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Abstract. We present a constructive method for the robust approximation to solutions of
some elliptic equations in a plane domain from incomplete and corrupted boundary data. We
state this inverse problem in generalized Hardy spaces of functions satisfying the conjugate
Beltrami equation, of which we give some properties, in the Hilbertian framework. The issue is
then reworded as a constrained approximation (bounded extremal) problem which is shown to
be well-posed. A practical motivation comes from modelling plasma confinement in a tokamak
reactor. There, the particular form of the conductivity coefficient leads to Bessel-exponential
type families of solutions of which we establish density properties.

1 Introduction

We consider the elliptic equation in the open unit disc D ⊂ R2

div(σ∇u) = 0 in D , (1)

whenever σ is a real-valued Lipschitz-continuous function on D

σ ∈ W 1,∞(D) such that 0 < c ≤ σ ≤ C a.e. in D , (2)

for two constants 0 < c < C < +∞. Let T = ∂D be the unit circle and ∂nu denote the
normal derivative of u on T, w.r.t. the (outer) unit normal vector. Let further I ⊂ T be
an open (non-empty) subset of T and J = T \ I that we also assume to be of non-empty
interior.
Assuming σ satisfying (2) to be known, we look at the following inverse problem (CP) of
Cauchy type:

(CP) Given u and ∂nu on the subset I ⊂ T, recover u solution to (1) and ∂nu on the
complementary subset J .

Even for smooth data on I, these Cauchy-type interpolation issues are ill-posed in the
sense of Hadamard. In order to ensure well-posedness for L2(I) boundary data, we will
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turn to a bounded extremal (approximation) problem involving norm constraints on the
complementary subset J .
When σ is constant, (1) reduces to the Laplace equation for which such an approach was
studied in classical Hardy spaces of analytic functions [1, 6]. When σ satisfies (2), the
general diffusion equation (1) was considered in [7]. Related generalized Hardy (Banach)
classes were introduced, while associated bounded extremal problems are discussed in
[14]. The present work is a sequel to [7], as well as a companion paper to [14], of which
it aims at providing a synthetic version in the particular Hilbertian framework.
Further, an important practical physical motivation for such issues comes from plasma
confinment in tokamaks when identifying the boundary of a plasma from magnetic mea-
surements on the boundary of the device (from measurements of the poloidal flux and
field on the vacuum vessel). The axisymmetric configuration leads to a two-dimensional
problem in the meridian plane sections of the device (a torus, see Figures 1, 2). Thanks
to the so-called Grad-Shafranov equation [8], the (poloidal) magnetic flux is a solution to
the conductivity equation (1) in an annular domain and with a conductivity σ∗ that de-
pends only of a single real coordinate. This situation is more precisely studied here, and
related particular solutions to (1) are expressed as combinations of functions of Bessel-
exponential type.

Let z = x + iy denotes the complex coordinate in the plane C ' R2. So ∂x and ∂y
stand for the partial derivatives with respect to x and y, respectively. In the same way
∂ = 1

2
(∂x − i∂y) and ∂ = 1

2
(∂x + i∂y) refer to the derivation operators w.r.t. the complex

variables z and z. We follow the approach of [3, 4, 7] that consists in rephrasing (1) as a
complex (R-linear) elliptic equation of order 1, namely the conjugate Beltrami equation

∂f = ν ∂f a.e. in D , (CB)

where
ν ∈ W 1,∞(D) is real valued, and ‖ν‖L∞(D) ≤ κ < 1 , (κ)

for some κ ∈ (0, 1), with

ν(z, z̄) =
1− σ(x, y)

1 + σ(x, y)
. (3)

Generalizing the harmonic / analytic framework (σ = 1, or constant, ν = 0), we will show
that solutions to (1) coincide with real parts of solutions to (CB). This link between (1)
and (CB) is the basis of [7, 14], from which we will recall several results.

In the Hilbertian case, we introduce generalized Hardy spaces H2
ν of solutions to Beltrami

equations (CB) and explain how the main features of classical Hardy spaces H2 do extend
to these classes (Section 2). We then establish well-posedness of some bounded extremal
problems in H2

ν (Section 3). Moreover, we caracterize a generalized conjugation operator
that extends the classical Hilbert transform (Riesz projection). This allows us to compute
solutions to these approximation issues. We therefore consider the particular situation
arising from physical issues of plasma confinment, where σ = σ∗ and ν = ν∗ are the
associated conductivity and dilation coefficients (Section 4). This is preliminary done in
the situation of a disc, while simply-connected smooth domains can also be considered
(see Remark 3.1). The extension to the annular case is briefly described in conclusion
(Section 5).
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2 Generalized Hardy classes

We assume throughout that ν ∈ W 1,∞
R (D) satisfies (κ), or, equivalently, that σ =

(1− ν)/(1 + ν) satisfies (2). The subscript R denotes real-valued functions.

Proposition 2.1 A function f = u + iv ∈ L2(D) is a solution to (CB) if, and only if,
u ∈ L2

R(D) satisfies (1) while v ∈ L2
R(D) satisfies

div
(
σ−1∇v

)
= 0 in D , (4)

where σ = (1− ν)/(1 + ν).

Proof. For functions u, v ∈ W 1,2
R (D), the classical Sobolev-Hilbert space, setting f = u+iv

and substituting it in (CB) lead to a system of two real elliptic equations of the second
order in divergence form. Indeed, u satisfies (1) while v satisfies (4).
Conversely, if σ ∈ W 1,∞

R (D) and u ∈ W 1,2
R (D) are real-valued functions that respectively

satisfy (2) and (1) in D, there exists v ∈ W 1,2
R (D) real-valued, unique up to an additive

constant, such that f = u+ iv ∈ W 1,p(D) satisfies (CB) with ν defined by (3).
This shows the equivalence between (CB) and the system{

∂xv = −σ∂yu,
∂yv = σ∂xu,

(5)

which admits a solution because ∂y(−σ∂yu) = ∂x(σ∂xu) from (1).
More generally, this formally holds for solutions u, v, f in the distributional sense, thereby
achieving the proof (see [7]).

Remark 2.1 System (5) generalizes Cauchy-Riemann equations insofar as taking σ = 1
amounts to deal with the classical analytic situation, in which case v is the harmonic
conjugate to u, [15].

We define the “generalized” Hardy space H2
ν (D) = H2

ν to consist of those Lebesgue
measurable functions f on D such that

ess sup
0<r<1

‖f‖L2(Tr) = ess sup
r>1

(
1

2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ)1/2

< +∞

(which therefore belong to L2(D)) and satisfying (CB) in the sense of distributions on D,
see [7]. Equipped with the norm

‖f‖H2
ν (D) = ess sup

0<r<1
‖f‖L2(Tr) ,

and with the associated inner product, H2
ν is a Hilbert space. When ν = 0, then H2

0 =
H2 = H2(D) is the classical Hardy space of holomorphic functions on the unit disc (see
[15]).
We let L : L2(T)→ C be the (bounded) mean value operator on T given by

Lφ =
1

2π

∫ 2π

0

φ(eiθ) dθ , ∀φ ∈ L2(T) .

First of all, we state some basic properties of H2
ν spaces from [7, Prop. 4.3.1, 4.3.2] that

extend those of classical Hardy spaces, [15].
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Proposition 2.2
- Any function f ∈ H2

ν has a non-tangential limit almost everywhere on T, called the
trace of f and denoted by trf ; moreover, trf ∈ L2(T) and its L2(T) norm is equivalent
to the H2

ν norm of f .
- The space trH2

ν is closed in L2(T).
- If f ∈ H2

ν , then trf cannot vanish on a subset of T having positive Lebesgue measure
unless f ≡ 0.
- Every f ∈ H2

ν is uniquely determined by the real part of its trace on T, up to an
additional imaginary constant.

These generalized Hardy spaces H2
ν provide a suitable framework for Dirichlet type prob-

lems. Indeed, assuming that the boundary data u belongs to L2
R(T), there exists f ∈ H2

ν

of which the real part of the trace coincides with u on T [7, Thm 4.4.2.1]. Up to the
normalization condition L(Im(trf)) = 0, such an f is unique. This result was established

in [12] for u ∈ W 1/2,2
R (T).

Using Propositions 2.1 and 2.2, we get from (5) that, for f = u+iv ∈ H2
ν , then ∂θv = σ∂nu

a.e. on T, if ∂θv stands for the tangential derivative of v on T. Hence, the Cauchy inverse
problem (CP) we look at can be stated as an extrapolation issue, with data Fd = u+ iv
given on I:

(CP) Given Fd on the subset I ⊂ T, recover f ∈ H2
ν such that Fd = (trf)|I .

The solution is then given by (trf)|J . Observe however that the above issue only makes
sense for compatible data u, ∂nu on I, whence Fd ∈ (trH2

ν )|I . If these data are subject
to measurement or computation errors, then Fd ∈ L2(I) but Fd 6∈ (trH2

ν )|I , which is the
classical ill-posedness situation for Cauchy type inverse problems. This is the reason why
the issue (CP) might better be stated as an approximation one (see Section 3):

(CP) Given Fd ∈ L2(I), I ⊂ T, recover f ∈ H2
ν such that Fd ' (trf)|I .

We now define the ν-Hilbert transform as the map

Hν : L2
R(T) → L2

R(T)
Re(tr f) = u 7→ Im(tr f) = v , L(v) = 0

It generalizes the harmonic conjugation and thereafter the M. Riesz theorem [15, III,
Thm 2.3 ]. We thus have the following properties (see [7, Cor. 4.4.2.1]).

Proposition 2.3
- The operator Hν is bounded on L2

R(T).
- trH2

ν = {u+ iv ∈ L2(T); v = Hνu+ L(v)}.
- L2

R(T) = Re trH2
ν .

The operator Hν naturally allows us to define an orthogonal projection from L2(T) onto
trH2

ν similar to the classical Riesz projection

∀ f ∈ L2(T), Pνf =
1

2
(I + iHν) f +

1

2
L(f) (6)
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Remark 2.2 The definition of Pν requires that of Hν on L2(T), not only on L2
R(T).

Following [4], this is done by considering v = Hνu as the real part of the function
g = −if , solution to (CB) with the dilation coefficient −ν, therefore belonging to H2

−ν .
This leads to set Hν(iv) = iH−νv, the operator Hν being thereby extended to complex-
valued functions, but remaining only R-linear.

Finally, we state a density result that is of high importance in extremal problems below
(see [7, Thm 4.5.2.1]).

Theorem 2.1 Let I ⊂ T be a measurable subset such that J = T\I has positive Lebesgue
measure. The restrictions to I of traces of H2

ν -functions form a dense subset of L2(I).

As a consequence, for all ϕ ∈ L2(I), there exists a sequence (fk) of functions of H2
ν such

that trfk → ϕ in L2(I) as k →∞. There are two possibilities concerning its behaviour:
- either ϕ is already the trace on I of a function belonging to H2

ν , whence ‖trfk‖L2(J)

remains bounded as k →∞,
- or ‖trfk‖L2(J) →∞ as k →∞.

Remark 2.3 Indeed, it can be deduced from the second point of Proposition 2.2 that,
as a closed convex subspace, trH2

ν is weakly closed in L2(T).

Thus, as soon as available data Fd on I do not coincide with the trace of a function in
H2
ν (and this will be the case when it comes to numerically computed quantities or to

physical measurements, because the Cauchy data u, ∂nu will no longer be compatible),
an additional constraint is needed for (CP) issue to have a bounded solution in H2

ν . It is
therefore natural to put a bound on the L2(J) norm of the approximant, so as to end up
with a well-posed problem.
From (possibly noisy) Cauchy data available on I of solutions to (CB), the issue amounts
no more to extrapolation but rather to best L2(I) approximation, subject to a norm
constraint on J . This leads to the bounded extremal problems that are the topic of the
next section and allow to properly state and solve the above approximation issue as:

(CP) Given Fd ∈ L2(I), I ⊂ T, recover f ∈ H2
ν that satisfies some norm constraint on J

and such that (trf)|I best approximates Fd in L2(I) among such functions.

3 Bounded extremal problems (BEP) in the disc

Let I ⊂ T be a finite union of open connected subsets of T such that both I and J = T\I
have positive Lebesgue measure. For M ≥ 0, φ ∈ L2

R(J), define

CM =
{
g ∈ trH2

ν ; ‖Re g − φ‖L2(J) ≤M
}
|I ⊂ L2(I) .

We then have the following result, of existence and uniqueness of a best approximant in
CM to L2(I) functions, see also [14, Thm 3].

Theorem 3.1 Fix M > 0, φ ∈ L2
R(J). For every function Fd ∈ L2(I), there exists a

unique function g∗ ∈ CM such that

‖Fd − g∗‖L2(I) = min
g∈CM

‖Fd − g‖L2(I) . (BEP)

Moreover, if Fd /∈ CM , then ‖Re g∗ − φ‖L2(J) = M .
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Proof. Existence and uniqueness rely on classical arguments of uniform convexity (pro-
vided here by the Hilbertian setting). First, CM is a convex subset of L2(I). We then
show that it is closed in L2(I).
Let ϕk|I ∈ CM , ϕk|I → ϕI in L2(I) as k → ∞. Put ϕk = uk + ivk ∈ trH2

ν . Then uk is
bounded in L2(T) by definition, whence also (ϕk) from Propostion 2.3. It follows that
(ϕk) weakly converges to ψ ∈ L2(T). Since trH2

ν is weakly closed L2(T) (see Remark
2.3), we get that ψ ∈ trH2

ν and ψ|I = ϕI . The constraint on J is satisfied by Re ϕk = uk
, so does Re ψ, whence ϕI ∈ CM .
To summarize, CM is a closed convex set of L2(I). It ensures the existence of a best
approximation projection π from L2(I) on CM and g∗ = πFd is the unique solution to
(BEP), [5, 10].
To prove that the constraint is saturated unless Fd ∈ CM , assume for a contradiction that
‖Re g∗ − φ‖L2(J) < M . By Theorem 2.1, there is a function h ∈ trH2

ν such that

‖Fd − g∗ − h‖L2(I) < ‖Fd − g∗‖L2(I) ,

and by the triangle inequality we have

‖Fd − g∗ − λh‖L2(I) < ‖Fd − g∗‖L2(I) , ∀ 0 < λ < 1 .

Now, λ can be chosen sufficiently small to ensures that

‖Re(g∗ + λh)− φ‖L2(J) < M ,

contradicting the optimality of g∗, since uniqueness holds in CM .

Towards constructive aspects, if Fd /∈ CM , the solution g∗ is given by ([14, Prop. 2])

PνχIg + γ PνχJReg = PνχIFd + γ PνχJφ , (7)

for the unique γ > 0 such that ‖Reg∗ − φ‖Lp(J) = M , and the projection operator Pν
is defined by (6). The parameter γ is a Lagrange multiplier expressing the dependence
between the criterion (error) e = ‖Fd − g∗‖L2(I) and the constraint M . Of course, the
implicit character of γ is the main difficulty in computations, but it can be handled by
dichotomy procedures, since e is a strictly decreasing smooth function of M and λ, and
M →∞, while e→ 0 and λ→ 0.

Remark 3.1 While the study of Sections 2, 3 was performed in the unit disc D, it
may directly be extended to any simply-connected bounded open plane domain with C1

boundary, using composition by conformal mappings [17].

4 Complete families of solutions

This section is devoted to the study of particular solutions to the conductivity equation
(1) linked with the physical background mentionned in the introduction, for particular
conductivity coefficients σ∗ and ν∗. More precisely, the magnetic poloidal flux generated
by a plasma in a tokamak follows equation (1) in poloidal plane sections (annular vacuum
region located between the plasma itself and the device’s wall). Here, we preliminary look
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at the associated Cauchy-type issue (CP) in a disc (and briefly mention in Section 5 how
it may be extended to the annular situation).
Denoting by (x, y, ϕ) the classical cylindrical coordinates, the axisymmetric assumption
and the toroidal configuration imply that the magnetic quantities do not depend on ϕ
(see Figure 1). In a poloidal plane section where ϕ is constant, it is known [8] that the

Figure 1: Schematic diagram of a tokamak

poloidal component u of the magnetic flux satisfies equation (1), where the conductivity
coefficient σ = σ∗ only depends of the radial coordinate x

σ∗(x, y) =
1

x
. (8)

Observe that the dilation coefficient ν∗ associated to σ∗ is given by (3)

ν∗(z, z̄) = (z + z̄ − 2)/(z + z̄ + 2).

Though it holds in principle in an annular domain (comprised between the plasma and
the chamber), we consider here equation (1) with (8) in the disc D0 (see Remark 3.1, and
Section 5)

D0 = {(x, y) ∈ R2; (x− x0)
2 + y2 < R2} where 0 < R < |x0|.

Again T0 is its boundary. We introduce the rectangle R:

R = [a, b]× [−c, c], b > a > 0 and c > 0

with boundary ∂R, so that D0 has compact closure in R (see Figure 2).

It is suggested by the particular form (8) of σ∗ to seek particular solutions of (1) and (4) in
D0 with separated variables x and y. Setting u(x, y) = A(x)B(y) and v(x, y) = C(x)D(y)

7



Figure 2: Poloidal section of the torus

in (5), it follows that exact solutions of that kind are expandable in terms of a series of
Bessel-exponential type (see [14]) for (x, y) ∈ R. That is, for every N ∈ N∗, for every
sequences of real-valued coefficients (λn), (µn), (αn), (βn), (γn), (δn), n = 1, · · · , N , and
every a0, b0, c0 ∈ R:

u(x, y) =
N∑
n=1

xJ1(λnx)[αne
λny + βne

−λny]

+
N∑
n=1

x[γnI1(µnx) + δnK1(µnx)] sin(µn(y + c)) + a0x
2 + b0y + c0.

and (Hν∗u)(x, y) = v(x, y)− Lv (see Proposition 2.3) with

v(x, y) =
N∑
n=1

J0(λnx)[αne
λny − βne−λny]

+
N∑
n=1

[−γnI0(µnx) + δnK0(µnx)] cos(µn(y + c))− b0 lnx+ 2a0y.

Here, Ji, Ii, Ki, i = 0, 1 respectively denote the Bessel functions of the first kind, and the
modified Bessel functions of the first and second kind [19].

An analogous decomposition, with Bessel functions, has already been used for studies
of tokamak equilibrium, see [13, 20]. But it seems that its density properties in L2

R(T0)
(Proposition 4.2) are new. It is the purpose of the following discussion.
First, note that in the expression of u, (λn) and (µn) are two sequences of free parameters.
Choosing first λn to be the positive roots of J0(λnb) enables to consider the functions
(
√
xJ0(λnx))n≥1 as a complete orthogonal system in L2((0, b);x dx) [9]. Moreover, an

appropriate choice of µn is nπ/2c, so that the coefficients of the sinus terms of u vanish
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at horizontal parts of the boundary ∂R. We then set B for the space of solutions u as
above with free parameters (αn), (βn), (γn), (δn), n = 1, · · · , N , a0, b0, c0 ∈ R.
Thus, using by turns classical integral properties and appropriated Fourier expansions
leads to the result that B|∂R is W 1,2 dense in W 1,2

R (∂R). Finally, taking into account
that R is a simply-connected plane domain with Lipschitz boundary [16] and since there

exists a continuous lifting of the trace from W
1/2,2
R (∂R) to W 1,2

R (R), we establish, see [14,
Prop. 3]:

Proposition 4.1

The family B is W 1,2(R) dense in SR =

{
u ∈ W 1,2

R (R) ; div

(
1

x
∇u
)

= 0

}
.

We can prove now the following density result, [14, Prop. 4]:

Proposition 4.2 The restriction B|T0
of B to T0 is L2 dense in L2

R(T0) = Re trH2
ν∗(D0).

Proof. Let ψ ∈ L2
R(T0) and ε > 0. There exists φ ∈ W 1/2,2

R (T0) such that
‖ψ − φ‖L2(T0) ≤ ε.

For a such a class of smooth boundary data, Dirichlet-type results from [12] ensures the
existence of a unique solution u ∈ W 1,2

R (D0) to (1) in D0 such that u|T0
= φ. Moreover (1)

is an elliptic equation with regular coefficients in R and D0 is a simply connected domain
with compact closure in R. Then approximation results of Browder [11, Thm 5] ensure
the existence of uR ∈ SR such that uR|D0

is arbitrarily close to u in the W 1,2
R (D0)-norm.

Now, with Proposition 4.1, there exists b ∈ B arbitrarily close to uR in the W 1,2(R)-norm.
Collecting the various approximations leads to

‖u− b‖W 1,2(D0) ≤ ε
whence also ‖u− b‖L2(T0) ≤ cε, for some c > 0, with Sobolev’s inequalities ([10, Ch. 9]).
Finally, putting all end-to-end we get that ‖ψ − b‖L2(T0) ≤ Cε with C > 0. This implies
that B|T0

is dense in L2
R(T0), and the conclusion follows from Proposition 2.3.

This result can be illustrated through numerical simulations. The following ones (Figures
3, 4) are obtained with our software, using Matlab (R2008b). The specific choice of
parameters is (x0, R) = (5, 2), with b = x0 + R + 1, and N = 1 or N = 6 (recall that
N indexes the number of functions of each kind involved in B, so that functions in B
are determined by 4N + 3 real valued coefficients). The circle T0 is uniformly discretized
by p = b2πc/0.1 = 62 points. In Figure 3, u is defined on T0 by u(x, y) = x9y2 + ln(x)
and u1 and u6 are the approximants that correspond respectively to N = 1 and N = 6.
Recall that on T0, x = x0 + R cos θ and x = R sin θ. At the same time, we show
in Figure 4 the behavior of the error ẽ = ẽ(N) between u and its approximants uN :
ẽ2 =

∑
p(u− uN)2/

∑
p u

2.

Figure 4 shows that the error ẽ is a decreasing function of n. This illustrates the density
result of Proposition 4.2. Indeed, the larger the number of functions in B, the better the
accuracy of the approximant is. On Figure 3 this can be noticed by the fact that u and
u6 are undifferentiated while it is not the case for u1.

Now, a similar result to Proposition 4.2 can be showed for the family {Hν∗B + c; c ∈ R}.
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Figure 3: Approximations u1 and u6 of u = x9y2 + ln(x)
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Figure 4: Error ẽ(N) when u = x9y2 + ln(x)

This is once again illustrated through numerical simulations (Figures 5, 6). There are
obtained with the same parameters as the previous ones. In Figure 5, v is defined on T0

by v(x, y) = yex − x4 and v1 and v6 are the approximants that correspond respectively
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to N = 1 and N = 6. We show in Figure 6 the behavior of the error ẽ = ẽ(N) between
v and its approximants vN .
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Figure 5: Approximations v1 and v6 of v = yex − x4
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Figure 6: Error ẽ(N) when v = yex − x4
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Thanks to Figures 5 and 6, we naturally come to the same conclusions as before.

Finally, with Proposition 2.3, we then obtain:

Corollary 4.1
- {B + iHν∗B + iR} is dense in L2(T0).
- {b+ iHν∗b+ iR; b ∈ B} is L2 dense in trH2

ν∗(D0).

The computational and practical uses of these families rely on the equality between the
coefficients of expansions of b and Hν∗b in B and Hν∗B. Besides, all the problematic
remains the same by considering equation (CB) associated this time to the coefficient −ν
in which case system (5) must be reworded with the conductivity σ−1.
For every f ∈ L2(T0), the operator Pν∗ is determined by (6):

Pν∗(f) = Pν∗
(
u
v

)
=

1

2

(
u+ Lu−H−ν∗v
v + Lv +Hν∗u

)
.

Therefore, by computing the expansions of u in B and of v in Hν∗B, we obtain those of
each component of Pν∗ on these families.
More details concerning the computation of the operator Pν∗ and the solution to the
bounded extremal problem, with numerical examples, may be found in [14].

5 Conclusion

First, recall that the present study directly extends to simply-connected smooth domains,
see Remark 3.1. Also, the results of Sections 2 and 3 are valid in Lp uniformly convex
Banach spaces Lp, 1 < p < ∞, where Hp

ν Hardy spaces may be analogously defined,
[7, 14].
Next, in order to handle the physical issue concerning plasma confinment in a tokamak,
it will be necessary to deal with (CP) and the related approximation issues in annular
configurations. That is the purpose of a forthcoming work which will be essentially based
on a topological decomposition of generalized Hardy spaces of an annulus. More precisely,
if the annulus is denoted by A = D\ρD̄, there exists νi ∈ W 1,∞

R (D) and νe ∈ W 1,∞
R (C\ρD̄)

such that νi|A = νe|A = ν and:

H2
ν (A) = H2

νi
(D)⊕H2

νe(C \ ρD̄) .

To ensure well-posedness of the associated bounded extremal problem, the first step is to
extend the density results of Section 2 to the doubly-connected situation.
We finally mention the fact that other choices of appropriate bases may be of interest too.
An interesting one, suitable to the tokamaks geometry, could be the toroidal harmonics.
The separation of the Laplace’s equation has already been studied by several authors (see
[2, 18]). Adapting this approach to a more general diffusion equation as (1) should be of
high interest.

Aknowledgment We are grateful to the organizers of the first “Colloque Franco-Tunisien

12
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