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Abstract. Techniques of constrained approximation are used to recover solutions to elliptic
partial differential equations from incomplete and corrupted boundary data. The approach
involves the use of generalized Hardy spaces of functions whose real and imaginary parts are
related by formulae similar to the Cauchy–Riemann equations. A prime motivation for this is
the modelling of plasma confinement in a tokamak reactor. Constructive and numerical aspects
are also discussed.

1 Introduction

1.1 Problems, motivation

Let Ω be a bounded open domain in R2 with C1 boundary and

σ ∈ W 1,∞(Ω) such that 0 < c ≤ σ ≤ C a.e. in Ω , (1)

for two constants 0 < c < C < +∞. The elliptic equation we look at is

div(σ∇u) = 0 in Ω. (2)

The divergence and gradient operators are understood in the sense of weak derivatives
(with respect to real variables x, y in R2). We are interested in the following inverse prob-
lem of Cauchy type: assume that u and σ∂nu (where ∂nu denotes the normal derivative
of u on ∂Ω) are given on an open subset I ⊂ ∂Ω. From these data, we want to recover u
on the complementary subset J = ∂Ω \ I, also assumed to be of non-empty interior. This
problem is ill-posed in the sense of Hadamard, for instance in Sobolev spaces W 1−1/p,p(I)
[17], 1 < p < +∞, but also in Lp(I), where it still makes sense [9]. There, the associated
(direct) Dirichlet or Neumann problems on ∂Ω have a unique (up to normalisation) so-
lution, which depends continuously (Lebesgue, Sobolev, or Hardy norms) on the data, a
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stability property. Further, well-posedness of the inverse problem is ensured if a constraint
is added on J and the extrapolation issue expressed as a best Lp approximation problem
on I (in the class of bounded extremal problems (BEP), which will be explained later).
When σ is constant, this problem amounts to recovering or approximating the values
of a holomorphic function in a domain of analyticity from part of its boundary values.
This problem was extensively studied in Hardy spaces on simply and doubly connected
domains (see [3, 7, 8, 19]).
In the present paper, we are interested in Hardy classes of the conjugate Beltrami equation,
which is

∂f = ν ∂f a.e. in Ω , (CB)

where
ν ∈ W 1,∞(Ω) is real valued, and ‖ν‖L∞(Ω) ≤ κ < 1 , (κ)

for some κ ∈ (0, 1). There, ∂ and ∂ respectively denote the derivation operators with
respect to complex variables z = x + iy and z in C ' R2 (recall that ∂ ∂ = ∂ ∂ = ∆ =
div(∇)).
The equation (CB) is related to (2), in fact to a system of second order elliptic equations
in divergence form, in the following way [9, Sec. 3.1] which generalizes the well-known
link between holomorphic (analytic) and harmonic functions.
Let p ∈ (1,+∞) and f ∈ W 1,p(Ω) be a solution of (CB). If f = u+ iv where u and v are
real-valued, then u, v ∈ W 1,p(Ω), u satisfies equation (2) and (its σ-harmonic conjugate
function) v satisfies

div

(
1

σ
∇v
)

= 0 in Ω , (3)

where σ = (1− ν)/(1 + ν). It follows from (κ) that there exist c, C > 0 such that (1)
holds.
Conversely, let σ ∈ W 1,∞(Ω) satisfying (1) and u ∈ W 1,p(Ω) be a real valued solution of
(2), [17]. Then, if Ω is simply connected, there exists a real-valued function v ∈ W 1,p(Ω),
unique up to an additive constant, such that f = u + iv ∈ W 1,p(Ω) satisfies (CB), with
ν = (1− σ)/(1 + σ). Indeed, with this definition of ν, (CB) is equivalent to the system
of generalized Cauchy–Riemann equations:{

∂xv = −σ∂yu,
∂yv = σ∂xu,

(4)

where ∂x and ∂y stand for the partial derivatives with respect to x and y, respectively.
System (4) admits a solution because ∂y(−σ∂yu) = ∂x(σ∂xu) by (2), and Ω is simply
connected. Assumption (1) implies that ν satisfies (κ) for some κ ∈ (0, 1).
Even more general classes of “analytic” functions were studied in [13, 33], that are strongly
related to quasi-conformal maps [2]. The above link between (2) and (CB) is the basis of
the approaches of [4, 5, 24] and of the work [9] where fundamental properties of associated
generalized Hardy classes of solutions (in the disc) are established, and Dirichlet-type
issues considered. Here we shall complete some of these results, set up and solve best
constrained approximation (“bounded extremal”) problems in these classes, constructively
in the Hilbertian framework of L2.
An important practical motivation for such issues comes from plasma confinement in
tokamaks, for thermonuclear controlled fusion, when trying to recover the boundary of
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the plasma, or for numerical simulations. Indeed, in such a toroidal domain, a classical
symmetry assumption (with respect to the (0, y) axis, see Fig. 1 in Section 4) is to
the effect that the magnetic quantities involved in Maxwell equations do not depend
on the corresponding “poloidal” plane section. This allows to formulate the issue in 2
dimensions rather than in 3. There, the vacuum is an annular domain Ω (with 0 6∈ Ω) lying
between the plasma and the chamber where, from the so-called Grad–Shafranov equation,
the magnetic flux is a solution to the conductivity equation (2) with the conductivity
σ(x, y) = σ∗(x, y) = 1/x (see Fig. 1).
However, in the present work, we stick to the situation of (Dini) smooth simply connected
domains; the more involved one of annular domains will be analysed in a forthcoming
study. Up to conformal mappings, this allows us to handle the issue in the open unit disc
(see [9, Sec. 6]), where we consider Hardy classes.

The overview is as follows.
- Notation and definitions: Section 2.
- Properties of generalized Hardy classes, bounded extremal problems (BEP): Section 3.
- Complete families of solutions : Section 4.
- Constructive aspects: Section 5.
- Concluding remarks: Section 6.

2 Notation and definitions

We first present the notation that is used in the next section and later on.

2.1 General settings

Throughout the paper, D refers to the open unit disc and T to the unit circle of the
complex plane C, both centered at 0.

Let O be a bounded open set in Rd, d = 1 or 2 with a Lipschitz-continuous boundary.
The generic point in O is denoted by x in dimension d = 1 and by x = (x, y) in the
dimension d = 2. For each p, 1 ≤ p < +∞, we introduce the space

Lp(O) = {ϕ : O → C measurable ; ‖ϕ‖Lp(O) =

(
1

|O|
∫
O
|ϕ(x)|pdx

)1/p

< +∞} .

Note that we include a normalization factor, so that the norm is taken as an Lp mean
value. Now, let D(O) designate the space of complex-valued C∞ functions with compact
support in O. Its dual D′(O) is the usual space of distributions on O. If k denotes a d-
tuple (k1, ..., kd) of nonnegative integers, we use the notation ∂kϕ for the partial derivative
(in the distribution sense) of a function ϕ of total order |k| = k1 + ... + kd and partial
order ki with respect to the i-th variable.
So, for each nonnegative integer m and each p with 1 ≤ p < +∞, we consider the space
Wm,p(O) of functions such that all their partial derivatives of total order ≤ m belong to
Lp(O), i.e.,

Wm,p(O) = {ϕ ∈ D′(O) ; ‖ϕ‖Wm,p(O) = (
∑
|k|≤m

‖∂kϕ‖pLp(O))
1/p < +∞} .
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Next, the Sobolev spaces of non-integer order can be defined by an intrinsic norm [1].
Indeed, any positive real number s which is not an integer can be written [s] + α, where
[s] denotes its integral part while its fractional part α satisfies 0 < α < 1. Then, for any
p with 1 ≤ p < +∞, the space W s,p(O) is the space of distributions ϕ in D′(O) such that

‖ϕ‖W s,p(O) =

‖ϕ‖p
W [s],p(O)

+
∑
|k|=[s]

∫
O

∫
O

|∂kϕ(x)− ∂kϕ(x′)|p
|x− x′|αp+d

dx dx′

1/p

< +∞ .

Observe that such Sobolev spaces may also be defined in several other ways, for instance
by interpolation methods [1, Ch. VII].
The subscript R (for instance in LpR or in W s,p

R ) indicates real-valued function spaces.
We let L : Lp(T)→ C be the (bounded) mean value operator on T (recall that p > 1):

Lφ =
1

2π

∫ 2π

0

φ(eiθ) dθ , ∀φ ∈ Lp(T) .

2.2 Generalized Hardy classes

If 1 < p < +∞ and ν ∈ W 1,∞
R (D) satisfies (κ), we define the “generalized” Hardy space

Hp
ν (D) = Hp

ν to consist of those Lebesgue measurable functions f on D such that

ess sup
0<r<1

‖f‖Lp(Tr) = ess sup
0<r<1

(
1

2π

∫ 2π

0

∣∣f(reiθ)
∣∣p dθ)1/p

< +∞

(which therefore belong to Lp(D)) and satisfying (CB) in the sense of distributions on D,
see [9]. Equipped with the norm

‖f‖Hp
ν (D) := ess sup

0<r<1
‖f‖Lp(Tr) ,

Hp
ν is a Banach space. When ν = 0, Hp

0 = Hp = Hp(D) is the classical Hardy space of
holomorphic functions on the unit disc (see [20, 21]).

By analogy with classical Hardy spaces on C\D, let Hp
ν = Hp

ν (D) be the space of functions
f such that

ess sup
r>1

‖f‖Lp(Tr) < +∞ ,

and satisfying (CB) in C \ D. For each function f ∈ Lp(D), set

f̌(z) = f

(
1

z

)
, z ∈ C \ D .

A direct computation shows that

f ∈ Hp
ν ⇐⇒ f̌ ∈ Hp

ν̌ , (5)

for the dilation ν̌ ∈ W 1,∞
R (C \ D) (since ν is real-valued, ν̌(z) = ν(1/z̄)).

We introduce Hp,0
ν ⊂ Hp

ν (resp. Hp,0
ν ⊂ Hp

ν ), the (closed) subset of functions f ∈ Hp
ν (resp.

Hp
ν ) subject to the normalization condition L(Im(tr f)) = 0. Let Hp,00

ν be the subspace

of functions f ∈ Hp,0
ν such that∫ 2π

0

tr f(eiθ) dθ = 0 = L(tr f) . (6)
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Finally, let Ω ⊂ C be a simply connected bounded Dini-smooth domain (its boundary
being a Jordan curve with nonsingular Dini-smooth parametrization). Let ν satisfying (κ)
on Ω. We introduce the Hardy classes Hp

ν (Ω) as the space of functions f on Ω such that
f ◦ψ ∈ Hp

ν◦ψ(D), for some conformal transformation ψ from D onto Ω. A straightforward
computation [2, Ch. 1] shows that this class does not depend on the particular choice of
ψ and consists of distributional solutions to (CB).

3 Properties of Hardy classes, approximation issues

Let 1 < p < ∞ and assume that ν satisfies (κ). We first state and discuss some funda-
mental properties from [4, 5, 9].

3.1 Background

• Classes Hp
ν :

Basic properties of the above classes Hp
ν were established in the preliminary work [9], of

which we give a brief account below. These Hp
ν spaces mainly share properties of the

classical Hardy spaces Hp. From [9, Prop. 4.3.1, 4.3.2] we have:

Proposition 1
- Any function f in Hp

ν has a non-tangential limit almost everywhere on T, which we call
the trace of f and denote by tr f ; moreover, tr f ∈ Lp(T) and its Lp(T) norm is equivalent
to the Hp

ν norm of f .
- The space tr Hp

ν is closed in Lp(T).
- If f ∈ Hp

ν and f 6≡ 0, then its zeros are isolated in D and log | tr f | ∈ L1(T) (in
particular, tr f does not vanish on a subset of T having positive Lebesgue measure).
- Each f ∈ Hp

ν satisfies the maximum principle (in modulus).
- Let f ∈ Hp,0

ν . If Re(tr f) = 0 a.e. on T, then f ≡ 0.

Concerning the Dirichlet problem, we have [9, Thm 4.4.2.1]:

Theorem 1 For all ϕ ∈ LpR(T), there exists a unique f ∈ Hp,0
ν such that, a.e. on T,

Re(tr f) = ϕ. Moreover, there exists cp,ν > 0 such that: ‖f‖Hp
ν (D) ≤ cp,ν ‖ϕ‖Lp(T).

This result allows us to define a generalized conjugation operator Hν from LpR(T) into
itself. Indeed, to each ϕ ∈ LpR(T), associate the unique function f ∈ Hp,0

ν such that
Re tr f = ϕ, and set Hνϕ = Im tr f ∈ Lp(T). Note that Hν was introduced on W 1/2,2(T)
in [5] as the ν-Hilbert transform. When ν = 0, we observe that H0 ϕ is just the harmonic
conjugate of ϕ normalized to have zero mean on T.
Finally, the following density property of traces hold from [9, Thm 4.5.2.1]:

Theorem 2 Let I ⊂ T be a measurable subset such that T \ I has positive Lebesgue
measure. The restrictions to I of traces of Hp

ν -functions are dense in Lp(I).

• Conjugation operator Hν :

It follows from Theorem 1 that [9, Cor. 4.4.2.1]:
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Corollary 1 The operator Hν is bounded on LpR(T).

Further, the following properties hold [4, 5]:
(i) On LpR(T), H−ν ◦ Hν u = Hν ◦ H−ν u = −u + Lu: (Hν + L)−1 = −H−ν + L. This
follows immediately from the fact that iHp

ν = Hp
−ν (f is a solution to (CB) ⇔ g = i f is

a solution to ∂g = −ν ∂g).
(ii) It is easily checked that, by definition: Hν ◦ L = L ◦ Hν = 0 on LpR(T).
(iii) So far, Hν(u) was defined only for real-valued functions. It is however natural to set
as in [4, 5]: Hν(i u) = iH−ν(u), thereby extending Hν to complex-valued functions, as an
R-linear bounded operator on Lp(T).

• Projection operator Pν :

(i) On L2(T) let:

Pν f =
1

2
(I + iHν) f +

1

2
L(f) .

This defines a generalized Riesz projection operator Pν from Lp(T) onto trHp
ν , [5, 9]. In

particular Pν is a bounded operator on L2(T). Equivalently, for f = u+ iv, u, v ∈ L2
R(T),

Pν

(
u
v

)
=

1

2

(
u−H−νv
Hνu+ v

)
+

1

2

(
Lu
Lv

)
(ii) Observe that Pν ◦ L = L ◦ Pν = L.
(iii) Let u1, u2 ∈ L2

R(T).

Pν(u1 + iHνu2 + i c) = Pν

(
u1

Hνu2 + c

)
=

1

2

(
u1 + u2 + L(u1 − u2)
Hν(u1 + u2) + 2c

)
.

Remark 1 Observe that on the subspace L2,0(T) ⊂ L2(T) of functions with vanishing
mean value L, the above formulas are to the effect that we have H−1

ν = −H−ν while:

Pν f =
1

2
(I + iHν) tr f or Pν

(
u
v

)
=

1

2

(
u−H−νv
Hνu+ v

)
,

and

Pν(u1 + iHνu2) = Pν

(
u1

Hνu2

)
=

1

2

(
u1 + u2

Hν(u1 + u2)

)
.

3.2 Further properties of Hardy classes

By definition of the Hilbert transform Hν , we have the following M. Riesz-like result,
which is also a generalization of [25, Lem. 3]:

Corollary 2 Let f = u+ i v ∈ Lp(T) (u , v ∈ LpR(T)).
(i) f ∈ trHp,0

ν ⇔ v = Hνu. Further, there exists an absolute constant c = cp,ν > 0 such
that:

∀f = u+ i v ∈ trHp,0
ν , ‖f‖Lp(T) ≤ c ‖u‖Lp(T) .

(ii) f ∈ trHp
ν ⇔ v = Hνu+Lv. If I ⊂ T is a connected subset of T such that both I and

J = T \ I have positive Lebesgue measure, there exists an absolute constant c = cp,ν,I > 0
such that:

∀f = u+ i v ∈ trHp
ν , ‖f‖Lp(T) ≤ c (‖u‖Lp(T) + ‖v‖Lp(I)) .
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Proof. (i) Use Theorem 1 and Corollary 1.
(ii) Let f = u + i v ∈ trHp

ν . Apply point (i) to f − i Lv ∈ trHp,0
ν . We then have

v = Hνu+ α, for some constant α = Lv, and there exists C = Cp,ν > 0 such that

‖v − α‖Lp(T) ≤ C ‖u‖Lp(T) .

Then
‖f − iα‖Lp(I) ≤ 2C ‖u‖Lp(T) ,

whence
‖α‖Lp(I) ≤ 2C ‖u‖Lp(T) + ‖f‖Lp(I) .

This gives the required bound on α.

As another consequence of Theorem 1, we get:

Corollary 3 Lp(T) = trHp
ν ⊕ trHp,00

ν̌ , and the decomposition is topological.

Proof. In view of (5), Proposition 1 also holds for Hp
ν̌ functions (while f ∈ Hp,0

ν ⇐⇒ f̌ ∈
Hp,0
ν̌ as well). In particular, trHp

ν + trHp,0
ν̌ ⊂ Lp(T). Note also that Re(tr f̌) = Re(tr f),

Im(tr f̌) = − Im(tr f) a.e. on T.

Conversely, it follows first from Theorem 1 that LpR(T) ⊂ Re(trHp,0
ν )+Re(trHp,0

ν̌ ). Indeed,
assume that ϕ ∈ LpR(T). In view of Theorem 1, there exists f ∈ Hp,0

ν such that, a.e. on T:

Re(tr f) = ϕ/2. Hence, f̌ ∈ Hp,0
ν̌ and a.e. on T, Re(tr f̌) = ϕ/2, while Re tr(f + f̌) = ϕ,

and Im tr(f + f̌) = 0.
Next, consider Φ = ϕ + iψ ∈ Lp(T), with ϕ , ψ ∈ LpR(T). Let f and f̌ as above, and
g ∈ Hp,0

−ν such that Re(tr g) = ψ/2 a.e. on T; thus Re tr(g + ǧ) = ψ, and Im tr(g + ǧ) =

0. Then, one can check that ig ∈ Hp
ν and iǧ ∈ Hp

ν̌ , while Im i tr(g + ǧ) = ψ and
Re i tr(g + ǧ) = 0 a.e. on T. Finally, a.e. on T,

Φ = tr(f + f̌) + i tr(g + ǧ) = tr(f + i g) + cf,g + tr(f̌ + i ǧ)− cf,g ∈ trHp
ν + trHp,00

ν̌ ,

with

cf,g =
1

2π

∫ 2π

0

Re tr f(eiθ) dθ +
i

2π

∫ 2π

0

Re tr g(eiθ) dθ .

To check that this decomposition is direct, let f ∈ Hp
ν and g ∈ Hp,00

ν̌ such that tr f = tr g
a.e. on T. Hence f + ǧ ∈ Hp

ν and Im tr(f + ǧ) = 0. Theorem 1 implies that f + ǧ is
identically equal in D to a real-valued constant: f + ǧ = 2 Re tr f = 2 Re tr g = c . From
the normalization assumption (6), we necessarily have that Re tr f = Re tr g = 0 a.e. on
T, hence also Im tr f = Im tr g = 0 a.e. on T.

Remark 2 Let Ω ⊂ C be a simply connected bounded Dini-smooth domain and ν sat-
isfying (κ) on Ω. The present results still hold in the Hardy class Hp

ν (Ω). Note that
ν ◦ ψ ∈ W 1,∞(D) with ‖ν ◦ ψ‖L∞(D) ≤ κ < 1, and that any conformal transformation ψ

from D onto Ω extends continuously from D onto Ω together with its derivative, in such
a way that the latter is never zero [32, Thm 3.5].
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3.3 Bounded extremal problems (BEP) in the disc

Let I ⊂ T be a connected subset of T such that both I and J = T \ I have positive
Lebesgue measure. For M ≥ 0, φ ∈ LpR(J), define

Cp = Cp(φ,M) =
{
g ∈ trHp

ν ; ‖Re g − φ‖Lp(J) ≤M
}
|I ⊂ Lp(I) .

Theorem 3 Fix M > 0, φ ∈ LpR(J). For every function F ∈ Lp(I), there exists a unique
function g∗ ∈ Cp such that

‖F − g∗‖Lp(I) = min
g∈Cp
‖F − g‖Lp(I) . (BEP)

Moreover, if F /∈ Cp, then ‖Re g∗ − φ‖Lp(J) = M .

Proof. We argue as in [7, 19]. Since Cp is clearly convex, to prove the existence and the
uniqueness of g∗, it is enough to check that Cp is closed in Lp(I), since this Banach space
is uniformly convex.
Let ϕk|I ∈ Cp, ϕk|I → ϕI in Lp(I) as k →∞. Put ϕk = uk + ivk ∈ trHp

ν . By assumption,
(uk) is bounded in Lp(T) and (vk) in Lp(I). Hence, we get from Corollary 2, (ii), that
(ϕk) is bounded in Lp(T) (hence (vk) is bounded in Lp(J)) and thus, up to extracting a
subsequence, weakly converges to ψ ∈ Lp(T); necessarily ψ|I = ϕI .
Finally, ϕk ∈ trHp

ν , which is closed thus weakly closed in Lp(T) (Mazur’s theorem, [22]);
this implies that ψ ∈ trHp

ν . Because Reϕk = uk satisfies the constraint on J , so does
Reψ, whence ϕI ∈ Cp.
Let us now prove that, if F /∈ Cp, then ‖Re g∗ − φ‖Lp(J) = M . Assume for a contradiction
that ‖Re g∗ − φ‖Lp(J) < M . By Theorem 2, since ‖F − g∗‖Lp(I) > 0, there is a function
h ∈ trHp

ν such that
‖F − g∗ − h‖Lp(I) < ‖F − g∗‖Lp(I) ,

and by the triangle inequality we have

‖F − g∗ − λh‖Lp(I) < ‖F − g∗‖Lp(I)

for all 0 < λ < 1. Now for λ > 0 sufficiently small we have ‖Re(g∗ + λh)− φ‖Lp(J) ≤M ,
contradicting the optimality of g∗.

Remark 3 Theorem 3 still holds if the constraint on J is replaced by ‖g − φ‖Lp(J) ≤M ,
for φ ∈ Lp(J), as in [7, 8], or more generally by a combination:

α ‖Re g − φr‖Lp(J) + β ‖Im g − φi‖Lp(J) ≤M ,

for φr , φi ∈ LpR(J), and α, β ≥ 0 with α + β > 0, as in [27].

We now pay particular attention to the Hilbertian case p = 2. Note that trH2
ν is a closed

subspace of L2(T) (see Prop. 1, Cor. 3), and that a (best approximation) Riesz projection
operator Pν : L2(T)→ trH2

ν has been introduced in Section 3.1 that generalizes the usual
one. Using this we can formulate a solution to the extremal problem posed in Theorem
3 (more complicated expressions can be derived in the case p 6= 2, using the methods of
[7, 11, 19]).
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Proposition 2 For p = 2, and if F /∈ C2, the solution g = g∗ to the extremal problem
(BEP) subject to ‖Re g − φ‖L2(J) ≤M , φ ∈ L2

R(J), M > 0, is given by

PνχIg + γ PνχJ Re g = PνχIF + γ PνχJφ , (7)

for the unique γ > 0 such that ‖Re g − φ‖L2(J) = M .

Proof. The method of proof is variational, as in [3, 27], and indeed more general abstract
results can be found in [18, 28]. We therefore give only a brief sketch of the argument.
Let ψ ∈ trH2

ν|I lie in the real tangent space to C2 at g, that is,

Re〈g − φ, ψ〉L2(J) = 0 .

Then optimality implies that

Re〈g − F, ψ〉L2(I) = 0 .

Thus PνχI(g − F ) = γPνχJ(φ−Re g) for some γ ∈ R. Finally, a first-order perturbation
argument shows that γ > 0.

A discussion of the relations between the (Lagrange-type) parameter γ, the constraint
M , and the error e∗ = ‖F − g∗‖L2(I) in the “classical” case ν = 0 can be found in [3],
with further precise information obtained by spectral methods in [6]. All we require in
the present situation is the easy observation that e∗ is a strictly decreasing function of
M , and as M →∞ we have e∗ → 0.

4 Families of solutions and density results

Let σ(x, y) = σ∗(x, y) = 1/x be the particular conductivity involved in plasma equations,
and the associated dilation coefficient ν = ν∗ = (1− σ∗)/(1 + σ∗):

ν∗(z, z̄) =
z + z̄ − 2

z + z̄ + 2
.

We consider now equations (2) and (3) in the disc Ω = D0:

D0 = {(x, y) ∈ R2 : (x− x0)2 + y2 < R2}, where 0 < R < |x0|,

with T0 its boundary (a circle). Let R be a rectangle containing D0: R = [a, b]× [−c, c],
b > a > 0 and c > 0, with (Lipschitz-continuous) boundary ∂R. Its edges are denoted by
Γa = {a} × [−c, c], Γb = {b} × [−c, c], Γc = [a, b]× {c} and Γ−c = [a, b]× {−c}.
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Fig.1 Geometrical setting in a poloidal section

Note that both σ = σ∗ and ν = ν∗ are smooth on R and that D0 is defined in order to
have compact closure in R.

4.1 Particular solutions of Bessel-exponential type

We write u(x, y) = A(x)B(y) for a solution to (2) with separated variables and v(x, y) =
C(x)D(y) for its σ-harmonic conjugate function, a solution to (3) in R. In view of the
Cauchy–Riemann equations (4), we have

ux = xvy or A′B = xCD′

and
uy = −xvx or AB′ = −xC ′D.

The 2nd order equation for v gives

C ′′D + CD′′ = −1

x
C ′D, or

C ′′

C
+

1

x

C ′

C
= −D

′′

D
= −λ2 ∈ R, say,

since it is independent of both x and y and hence constant. This gives

D(y) = exp(±λy), and C ′′ +
1

x
C ′ + λ2C = 0.

(i) Assume λ 6= 0, λ ∈ R.
There is a fundamental solution in terms of Bessel functions, namely,

C(x) = J0(λx) or C(x) = Y0(λx).

Our main references for the theory of Bessel functions are [34, Ch. III] and [35, Ch.
XVII]. Also, we may take B = D and then (since J ′0 = −J1 and Y ′0 = Y1) we have,
correspondingly, A(x) = −xC ′(x)/λ, i.e.,

A(x) = xJ1(λx) or A(x) = −xY1(λx).

10



In fact, we shall be able to construct a complete family of solutions without using the
functions Yn (see Section 4.2).

(ii) Now we assume that λ 6= 0, λ = i% ∈ iR.
Modified Bessel functions (Bessel functions of imaginary argument), namely

C(x) = I0(%x) or C(x) = K0(%x),

satisfy the equation
C ′′

C
+

1

x

C ′

C
= %2 = −λ2,

in conjunction with D(y) = cos(%(y + y0)), say. Taking B(y) = sin(%(y + y0)) again, and
noting that I ′0 = I1 and K ′0 = −K1 [34], we have the corresponding solutions:

A(x) = −xI1(%x) or A(x) = xK1(%x).

(iii) Finally we look at the case λ = 0.
The dependence in x and y of each function allows us to write

A′

xC
=
D′

B
= ρ and

A

xC ′
= −D

B′
= −µ

and we have the following identities:

D′′ = λ2D = ρB′ =
ρ

µ
D ,

so that λ2 =
ρ

µ
. Then λ = 0 implies that either ρ = 0 and µ 6= 0, or µ =∞.

If ρ = 0 and µ 6= 0, we have

D(y) = d, B(y) =
d

µ
y + b, A(x) = a and C(x) = −a

µ
ln(x) + c .

In the other case, µ =∞,

B(y) = b, D(y) = ρby + d, C(x) = c and A(x) =
ρc

2
x2 + a .

Thus, for every N ∈ N∗, and for all sequences of real-valued coefficients (λn), (µn), (αn),
(βn), (γn), (δn), n = 1, · · · , N , and every a0, b0, c0 ∈ R, the following is a legitimate
solution u to (2):

u(x, y) =
N∑
n=1

xJ1(λnx)[αne
λny + βne

−λny]

+
N∑
n=1

x[γnI1(µnx) + δnK1(µnx)] sin(µn(y + c)) + a0x
2 + b0y + c0 (8)

= uλ(x, y) + uµ(x, y) + u0(x, y), say.
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The analogous expression for Hν∗u involves Bessel functions of order zero, as above,
whence if u is given by (8), then Hν∗u = v − Lv with the solution v to (3) and (4) given
by:

v(x, y) =
N∑
n=1

J0(λnx)[αne
λny − βne−λny]

+
N∑
n=1

[−γnI0(µnx) + δnK0(µnx)] cos(µn(y + c))− b0 lnx+ 2a0y (9)

= vλ(x, y) + vµ(x, y) + v0(x, y) .

It is convenient to choose λn to be the positive roots of J0(λnb) = 0, in view of the fact
that with this choice the functions (

√
xJ0(λnx))n≥1 are a complete orthogonal system in

L2((0, b);x dx). However, many other choices are possible.
An appropriate choice of µn is nπ

2c
, so that the expression uµ(x, y) in (8) vanishes on the

lines y = ±c.

We then write B for the space of solutions u given by (8) with such (λn), (µn), n =
1, · · · , N , and free parameters (αn), (βn), (γn), (δn), a0, b0, c0 ∈ R. Meanwhile, we intro-
duce F as the corresponding (through (4)) space of solutions v given by (9).
Then, given L2 data on the boundary of the rectangle R = [a, b] × [−c, c], we may
approximate it arbitrarily closely on the lines y = ±c by taking a finite sum and choosing
(αn) and (βn) suitably. Then we may choose the coefficients (γn) and (δn) to obtain
approximation on the lines x = a, x = b.

Remark 4 Note that the Wronskian I ′1K1 − I1K
′
1 does not vanish, which implies that

I1/K1 is monotonic, and so the vectors (I1(µna), K1(µna)) and (I1(µnb), K1(µnb)) in R2

are linearly independent.

4.2 Density properties of B in R
Proposition 3 The family B is W 1,2(R) dense in

SR =

{
u ∈ W 1,2

R (R) ; div

(
1

x
∇u
)

= 0

}
.

The proof relies on the following result that we first establish:

Lemma 1 B|∂R is W 1,2 dense in W 1,2
R (∂R).

Proof of Lemma 1. Recall that B|∂R is a set of solutions of the conductivity equation

div

(
1

x
∇u
)

= 0 , (10)

obtained by separating the variables on the rectangle R = [a, b] × [−c, c], restricted to
∂R, in W 1,2

R (∂R).

The proof proceeds in three stages:
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- we consider first the horizontal sides Γc and Γ−c (Step 1), where Bessel functions of
order 0 induce a complete famliy,
- then the vertical sides Γa and Γb (Step 2), with the usual Fourier basis,
- then we prove density for the complete boundary ∂R of the rectangle R (Step 3).

Step 1: density of B|Γc in W 1,2
R (a, b).

Let f ∈ W 1,2
R (∂R) so that f(., c) ∈ W 1,2

R (a, b) denotes its restriction to Γc. Write (λn)n≥1

for the strictly increasing sequence of roots [34, Ch. XV] of the equation J0(λnb) = 0
which are all positive. Now we define a function ψ on R by ψ(x, y) = 1

c
√
x
∂xf(x, c) y.

Its restriction to Γc still belongs to L2
R(a, b) and, by [14, Thm. 2],

{
x1/2J0(λnx)

}
forms a

complete system in L2
R(a, b). It follows that for every ε > 0, there exist a sufficiently large

integer N and scalars (an,c)n=1,...,N such that∥∥∥∥∥ψ(t, c)−
N∑
n=1

an,c
√
tJ0(λnt)

∥∥∥∥∥
L2(a,b)

≤ ε

b− a

√
2

b
, (11)

Then classical properties of the integral and the Cauchy–Schwarz inequality lead to

1√
b− x

∣∣∣∣∣
∫ b

x

(
∂tf(t, c)−

N∑
n=1

an,c tJ0(λnt)

)
dt

∣∣∣∣∣ ≤ ε

√
2

b− a, x ∈ (a, b). (12)

Using the identity Jν(x) = x−ν−1 d

dx
(xν+1Jν+1(x)) from [34, p. 66] and calculating the

integral in (12) allow us to write

(ξc(x, c)− f(x, c))2 ≤ 2ε2
b− x
b− a , (13)

where ξc ∈ B denotes the function defined on R by

ξc(x, y) =
N∑
n=1

an,c
λn

xJ1(λnx)
eλn(y+c) − e−λn(y+c)

e2λnc − e−2λnc
− (y + c)

KN,c − f(b, c)

2c
, (14)

and

KN,c =
N∑
n=1

an,c
λn

bJ1(λnb).

Integrating (13) between a and b we have that ‖f(x, c)−ξc(x, c)‖L2(a,b) ≤ ε. In conjunction

with (11), this implies the density of B|Γc in W 1,2
R (a, b).

A similar calculation can be made on the side Γ−c and we denote by ξ−c the corre-
sponding function. Since ξc vanishes on Γ−c and ξ−c vanishes on Γc, we conclude that if
f ∈ W 1,2

R (∂R), then (ξc + ξ−c) approximates f on Γc ∪ Γ−c in W 1,2(a, b) norm.

The same principle will be used for the vertical sides Γa and Γb: construct an approxima-
tion on both, such that its contribution to the other side is arbitrarily small (or zero) in
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W 1,2 norm.

Step 2: density of B|Γb in W 1,2
R (−c, c).

Let f ∈ W 1,2
R (∂R) so that f(b, .) ∈ W 1,2

R (−c, c) denotes its restriction to Γb. Hence

∂yf(b, y) can be expanded as a Fourier series using the family
{

1, cos(
nπ

2c
(y + c))

}
n∈N∗

,

which is complete in L2
R(−c, c). Hence, for every ε > 0, there exist an integer N and

scalars (an,b)n=1,...,N such that∥∥∥∥∥∂tf(b, t)−
(
a0,b +

N∑
n=1

an,b cos
(nπ

2c
(t+ c)

))∥∥∥∥∥
L2(−c,c)

≤ ε√
c
. (15)

Let us denote by FN(b, .) the above partial sum of order N of the Fourier series expansion
of f ′(b, .). As in Step 1, we have that

1√
y + c

∣∣∣∣∫ y

−c
(∂tf(b, t)−FN(b, t)) dt

∣∣∣∣ ≤ √2ε, y ∈ (−c, c). (16)

Writing µn =
nπ

2c
, (16) can be calculated to give∣∣∣∣∣f(b, y)− f(b,−c)−

(
a0,b (y + c) +

N∑
n=1

an,b
µn

sin(µn(y + c))

)∣∣∣∣∣ ≤√2(y + c)ε.

That is,
(f(b, y)− ξb(b, y))2 ≤ 2(y + c)ε2, (17)

where ξb ∈ B denotes the function defined on R by

ξb(x, y) =
N∑
n=1

x [γn,bI1(µnx) + δn,bK1(µnx)] sin(µn(y + c))

+
x2 − a2

b2 − a2
f(b,−c) + (y + c)

f(b, c)− f(b,−c)
2c

, (18)

and 
γn,b = −an,b

bµn

K1(µna)

K1(µnb)I1(µna)−K1(µna)I1(µnb)
,

δn,b =
an,b
bµn

I1(µna)

K1(µnb)I1(µna)−K1(µna)I1(µnb)
.

By Remark 4, the expression of ξb is valid insofar as K1(µnb)I1(µna)−K1(µna)I1(µnb) 6= 0.
Finally, integrating (17) between −c and c, we have ‖f(b, y)− ξb(b, y)‖L2(−c,c) ≤ cε

√
2. In

conjunction with (15), this implies the density of B|Γb in W 1,2
R (−c, c).

As in the previous section, a similar result holds on the side Γa with a corresponding
function ξa. The functions ξa and ξb are constructed so that if f is arbitrarily small on
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Γc and Γ−c then ξa is arbitrarily small on Γb and so does ξb on Γa. We conclude that if
f ∈ W 1,2

R (∂R) and is small enough, then (ξa + ξb) is an approximation to f on Γa ∪ Γb in
W 1,2(−c, c) norm.

Step 3: density of B|∂R in W 1,2(∂R).

Let f ∈ W 1,2
R (∂R). From Step 1, there exist ξc and ξ−c belonging to B such that on

Γc∪Γ−c, we have (f − ξc− ξ−c) arbitrarily small in W 1,2(a, b) norm. We let H denote the
function defined on ∂R such that H = (f − ξc− ξ−c). Since H still belongs to W 1,2

R (∂R),
there exist, from Step 2, ξa ∈ B and ξb ∈ B which approximate H in W 1,2(−c, c) norm on
the sides Γa and Γb respectively. Writing I = {a, b, c,−c}, we now show that

‖H − (ξa + ξb)‖2
W 1,2(∂R) =

∑
i∈I

‖H − (ξa + ξb)‖2
W 1,2(Γi)

can be made arbitrarily small, in other words (ξc + ξ−c + ξa + ξb) ∈ B gives a good
approximation to the function f in W 1,2(∂R) norm. For convenience, we only give the
details for Γ−c.
Let

A−c = ‖H − (ξa + ξb)‖W 1,2(Γ−c) = ‖H(x,−c)− ξa(x,−c)− ξb(x,−c)‖W 1,2(a,b) .

Here, ξb is given by formula (18) with H in place of f , and ξa similarly. We thus obtain

A−c = ‖H(x,−c)− x2 − b2

a2 − b2
H(a,−c)− x2 − a2

b2 − a2
H(b,−c)‖W 1,2(a,b) .

Now, we remark that:

‖x
2 − b2

a2 − b2
H(a,−c)‖W 1,2(a,b) ≤ |H(a,−c)|‖x

2 − b2

a2 − b2
‖W 1,∞(a,b)

≤ |H(a,−c)|
(

1 +
2b

b2 − a2

)
,

and in the same way:

‖x
2 − a2

b2 − a2
H(b,−c)‖W 1,2(a,b) ≤ |H(b,−c)|

(
1 +

2b

b2 − a2

)
.

Using the triangle inequality, it follows that:

A−c ≤ ‖H(x,−c)‖W 1,2(a,b) + 2

(
1 +

2b

b2 − a2

)
×max(|H(a,−c)|, |H(b,−c)|).

From (14), we have that ξc(.,−c) ≡ 0, hence H(.,−c) = f(.,−c) − ξ−c(.,−c). Since ξ−c
is an approximation to f on Γ−c in W 1,2(a, b) norm from (13) in Step 1, thus also at
the corner points (a,−c) and (b,−c), all the terms in the last inequality can be made
arbitrarily small, thus also A−c = ‖f − (ξc + ξ−c + ξa + ξb)‖W 1,2(Γ−c).
Similarly, ‖f−(ξc+ξ−c+ξa+ξb)‖W 1,2(∂R) = ‖H−(ξa+ξb)‖W 1,2(∂R) can be made arbitrarily
small. This ends the proof of Lemma 1.
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Proof of Proposition 3. Recall first that R is a simply-connected plane domain with
Lipschitz boundary [23, p. 6]. Let u ∈ SR. Since tru ∈ W

1/2,2
R (∂R) [23, Thm 1.5.1.3],

there exist (φn)n∈N ∈ W 1,2
R (∂R) such that

‖ tru− φn‖W 1/2,2(∂R) → 0,

and by Lemma 1, we also have that for each n ∈ N there exists b(n) ∈ B such that
‖φn − b

(n)
|∂R‖W 1,2(∂R) can be made arbitrarily small. Since W 1,2

R (∂R) ⊂ W
1/2,2
R (∂R) (see

[29]), and the injection is bounded (indeed, even compact) by [12, Thm 2.2] (see also [1,
Par. 1.24]), we have the existence of a constant c > 0 such that

‖φn − b(n)
|∂R‖W 1/2,2(∂R) ≤ c‖φn − b(n)

|∂R‖W 1,2(∂R) → 0,

and, by the triangle inequality,

‖ tru− b(n)
|∂R‖W 1/2,2(∂R) ≤ ‖ tru− φn‖W 1/2,2(∂R) + ‖φn − b(n)

|∂R‖W 1/2,2(∂R) → 0.

Finally, by [12, Thm 4.4], the map from W
1/2,2
R (∂R) to W 1,2

R (R) which to tru associates
u ∈ SR (unique solution to (10) associated to the given boundary values) is continuous,
so that, for some c′ > 0,

‖u− b(n)‖W 1,2(R) ≤ c′‖ tru− b(n)
|∂R‖W 1/2,2(∂R) → 0,

and thus B is dense in SR.

4.3 Density properties of B in D0

We show below that L2
R(T0) functions may be approximated by functions belonging to B|T0

that are solutions to (2). For the particular dilation coefficient ν∗, this is a constructive
view of the fact that L2

R(T0) = Re trH2
ν∗(D0) (see Theorem 1) and will be used in order

to solve bounded extremal problems.
Recall that H2

ν∗(D0) is defined accordingly to Section 2 and Remark 2, using for instance
ψ(z) = Rz + x0 as a conformal map from D onto D0.

Proposition 4 The restriction B|T0
to T0 of B is L2 dense in L2

R(T0) = Re trH2
ν∗(D0).

Proof. Let ψ ∈ L2
R(T0) and ε > 0. There exists φ ∈ W 1/2,2

R (T0) such that

‖ψ − φ‖L2(T0) ≤ ε .

However, Dirichlet-type results from [17] are to the effect that there exists a unique
solution u ∈ W 1,2

R (D0) of (2) such that tru = φ on T0. Then, because of the W 1,2(R)
density of B in SR, see Proposition 3, an approximation result of Browder [16, Thm 5]
asserts that restrictions to D0 of functions in B still form a dense subset of W 1,2(D0), the
involved operator and domain being sufficiently smooth. This ensures that there exists
b ∈ B such that

‖u− b‖W 1,2(D0) ≤ ε ,

whence also ‖φ − b‖L2(T0) ≤ c ε, for some c > 0, from [15, Ch. 9] (we are taking the
restrictions of b to the disc or the circle as appropriate). Finally, we get that

‖ψ − b‖L2(T0) ≤ (1 + c) ε .
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This implies that B|T0
is dense in L2

R(T0). Further, the result that

L2
R(T0) = Re trH2

ν∗(D0) (19)

follows from Theorem 1.

Remark 5 Results of Lax [26] and Malgrange [30], assert similar Runge-like density
properties, namely that real solutions of the partial differential equation on a disc can
be approximated locally uniformly by solutions that extend to a large simply-connected
domain.

We then obtain:

Corollary 4 (i) Bν∗ = {b+ iHν∗b+ i c , b ∈ B , c ∈ R} is L2(T0) dense in trH2
ν∗(D0).

(ii) B + iHν∗B + iR = {b1 + iHν∗b2 + i c , b1 , b2 ∈ B , c ∈ R} is dense in L2(T0).

Proof. (i) Let f ∈ H2
ν∗(D0) and ε > 0. So u = Re(tr f) ∈ L2

R(T0), and Proposition 4
ensures that there exists b ∈ B such that

‖u− b‖L2(T0) < ε.

Now, as Hν∗ is continuous from L2
R(T0) to L2

R(T0) (from Corollary 1), we have

‖Hν∗(u)−Hν∗(b)‖L2(T0) = ‖Hν∗(u− b)‖L2(T0) < ε.

Finally, using Corollary 2, we get that Hν∗(u) = v+ c = Im(tr f) + c, for some c ∈ R and
point (i) follows (trH2

ν∗(D0) = L2
R(T0) + iHν∗(L

2
R(T0)) + iR).

Point (ii) may be obtained from the decomposition L2(T0) = L2
R(T0) + iL2

R(T0), using
that Hν∗B + R is dense in L2

R(T0), from point (i).

Remark 6 From point (i) of the above corollary, for K ⊂ T0, such that T0 \ K has
positive Lebesgue measure, we get that Bν∗|K is L2(K) dense in [trH2

ν∗(D0)]|K , whence in

L2(K), in view of Theorem 2.

5 Constructive aspects

In order to compute solutions to (BEP) in D0 using Proposition 2 (see also Remark 2),
we first need to find approximations in B and Hν∗B to given data (u, v) on the circle T0

with centre (x0, 0) and radius R, contained in the rectangle R. From now on, we denote
by e > 0 the minimal distance between T0 and R (see Fig.1).
In this section, we take advantage of the properties established for B in Section 4. Indeed,
recall that given b ∈ B, with a set of coefficients on the family of Bessel-exponential
functions (8) that generate B, then Hν∗ b has the same coefficients on the family (9) of
Bessel-exponentials that generate Hν∗B and F .
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5.1 Approximation algorithms

In order to determine numerically Pν∗ for given boundary data u and v in L2
R(T0), it is

sufficient to compute an L2-approximation of Hν∗u and H−ν∗v, according to the formulas
in Section 3.1. To proceed, recall first that B is the space of solutions to (2) with separated
variables and σ = σ∗, while F is the corresponding space of solutions to (3), (4), see the
expressions (8), (9).
That trF is dense in L2

R(T0) follows from Corollary 4. The issue now consists in writing
the expansions of u on B and of v on F and then in computing both Hν∗u and H−ν∗v by
the following rule (see (8), (9)):

Hν∗B = F − L(F) and H−ν∗F = −B − L(−B).

Here the averaging operator L is considered on T0:

∀ f ∈ L2
R(T0), Lf =

1

2π

∫ 2π

0

f(x0 +R cos θ, R sin θ) dθ.

We remark that there is no connection between the coefficients resulting from the decom-
position of u in B and those of v in F except when u+ iv ∈ trH2

ν∗(D0). Of course, only a
finite number N of functions in B and F will be used for computations. More particularly,
the same number n of elementary functions of each kind is involved, whence N = 4n+ 3
for B, from (8), while N = 4n+ 2 for F , using (9).
Let (bp)p=1,...,N be the functions of one of these finite systems, whose union is complete in
L2

R(T0) (by Proposition 4). In B, choose for instance, for p = 1, · · ·n:{
b4p−3(x, y) = xJ1(λpx)eλpy, b4p−2(x, y) = xJ1(λpx)e−λpy,
b4p−1(x, y) = xI1(µpx) sin(µp(y + c)), b4p(x, y) = xK1(µpx) sin(µp(y + c)),

and bN−2(x, y) = x2, bN−1(x, y) = y, bN(x, y) = 1.
Then an optimal L2(T0) approximation of a function ψ ∈ L2(T0) in the span of (bp)p=1,...,N

is obtained by solving in (km)m the normal equations :

〈
N∑
m=1

kmbm − ψ, bp〉L2(T0) = 0, or
N∑
m=1

km〈bm, bp〉L2(T0) = 〈ψ, bp〉L2(T0), n = 1, . . . , N.

Note that functions in the family B (or F) are mutually non-orthogonal on T0. As
always in this case, the stiffness matrix (〈bm, bp〉L2(T0)), m, p = 1, . . . , N , appearing in the
resolution of the normal equations is ill-conditioned. A first approach to decreasing the
conditioning number and thereby to improve the accuracy of the approximation is to
average the basis functions after subtracting their mean value. Hence, we consider the
families:

B̃ =

{
b− L(b)

‖b− L(b)‖L2(T0)

; b ∈ B
}

and F̃ =

{
f − L(f)

‖f − L(f)‖L2(T0)

; f ∈ F
}

and approximations are made for u − Lu and v − Lv. Then a representation of the
algorithm is:
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u ∈ L2
R(T0)

v ∈ L2
R(T0)

U = u− Lu V = v − Lv

Ũ =
∑N

i=1 αib̃i, b̃i ∈ B̃ Ṽ =
∑N

i=1 βif̃i, f̃i ∈ F̃

Hν∗Ũ =
∑N

i=1 αiHν∗ b̃i = Hν∗ũ H−ν∗Ṽ =
∑N

i=1 βiH−ν∗ f̃i = H−ν∗ ṽ

P̃ν∗

(
u
v

)
= 1

2

(
u−H−ν∗ ṽ
Hν∗ũ+ v

)
+ 1

2

(
Lu
Lv

)

where ũ, ṽ, Ũ , Ṽ , Hν∗ũ, H−ν∗ ṽ represent the approximations of order N in B and F of the
corresponding functions. As a consequence, the algorithm leads us to define the operator
P̃ν∗ which is a L2(T0) approximation of Pν∗ . For given data u and v, the error between
P̃ν∗(u, v) and Pν∗(u, v) only stems from those between Hν∗ũ and Hν∗u on the one hand,
and between H−ν∗ ṽ and H−ν∗v on the other hand.

5.2 Numerical computations

In this section, we present several numerical results obtained with the software Matlab
(R2008b). These are still preliminar and mainly illustrate the approximation of functions
in trH2

ν∗(D0) by functions in the families B̃, F̃ and of the projection operator Pν∗ . Further
numerical work is to be done, in particular towards the resolution of the extremal problem
(BEP). All the simulations are computed with the specific choice of parameters (x0, R, e) =
(5, 2, 1) and with a discretization of T0 by 62 points (p = 1, · · · , 62). Moreover, we specify
that the integrations are performed with the quad method which is a recursive adaptive
Simpson quadrature method (see [31]).
The first simulations consist in approximating a function u ∈ L2

R(T0), or more exactly
u − Lu, with N = 4n + 2 functions of the family B̃. In the first case (Fig. 2, 3)
u is defined on T0 by (x, y) 7→ u(x, y) = xy and in the second case (Fig. 4, 5) by
(x, y) 7→ u(x, y) = x ln(x + y). Recall that on T0, x = x0 + R cos θ and y = R sin θ.
In both situations, we show the behaviour with respect to n ∈ {1, · · · , 6} of the error
between U = u− Lu and its approximant Ũ :

∑
p(U − Ũ)2/

∑
p U

2 (Fig. 3, 5).
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In both cases (Fig. 2, 4), the fact that n = 3 implies that the approximation is composed
of N = 4n + 2 = 14 different elementary functions of the system B̃. The graphs of the
associated errors (Fig. 3, 5) show that the approximation keeps a high accuracy as the
approximation order N increases. We just mention that it is of the same quality when
computed with the system F̃ .

From these approximations of functions belonging to L2
R(T0), we now compute the opera-

tor P̃ν∗ in order to verify that it matches the projection from L2(T0) onto trH2
ν∗(D0). Let

f be the function defined on T0 as

f : (x, y) 7→ u(x, y) + iv(x, y) = x2 + i(2y + 7).

It is an easy computation to see that f ∈ trH2
ν∗(D0). Then Pν∗(f) = f . Related compu-

tations are plotted in Fig. 6, 7:
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The error between U and Ũ is approximately equal to 10−15, and between V and Ṽ , to
10−7. A single elementary function is needed (n = 1) in B̃ and F̃ (u and v already belong
to B and F , respectively). Then the relation P̃ν∗(f) ' f = Pν∗(f) is verified.

We now test the accuracy of P̃ν∗ on functions which still belong to trH2
ν∗(D0) but no

longer to the families B and F . Indeed, it is possible to find homogeneous polynomials u
and v satisfying (4). With deg u = k and deg v = k − 1 (for k ≥ 2) the unique solution
is to take a constant multiple of the pair:

uk(x, y) = x2yk−2 − (k − 2)(k − 3)

2.4
x4yk−4 +

(k − 2)(k − 3)(k − 4)(k − 5)

2.4.4.6
x6yk−6 − · · ·

vk−1(x, y) =
2

(k − 1)
yk−1 − k − 2

2
x2yk−3 +

(k − 2)(k − 3)(k − 4)

2.4.4
x4yk−5 − · · ·

where each sum has finitely-many non-zero terms. We denote by G the corresponding
family of polynomials fk,k−1 = uk + ivk−1. The first test (Fig. 8-11) is computed with the
function f3,2 defined on T0 by:

f3,2 : (x, y) 7→ u3(x, y) + iv2(x, y) = x2y + i(y2 − x2

2
) .
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Fig.10 Approximation of v2 and Fig.11 Approximation of v2 and
Pν∗(v2) for n = 1 Pν∗(v2) for n = 3

The error between U and Ũ is approximately equal to 10−2, and between V and Ṽ , to
10−3 when n = 3. On this example (Fig. 9, 11), it can be noticed that the operator Pν∗
is well approximated with a small number of functions in the families B̃ and F̃ .

Moreover this remark still holds when the degree of the polynomials u and v increases.
The following simulation (Fig. 12-15) is obtained with the function f5,4 ∈ G defined on
T0 by:

f5,4 : (x, y) 7→ u5(x, y) + iv4(x, y) = x2y3 − 3

4
x4y + i(

y4

2
− 3

2
x2y2 +

3

16
x4) .

This time the error between U and Ũ is approximately equal to 10−2, and between V and
Ṽ , to 10−3 when n = 5. Even if the error increases compared with the last simulation, the
operator Pν∗ remains well approximated as can be observed in Fig. 13, 15. It appears that,
as the degree k of the polynomials uk and vk increases, a higher number N of functions
in the families B̃ and F̃ is needed in order to get a good approximation. More detailed
error estimates would be the subject of a future investigation, also for more general data.
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6 Conclusion

Although preliminary numerical results are encouraging, a deep study of the constructive
aspects of the presented approximation issues is still to be undertaken. The use of alter-
native basis functions may be considered (for example, the family G of polynomials that
satisfy the Cauchy–Riemann equations, although it is not clear whether it is dense).
Concerning the link with plasma modelling in tokamaks, Hardy spaces Hp

ν of annular
domains are already under study. As in the classical case, they can be expressed as
direct sums of Hardy classes of related discs. It would also be of interest to solve such
approximation problems in the L∞ norm (in this case the classical version of the problem
was analysed in [8]); finally, one may also hope to consider “mixed” L2–L∞ problems as
in [10].
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