion process may be laid out to ful­ ll the task, some part of the available data
needing to be devoted to it.

5.1. The zero-order method

Let us brie®y describe the procedure, designed to replace the second step of the
above algorithm, in order to provide it with the \right" value of the bound to
be used, and eventually with the proper bounded extension:

(a) Split the measurement set into two parts K = K1 [ K2.

(b) Given · > 0, solve the (BEP) problem with respect to (hjK1 ; · ) and get
g· .

(c) De­ ne M := Argmin· >0kg · ¡ hkK2 .

The full zero-order algorithm reads now as follows:

Algorithm A0:

1. Compute from the available data the restriction to K of the analytic func-
tion h = um + i

R
¿ d³ .

2. (a) Split the measurement set into two parts K = K1 [ K2.

(b) Given · > 0, solve the (BEP) problem with respect to (hK1; · ) and
get g · .

(c) De­ ne M := Argmin· >0kg · ¡ hkK2 and compute g = g(hjK1 ; M) on

D .

3. Compute

’ = ¡ (Im g)0= Re g on T n K:

In case of analytic data, the so-computed g is as expected the desired analytic
extension of the data to the whole of D , which is established in the following
proposition.
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Proposition 3. Assume h 2 H2
jK

, and let M := khkTnK1
. Then, M is the

smallest constant minimizing the mapping ½ de¯ned by:

½ : R+
¤ 7¡ ! R+

· 7¡ ! kg(hjK1; · ) ¡ hkK2

and moreover ½ ( · ) = 0, 8 · 2 [M; 1].

Proof. Since g(h; M ) ² h, we get ½ (M ) = 0 and M is a minimum of ½ .
The remaining follows immediately from Proposition 1.

Because of noise, the data are however unlikely to be analytic, which compels
us to check the robustness of the whole process. Namely, the issue is: given
slightly perturbated (i. e. close to analytic) data, would the extended ones, using
the above algorithm (A0), be close to the analytic ones ?

Let h 2 H 2, and M := khkTnK 1
. Given two positive real numbers A, B > 0,

A < B, and a non analytic perturbation " (" 2 L2(K) and " 62 H2
jK), let us

consider h" = h + ", and de­ ne the following mapping:

½ ": [A; B] 7¡ ! R+

· 7¡ ! kg(h"jK1 ; · ) ¡ h"kK2 :

where g(h"jK1 ; · ) solves the (BEP) problem related to (h"jK1 ; · ). The quantity
½ "(· ) stands for the mis­ t value on K2 of the prescribed data h" on K1 to its
bounded \extension" g(h"jK1; · ) on T n K1, with bound · . Let ¯ " be the lower
bound, with respect to · , of that mis­ t value

¯ " = inf
· 2 [A;B]

½ "( · ):

The following result then holds:

Lemma 3. For all ", the set I" = f · " 2 [A; B] j ¯ " = ½ "( · ")g is a non empty
and closed one. Moreover, limk"kK ! 0 ¯ " = 0.

Proof. Given " 62 H 2jK, the mapping ½ " is continuous on [A; B] since
by Theorem 3, limk! 1 kg(h"; · k) ¡ g(h"; · )kK = 0 whenever · k ! · . The
minimum value ¯ " of ½ " is thus reached on the compact set [A; B] and the
set I" is therefore not empty. Moreover, it is closed since I" = ½ ¡1

" (̄ "). For
M 2 [A; B], we have:

0 µ ¯ " µ kg(h"; M) ¡ h"kK2 :

Let "n be any sequence such that limn! 1 "n = 0. Therefore, (h"n ; M ) strongly
converges to (h; M ) in L2(K) £ R+ and moreover (h; M ) 62 D¡ (in fact,
(h; M ) 2 D, by hypothesis). According to Theorem 3, it comes out that
g(h"n ; M) strongly converges to g(h; M ) = h in H2. Both g(h"n ; M) and h"n

hence strongly converge to h in L2(K2), which yields limn! 1 ¯ "n = 0 and there-
fore limk"kK ! 0 ¯ " = 0.
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According to Lemma 3, we can now de­ ne M" 2 [A; B] and g" 2 H2 as
follows:

M" = min f · " 2 I"g; g" = g(h"jK1 ; M"): (18)

Lemma 4. Any accumulation point M1 of the family (M")" is such that
M1 ¶ M .

Proof. Assume that there exists some subsequence (M"n )n of (M")", such
that limn! 1 M"n = M1 < M . In such a case, (h; M1) 62 D¡, and hence
g(h"n ; M"n ) strongly converges to g(h; M1) in H 2. By the above lemma, we get

0 = lim
n! 1

¯ "n = kg(h; M1) ¡ hkK2;

whence g(h; M1) coincides with h on K2. Because they both belong to H2, they
coincide on the whole of ·D and hence:

M1 = kg(h; M1)kTnK 1 = khkTnK 1 = M;

a contradiction.

The convergence result for the zero-order algorithm (A0) is the following.

Theorem 5 Robustness of the zero-order method. The family (g")" strongly
converges to h on K , whereas only weak convergence is achieved on T n K.

Proof. First, the convergence property on K1 is a direct consequence of
Lemma 2 applied to EK1 . Now, according to Lemma 4, it may happen that
(h; M1) 2 D¡. The weak convergence on TnK directly follows from Theorem 3,
while the strong one on K2 is given by Lemma 3.

5.2. Higher order methods

The above result (strong convergence on the prescription part of the bound-
ary, weak convergence elsewhere) is very close to that obtained in [15], using
an alternative extension method. Aiming to make use of the extended data in
order to recover the Robin coe¯ cient, the weak convergence on Tn K is hardly
su¯ cient. Provided the data and the boundary are smooth enough, using a
(BEP)n extension instead of the (BEP) one brings additional continuity prop-
erties for the derivatives, as emphasized in Theorem 4, and hopefully on the
Robin coe¯ cient itself.

Let n ¶ 1, and de­ ne the n-th order algorithm as follows:

Algorithm An:

1. Compute from the available data the restriction to K of the analytic func-
tion h = um + i

R
¿ d³ .

2. (a) Split the measurement set into two parts K = K1 [ K2.

(b) Given · > 0, solve the (BEP) problem with respect to (hj(n)
K1

; · ) and

get g
(n)
· .
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(c) De­ ne Mn := Argmin· >0 kg
(n)
· ¡ h(n)kK2 and compute g

(n)
n =

E(hj(n)
K1

; Mn) 2 H 2 on D .

(d) Integrate g
(n)
n n times, using proper initial conditions, in order to get

gn 2 Hn;2.

3. Compute
’n = ¡ (Im gn)0= Re gn on T n K:

Theorem 6 [.Robustness of the n-th order method] Let h 2 Hn;2, and "
be some smooth non analytic perturbation (" 2 W n;2jK; " 62 Hn;2jK). Let
h" = h + " and gn;" = En(h"; M"). The following properties then hold as
k"kn;K ! 0:

1. gn;" * h weakly in Hn;2.

2. gn;" ! h strongly in Hn¡1;2.

3. ’n;" * ’ weakly in W n¡1;2(T n K) for n ¶ 1 (and strongly in W n¡2;2(T n
K) for n ¶ 2).

Proof. By Theorem 5, g
(n)
n;" weakly converges to h(n) in H2. Integrating n

times with proper initial conditions, we derive thus strong convergence of the
(n ¡ 1) ­ rst derivatives of gn;" to the corresponding ones of h, which proves the
­ rst and second point.

To establish point 3, ­ rst observe that, if ¿ is non negative and ’ 2 ©n
ad

then Lemma 1 ensures that the analytic function h associated to the measured
data and prescribed ®ux (h = um + i

R
¿ ) veri­ es:

Re h ¶ ¬ > 0 on D : (19)

For " small enough, we then get from

Re gn;" ¶ ¬ =2 on D : (20)

From formula

’n;" ¡ ’ =
[Im (gn;" ¡ h)]0

Re gn;"
+ [Im h]0

Re (h ¡ gn;")

Re gn;" Re h
; (21)

one can check that, as distributions supported on T n K , ’n;" weakly converges
to ’.

Making now use of (19), (20), and of formula (21) together with its ­ rst n ¡ 1
derivatives, ensure that there exist positive constants ­ 1 and ­ 2 such that for
small enough " and n ¶ 1:

k’n;" ¡ ’kn¡1;2 µ ­ 1kgn;" ¡ hkn;2 + ­ 2 khkn;2 kgn;" ¡ hkn¡1; 1 :

This proves the weak convergence of ’n;" to ’ in W n¡1;2(TnK). Strong conver-
gence in W n¡2;2(T n K) is then a straightforward consequence of this together
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with the compactness of the imbedding W n¡1;2(T n K) » W n¡2;2(T n K), for
all n ¶ 2.

From Theorem 6, we can deduce that using the second order method (A2) is
necessary to achieve robustness on the recovered Robin coe¯ cient. Numerical
results will however show that the ­ rst order method (A1) is usually satisfactory,
at least for smooth enough data.

5.3. Numerical results

In this section, we are going to display some numerical trials proving that the
above described algorithm (An) is indeed e¬ective. The trials have been run
on the unit disk D , for n = 0; 1; 2, using the Hyperion software, developed in
INRIA. The data to be reconstructed are those resulting from the function:

h(z) = (z ¡ a)1=2 + cst;

where a is any complex number not belonging to the unit disk D . Hence, the
function h indeed belongs to H2 and its boundary values are assumed to be
available on the arc K » T that corresponds to [º =2; 3 º =2]. The software
Hyperion makes use of the expansion of H 2 functions on a truncated Fourier
basis, of which we took 50 coe¯ cients to run all the computations displayed in
this section.

5.3.1. Recovery of smooth data

The ­ rst numerical test (see Figure 1) is devoted to the reconstruction of the
Robin coe¯ cient ’ in a smooth case (for a = 2(1 + i)). A Nyquist diagram is
obtained by plotting the imaginary parts with respect to the real part of a com-
plex valued function. Those shown in Figure 1a) correspond to the parametrized
curve (Re h(ei³ ); Im h(ei³ )), for ³ 2 [0; 2 º ).

Figures 1c and 1d show that the zero-order method is une¬ective for the
Robin coe¯ cient recovery, whatever smooth the prescribed data are, and we
shall thus drop it for the forthcoming experiments.

5.3.2. Recovery of non smooth data

Let us now study the sensitivity of the reconstruction method to the data
smoothness. By making a closer to the unit circle, the function h achieves
harsher behaviours, though remaining smooth as stated in Theorem 6.

It should be noted that the most varying part of the data (i. e. the one on part
of the boundary closer to a) is reconstructed from the smoother part. Hence,
although K and TnK remain of equal Lebesgue measure, the amount of data to
be recovered, with respect to that of the prescribed, is larger when a is closer to
T n K. The distance d(a; T) is thus a proper way to parametrize the numerical
study. Actually, Figures 2 and 3 show that the Robin coe¯ cient recovered from
the extended data extension is no longer acceptable when a becomes close to
the boundary: as a matter of fact, higher order methods cannot make up for
the loss of smoothness, since they do need regularity in order to be e¬ective.
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Figure 1. Nyquist plot of the bounded extension (a), and plots of its
real part (b), of the normal derivative @u=@n (c) and of the recovered
Robin coe± cient ’ (d) at orders 0, 1 and 2

5.3.3. Noisy data

The study is run in a smooth data case (a = 2(1 + i)). Noise is generated
by a random variable whose uniform norm ranges from 1% to 15% of khk 1 .
As expected from the robustness results of the above Subsections 5.1 and 5.2,
the data extension process (Figure 4) resists to noise better than the Robin
coe¯ cient recovery one does (Figure 5), although this latter is pretty robust.

6. CONCLUSION

The method we have been presenting in this paper ­ rst reads as a data com-
pletion one, solving the Cauchy problem for the Laplace equation. The (BEP)
framework, enriched with a cross validation procedure to control the instabili-
ties inherent to such problems, turns out to provide with an e¬ective and robust
method to built up the data extension. By designing higher order methods based
on the same framework, additional robustness is gained on the derivatives, thus
permitting to derive the Robin coe¯ cient from the extended data. Numerical
results con­ rm the robustness of the higher order methods and prove moreover
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Figure 2. Recovered ’ for di® erent values of ¯ = d(a; T): ¯ = 4 (a),
¯ = 2 (b), ¯ = 1:5 (c), ¯ = 1 (d), ¯ = 0:8 (e), ¯ = 0:708 (f) at orders 1
and 2
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Figure 3. L2 errors on ’ with respect d(a; T) (1st order method (a) and
2nd order (b))
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Figure 4. Nyquist plots of g for noise at levels 1% (a), 5% (b), 10% (c),
and 15% (d)



54 S. Chaabane, M. Jaoua, and J. Leblond

(a) (b)

4 5 6 7 8
­ 0.2

­ 0.15

­ 0.1

­ 0.05

0

0.05

0.1

exact phi
order1
order2

4 5 6 7 8
­ 0.1

0

0.1 exact phi
order1
order2

(c) (d)

4 5 6 7 8
­ 0.2

­ 0.1

0

0.1

0.2

exact phi
order1
order2

4 5 6 7 8
­ 0.2

­ 0.1

0

0.1

0.2

Figure 5. Reconstruction of ’ from extended noisy data: 1% (a), 5% (b),
10% (c), and 15% (d)

the smoothness assumptions the convergence results are based to be necessary,
if not sharp.

Limitations of the method follow from the features of the complex analysis
tools used to work it out: it cannot directly extend to 3D, and to other operators
but the Laplacian, although a variable conductivity may perhaps be handled.
However, possible extensions are of several kinds:

° Cracks: Assuming the body to be cracked, is there still possible to make
use of the method in order to recover the Robin coe¯ cient and/or the
geometrical defect ? Alternative methods have proved to be e¬ective in
such cases: in [9], a meromorphic extension is used instead of the analytic
one, analyticity being lost because of the defect. Analytic extension might
however be used, but to some annular domain obtained by removing from
the actual one some part expected to host the ®aws, which has be done
sucessfully using the alternative data extension method presented in [15].
This raises the issue of solving (BEP) problems in non simply connected
domains.
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° Setting the bound on the imaginary part of the analytic function to be
recovered, instead of its whole norm, would be in that case of great interest,
see [21]. Indeed, the imaginary part is nothing but some integral of the
prescribed ®ux, the bound of which is hence prior information needing no
recovery.

° Stability: Stability properties, together with estimates, for (PR) and the
above resolution algorithm can also be deduced from links between the
error e on K and the constraint M on T n K, when solving (BEP), see [3].

A similar study may now be run in H 1 (uniform norm) instead of H2.
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