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Abstract
In functional neuroimaging, a crucial problem is to localize active
sources within the brain non-invasively, from knowledge of electromagnetic
measurements outside the head. Identification of point sources from
boundary measurements is an ill-posed inverse problem. In the case of
electroencephalography (EEG), measurements are only available at electrode
positions, the number of sources is not known in advance and the medium
within the head is inhomogeneous. This paper presents a new method for EEG
source localization, based on rational approximation techniques in the complex
plane. The method is used in the context of a nested sphere head model, in
combination with a cortical mapping procedure. Results on simulated data
prove the applicability of the method in the context of realistic measurement
configurations.

In memory of Line Garnero, and of her communicative dedication to
unveiling the mysteries of the brain.

(Some figures may appear in colour only in the online journal)

1. Introduction

Electromagnetic source mapping aims at localizing active sources within the brain from
measurements of the electromagnetic field they produce, which can be measured passively
outside the head. This paper deals more specifically with the electric potential which is
measured using electroencephalography (EEG).

Estimating neural current sources located within the brain from outside measurements
falls into a category of inverse source problems, that are severely ill-posed in general, mainly
due to the lack of continuity and stability, but also to non-uniqueness (Isakov 1998, Vessella
1992).

When a limited number of sources are modeled as pointwise and dipolar, there are in
general more measurements than unknowns, and it has been proved that the inverse problem
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of source estimation has a unique solution (El Badia and Ha-Duong 2000). However, even in
this pointwise and dipolar case, solutions to the inverse source problem are often unstable, in
particular with respect to the number of sources.

Several families of methods exist to solve the inverse source localization problem, when
sources can be modeled as the superposition of a small number of dipoles (Scherg et al 1999).
Dipole fitting methods must minimize a non-convex goal function, yielding an outcome that
is unstable with respect to the number of dipoles in the model (Cuffin 1995). Whenever this
number is assumed to be known a priori, an algebraic (scanning) method has been proposed
in El Badia and Ha-Duong (2000), which requires rank computation of related matrices. In
practice, one does not know this number in advance, and learning this model order is far from
trivial (Bénar et al 2005). If the sources are decorrelated in time, analyzing the covariance
matrix of the measured data provides an estimate of the number of active dipoles. The number
of sources is indeed equal to the number of singular values that are significantly different
from zero. The MUSIC method first applies a principal component analysis (PCA) to the
measurements, and then identifies a ‘signal subspace’ the analysis of which subsequently
determines the dipole positions (Mosher et al 1992). In practice, the dimensionality of the
signal subspace is difficult to determine, and the dipoles are extracted one at a time by seeking
the global maximum of a contrast function among all possible source positions. MUSIC can
thus only be applied if the sources are well modeled by a small number of asynchronous
dipoles. With the stronger assumption of decorrelated sources, another method, beamforming,
can also estimate active sources, by scanning a region of interest, and by comparing the
covariance of the measurement to that of the baseline, measured in time windows that do not
contain the activity of interest (Van Veen and Buckley 1988).

This paper proposes a new approach, which, like MUSIC and beamforming, requires
no prior information on the number of sources. However, unlike MUSIC or beamforming,
which require as input consecutive measurements within a time window, the proposed method
works instant by instant, and a fortiori does not require sources to be decorrelated across
time.

Our method belongs to a new category of source estimation algorithms that are grounded
in harmonic analysis and best approximation theory, and offer stability (Baratchart et al
2006, Kandaswamy et al 2009). These analytical methods directly localize the sources as the
singularities of the potential from boundary measurements.

The types of geometry and boundary data that they require do not necessarily coincide
with actual measurements. Indeed, these methods usually work in a homogeneous domain,
and an explicit parametrization may be needed for its boundary.

We present our constructive approach to this inverse problem, in the framework of a
(classical) spherical geometry. Under quasi-static assumptions, Maxwell’s equations lead to
a formulation of the electric potential u as a solution to Laplace’s equation. In the innermost
layer (the brain), there may be singularities due to the presence of current sources. These
singularities are to be localized from available data on the outer boundary (the scalp). The
core of our inverse solution relies on approximation schemes that are meant to operate inside
homogeneous domains, and not in such a nested geometry. Hence, a preliminary stage consists
of mapping to the cortex the data initially measured on the surface of the scalp. This cortical
mapping problem is a Cauchy (transmission) problem for the Laplace operator (Clerc and
Kybic 2007).

Source detection from cortical data is another classical inverse problem for the Laplace
operator, which consists of recovering an unknown number of pointwise sources within a
homogeneous domain from measurements of the potential and its normal derivative on the
boundary.
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Figure 1. A nested conductor model for the head (left), in which brain, skull and scalp have
a homogeneous conductivity. Our 3D spherical nested model (right, 2D view), where the brain
and scalp (�0, �2) conductivity is 0.33, the skull conductivity is 0.0042 and the air �3 is non-
conductive.

When the domain is a spherical ball, then the above issue is equivalent to a sequence of 2D
inverse problems, each of which consists of recovering the singularities of some function f in
a disk from the knowledge of f on the boundary circle (Baratchart et al 2006). Consequently,
we apply to these 2D problems a technique inspired by that described in Baratchart et al (2005)
that relies on approximating f on the boundary circle by a rational function with poles in the
disk.

Finally, we locate the singularities by analyzing the cluster of these poles. Geometrical
restriction to spherical domains allows one to make explicit (and not too complex, in a
preliminary feasibility study) the behavior of the 2D singularities with respect to the 3D
sources, which is granted by our recovery scheme.

The outline is as follows: section 2 introduces the inverse problem and section 3 presents
the solution proposed in this paper. Section 4 demonstrates the method on numerical examples.
The paper also includes a conclusion in section 5 and technical appendices that detail some
mathematical aspects of the method.

2. The inverse problem

2.1. Model setting

In a simplified spherical model, the head is assumed to be the union of three disjoint
homogeneous spherical layers4 �0, �1, �2, namely the brain, the skull and the scalp,
within a non-conductive medium �3 representing the air. Up to a rescaling, one may
assume the ball �0 representing the brain to have radius 1 and to be centered at the origin.
The spheres separating the volumes �i are denoted as S0, S1 and S2 (see figure 1). The
conductivity in each �i is denoted by σi. For simplicity and without loss of generality, we
assume that σ0 = 1. Then, we define a piecewise constant function σ in R

3 by σ|�i = σi.
The current sources are modeled as dipoles situated strictly inside the inner layer �0 and
are characterized by their number n, their positions Ck ∈ �0 and their moments pk ∈ R

3,
k = 1, . . . , n.

4 In the remainder of this paper, all domains are supposed to be open.
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2.2. The inverse problem

The potential created by the dipolar sources (Ck, pk) located inside �0 is a solution to the
forward problem

(FP)

⎧⎪⎨⎪⎩∇ · (σ∇u) = S =
n∑

k=1

pk .∇δCk in R
3

σ∂νu|S2
= 0 (current flux),

(1)

where ν denotes the outward unit normal vector to the surfaces. The homogeneous Neumann
boundary condition is due to the fact that the outer medium (air) is non-conductive. The current
flowing through the neck is neglected.

Let K denote a set of points on S2, representing electrode positions. The inverse source
localization problem (IP) associated with the forward problem (FP) is then as follows.

(IP) Given measurements of u on K, find the number of unknown pointwise dipolar sources,
their positions Ck ∈ �0 and their moments pk ∈ R

3, such that u satisfies (FP).

2.3. Properties of solutions to (IP)

Mathematical properties of (IP) have been established when the data are known in an open
subset K of the boundary. In our case, the data are only known on a discrete set, but it is assumed
that the underlying potential is smooth enough so that it is well approximated on an open set K
from the data. Uniqueness of solutions to (IP) (identifiability from boundary measurements)
has been established in El Badia and Ha-Duong (2000). If two finite distributions of pointwise
dipolar sources generate the same potential on some open subset K of S2, then they are
identical.

Stability properties for (IP) may only hold for smooth enough boundary data on K (in
Sobolev spaces). This is due to the classical ill-posedness of Cauchy-type issues (section 3.1.1)
(Alessandrini et al 2009, Isakov 1998, Phung 2003, Zghal 2010). Concerning the source
problem in the homogeneous domain (sections 3.3 and 3.4), stability results are established in
El Badia (2005) and Vessella (1992).

3. Solution to the inverse problem (IP)

The resolution of the above inverse problem (IP) consists of two main steps as represented in
the flowchart in figure 2.

Data transmission from S2 to S0, which involves the following.

• Cortical mapping (section 3.1.1). The data are transmitted from the surface of the scalp S2

where it is measured (on electrodes) onto the surface S0 of the brain.
• Harmonic projection (section 3.1.2). Filtering out possible outer sources by keeping only

the information related to the effective inner sources in �0.

Source recovery in �0 from data on S0, which involves the following.

• Plane sections (section 3.2). The sphere S0 is sliced along families of parallel planes,
perpendicular to a chosen axis, yielding disks inside which the singularities will be sought.

• Planar singularity detection (section 3.3). 2D approximation techniques are used to find
the planar singularities on the plane sections of �0 (disks).

• 3D source localization (section 3.4). For a putative number of sources, the sources are
localized in 3D by analyzing the sets of planar singularities.
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Figure 2. Flowchart of the source localization method, consisting of two main steps: data
transmission and source recovery. Source recovery makes use of a 2D rational approximation
technique, which is run independently on slices of the domain. The planar singularities are then
analyzed jointly to yield the positions and moments of the sources.

The data transmission step uses the approach proposed in Clerc and Kybic (2007), while
the source recovery step uses the one described in Baratchart et al (2006) (see also Ben Abda
et al (2009), in two dimensions).

3.1. Data transmission

3.1.1. Cortical mapping. The goal, as recalled in figure 2, is to estimate the values of the
potential and the normal current on the cortex, from the values on electrodes of a potential
that satisfies the forward problem (1). This forward problem can be decomposed in each of
the three layers �i, i = 0, 1, 2. By assumption, there are no sources outside the inner volume
�0; hence, the potential u satisfies a homogeneous Laplace equation in the layers �1 and �2:

�u = 0 in �i, i = 1, 2.

The continuity of the potential and of the normal current across the interfaces are expressed
through the following transmission conditions:

u+ = u− on Si, i = 0, 1, (2)

and σi+1∂νu+ = σi∂νu− on Si, i = 0, 1, (3)

where the superscripts + and − indicate the limiting values when approaching Si from �i+1

(outside) and �i (inside), respectively.
The data transmission problem which we aim to solve is a Cauchy problem (CP), for u

harmonic within �1 and �2, satisfying the transmission conditions (2) and (3).

(CP) Given measurements uK of u on K ⊂ S2 and given that ∂νu = 0 on S2, find the values
g = u|S0 and φ = ∂νu−

|S0
on S0.

Solving (CP) is non-trivial, because the Cauchy problem for the Laplace equation is
the prototype of an ill-posed problem. Indeed, (CP) has similar stability properties to those
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described in section 2.3 for K ⊂ S0. Regularization schemes have been proposed in Atfeh et al
(2010) and Kozlov et al (1992). We solve the cortical mapping with a regularized Tikhonov
method deriving from a ‘boundary elements’ formulation of the problem (this step is thus not
limited to spherical interfaces): from its values uK on the measurement set K, u is estimated,
along with σ∂νu, on the three surfaces S2, S1 and S0. This method, originally presented in
Clerc and Kybic (2007), is detailed in appendix A.

3.1.2. Harmonic projection (in R
3). After the cortical mapping step has provided the

potential g = u and its normal derivative φ = ∂νu on the surface of the cortex S0, the potential
u satisfies in �0 an equation of the form⎧⎪⎨⎪⎩�u = S =

n∑
k=1

pk .∇δCk in �0,

∂νu = φ, u = g on S0.

(4)

From g and φ on S0, we first look for the part ua of the potential u which is harmonic
outside the ball �0, vanishes at ∞ and still contains on S0 all the information on the distribution
of sources.

Knowing that the potential u in �0 is a solution of (4), let ua be the convolution of S with
the Green function for the Laplacian in R

3:

ua(x) =
n∑

k=1

〈pk, x − Ck〉
4π |x − Ck|3 , x �= Ck, (5)

where the brackets 〈, 〉 denote the scalar product in R
3 × R

3. Note that

�ua = �u = S in �0,

while �ua = 0 in R
3 \ �0, and lim

|x|→∞
|ua(x)| = 0.

Consequently, for x ∈ �0 \ {Ck}, we have

u(x) = h(x) + ua(x) = h(x) +
n∑

k=1

〈pk, x − Ck〉
4π |x − Ck|3 ,

for a harmonic function h in �0.
In practice, ua is computed from the available boundary data g and φ on S0 by expanding

u there on the basis of spherical harmonics (Baratchart et al 2006, Dautray and Lions 2000).
Indeed, u being a harmonic function in a neighborhood of S0, the coefficients of its expansion
on S0 of negative indices coincide with those of ua. They are given through a linear system,
by identification with the coefficients of the spherical harmonics expansions of the discretized
g and φ on S0.

Figure 3 shows the singular part ua of the potential, computed from its expression (5)
on S0, from n = 2 sources C1 = (0.5, 0.5, 0.5),C2 = (0.5,−0.5,−0.4) with moments
p1 = (1, 1, 1), p2 = (−1, 1, 1).

3.2. From 3D to 2D

Given ua, we can now formulate an inverse source recovery problem in �0.

(SP) Given ua on S0, find the number of unknown pointwise dipolar sources, their locations
Ck ∈ �0 and their moments pk ∈ R

3, such that ua satisfies (5).

6
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(a) (b)

(d)

(c)

Figure 3. Data transmission. Cortical mapping: from electrode data (a), yielding the normal current
(b) and the potential (c) on the cortical surface. Harmonic projection: (d) representation on the
cortex S0 of the singular part ua of the potential, whose singularities are restricted to �0.

Figure 4. Plane sections. �0 is sliced into disks Dp by a series of parallel planes 
p.

Following Baratchart et al (2006), we first study the singularities of u2
a on plane sections

of �0, where the function can be analytically extended to the complex plane.
The ball �0 is sliced along a family of P planes, 
p, p = 1, . . . , P, parallel to some

plane 
 ⊂ R
3 (see figure 4). The intersections of the planes 
p with �0 are disks Dp, whose

boundaries are circles Tp (intersections 
p ∩ S0). The data transmission step (section 3.1) has
provided the singular part ua of the potential on S0, and we now consider its restriction to each
circle Tp.
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Figure 5. True sources C1,C2 (large black dots) and theoretical singularities s1,p, s2,p, p =
1, . . . , P, which when joining the small light grey (green) dots form singular lines lk (see section
3.4): 3D view (left), top view (right).

The computations that follow are detailed in appendix B. Denote by (x1, x2, x3) the
Cartesian coordinates in R

3. Choose for simplicity 
 = {x3 = 0} (this is always possible by
composition with a rotation) whence 
p = {x3 = x3,p}. For some fixed x3,p ∈ (−1, 1), let

x ∈ Tp : x = (x1, x2, x3,p), rp =
√

1 − x2
3,p, z = (x1 + ix2)/rp, (6)

where rp is the radius of the circle Tp, and z ∈ T is the normalized complex affix associated
with x ∈ Tp.

From ua on Tp, we build the complex variable function fp on the unit circle T ⊂ C (the
complex plane) as follows:

fp(z) = u2
a(x1, x2, x3,p). (7)

For fixed p, the function fp coincides with the trace on T of a function defined on C except
at singularities: due to the n sources Ck, this extended function (that we still call fp) has
n singularities inside the unit disk D (as well as n related singularities outside the closed
disk D).

Indeed, let us denote the source coordinates by Ck = (x1,k, x2,k, x3,k), and their
corresponding complex affix by zk = x1,k + ix2,k, for k = 1, . . . , n. Assuming zk �= 05,
we have from (5), (7), at x ∈ Tp and corresponding complex affix z ∈ T through (6),

fp(z) =
[

n∑
k=1

ϕk,p(z)

(z − sk,p)3/2

]2

, (8)

where sk,p are the singularities induced inside D by the source Ck and ϕk,p are the smooth
functions in D.

The localization of sk,p then leads to that of Ck. Indeed, the complex argument of sk,p is
independent of p and equal to the argument of zk, which allows us to determine the number n
of sources. Further, for fixed k, when p varies, the quantity rp|sk,p| attains its maximal value,
equal to |zk|, when x3,k = x3,p, in the slice p corresponding to Ck.

Figure 5 shows the trajectories of the singularities sk,p in a two-source case.

5 This is generically true with respect to plane 
. See however appendix B for the degenerated situation where
zk = 0.

8



Inverse Problems 28 (2012) 055018 M Clerc et al

3.3. Recovering 2D singularities

This section deals with the computation of the singularities sk,p from the sliced boundary data
fp on T , given by (7) at fixed p.

From formula (8), it can be seen that the function fp has the following properties.

• If there is a single source (n = 1), then fp is exactly a rational function with a single triple
pole in D at position s1,p:

fp(z) = ϕ2
1,p(z)

(z − s1,p)3
. (9)

• If there are multiple singularities (n � 2), fp is no longer a rational function (because of
terms with power 3/2 at the denominator of (8)). In this situation, the sk,p are both (triple)
poles and branchpoints (of order 3/2).6 Yet, fp can be well approximated on the boundary
T by a rational function with poles in D; see appendix C and Baratchart et al (2006), and
Baratchart and Yattselev (2009).

This gives rise to the following algorithm, which provides the estimates ŝk,p of sk,p from
the sample values f̂ p built from (7).

Finding planar singularities ŝk,p � sk,p from cortical data f̂p

(i) Choose the number n of sources.
(ii) Find initial values s∗

k,p of sk,p, to be the poles of a rational approximation f ∗
p of fp with

appropriate degree (depending on n).
(iii) If n = 1 then ŝk,p = s∗

k,p.
(iv) Otherwise, for fp linked to sk,p by (8) and starting with the initial values s∗

k,p, find ŝk,p by
minimizing (gradient descent) the criterion:

ŝk,p = arg minsk,p

∥∥ f̂ p − fp

∥∥.

Remark 1. Although it should become an output of the proposed method, the number n is a
necessary preliminary guess in the present algorithm.

In point (iv), ‖ ‖ is the l2 norm on T . The data fp are assumed to be given either by
a number of its pointwise values on T , or by a number of its Fourier coefficients, using the
spherical harmonics expansion of ua on S0 from section 3.1.2. From this Fourier expansion, we
shall keep only the part with negative indices, for it is enough to account for the singularities
of fp in D (see appendix C.2.), which we still call fp, for simplicity.

Strategies for achieving step (ii) of this algorithm are discussed in appendix C.
The present planar singularity detection step must be performed with several slicing

directions 
, in order to get more accuracy on the localization process and to separate sources
(see section 3.4 and Marmorat et al 2002, and Marmorat and Olivi 2004).

3.4. From estimated singularities to source positions and moments

Given a slicing direction 
, the method described in section 3.3 provides estimates of the
singularities ŝk,p of fp in each slice. But, we know from section 3.2 that the points (rpsk,p)k,p

are organized along as many lines lk as there are sources (k = 1, . . . , n) (see the lines formed
by the green (light grey) dots in figure 5).

6 Recall that a pole (or polar singularity) is the zero of some polynomial at the denominator of the function, while a
branchpoint is the singular point of some multivalued complex analytic function, as log or square root.
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3.4.1. Sources from a single slicing direction. Each line lk is (generically, for most slicing
directions) associated with one of the sources Ck and has the following theoretical properties
(from section 3.2).

(i) lk lies in a single half-plane Hk defined by Ck and by the direction of the slicing plane 
:
Hk contains Ck and is orthogonal to 
.

(ii) lk goes through its associated source Ck. At this point, the radial distance of the line lk to
the boundary of Hk (the diameter of S0 orthogonal to 
) reaches its maximum.

The first property is used to group the points rpŝk,p into n estimated lines l̂k. To do so, these
points are clustered in n classes by applying Matlab’s algorithm clusterdata to their polar
angles. For each class, the best-fitting half-plane Ĥk is then estimated using a least-squares
algorithm and the points are reprojected on that plane, providing us with an estimation l̂k of the
line lk. The polar angle of Ĥk is an approximation of the complex argument Arg ẑk of Arg zk.
We can now compute |zk| using the second above property as

|̂zk| = max
p∈1,...,P

{|rpŝk,p| among rpŝk,p ∈ l̂k ⊂ Ĥk}.
We then obtain ẑk which, together with the argument p of the above max, provides an estimate
Ĉk of the source positions, for direction 
.

3.4.2. Combining information from multiple slicing directions. The above procedure is
repeated for a number np of different slicing directions, which yields a family of np × n
estimations of the n source positions. Matlab’s algorithm clusterdata is again used to build
n separate clusters from these np×n points. The final estimations Ĉk of the sources are obtained
as the barycenter of each cluster. As in the previous section, the distance between points is
defined so as to ensure that each slicing direction contributes only once to each cluster.

Once the source positions are known, the measured potential is a linear function of the
moments. These are thus estimated using a simple linear least-squares minimization procedure.

4. Numerical validation

We now present numerical results obtained with FindSources3D, a Matlab code that
implements the above algorithm (Bassila et al 2008).

We simulated two datasets with OpenMEEG, which implements the symmetric boundary
element method (Gramfort et al 2010, Kybic et al 2005). We considered data at the scalp
level (potential measured by 128 electrodes), and also at the cortex level (potential and normal
current on a 642-point mesh), in order to test the influence of the cortical mapping step on the
quality of the source estimation. The spherical three-layer head model is the one described in
section 2.1.

In the case of cortical data, that is, with potential and current at the cortex level as computed
by OpenMEEG, figure 6 displays for 12 different slicing directions the top views of the planar
detected singularities. Figure 7 shows the 3D superposition of all these estimated singularities
for all axis directions and the estimated source positions for all the slicing directions.

Figure 8 displays true and estimated sources from the two datasets, while table 1 displays
numerical values of the corresponding positions and moments.

We can see in figures 6–8 how the present numerical results illustrate theoretical properties
established in section 3.3.

• For a given slicing direction 
, the singularities associated with a source Ck lie in a plane
Hk containing the source itself and the slicing axis (figure 6).

10
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Figure 6. Top views of 2D planar singularities computed from the cortical dataset for 12 different
slicing directions 
.

Figure 7. 3D superposition for different slicing directions: all singularities (left), estimated source
positions Ĉk for all slicing directions (right).

• As a consequence, singularity lines associated with various slicing directions 
 intersect
at the sources, which allows us to estimate their positions (figure 7).

• Once these positions are estimated, the linear problem is easily solved to recover the source
moments (figure 8).

As could be expected, estimation is better when data are directly taken at the cortical
level on many points. The treatment of more realistic datasets (from scalp electrodes) needs an
additional cortical mapping step and thus achieves a less precise estimation. However, the full

11
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Figure 8. True versus estimated sources: cortical data (left), electrode data (right).

Table 1. True versus estimated sources from cortical and electrode datasets.

Positions Moments

True sources 0.2000 0.3000 0.4000 0.0000 0.2000 0.6000
−0.3000 −0.2000 0.4000 0.1000 0.0000 0.8000

Estimated sources 0.1951 0.3056 0.4260 0.0194 0.2068 0.5874
(cortical data) −0.3006 −0.2059 0.4208 0.0808 −0.0052 0.7993
Estimated sources 0.1917 0.2797 0.4160 0.0112 0.2579 0.5563
(electrode data) −0.2798 −0.1777 0.4015 0.0929 −0.0486 0.8487
Error 0.0049 −0.0056 −0.0260 −0.0194 −0.0068 0.0126
(cortical data) 0.0006 0.0059 −0.0208 0.0192 0.0052 0.0007
Error 0.0083 0.0203 −0.0160 −0.0112 −0.0579 0.0437
(electrode data) −0.0202 −0.0223 −0.0015 0.0071 0.0486 −0.0487

procedure proves to be efficient enough: when estimating sources from the electrode dataset,
the global position error is less than 10% of the sphere radius (order of the cm).

5. Conclusion

We presented here some insights concerning the resolution of a source estimation problem.
The techniques rely on constructive approximation; they are robust and efficient toward the
EEG inverse source problem, as illustrated by preliminary numerics.

More accuracy on source localization may be achieved by extending the present method.
A first possibility would be to take into account several time samples while constraining the
source positions to be fixed. Also, the computation steps concerning the singular part of the
cortical potential and its 3D to 2D transformation could be made more direct, in order to limit
the numerical errors.

The number of unknown sources is not yet identified automatically. However, at many
steps, information is available to build good estimates of this unknown number: singular values
in the rational 2D approximation scheme, residual boundary approximation error, clustering
procedure, etc. Work is in progress to make this number an output of the whole process, using
techniques such as the Akaike information criterion to decide when increasing the number of
sources is no longer significative with respect to the data.
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Magnetic data from MEG (magnetoencephalography) will be incorporated as well,
coupled to the available EEG, that may lead to additional precision in the source localization
process.

Geometrically, the approach applies in principle to more general smooth 3D domains
(Ebenfelt et al 2001), but we did not carry out such generalizations here and only considered
spherical models. One may observe that whenever the complexity of the geometry increases,
so does the quantity of planar singularities associated with a source. For an ellipsoidal domain,
which has been theoretically studied in Leblond et al (2008), we already get two planar
singularities for each source, in each ellipse.
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Appendix A. Data transmission by cortical mapping

The cortical mapping method, originally presented in Clerc and Kybic (2007), proceeds as
follows. With the rationale of the symmetric boundary element method (Kybic et al 2005), u
(resp. the normal current σ∂νu) is approximated with continuous, piecewise-linear elements
(resp. discontinuous, piecewise-constant elements). The discretization of these two variables
on each of the boundaries Si, i = 0, 1, 2, yields a set of values which are combined in a
single-vector-valued variable X . The harmonic nature of u in �1 ∪ �2, along with the fact
that ∂νu = 0 on S2, and the transmission conditions (2) and (3) are all handled by saying that
X must belong to the kernel of a specific linear operator. This linear operator is represented
by a dense matrix H, whose elements involve boundary integral operators. The knowledge
of u on K is handled by a ‘measurement operator’ M, such that M X represents uK , i.e. the
measurements on K. Ideally one would like to find X such that M X = uK and H X = 0, but
the ill-posedness of the Cauchy inverse problem makes it necessary to stabilize the system
through a regularization. As a consequence, the method seeks X belonging to the kernel of H
solving

arg minX∈Ker H‖MX − uK‖2 + λ‖RX‖2.

The norms above are discrete l2 norms, λ is a real positive Lagrange parameter to be adjusted
and R is an appropriate regularization operator. Once the minimizer X has been computed, it is
immediate to extract from X the desired transmitted data u and σ∂νu on S0. Results obtained by
this method are illustrated in figure A1, where the two sources were taken as in section 3.1.2,
and each sphere was meshed with 642 points. This figure shows the propagation of the potential
measured on 128 electrodes onto the outer skull surface S1 and cortical surface S0.

Note that other transmission schemes can be obtained by best approximation with
harmonic gradients, as in Atfeh et al (2010), and robust interpolation issues can be handled
using spherical harmonics (Dautray and Lions 2000).

Appendix B. Link between 3D sources and 2D singularities

Choose a fixed slicing direction 
, as in section 3.2. For x ∈ Tp and z ∈ T given by (6), let us
establish equation (8) for fp, which is equal to u2

a according to (7), where ua has been defined
in (5). Indeed, with hk,p = x3,p − x3,k,

|x − Ck|2 = (x1 − x1,k)
2 + (x2 − x2,k)

2 + (x3,p − x3,k)
2 = |rpz − zk|2 + h2

k,p;
13
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Estimated potentialMeasured potential
on scalp surface on scalp electrodes 2

Estimated potentialEstimated normal current
on skull surface 1 on skull surface 1

Estimated potentialEstimated normal current
on cortical surface 0 on cortical surface 0

Figure A1. Cortical mapping reconstruction. From the potential measured on 128 electrodes (top
left), the cortical mapping method reconstructs the normal current and the potential on all surfaces
of the model. The normal current is not represented on the scalp because it is simply equal to zero
in our model. Note that the spatial distribution of the potential is less sharp on the scalp and skull
surfaces (top right and middle right) than on the cortex, due to the high resistivity of the skull.
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thus,

|x − Ck|2 = (rpz − zk)(rpz̄ − z̄k) + h2
k,p = (rpz − zk)

(
rp

z
− z̄k

)
+ h2

k,p

because z̄ = 1/z for z ∈ T (use that |z|2 = zz̄ = 1). Assuming first that zk �= 0, we obtain

(rpz − zk)

(
rp

z
− z̄k

)
+ h2

k,p = − rpz̄k

z

(
z2 − h2

k,p + |zk|2 + r2
p

rpz̄k
z + zk

z̄k

)
.

Hence, for x ∈ Tp, |x−Ck|2 coincides with the values on T of the function defined in the whole
of D by

− rpz̄k

z
(z − sk,p)(z − σk,p),

where the singularities sk = sk,p ∈ D and σk = σk,p ∈ D are linked between each other
and with the source parameters (Ck being determined by the quantities zk, hk,p and rp) by the
relations

σk,p = zk

z̄ksk,p
and sk,p = zk

2|zk|2rp

× (
h2

k,p + r2
p + |zk|2

√(
h2

k,p + (rp + |zk|)2
)(

h2
k,p + (rp − |zk|)2

))
.

Also, for each slice index p = 1, . . . , P,

|sk,p| |σk,p| = 1 and arg sk,p = arg σk,p = arg zk. (B.1)

With the standard convention that the square root is positive for positive arguments (which is
used throughout the paper), sk,p is the root with the smallest modulus and (B.1) ensures that
sk,p ∈ D while σk,p ∈ D. Recalling (7) and (5), this leads to expression (8), or equivalently to

fp(z) =
n∑

k=1

ϕ2
k,p(z)

(z − sk,p)3
+ 2

n∑
k, j=1
k �= j

ϕk,p(z)ϕ j,p(z)

(z − sk,p)3/2(z − s j,p)3/2
, (B.2)

which shows that fp admits the singularities sk,p in D; see below for the functions ϕk,p at the
numerators. The above computation exposes two useful properties of sk,p which are used in
section 3.4 toward the localization of Ck.

(i) The argument of the complex number sk,p is independent of p, and equal to the argument
of zk. In any slicing direction that separates the sources (that is if zk �= z j for k �= j, which
generically holds), this property allows us
• to determine the number of sources n, since the quantity of sources should be equal

to the number of values taken by the complex argument of sk,p, as k and p vary;
• for any fixed index k0, to track sk0,p among all the sk,p in any slice p (the complex

argument of sk0,p does not depend on p);
• to determine the argument of zk0 .

(ii) When p varies (for x3,p ∈ (−1, 1)), the modulus of rp sk,p increases monotonically for
x3,p < x3,k (decreases monotonically for x3,k < x3,p) and attains a maximum when
x3,k = x3,p or hk0,p = 0, in which case one has rp |sk0,p| = |zk0 |. This second property
allows us to determine |zk0 |, whence finally zk0 .

Also, if we put pk = (p1,k, p2,k, p3,k) for the moments and 
k = p1,k + ip2,k, we get
from (5) that

ϕk,p(z) = 1

8π


̄k

(rpz̄k)3/2

√
z

(σk,p − z)3/2
π2,k,p(z)
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are uniformly bounded in D and π2,k,p are polynomials of degree 2 (see also Baratchart et al
(2006)):

π2,k,p(z) = rpz2 + 2
p3,khk,p − Re (zk
̄k)


̄k
z + 
k


̄k
rp.

Finally, whenever zk = 0 (that is, when the associated Ck lies on the vertical axis),
|x − Ck|2 = r2

p + h2
k,p is a constant and the corresponding term of (8) becomes a rational

function of z which assumes the form π2,k,p(z)/z for the above-mentioned polynomials π2,k,p.
In this situation, the function fp to be approximated has a unique (double) pole in D at 0, in
every planar section p, which will be revealed by the rational approximation step. The sum of
the roots of the polynomial π2,k,p is equal to − 2p3,k


̄k rp
hk,p. If p3,k �= 0, the behavior of these roots

still allows us to compute the index p such that hk,p = 0, and to finally locate the singularity
Ck. The situation where zk = 0 and p3,k = 0 however is degenerated w.r.t. the present choice
of 
, which is the reason why several slicing directions should be used.

Appendix C. Best rational approximation schemes

C.1. Best rational approximation

From the knowledge of fp on the surrounding circle T , the sk,p in D, k = 1, . . . , n, are localized
using rational approximation on T , with poles in D. Indeed, as we will see, the poles s∗

k,p of
such approximants accumulate to the singularities sk,p of the approximated function fp.

Let us first briefly explain the best quadratic rational approximation techniques that are
used.

As explained in section 3.3, the singularities sk,p can be described both as branchpoints
and as triple poles of fp. For a single source, we noted that fp is exactly a degree 3 rational
function and the singularity sk,p is itself a triple pole. For multiple sources, the situation is not
so simple, but the property that pole lines pass near the singularities still remains. This makes
it interesting to consider two rational approximation schemes: one with simple poles and the
other with triple poles.

We define Rm to be the set of rational functions Rm with less than m poles in D: Rm = πm
qm

,
where πm and qm are polynomials such that deg πm < deg qm � m, and where the zeroes of
qm belong to D.

A best quadratic rational approximant to fp in Rm is a function R∗
m ∈ Rm, verifying∥∥ fp − R∗

m

∥∥ = min
Rm∈Rm

‖ fp − Rm‖, (C.1)

for the L2(T ) norm, see Baratchart et al (1992). Existence and non-uniqueness of R∗
m are

discussed in Baratchart et al (1992). Concerning constructive aspects, efficient algorithms
to generate local minima are obtained using Schur parametrization (Marmorat et al 2002).
Computation of R∗

m is made effective through suitable parametrization of rational functions,
using gradient algorithms (Marmorat et al 2002).

Generally and properly speaking, for functions fp ∈ L2(T ), the approximation class Rm

should be the set of ‘meromorphic’ functions with less than m poles in D. Such a meromorphic
function is the sum of a rational function πm

qm
and of a function h ‘holomorphic’ (or equivalently

‘analytic’) in D (which has no singularities in D but may have poles outside D). Because

πm

qm
+ h = πm + hqm

qm
,

we see that a meromorphic function coincides with the quotient of a holomorphic function by
a polynomial.
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Further, whenever fp has singularities only in D and is analytic in C \ D (and vanishes at
∞), its best meromorphic approximant coincides with its best rational approximant with poles
in D. This is the reason why we explain in appendix C.2. how to get, in general, this part of
fp, analytic in C \ D, which shares the singularities of fp in D but as no singularity outside D.

C.2. 2D analytic projection

Observe from appendix B that fp possesses singularities both inside and outside the unit disk,
which are linked to each other and to the sources Ck, see e.g. (B.1).

Indeed, representation (8) involves the singularities sk,p of fp in D but also the additional
reflected ones σk,p (hidden in ϕk,p) outside D. First, these are linked with each other by (B.1).
Next, the rational approximation algorithms available for data on T require the singularities
of the approximated functions to belong to a region of the plane limited by T (see section 3.3;
in particular, this leads to a lower degree of the approximants, which also possess strong
robustness properties). We thus choose to keep only those of the singularities sk,p of fp that
belong to the disk D, and we need to filter the σk,p out.

It is easily seen from (8) that the function fp is continuous on T , because none of its
singularities belong to T . Thus, it belongs to the Lebesgue space L2(T ) of functions with
square summable modulus on T . Consequently, it can be uniquely written on T as the sum
fp = F + Fo, where F is the holomorphic projection of fp in C \ D and vanishes at ∞, while
Fo is holomorphic in D. Actually, F and Fo respectively belong to the Hardy classes of C \ D
and of D, their traces on T belonging to L2(T ) (Rudin 1987). The Hardy–Hilbert spaces H2

−,
resp. H2

+, are the sets of functions analytic in C \ D (vanishing at ∞), resp. analytic in D, and
bounded in L2(T ) norm (i.e. the space of L2(T ) functions with vanishing Fourier coefficients
of positive indices, resp. of strictly negative indices). We can directly compute F from the
Fourier series expansion of fp on T :

fp(e
iθ ) =

∑
l∈Z

Fle
ilθ ,

∑
l∈Z

|Fl|2 < ∞ ⇒ F(z) = (P− fp)(z) =
∑
l<0

Flz
l, |z| � 1, (C.2)

if P− denotes the orthogonal ‘anti-analytic’ projection from L2(T ) onto H2
−. The important

point here is that fp and F share the same singularities inside D, while F has no singularities
outside D, since F possesses an expression analogous to (8), with identical denominators, but
numerators given by smooth functions. This is necessary for the best rational approximation
problem to be solved among rational (no longer meromorphic) functions with poles in D.

We shall then assume from now on, and already for the computations of section 3.3, that
fp is analytic in C \ D, and vanishes at ∞, without loss of generality.

C.3. Behavior of simple poles with respect to singularities and sources

If the degree m is not preliminarily given, observe that its estimation can be obtained by
computing the boundary error on T (the value of the criterion in (C.1)) for increasing values
of m, until it is small enough, see remark 1. This will happen in principle for m � 3 n, the
number of singularities of fp in D according to their multiplicity.

For such a value of m, compute the best approximant R∗
m itself (that the approximant

should be computed only once, for m large enough for the error to be sufficiently small, is one
of the features that make this scheme efficient).

In sections p close to Ck, fp is (numerically) close to a rational function with poles at
(sk,p). Thus, for m large enough, typically m � 3n, the m poles of R∗

m must then be located
near the (sk,p) (see property (P), appendix C.5.), and they should be packed in a number of
clusters coinciding with the number n of sources.
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Figure C1. One simple pole.

Figure C2. Two simple poles.

This is illustrated in figures C1–C3 where m = 1, 2 and 3 simple poles cases are
respectively shown for the same situation with n = 2 sources as in section 3.1.2. For k = 1, 2
and varying p, theoretically known singularities (rpsk,p) are shown in disks Dp as green (light
grey) dots, whereas estimated poles are shown with red (dark grey) dots. The large black dots
represent the sources C1, C2.

C.4. Behavior of triple poles with respect to singularities and sources

Recall that the singularities sk,p that we aim to recover appear at triple poles of fp, from (8),
which motivates the computation of the best rational approximants with triple poles.
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Figure C3. Three simple poles.

Recall that for a single source (n = 1), (8) is to the effect that fp is a rational function
with a triple pole in D, see (9). Hence, its best rational approximant with a single triple pole in
D should coincide with fp itself. Whenever n > 1, the situation is of course more complicated
since fp admits the sk,p both as triple poles and branchpoints. However, as we shall see, the
behavior of poles dominates whence its best rational approximant with triple poles still allows
us to recover the sk,p.

These best rational approximants with triple poles in D are functions R∗
3m = π3m/q3

m ∈
R3m that satisfy (C.1), where π and q are polynomials such that deg qm � m, deg π3m < 3m.
An advantage is that the computations can then be performed with a lower degree than in the
simple poles case, since m = n is enough.

Again, even though fp is not a rational function (it admits poles and branchpoints located
at the same place), it is (numerically) close to rationals of R3 with a single triple pole (m = 1),
in plane sections p close to the one containing (Ck), even for several sources, when n > 1.

For such data fp, close to a rational function of R3 with a single triple pole, say t, in D,
the single triple pole of the best rational approximant is close to t, see the robustness property
(P′), appendix C.6.

Hence, the above best approximants R∗
3m possess an even stronger property: in general a

single (m = 1) triple pole is enough in order to localize several singularities sk,p in D, hence
several sources (Ck) (n � 1), by varying p. Indeed, in the slice p containing a source Ck, the
single triple pole s∗

p of R∗
3 is close to the associated singularity sk,p.

This situation is illustrated in figure C4 for the same source configuration as the one used
for figures C1–C3. As previously, sources are indicated with large black dots, the green (light
grey) dots show the known theoretical positions of singularities, while the red (dark grey) dots
show the triple poles. One can note that there is only one pole trajectory for both singularity
lines. Thus, the triple pole line does not follow the singularity lines as in the single-pole case.
However, close to sources, the triple poles approximate the singularity lines quite well.

C.5. Behavior of simple poles of rational approximants

We give a few additional considerations concerning the asymptotic behavior of the poles.
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Figure C4. One triple pole.

In situations where fp is already a rational function RN ofRN , its best rational approximant
R∗

m coincides with fp for m � N. This result is robust in the sense of property (P) below. Observe
that whenever n � 2, the function fp has poles and branchpoints in D, and it can be shown
that the degree of the denominator qm of R∗

m is in fact equal to m, for each integer m. Property
(P) can be deduced from Baratchart (1986) (property 5).

(P) Whenever fp is close (in L2(T )) to a rational function RN, the poles of R∗
m accumulate to

those of RN, as m increases.

Further, deep convergence results from potential theory (Baratchart and Yattselev 2009)
assert that, for a function fp as in the present situation (which admits finitely many poles
and branchpoints in D and has a smooth behavior near T ), the m poles of R∗

m converge (in
some weak sense) to the singularities (sk) = (sk,p) of fp as m increases (where, for notational
simplicity, the index p is fixed and has been omitted).

For n = 2, the sequence of counting probability measures of the poles of R∗
m will

asymptotically charge s1 and s2 (the poles will accumulate ‘near’ s1 and s2), while only finitely
many poles stay away from s1, s2 and from the arc of circle orthogonal to T joining them
(Baratchart et al 2001).

These results are related to the fact that, for n = 2, fp can be represented as

fp(z) = R6(z) + R2(z)
∫ s2

s1

dt

(z − t)
√

(t − s1)(s2 − t)
,

for rationals R2 ∈ R2 and R6 ∈ R6 with, respectively, two simple poles for R2 and two triple
poles for R6, at s1 and s2. This result is used in Baratchart and Yattselev (2009) to study the
behavior of the poles of best rational approximants.

C.6. Behavior of triple poles of rational approximants

We have the following robustness property.
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(P′) For a function fp, close to a rational of R3 with a single triple pole t ∈ D, the triple pole
t∗ of its best rational approximant R∗

3 (with a single triple pole in D) and t are close to
each other.

Property (P′) is a restatement of the following.

Proposition 1. Let R3(z) = π(z)/(z − t)3 be a rational function of R3 with a triple pole
t ∈ D, strictly proper (degπ < 3), and irreducible (π(s) �= 0). Then, there exists K > 0 such
that for all rational function R̃3(z) = π̃ (z)/(z − b)3 with a triple pole b ∈ D, the following
inequality holds: |t − b| � K‖R3 − R̃3‖, for the L2(T ) norm.

Indeed, as a corollary, if ‖ fp − R3‖ � ε (in L2(T ) norm), for some ε > 0 and R3 ∈ R3

with a single triple pole t in D, then we have the inequality |t − t∗| < Kε.

Proof of proposition 1. Let R = π/q and R̃ = π̃/q̃ be two proper rational (irreducible)
functions in L2(T ): in particular, π, q, π̃ , q̃ are polynomials, and the roots of q and q̃ lie inside
the open unit disk D (q and q̃ are called ‘stable’ polynomials). �

Step 1. We look for a lower bound to

d(R, R̃) =
∥∥∥∥π

q
− π̃

q̃

∥∥∥∥
(L2(T ) norm). If n is the degree of q̃, put ˇ̃q(z) = znq̃(1/z̄) for its reciprocal polynomial. Then
q̃/ ˇ̃q has modulus 1 on the unit circle, and we also have

d(R, R̃) =
∥∥∥∥∥π

q

q̃
ˇ̃q

− π̃

ˇ̃q

∥∥∥∥∥ .

From the orthogonal decomposition of L2(T ) into Hardy spaces of analytic functions (Rudin
1987), and because P−(π̃/ ˇ̃q) = 0, since the poles of π̃/ ˇ̃q belong to C \ D, we get that

d(R, R̃) �
∥∥∥∥∥P−

(
π

q

q̃
ˇ̃q

)∥∥∥∥∥ . (C.3)

Remark 2. The right-hand side of (C.3) vanishes if and only if q is a divisor of q̃.

Step 2. In the particular case where R ∈ R3 and R̃ have a single triple pole respectively at
t ∈ D, and at b ∈ D, then q(z) = (z − t)3, q̃(z) = (z − b)3, ˇ̃q(z) = (1 − b̄z)3, and we
can evaluate this right-hand side by a fractional decomposition. Indeed, expand π(z)q̃(z) in
powers of (z − t) in order to obtain

P−

(
π

q

q̃
ˇ̃q

)
= P−

(
1

(1 − b̄z)3

(
A1

z − t
+ A2

(z − t)2
+ A3

(z − t)3

))
(C.4)

with

A1 = 3π(s)(t − b) + 3π ′(t)(t − b)2 + π ′′(t)(t − b)3/2,

A2 = 3π(s)(t − b)2 + π ′(t)(t − b)3, A3 = π(t)(t − b)3.

Expanding now 1/ ˇ̃q in a neighborhood of z = t in D, we obtain

1
ˇ̃q(z)

= 1

(1 − b̄z)3
= 1

(1 − b̄s)3

(
1 + 3b̄(z − t)

1 − b̄t
+ 6b̄2(z − t)2

(1 − b̄t)2

)
+ O((z − t)3).
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The P− projections in (C.4) can then be expressed as

P−

(
1

(1 − b̄z)3

1

z − t

)
= α

z − s
,

P−

(
1

(1 − b̄z)3

1

(z − t)2

)
= α

(z − t)2
+ β

z − t
,

P−

(
1

(1 − b̄z)3

1

(z − t)3

)
= α

(z − t)3
+ β

(z − t)2
+ γ

z − t
,

where

α = 1

(1 − b̄t)3
, β = 3b̄

(1 − b̄t)4
, γ = 6b̄2

(1 − b̄t)5
.

Thus,

P−

(
π

q

q̃
ˇ̃q

)
= �t,b(z) = (t − b)

Nt,b(z)

(z − t)3
= (t − b)�t,b(z),

where �t,b, �t,b are rational functions, and Nt,b is a polynomial of degree 2, as follows from

�t,b(z) = αA3

(z − t)3
+ αA2 + βA3

(z − t)2
+ αA1 + βA2 + γ A3

z − t
.

Using (C.3), we thus obtain

d(R, R̃) � ‖�t,b‖.
Note that �t,b, �t,b and Nt,b have continuous coefficients in the variable b ∈ D. In particular,
for b = t ∈ D,

�t,t (z) = 0, �t,t (z) = 3π̃ (t)

(1 − |t|2)3

1

z − t
.

Step 3. Consider the L2(T ) norms of �t,b and �t,b as functions of b, and put

φ(b) = ‖�t,b‖, ψ(b) = ‖�t,b‖, whence φ(b) = |t − b|ψ(b).

From (C.3), we now have that

d(R, R̃) � φ(b).

The above expressions are then to the effect that φ and ψ are continuous functions of b ∈ D.
Further, φ and ψ admit continuous extensions up to the closed disk D, and ψ does not
vanish on D. Indeed, let |b| = 1 and bn ∈ D, bn → b. Then, ∀z ∈ D, q̃n(z)/ ˇ̃qn(z) =
(z − bn)

3/(1 − b̄nz)3 converges to the constant −b3, whence (π q̃n)/(q ˇ̃qn) → −b3π̃/q̃ in
L2(T ). Since P−(π/q) = π/q = R (because Rm is contained in the above-mentioned Hardy
class of functions analytic in C \ D and by definition), we deduce that φ continuously extends
to T and that φ(b) = ‖R‖, ∀b ∈ T . Hence, ψ also admits a continuous extension on T and
ψ(b) = ‖R‖/|t − b|, ∀b ∈ T .

Step 4. Finally, the continuous positive function ψ attains its minimal value K′ � 0 in D at
some point b0 ∈ D. In order to establish by contradiction that K′ > 0, assume that K′ = 0;
then ψ(b0) = 0 which implies φ(b0) = 0. Then b0 /∈ T , since φ|T = ‖R‖. But if b0 ∈ D, then
necessarily b0 = t, the unique point in D where φ vanishes, from remark 2. However, because∥∥ 1

z−t

∥∥ = (1 − |t|2)− 1
2 , we have ψ(t) = 3|π̃ (t)|(1 − |t|2)− 7

2 . Because R = π/q is irreducible,
then π(t) �= 0, so ψ(t) �= 0, and this is a contradiction. Hence, K′ > 0.

Step 5. Thus, ψ(b) � K′ > 0 whence, with K = 1/K′, φ(b) � |t − b| and

|t − b| � Kφ(b) � K d(R, R̃),

which achieves the proof of proposition 1, with R3 = R.
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Remark 3. The expressions of α, β, γ lead to a similar result for the hyperbolic distance:

∃K0 > 0,

∣∣∣∣ t − b

1 − b̄t

∣∣∣∣ � K0φ(b) � K0 d(R, R̃).
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