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Abstract In this work, we develop a theory of approximating general vector fields
on subsets of the sphere in R

n by harmonic gradients from the Hardy space Hp

of the ball, 1 < p < ∞. This theory is constructive for p = 2, enabling us to solve
approximate recovery problems for harmonic functions from incomplete boundary
values. An application is given to Dirichlet–Neumann inverse problems for n = 3,
which are of practical importance in medical engineering. The method is illustrated
by two numerical examples.
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1 Introduction and Notation

Fix an integer n ≥ 2 (in applications we shall usually require n = 3). We write B for
the open unit ball B = {x ∈ R

n : |x| < 1}, and S for the sphere S = {x ∈ R
n : |x| = 1}.
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The techniques introduced in this paper will enable us to extend a standard approx-
imation problem for holomorphic functions in one complex variable [2, 6, 11, 19] to
the real multi-dimensional situation, enabling the approximate recovery of harmonic
functions in B from incomplete and noisy data on a proper subset K ⊂ S. We also
consider the case of the shell G = B \ ρB (0 < ρ < 1) bounded by two spheres; the
same techniques allow us to recover harmonic functions from measurements on a
proper subset K ⊂ ∂G.

We proceed by finding the best quadratic approximant of a given vector field on
K ⊂ ∂G among traces of gradients of harmonic functions in G, which satisfy a norm
constraint on the complementary subset ∂G \ K of the boundary.

This represents a multi-dimensional generalization of previous two-dimensional
work cited above, where bounded extremal problems are considered in the Hardy
spaces of the unit disk and annulus of the complex plane C � R

2. There, analytic and
harmonic functions are classically linked by the Cauchy–Riemann equations, while in
R

n, we define analytic functions to be gradients of harmonic functions, as in the work
of Stein and Weiss [25–27]. This also provides a generalization of the classical Hardy
spaces to functions defined on a ball or a half-space in R

n, and gives an appropriate
setting for the approximation problem we consider.

A motivation for these problems comes from Cauchy-type issues for the Laplace
operator, arising in non-destructive control. There, Dirichlet and Neumann data are
both available on a subset, say K , of the boundary of a domain D in which the associ-
ated function is harmonic. This furnishes the trace F on K of a function which lies in
a Hardy space of harmonic gradients in D. The issue thus becomes that of recovering
such a function from its trace on K . This is an ill-posed problem and furthermore, in
practical situations, Dirichlet and Neumann data are provided by experimental mea-
surements which are necessarily corrupted. As a consequence, the associated function
F is not, in general, exactly the trace on K of a Hardy function. Thus, the above issue
is to be seen as an approximation problem on K , and a constraint on the comple-
mentary part of the boundary (which plays the role of a regularization parameter) is
required for the problem to be well-posed.

Among the many applications in which this problem arises, we mention the inverse
EEG (electroencephalography) problem, from medical engineering [16–18]. There,
the head is regarded as being made of several homogeneous spherical layers of differ-
ent constant conductivities (the scalp, the skull, the brain) and the data are pointwise
values of the electrical potential (measured by electrodes) and the current flux, both
available on part of the scalp. The issue is to locate (dipolar) current sources sited
in the brain, see e.g. [7], and may require a preliminary step, called “cortical map-
ping”, of data translation from the scalp to the surface of the brain, modelled as a
ball. This requires the solution of several Cauchy problems in shells, with incomplete
data, which may be approached with the approximation techniques that we develop
below.

The paper is organized as follows. Section 2 introduces function spaces Hp of
Hardy type on the R

n ball and establishes some of their fundamental properties. This
is the basis for Sect. 3, in which the bounded extremal problems are presented and
explicitly solved for p = 2 and n = 3. Finally, this method is illustrated in Sect. 4 by
some numerical experiments, and some concluding remarks are made in Sect. 5.
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2 Function Spaces on B

For 1 ≤ p < ∞, by analogy with the classical theory (see [25, VII.3.2,VII.4.1]), one
defines Hp = Hp(B) to be the space of gradient vector fields G = ∇g for some g

harmonic in B such that

‖G‖p :=
(

sup
0≤r<1

∫
S

|G(rx)|p dσ(x)

)1/p

< ∞, (2.1)

where σ denotes normalized surface area on S. Moreover, H∞ = H∞(B) is the space
of such fields G that are uniformly bounded in B, equipped with the supremum norm;
we let Hc ⊂ H∞ be the closed subspace of continuous G on B.

Clearly we may, and we will, assume that g(0) = 0. In this paper we are essentially
concerned with the range 1 < p < ∞, but we include H 1, Hc and H∞ in the general
statements of this section where it would have been unnatural to omit them. Hopefully
this lays ground for further study.

Gradients of harmonic functions are also referred to as Riesz systems; as in [3, 4],
these may be decomposed into a radial component ∂ng along the outer normal and a
tangential component ∇Sg, both defined on S. Indeed, each component of G is har-
monic in B hence, since (2.1) holds, it follows from a classical theorem of Fatou that
G has non-tangential limits on S almost everywhere. These define a boundary func-
tion in Lp(S;R

n) := Lp(S, σ ;R
n), of which G is the Poisson integral; when p = 1

this last fact depends on a generalization of the F. and M. Riesz theorem to harmonic
gradients whose half-space version [25, VII.3.2, Theorem 6] is easily carried over to
the ball using Kelvin transforms [5, Chap. 7]. Moreover, if we let Gr(x) := G(rx)

and still denote the boundary function by G, then ‖Gr − G‖Lp(S;Rn) tends to 0 as r

tends to 1− for 1 ≤ p < ∞ ([5, Chap. 6] or [25, VII.4.1]); see also [26], [27, VI.4] and
[25, VII.3.1], where it is shown that |G|p is subharmonic, hence ‖Gr‖Lp(S;Rn) is an
increasing function of r ∈ (0,1) by the Green formula. If G ∈ H∞\Hc, then Gr need
not converge in L∞(S;R

n), but it converges at least weak-* to G. The monotonic-
ity of ‖Gr‖L∞(S;Rn) follows from the subharmonicity of |G|. Therefore in all cases
‖G‖Lp(S;Rn) = ‖G‖p , as follows from Minkowski’s inequality for integrals applied
to the Poisson representation. Consequently Hp can be regarded isometrically as
a closed subspace of Lp(S;R

n) when G is identified with its nontangential limit.
Moreover, if G ∈ Hp happens to lie in Lq(S;R

n) for some q > p, then G ∈ Hq .
Suppose that G = ∇g ∈ Hp , where g is harmonic in B and g(0) = 0. We may

define g almost everywhere on S by taking radial limits; their existence follows by
elementary integration from the existence of limr→1 G(rx) for almost every x ∈ S.
For such x, we have by convexity when 1 ≤ p < ∞

|g(x)|p ≤
(∫ 1

0
|G(rx)|dr

)p

≤
∫ 1

0
|G(rx)|p dr, (2.2)

and since ‖Gr‖Lp(S;Rn) increases with r , we obtain upon integrating the above in-
equality against σ that ‖g‖Lp(S) ≤ ‖G‖p , letting Lp(S) := Lp(S;R). Applying this
to g − gr gives us

‖g − gr‖Lp(S) ≤ r‖G − Gr‖Lp(S;Rn),
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hence gr converges to g in Lp(S) which entails that g is the Poisson integral of its
non-tangential limit. Moreover, Jensen’s inequality easily implies that |g|p is sub-
harmonic, therefore ‖gr‖Lp(S) is again an increasing function of r ∈ (0,1). When
p = ∞, it follows from the mean-value theorem that ‖g‖L∞(S) ≤ ‖G‖∞ and that
gr tends to g in L∞(S), while the monotonicity of ‖gr‖L∞(S) is obvious from the
maximum principle.

Observe that if n = 2 and R
2 is identified with C under the map (x, y) �→ x − iy,

then the Hardy spaces we just defined coincide with the standard Hardy spaces of the
disk while Hc is the so-called disk algebra.

By means of the reflection R(X) = X/|X|2, we may define the Kelvin transform
K[h] of a function h defined on a set � ⊂ R

n by

K[h](X) = 1

|X|n−2
h(R(X)) for X ∈ R(�).

When � is open, it turns out that h is harmonic in � if, and only if K[h] is harmonic
in R(�) (cf. [5, Theorem 4.7]). Note that the Kelvin transform is an involution, that
is, K[K[h]] = h. When � contains the complement of a ball, h is said to be harmonic
at infinity if K[h] is harmonic at 0.

With this convention, we define analogously H
p
− = Hp(Be), where B

e = {∞} ∪
(Rn \ B), consisting of gradients G = ∇g of harmonic functions in B

e that satisfy
(2.1) (resp. are bounded if p = ∞), where this time 1 < r < ∞. We again normalize
g so that g(∞) = 0, although this is automatically the case if n ≥ 3 [5, Theorem 4.8].
The space Hc− consists of H∞− -functions that are continuous for |X| ≥ 1.

In view of (2.2) and the formula

∇K[h](X) = (∇h)(R(X))
|X|n − 2 tX . (∇h)(R(X)) X

|X|n+2 − (n − 2)h(R(X)) X
|X|n ,

(2.3)
where the left superscript “t” indicates the transpose and the dot “.” the Euclid-
ean scalar product, it is readily seen, when g is harmonic in B with g(0) = 0, that
∇g ∈ Hp if and only if ∇K[g] ∈ H

p
− . Moreover, from (2.3), we deduce if G ∈ H

p
−

that |G(X)| = O(1/|X|n). Using the Green formula and the subharmonicity of |G|p ,
we then conclude that ‖Gr‖Lp(S;Rn) decreases with r on [1,+∞). In particular, we
again have that ‖G‖p = ‖G‖Lp(S;Rn). Notice, if we write G = ∇g, that ‖G‖p and
‖∇K[g]‖p are equivalent but not equal when n > 2. More precisely, we certainly
have ∇Sg = ∇SK[g] since g and K[g] coincide on S, but taking the scalar product in
(2.3) against the normal vector x at x ∈ S, we have

∂nK[g](x) = −∂ng(x) − (n − 2) g(x). (2.4)

The natural embedding of S into R
n makes the sphere a Riemannian manifold, the

scalar product between tangent vectors at a point being just their scalar product in R
n.

This allows one to define the gradient ∇S�(x) ∈ R
n at x ∈ S of a function � : S → R

which is differentiable at x, meaning it is differentiable there in some (hence any)
smooth system of charts. Clearly ∇S�(x) is tangent to S at x, and coincides with the
usual gradient at x of the radial extension �(X/|X|) of � to R

n \ {0}.
For 1 ≤ p < ∞ we define the Sobolev space W 1,p(S) to be the space of all

functions f such that, if (Uj ,ψj )1≤j≤N is a smooth system of charts that covers
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S and (ϕj ) a smooth partition of unity subordinated to (Uj ), then (f ϕj ) ◦ ψ−1
j lies

in the standard Sobolev space W 1,p(ψj (Uj )) for all j . The latter consists of those
functions in Lp(ψj (Uj )) for which the first-order partial derivatives exist (in the
weak sense) and define functions in Lp(ψj (Uj )). It is easily checked that the defin-
ition does not depend on the finite system of smooth charts that is chosen (see [21,
Chap. 1]). Using [25, V.2, Proposition 1], it is straightforward that f ∈ W 1,p(S) if
and only if there is sequence of smooth functions on S that converges to f in Lp(S)

and whose gradient vector field also converges in Lp(S;R
n). The latter limit, say L,

does not depend on the sequence of smooth functions with the above properties, for
t (ϕjL + f ∇Sϕj ) ◦ ψ−1

j D(ψ−1
j ) defines the distributional derivatives of f ϕj ◦ ψ−1

j

in ψj (Uj ). Thus L can be taken as definition of ∇Sf . An intrinsic norm on W 1,p(S)

is then given by an expression such as

‖f ‖p

W 1,p(S)
= ‖f ‖p

Lp(S)
+ ‖∇Sf ‖p

Lp(S;Rn)
,

for instance. We record for later use that, since (f ϕj ) ◦ 	−1
j is supported on a fixed

compact set (namely suppϕj ◦ 	−1
j ), it follows from the Rellich–Kondrachov theo-

rem [31, Theorem 2.5.1] that W 1,p(S) is compactly embedded into Lp(S).
If G = ∇g ∈ Hp with 1 ≤ p, we saw when r → 1− that g(rx) and G(rx) con-

verge in Lp(S) and Lp(S;R
n) respectively to g(x) and G(x), therefore g ∈ W 1,p(S).

If p = ∞ then G(rx) converges only weak-* to G in L∞(S;R
n), but g ∈ W 1,p(S)

for all 1 ≤ p < ∞ and, by weak-* convergence, ∇Sg is the tangential component of
G hence g ∈ W 1,∞(S).

In order to reconstruct functions defined on S from their values on proper subsets
of S, we shall require the following uniqueness result.

Lemma 1 Let G ∈ Hp for some 1 ≤ p ≤ ∞, and let U be a nonempty relatively
open subset of S. If G|U = 0 then G ≡ 0.

Proof Without loss of generality we may take p = 1 and U to be connected. Since
G is given by the Poisson integral of a function that vanishes on U , it extends contin-
uously to B ∪ U . Write G = ∇g and note that g extends continuously to B ∪ U and
is constant on U . Subtracting this constant from g, and still denoting the resulting
function by g, we may assume that g|U = 0. By means of the Kelvin transform K[g]
which is harmonic in B

e , we obtain a harmonic extension of g to B ∪ B
e ∪ U by

defining g(X) = −K[g](X) for X ∈ B
e; similarly there is an extension of G = ∇g.

We can complete the proof by invoking Holmgren’s uniqueness theorem [9, p. 47];
alternatively, we note that g is real-analytic on its domain of definition, and all its
tangential derivatives vanish on U . However, all partial derivatives of g at any or-
der are again harmonic and if g is not identically zero on a neighbourhood of U ,
then one such derivative around some point of U involves a function of the form
A(r −1)2 +O((r −1)3), with A �= 0, where we have set r := |X| for simplicity. This
is a contradiction to the harmonicity for it prevents the mean-value property from
holding (cf. [15, Corollary II.11]).

Hence g vanishes on a nonempty open subset of its domain of definition, and it
follows that it is identically zero. �
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Remark 1 Lemma 1 cannot be generalized to arbitrary subsets of positive measure,
since in contrast to the well-known situation in two dimensions, an arbitrary subset
of S with positive measure need not be a set of uniqueness for Hp when n ≥ 3.
That is, there is a nonconstant harmonic function g on B, which can be taken to be
C1+ε up to the boundary for some small ε > 0, for which G = ∇g vanishes on a
subset of S of positive measure. We refer to the papers of Bourgain, Wolff and Wang
[10, 29, 30] for further details.

Let Hk be the space of homogeneous harmonic polynomials of degree k, and Hk|S
be the space of so-called spherical harmonics [5, Chaps. 5, 10]. We further denote by
C(S) the space of continuous functions on S.

Lemma 2 The space ⊕k≥0 Hk|S of finite sums of spherical harmonics is dense in
Lp(S), 1 ≤ p < ∞, and it is uniformly dense in C(S).

Proof Every polynomial coincides on S with a sum of spherical harmonics [5, Corol-
lary 5.7]. By the Stone–Weierstrass theorem, sums of spherical harmonics are there-
fore dense in C(S), whence also in Lp(S), 1 ≤ p < ∞, cf. the proof of [5, Theo-
rem 5.8]. �

Below, we denote by σn−1 the unnormalized surface area of S.

Lemma 3 For pm ∈ Hm, we have that

(σn−1 m(2m + n − 2))1/2 ‖pm‖L2(S) = ‖∇pm‖L2(S;Rn). (2.5)

Proof Pick 0 < r < 1. Applying the divergence formula to the vector field pm∇pm

on the domain B \ rB, we get by the harmonicity of pm∫
S

∂npm(x)pm(x)dσ −
∫

S

∂npm(rx)pm(rx) rn−1dσ = σ−1
n−1

∫
B\rB

|∇pm(y)|2 dy.

Using Euler’s theorem for homogeneous functions, we see that ∂npm equals mpm on
S and (m/r)pm on rS. Therefore, by the homogeneity of pm and ∇pm, we obtain

m(1 − r2m+n−2)

∫
S

p2
m(x)dσ = σ−1

n−1

(∫
S

|∇pm(x)|2 dσ

)(∫ 1

r

ρ2m+n−3 dρ

)

which leads to (2.5). �

Lemma 4 The space G spanned by the gradients of the spherical harmonics is dense
in Hp for 1 ≤ p < ∞ (resp. in Hc); hence the space spanned by the gradients of
Kelvin transforms of spherical harmonics is dense in H

p
− (resp. in Hc−).

Proof Hc is dense in Hp if 1 ≤ p < ∞, hence it is sufficient to prove the assertion
on Hc . Moreover, every G ∈ Hc is the uniform limit of Gr as r → 1−, therefore it is
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enough to show that G is the limit of a sequence of gradients of harmonic polynomi-
als, uniformly on compact subsets of B.

For m ∈ N and ξ ∈ S, denote by Zm(., ξ) ∈ Hm the so-called zonal harmonic of
degree m with pole ξ , that is, the reproducing kernel of Hm ⊂ L2(S) at ξ [5, Chap. 5].
Put G = ∇g where g(0) = 0. By [5, Corollary 5.34], the series expansion in spherical
harmonics

g(y) =
∞∑

m=1

∫
S

g(ξ)Zm(y, ξ) dσ (ξ) :=
∞∑

m=1

pm(y)

converges, locally uniformly with respect to y ∈ B. Clearly, all we need is to show
that the series of gradients

∞∑
m=1

∫
S

g(ξ)∇Zm(y, ξ) dσ (ξ) :=
∞∑

m=1

∇pm(y) (2.6)

also converges. Now, for fixed ξ ∈ S, we get by homogeneity upon setting x = y/|y|
that

∇Zm(y, ξ) = |y|m−1∇Zm(x, ξ) = |y|m−1
∫

S

∇Zm(ζ, ξ)Zm(ζ, x) dσ (ζ ),

where we used the reproducing property of the zonal harmonic. From Lemma 3 and
the Cauchy-Schwarz inequality, we thus get

|∇Zm(y, ξ)| ≤ |y|m−1 (σn−1 m(2m + n − 2))1/2 ‖Zm(., ξ)‖L2(S)‖Zm(., x)‖L2(S).

But

‖Zm(., ξ)‖2
L2(S)

= ‖Zm(., x)‖2
L2(S)

= Zm(x, x) ≤ Cmn−2

for some constant C by [5, Theorem 5.27, Example 5.10], so that∣∣∣∣
∫

S

g(ξ)∇Zm(y, ξ) dσ (ξ)

∣∣∣∣ ≤ C|y|m−1 (σn−1 m(2m + n − 2))1/2 mn−2

implying that (2.6) converges locally uniformly in y ∈ B, as desired. �

Remark 2 It is easy to see that Lemma 4 cannot hold for p = ∞, as H∞ contains
discontinuous functions.

To state our next result, we introduce the canonical dual pairing between
Lp(S;R

k) and Lq(S;R
k), where 1/p + 1/q = 1 and k ≥ 1 is an integer, which

is given by

〈f,g〉 =
∫

S

f.g dσ. (2.7)

Although this notation does not keep track of k, no confusion will arise.
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Proposition 1 For 1 ≤ p < ∞ and 1/p + 1/q = 1, Hp is orthogonal to H
q
− under

the canonical pairing (2.7).

Proof Again we may restrict ourselves to p > 1. By Lemma 4 it is enough to show
that, for any pair of non-negative integers m,k, one has 〈∇pm,∇K[qk]〉 = 0 as soon
as pm ∈ Hm and qk ∈ Hk . Note that

K[qk](X) = qk(X)

|X|2k+n−2
.

Now, bearing in mind that the integrals are taken over S, we have

〈
∇pm,∇ qk

|X|2k+n−2

〉
= 〈∇pm,∇qk〉 − (2k + n − 2)〈∇pm,qkX〉

= 〈∇pm,∇qk〉 − m(2k + n − 2)〈pm,qk〉,

using Euler’s theorem. Clearly this quantity is zero if m = 0, and if m = k > 0 it also
vanishes, by [5, Lemma 5.13]. Otherwise,

〈
∇pm,∇ qk

|X|2k+n−2

〉
= 〈∇pm,∇qk〉 +

〈
∇pm,qk∇ 1

|X|2k+n−2

〉

= −(2k + n − 2)

n∑
i=1

∫
S

∂xi
pm qk xi dσ (x)

= −m(2k + n − 2)

∫
S

pm qk dσ(x) = 0,

using Euler’s theorem and the orthogonality of homogeneous harmonic polynomials
of different degrees [5, Proposition 5.9]. �

In order to work with functions decomposed into a sum of functions in the Hardy
classes Hp and H

p
− , we need introduce those vector fields in Lp(S;R

n) whose tan-
gential component is a gradient. Formally we define, for 1 ≤ p ≤ ∞,

Lp
∇(S) =

{
F(x) = f0(x) x + ∇Sφ :

f0 ∈ Lp(S),φ ∈ W 1,p(S),

∫
S

f0 dσ =
∫

S

φ dσ = 0

}
,

and we let Lc∇(S) indicate the continuous elements of L∞∇ (S). We shall customarily
write F = (f0,∇S�), to single out the radial component f0 of F , and its tangential
component ∇Sφ. The norm is induced by Lp(S;R

n), e.g. if 1 ≤ p < ∞ then

‖F‖p

Lp
∇ (S)

=
∫

S

[
|f0(x)|2 + |∇Sφ(x)|2

]p/2
dσ(x),
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whence if p = 2:

‖F‖2
L2∇ (S)

= ‖f0‖2
L2(S)

+ ‖∇Sφ‖2
L2(S;Rn)

.

Clearly Lp
∇(S) is a Banach subspace of Lp(S;R

3). Note that Hp is isometrically
included in Lp

∇(S). Indeed, all we have to check is that ∂ng has zero-mean when
G = ∇g ∈ Hp , and this follows from the divergence formula for smooth vector fields:∫

S

∂ng dσ =
∫

S

G(x).x dσ(x) = lim
r→1

∫
S

G(rx).x dσ (x)

= lim
r→1

(
1

r2

∫
rB

�g(y)dy

)
= 0, (2.8)

where the Lp(S;R
n)—weak-* if p = ∞—convergence of Gr to G was used. Within

Lp
∇(S), members of Hp are characterized by the fact that the tangential component is

a vectorial Riesz transform of the normal component, see [3, 4] for Riesz transforms
on the sphere.

Likewise, from (2.4), we get that H
p
− is isometrically included in Lp

∇(S).
We now have the following decomposition, which seems to be new, at least in the

context of the sphere.

Theorem 1 For 1 < p < ∞, there is a topological direct sum

Lp
∇(S) = Hp ⊕ H

p
−.

The sum is orthogonal if p = 2.

Proof We just need to show that Lp
∇(S) ⊂ Hp + H

p
− for this makes the canonical

map Hp ⊕ H
p
− → Lp

∇(S) surjective, and since it is injective by Proposition 1 (and
orthogonal if p = 2) we can apply the open mapping theorem.

Let F ∈ Lp
∇(S), say, F = (f0,∇Sφ). Let v0 be the solution to the Dirichlet prob-

lem

�v0 = 0 in B, v0|S = φ.

We claim that ∇v0 ∈ Hp . Note that

v0(Z) =
∫

S

P(�,Z)φ(�)dσ(�),

where P(�,Z) denotes the Poisson kernel for B, which is a constant multiple of
1−|Z|2
|�−Z|n ; Thanks to the symmetry of the kernel’s denominator with respect to �, Z,
the tangential component of ∇v0 to the sphere of radius |Z| at a point Z is the Poisson
integral of ∇Sφ, which is bounded in Lp(S;R

n) by Minkowski’s inequality for inte-
grals. The radial component of ∇v0 is bounded in Lp(S) norm by a constant multiple
of the norm of ∇Sφ (see the remark after Corollary 3.3 of [3] and [4, Equation (2.2)]).
This proves the claim.
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Now

F − ∇v0 = (f0 − ∂nv0,0) = (g0,0), (2.9)

where g0 ∈ Lp(S) has vanishing mean. Put L
p

0 (S) for the space of such functions, and
if g ∈ L

p

0 (S) denote by ug the solution with vanishing mean on S to the Neumann
problem:

�ug = 0 in B, ∂nug|S = g.

The non-tangential maximal function of |∇ug| lies in Lp(S) [28, XVII, Theorem 2.9],
thus ∇ug ∈ Hp and in particular ug ∈ W 1,p(S). Since the embedding W 1,p(S) →
Lp(S) is compact, so is the operator N : Lp

0 (S) → L
p

0 (S) given by N (g) = ug .
We claim that 2I + (n − 2)N is injective. If n = 2 there is nothing to prove. Oth-

erwise, if it is not injective, there is g ∈ L
p

0 (S) \ {0} such that (n − 2)ug/2 = −g =
−∂nug . Let us first prove that ug ∈ Lα(S) for all 1 ≤ α < ∞. If p > n, then ug is
continuous, since it lies in W 1,p(S), by the Sobolev embedding theorem [1, Theo-
rem 5.4] applied in a finite system of charts; if p = n, the same theorem tells us that
ug ∈ Lα(S) for α ∈ [1,∞). But if p < n this theorem shows that ug ∈ Lnp/(n−p)(S)

and the same must hold for g. Thus the regularity of the Neumann problem implies
that ug ∈ W 1,np/(n−p)(S) and proceeding inductively we find after k steps that either
ug is continuous or in Lα(S) for all 1 ≤ α < ∞, or else ug ∈ W 1,np/(n−kp)(S). When
k is so large that np/(n − kp) ≥ n we get what we want. Now, as r → 1−, we know
(ug)r converges to g in Lα(S) by standard properties of Poisson integrals [5, Theo-
rem 6.7], and that ∂n(ug)r converges to ∂ng in Lp(S) in a dominated manner (that is,
dominated by the nontangential maximal function of ∇ug which belongs to Lp(S)).
If we fix 1/α + 1/p = 1, we deduce that (ug)r ∂n(ug)r converges to g ug in L1(S),
hence applying the divergence formula to (ug)r∇(ug)r and letting r tend to 1− gives
us

− 2

(n − 2)

∫
S

g2(x) dx =
∫

S

ug(x) ∂nug(x) dσ (x) =
∫

B

|∇ug(y)|2 dy,

where the monotone convergence was used in the last term. This is a contradiction
because the first term is strictly negative, which proves the claim.

By the Fredholm theory [28, XVII, Theorem 2.3], the operator 2I + (n − 2)N is
invertible, therefore there is a g ∈ L

p

0 (S) such that

2g + (n − 2)ug = −g0.

Since ug − K[ug] vanishes on S it holds that ∇S(ug − K[ug]) = 0, and then (2.4)
shows that

(g0,0) = ∇ug − ∇K[ug] ∈ Hp + H
p
−. �

Remark 3 Already when n = 2, Theorem 1 does not hold for p = 1 nor p = ∞.

From Lemma 4 and Theorem 1, it follows that the space of vector fields of the
form (p,∇Sq) with p, q polynomials is dense in Lp

∇(S) for 1 < p < ∞. In fact, it is
dense in Lc∇(S). Indeed, every function φ with continuous gradient on S extends to
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a C1-function φ̃ on R
n. On the cube {(x1, . . . , xn); |xj | ≤ 1}, the function �̃ can be

approximated uniformly by some polynomial q in such a way that ∇φ̃ is uniformly
close to ∇q; see [22, Theorems 6.7, 6.8] and observe, upon differentiating under the
integral, that convolving with Jackson kernels allows one to approximate a function
and its derivatives in a single stroke. Since any f0 ∈ C(S) can be approximated uni-
formly by a polynomial, say, p, every F = (f0,∇Sφ) ∈ Lc∇(S) can be approximated
by some polynomial vector field (p,∇Sq).

Considering the density property we just mentioned, it is important from the
constructive viewpoint to carry out the decomposition of Theorem 1 algorithmi-
cally for polynomial vectors. Since every polynomial can be effectively reduced
to a sum of spherical harmonics on S [5, Corollary 5.7], it is enough to decom-
pose F = (pm,∇Sqm+1), where pm ∈ Hm(S) and qm+1 ∈ Hm+1(S) with m > 0. On
subtracting ∇qm+1 ∈ Hp to F , we are left to decompose (ϕm,0) ∈ Lp

∇(S), where
ϕm ∈ Hm(S). In view of (2.4) and Euler’s theorem for homogeneous functions, the
decomposition we seek is simply

(ϕm,0) = 1

2m + n − 2
(∇ϕm − ∇K[ϕm]). (2.10)

Remark 4 Since one has an orthogonal sum L2(S) = ⊕∞
m=0 Hm [5, Theorem 5.12],

every F ∈ L2∇(S) can be written as

F =
( ∞∑

m=1

ϕm, 0

)
+ ∇Sv0,

where ϕm ∈ Hm and ∇v0 ∈ H 2. From what precedes, we see that the orthogonal
projection of F onto H 2 is given by

PH 2F = ∇v0 + ∇
∞∑

m=0

1

2m + 1
ϕm,

while

PH 2−F = −∇
∞∑

m=0

1

2m + 1
K[ϕm] = −∇

∞∑
m=0

ϕm(X)

(2m + 1)|X|2m+n−2
.

For each closed subset K ⊂ S, we write Lp
∇(K) for the space of restrictions to K of

functions in Lp
∇(S). The norm is also defined by restriction, namely for 1 ≤ p < ∞

‖F‖p

Lp
∇ (K)

=
∫

K

|F |p dσ

and ‖F‖L∞∇ (K) = supK |F |. The space Lc∇(K) consists of those elements of L∞∇ (K)

that are continuous on K .
We then have the following new density theorem, which enables us to approximate

data on K by the restrictions of Hardy functions. In some sense, this result accounts
for the well-known ill-posedness of the Cauchy problem for the Laplace equation.
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Theorem 2 Suppose that 1 ≤ p < ∞. If K is closed and σ(S \ K) > 0, then H
p
|K is

dense in Lp
∇(K) and Hc|K is dense in Lc∇(K).

Proof By the discussion after Remark 3 that led us to (2.10), it is enough to show that
any member of Hc− of the form ∇ q(X)

|X|2k+n−2 with q ∈ Hk can be uniformly approxi-

mated on K by some member of Hc|K .
We modify a standard proof of Runge’s theorem, as can be found in [23], for

example. Without loss of generality we may assume that t (0, . . . ,0,−1) ∈ S \K . Let
N = t (0, . . . ,0,1) and let VK denote an open neighbourhood of K in R

n such that
t (0, . . . ,0, z) �∈ V K for z ≤ 0.

Let S denote the set of all real numbers a ≤ 0 such that for each k = 0,1,2, . . . ,
every function of the form ∇ q(X−aN)

|X−aN |2k+n−2 , with q ∈ Hk for some k ≥ 0, is the uniform

limit on VK of functions of the form ∇g with g harmonic on some neighbourhood of
B ∪ VK . Such ∇g a fortiori belong to Hc , hence it is sufficient to prove that 0 ∈ S.

Clearly a ∈ S for all a < −1, because ∇ q(X−aN)

|X−aN |2k+n−2 is harmonic in X on a neigh-

bourhood of B ∪ VK for such a. Moreover to each a ≤ 0, there is a neighbourhood
of VK × {a} in R

n+1 on which ∇ q(X−bN)

|X−bN |2k+n−2 is harmonic in X and real analytic in
(X,b) for all q ∈ Hk and all k. This shows at once that S is closed, by the uniform
continuity of ∇ q(X−bN)

|X−bN |2k+n−2 on VK × [a − ε, a + ε] for small ε, and entails if a ∈ S

that

∇ q(X − bN)

|X − bN |2k+n−2
=

∞∑
j=0

(b − a)j

j ! ∇
(

∂j

∂zj

q(X − zN)

|X − zN |2k+n−2

)
|z=a

, (2.11)

where the expansion converges uniformly in X ∈ VK for sufficiently small |b − a|.
Since each partial derivative of q(X)

|X|2k+n−2 is of the form p(X)

|X|2m+n−2 for some m ≥ k and
some p ∈ Hm [5, Lemma 5.15], we find that all gradients in the right-hand side of
(2.11) are uniformly approximable on VK by functions of the form ∇g with g har-
monic on some neighbourhood of B ∪ VK , so we conclude on truncating this series
that b ∈ S for all b sufficiently close to a, that is, S is open in (−∞,0]).

It follows by a connectedness argument that S = (−∞,0], in particular 0 ∈ S. �

Remark 5 Already when n = 2, Theorem 2 does not hold for p = ∞ [8].

Similar Hardy spaces can also be defined on the shell, that is, on the region G =
B \ ρB̄, where 0 < ρ < 1. The Hardy space Hp(G), for 1 ≤ p < ∞, is the space of
gradient vector fields G = ∇g where g is harmonic on G, and such that the quantity

‖G‖p,G :=
(

sup
ρ<r<1

∫
S

|G(ry)|p dσ(y)

)1/p

is finite. The space H∞(G) consists of those bounded members of H 1(G) endowed
with the supremum norm, and Hc(G) is the subspace of H∞(G)-vector fields that
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extend continuously to G. It is easy to check that Hp(G) and Hc(G) are Banach
spaces.

Clearly, the direct sum Hp(B) + Hp(ρB
e) is mapped continuously into Hp(G)

under the ordinary addition of functions. This map is in fact a homeomorphism:

Proposition 2 The pointwise sum on G naturally induces topological direct sums

Hp(G) = Hp(B) ⊕ Hp(ρB
e), 1 ≤ p ≤ ∞, Hc(G) = Hc(B) ⊕ Hc(ρB

e).

Proof By the open mapping theorem, it is enough to show that every G ∈ Hp(G) can
be uniquely decomposed as G = G1 + G2 with G1 ∈ Hp(ρB

e) and G2 ∈ Hp; this
will settle the case of Hc(G) as well, for if G is continuous on G then G1 (resp. G2)
must be continuous up to ρS (resp. S) since G2 (resp. G1) is smooth across the latter
by construction.

The uniqueness of the decomposition is clear, because if G1 +G2 = G′
1 +G′

2 then
(G1 − G′

1)|S and (G′
2 − G2)|S lie in Hc− and Hp respectively, and they coincide a.e.

on S so they must be zero by Proposition 1.
It remains to show the existence of such a decomposition. Suppose first that

1 < p < ∞. Let G = ∇g ∈ Hp(G) and assume for a while that g is harmonic
in a neighbourhood of S. By Theorem 1, we can write G|S = G+ + G− where
G+ = ∇g+ ∈ Hp(B) and G− = ∇g− ∈ Hp(Be) and ‖G+‖p , ‖G−‖p are bounded
by a constant times ‖G‖p,G. Put g1 = g − g+ on G, and observe that g1|S and g−|S ,
when considered as members of W 1,p(S), have the same gradient namely the tangen-
tial component of G−. Adding a constant to g if necessary, we can therefore assume
that g1 and g− agree on S. Then, the concatenated function g̃ which is g1 on G and
g− on B

e lies in W
1,p

loc (ρB
e), since it is absolutely continuous along almost every

radius in the vicinity of S [31, 2, Remark 2.1.5].
We claim that g̃ is harmonic. Indeed, let φ be a smooth function with compact

support in ρB
e. Since ∇g1(rx) tends in Lp(S,R

n) to G(x) − G+(x) = G−(x) as
r → 1−, the harmonicity of g1 and the divergence formula for smooth vector fields
yield ∫

S

φ(x)G−(x).x dσ = lim
r→1

∫
S

φ(rx)∂ng1(rx) dσ

= lim
r→1

∫
G

∇φ(ry).∇g1(ry) dy =
∫

G

∇φ.∇g1.

Reversing the orientation on S, a similar computation in B
e gives us

−
∫

S

φ G− . x dσ =
∫

Be

∇φ.∇g−.

Adding up we get
∫
ρBe ∇φ.∇g̃ = 0, which means that g̃ is a harmonic distribution

thus a harmonic function by Weyl’s lemma. This proves the claim.
The claim implies that G1 := ∇g̃ lies in Hp(ρB

e) and that ‖G1‖Lp(ρS;Rn) is less
than a constant times ‖G‖p,G. Hence the decomposition G = G1 + G+ on G meets
our requirements.
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We now remove the assumption that g is harmonic in a neighbourhood of S. Let
G ∈ Hp(G). By what precedes, to each ρ < r < 1 there exist G1 ∈ Hp(ρB

e) and
G+,r ∈ Hp(rB) such that G = G1 + G+,r on rB \ ρB̄; moreover ‖G+,r‖Lp(rS;Rn) ≤
C‖G‖p,G for some constant C. Applying inductively the uniqueness of the decom-

position, we get that G1 is independent of r and that G+,r = G
+,r ′
|rS

for r ≥ r ′. Pick
an increasing sequence rn → 1−, and let G2 be a weak limit point of the bounded se-
quence Gn(x) := G+,rn (rnx) of Hp-functions. Using weak convergence in the Pois-
son representation, we deduce since G+,rn (y) = G+,rm(y) for m ≥ n that

G+,rn (y) = lim
m→∞Gm(y/rm) = G(y), |y| < rn.

Therefore G = G1 + G2 on G which is the desired decomposition when 1 < p < ∞.
If G ∈ H∞, pick 1 < p < ∞ and write G = G1 + G2 with G1 ∈ Hp(ρB

e) and
G2 ∈ Hp , as above. Clearly G1 is bounded on S, therefore G2 is also bounded so that
in fact G2 ∈ H∞. Likewise, G1 belongs to H∞(ρB

e).
Assume finally that p = 1 and pick p′ > 1. If we let ρ < r1 < r2 < 1, by the

first part of the proof, we can write G = G−,r1 + G+,r2 on r2B \ r1B, where G−,r1 ∈
Hp′

(r1B
e) and G+,r2 ∈ Hp′

(r2B). Letting r2 → 1−, we observe since ‖G‖L1(r2S) and
‖G−,r1‖L1(r2S) are bounded that ‖G+,r2‖L1(r2S) is also bounded. Arguing as before,
using this time weak-* convergence in the Poisson representation, we deduce that
G = G−,r1 + G2 where G2 is the Poisson integral of a finite measure on S. Thus
‖G2‖1 is bounded by Minkowski’s inequality for integrals, that is, G2 lies in H 1.
Letting now r1 → ρ+, a similar argument shows that G = G1 + G2 where G1 ∈
H 1(ρB

e). This achieves the proof. �

Proposition 2 entails that each G ∈ H(G) has non-tangential limits almost every-
where on ∂G = S ∪ ρS, thereby defining a function in Lp(∂G, σ ;R

3), where we
normalize the Lebesgue measure so that each sphere has unit measure. Moreover, if
we denote again the boundary function by G, we have that Gr converges to G in
Lp(S;R

3) (resp. Lp(ρS;R
3)) as r → 1− (resp. r → 1+ if 1 ≤ p < ∞; if p = ∞, we

only get weak-* convergence. In all cases, we deduce that G(x) is the integral of its
boundary values against the Poisson kernel of G at x ∈ G (see [5, Chap. 10]):

PG(x, ξ) =
⎧⎨
⎩

∑∞
m=0

1−(ρ/|x|)2m+n−2

1−ρ2m+n−2 Zm(x, ξ) (ξ ∈ S),∑∞
m=0 |x|−m(

ρ
|x| )

m+n−2 1−|x|2m+n−2

1−ρ2m+n−2 Zm(x,
ξ
|ξ | ) (ξ ∈ ρS),

where we recall the notation Zm(x, ξ) for the zonal harmonic with pole ξ . This pro-
vides us with an equivalent norm on Hp(G):

Corollary 1 For 1 ≤ p ≤ ∞, the norm ‖G‖p,b := ‖G‖Lp(ρS;R3) + ‖G‖Lp(S;R3) is
equivalent to ‖G‖p,G on Hp(G).

Proof Since PG(x, .) is positive with integral 2 on ∂G, it follows from the Pois-
son representation of G and Minkowski’s inequality for integrals that ‖G‖p,G ≤
2‖G‖p,b for G ∈ Hp(G). Conversely, Proposition 2 implies that the identity map
(Hp,‖.‖p.G) → (Hp,‖.‖p,b) is continuous. �
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3 Bounded Extremal Problems

Let K be a closed subset of S with nonempty interior
◦
K and Lipschitz boundary ∂K .

Notice the Lipschitz character entails that σ(∂K) = 0. A bounded extension operator

W 1,p(
◦
K) → W 1,p(S) is obtained from the standard extension operator on R

n−1 (see
[25, VI.3.1]) on using a partition of unity subordinated to a system of charts. The
existence of such an operator implies easily that Lp

∇(K) is a Banach space for 1 ≤
p ≤ ∞.

In the rest of the paper, we assume that K is a closed subset of S meeting the
above properties, and we customarily denote its complement by J = S \ K . We shall
employ the notation φ1 ∨ φ2 to denote the function equal to φ1 on K and φ2 on J .
Note that

Lp
∇(S) = Lp

∇(K) +∂K Lp
∇(J )

where +∂K indicates that the sum is “fibred” over those pairs (FK,FJ ) ∈ Lp
∇(K) ×

Lp
∇(J ) whose tangential components “agree” on ∂K . More precisely, there should

exist φK,φJ ∈ W 1,p(S) and fK,fJ ∈ Lp(S) such that FK = (fK,∇SφK)|K , FJ =
(fJ ,∇SφJ )|J , and (φK)|∂K

= (φJ )|∂K
where the trace on the boundary of a Lip-

schitz domain is defined as in Sobolev spaces on R
n using a system of charts

[31, Remark 4.4.5]. The coincidence of the traces on ∂K is equivalent to the con-
catenated function (φK)|K ∨ (φJ )|J belonging to W 1,p(S); indeed, given such φJ

and φK , there is a function φ ∈ W 1,p(S) that extends the function φK defined on
K . Then φ − φJ = 0 on ∂K , and by classical properties of the extension operator
(see [25, VI.4.8]) we get that 0|K ∨ (φJ − φ)|J ∈ W 1,p(S). Adding φ we see that
φK ∨ φJ ∈ W 1,p(S).

In order to approximately recover a function in Hp from data available on K ,
we formulate the following Bounded Extremal Problem BEP(p):

BEP(p) Given p ∈ (1,∞), F ∈ Lp
∇(K), 	 ∈ Lp

∇(J ), M ≥ 0; find G0 ∈ Hp such
that

‖F − G0‖Lp
∇ (K) = min

G∈Hp

‖	−G‖Lp
∇ (J )

≤M

‖F − G‖Lp
∇ (K).

Note that we conspicuously omit p = ∞ from our considerations. Indeed, the solu-
tion to the corresponding problem in 2 dimensions uses the Adamjan–Arov–Krein
theory [8] which has no analogue in higher dimensions so far.

Proposition 3 A solution G0 to BEP(p) exists and is unique. Moreover, the con-
straint is saturated, in the sense that ‖	 − G0‖Lp

∇ (J ) = M if F is not already the
trace, σ -a.e. on K , of an Hp function Fh with ‖	 − Fh‖Lp

∇ (J ) ≤ M .

Proof We may restrict further the approximating set to those Hp functions G such
that ‖G‖Lp

∇ (K) ≤ 2‖F‖Lp
∇ (K) for otherwise the zero function is a better candidate

anyway. The set of approximating functions is then weakly compact and convex in
Hp , and so is the trace of this set in Lp

∇(K). The existence and uniqueness now follow
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because the latter space is a strictly convex Banach space. To check that the constraint
is saturated if ‖F − G0‖Lp

∇ (K) �= 0, observe that otherwise there is an ε > 0 such that
any function G0 + H with H ∈ Hp and ‖H‖p < ε also satisfies the constraint. Now,
for every G ∈ Hp and t ∈ R, we get upon differentiating under the integral sign

‖F − G0‖p

Lp
∇ (K)

− ‖F − G0 − tG‖p

Lp
∇ (K)

= tp

2

∫
K

‖F − G0‖p−2
Lp

∇ (K)
(F − G0).Gdσ + o(t2).

Since the right-hand side must be non-positive as soon as |t | < ε/‖G‖p , we must
have that ∫

K

‖F − G0‖p−2
Lp

∇ (K)
(F − G0).Gdσ = 0, G ∈ Hp. (3.1)

Then by using the density result, Theorem 2, we can find a sequence Gn in Hp

that converges to F − G0 in Lp
∇(K), and by virtue of (3.1) we obtain in the limit

‖F − G0‖Lp
∇ (K) = 0, a contradiction. �

The properties of the solutions to the BEP(p) are very similar to those observed
in two-dimensional situations [2, 6]. Note first that ε = ‖F − G0‖Lp

∇ (K) is clearly a
decreasing function of M , the constraint imposed on ‖	 − G‖Lp

∇ (J ). Given F and 	

as in BEP(p) above, there are two situations that must be distinguished.

1. If F is already the trace on K of an Hp function Fh, and we write M0 = ‖	 −
Fh‖Lp

∇ (J ), then clearly we recover Fh exactly as soon as M ≥ M0, so that G0 = Fh

is a feasible solution to BEP(p). This is a situation of recovering a function from
exact measurements obtained on a set of uniqueness.

2. Otherwise, the behaviour of the solution G0 is such that ε → 0 as M → ∞ (this
follows essentially from the density result in Theorem 2 and the weak compactness
of balls in Hp). In this situation we are approximating noisy data by a feasible
model, which is nevertheless an ill-posed problem.

As in any convex optimisation problem, the solution to BEP(p) can be character-
ized by a variational equation, which turns out to assume a nicely constructive form
in the case p = 2, where a connection with Toeplitz-type operators arises. When
p �= 2, the solution would require the computation of the best approximation projec-
tion L

p
∇(S) → Hp which is convex but not linear, and for which no closed form is

known. Hereafter, we concentrate on the case p = 2 and we abbreviate BEP(2) to
(BEP).

3.1 Approximation on the Sphere

Recall the following result from [12], which provides a non-orthogonal generalization
of the Hilbert-space techniques of [20].

Proposition 4 [12] Let A : H → H1 and B : H → H2 be Hilbert space operators
for which there is a constant δ > 0 such that ‖Ay‖ + ‖By‖ ≥ δ‖y‖ for all y ∈ H.
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Take x1 ∈ H1 and x2 ∈ H2. Then the solution to

‖Ay0 − x1‖H1 = inf{‖Ay − x1‖H1 : y ∈ H, ‖By − x2‖H2 ≤ M}
is given by

(A∗A + γB∗B)y0 = A∗x1 + γB∗x2, (3.2)

where γ > 0 is the unique constant such that ‖By0 − x2‖H2 = M .

In our situation, it is appropriate to take H = H 2, with A and B the restriction
mappings to H1 = L2∇(K) and H2 = L2∇(J ), respectively.

It is not always convenient to calculate the adjoints, so we can rewrite (3.2) as

〈Ay0 − x1,Av〉H1 + γ 〈By0 − x2,Bv〉H2 = 0 for all v ∈ H.

A Banach space generalization of the above results, valid in Hp spaces for 1 <

p < ∞, can be found in [13].
The solution to (BEP) may be given by means of a variational equation as follows

(see the proposition above, where A is the restriction mapping onto K and B the
restriction onto J ). Namely there exists a unique γ ≥ 0 such that

〈G0 − F,H 〉L2∇ (K) = γ 〈	 − G0,H 〉L2∇ (J ) for all H ∈ H 2.

If F is not already the trace on K of an H 2 function Fh such that ‖	 −Fh‖L2∇ (J ) ≤ M

then γ > 0 and ‖	 − G0(γ )‖L2∇ (J ) = M . Further, it is clear from the variational
equation that the case γ → 0 corresponds to ‖G0 − F‖L2∇ (K) → 0 and M → ∞;
moreover, γ → ∞ corresponds to M → 0.

Hence, for every H ∈ H 2,

〈(I + (γ − 1) T )G0,H 〉L2∇ (S) = 〈F,H 〉L2∇ (K) + γ 〈	,H 〉L2∇ (J ) (3.3)

where T = TχJ
is the Toeplitz-like operator on H 2 (weakly) defined by

〈T G,H 〉L2∇ (S) = 〈G,H 〉L2∇ (J ).

Now,

〈T G,G〉L2∇ (S) = ‖G‖2
L2∇ (J )

≥ 0,

so T is a positive operator. Moreover, the spectrum of T is contained in the closed in-
terval [0,1]; by analogy with the case of the two-dimensional annulus it is reasonable
to conjecture that this spectrum equals the whole of [0,1].

3.2 The Case of the Hemisphere in R
3

As an important example of the above situation, take

K = S+ = {(x1, x2, x3) ∈ S, x3 ≥ 0},
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so that J = S− = {(x1, x2, x3) ∈ S, x3 < 0}, and ∂K = ∂J = ∂S+ = {(x1, x2, x3) ∈
S, x3 = 0}, the unit disk. We derive in this section some explicit formulae to compute
the terms involved in the variational equation (3.3) in this case; more complicated
formulae can be derived in other cases: most simply when K ⊂ S is a “cap” with
circular boundary. The formulae below are those that were used to produce the nu-
merical experiments reported in Sect. 4.

Let G = ∇g ∈ H 2, so we can write from [5, Corollary 5.34]:

g =
∞∑

k=1

γk ∈ L2(S), γk ∈ Hk,

∞∑
k=1

k2‖γk‖2
2 < +∞, (3.4)

where the growth condition on the ‖γk‖2 is necessary and sufficient for ∇g to lie in
L2(S;R

3) by Euler’s identity and the L2-boundedness of Riesz transforms. With
pm ∈ Hm, we have from the Green formula on J , using the intrinsic Laplace–
Beltrami operator on the sphere [14, II.7],

〈∇Sg,∇Spm〉L2(J ;R3) =
∫

J

∇Sg.∇Spm = m(m + 1)

∫
J

gpm +
∫

∂K

g∂x3pm,

hence

〈∇g,∇pm〉L2∇ (J ) = m(m + 1)

∫
J

gpm + m

∫
J

∂ngpm +
∫

∂K

g∂x3pm

=
∞∑

k=0

[
m(m + k + 1)

∫
J

γkpm +
∫

∂K

γk∂x3pm

]
, (3.5)

where n is the unit outer normal vector to S (n(ξ) = ξ ) and x3 = (0,0,1) the unit
outer normal vector to ∂J which is tangent to S. Also:

〈∇g,∇pm〉L2∇ (K) =
∫

K

∇g.∇pm

= m(m + 1)

∫
K

gpm + m

∫
K

∂ngpm −
∫

∂K

g∂x3pm. (3.6)

Adding (3.6) and (3.5) (see also [5, Lemma 5.13]), we get by the orthogonality of
spherical harmonics of different degrees:

〈∇g,∇pm〉2 =
∫

S

∇g.∇pm

= m(m + 1)

∫
S

gpm + m

∫
S

∂ngpm = m(2m + 1)

∫
S

γm pm

while

〈∇Sg,∇Spm〉L2(S;R3) =
∫

S

∇Sg.∇Spm = m(m + 1)

∫
S

gpm = m(m + 1)

∫
S

γm pm.
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Back to (3.3) with g = g0 and ∇g0 = G0, this finally gives:

m(2m + 1)

∫
S

γm pm + (γ − 1)

∞∑
k=0

[
m(m + k + 1)

∫
J

γkpm +
∫

∂K

γk∂x3pm

]

=
∫

K

m(f0 + (m + 1)φf )pm + γ

∫
J

m(ψ0 + (m + 1)φψ)pm

+
∫

∂K

φf ∂x3pm + γ

∫
∂J

φψ∂x3pm, (3.7)

applying (3.5), (3.6) to

F = (f0,∇Sφf )|K , 	 = (ψ0,∇Sφψ)|J . (3.8)

3.3 Spherical Domains

A similar approximation problem can be stated on the shell G. This may be consid-
ered as the analogue of the annulus, for which a similar problem was studied in [19].

Clearly we may formulate a bounded extremal problem corresponding to restric-
tions to a subset K ⊂ ∂G = S ∪ ρS, for example, K = S itself. In applications, we
will normally be interested only in K ⊆ S, so we limit ourselves to this case.

We first need an analogue to Theorem 2 on the shell.

Lemma 5 If K ⊆ S is closed then Hp(G)|K (resp. Hc
|K ) is dense in Lp

∇(K) (resp.
Lc∇(K)) for 1 ≤ p < ∞.

Proof We may suppose that K = S. It is also enough to consider the case of Lp
∇(S).

Now, we saw in the discussion after Remark 3 that any member of Lp
∇(S) can be

approximated uniformly on S by some polynomial vector field (p,∇Sq), and that any
such vector field is the sum of a member of Hc and a member of Hc−, cf. (2.10). �

Let K be a closed subset of S with a Lipschitz boundary and write J = ∂G \ K .
The Bounded Extremal Problem now takes the following form:

BEP(p,G) Let 1 < p < ∞. Given F ∈ Lp
∇(K), 	 ∈ Lp

∇(J ), M ≥ 0; find G0 ∈
Hp(G) such that

‖F − G0‖Lp
∇ (K) = min

G∈Hp(G)‖	−G‖Lp
∇ (J )

≤M

‖F − G‖Lp
∇ (K).

The analogue of Proposition 3 is still valid, namely the solution to the bounded ex-
tremal problem is unique. Further, if F is not already the trace on K of an Hp(G)

function Fh such that ‖	 −Fh‖Lp
∇ (J ) ≤ M then γ > 0 and ‖	 −G0(γ )‖Lp

∇ (J ) = M .
These facts are proved exactly as before, using Corollary 1 to reduce to a weakly
compact set of approximants and Lemma 5 instead of Lemma 2.
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Again, the solution is given by a variational equation, and for p = 2 it assumes the
same form as before; namely, there exists a unique γ ≥ 0 such that

〈G0 − F,H 〉L2∇ (K) = γ 〈	 − G0,H 〉L2∇ (J ) for all H ∈ H 2(G).

We may again introduce T = TχJ
, the Toeplitz-like operator on H 2(G) (weakly)

defined by

〈T G,H 〉L2∇ (∂G) = 〈G,H 〉L2∇ (J ) for all H ∈ H 2(G).

In this setting, the variational equation associated to BEP(2,G) may be written as:

〈(I + (γ − 1) T )G0,H 〉L2∇ (∂G) = 〈F,H 〉L2∇ (K) + γ 〈	,H 〉L2∇ (J )

for all H ∈ H 2(G), and in the particular case where K = S, J = ρS, we get

〈G0,H 〉L2(S;Rn) + γ 〈G0,H 〉L2(ρS;Rn) = 〈F,H 〉L2(S;Rn) + γ 〈	,H 〉L2(ρS;Rn).

Now every harmonic function on G decomposes as g(r, σ ) = ∑∞
k=−∞ rkSk(σ ), terms

of index k ≥ 0 being harmonic on B and terms of index k < 0 being harmonic on
R

n \ ρB (see [5]) or:

g(X) = g(r, σ ) =
∞∑

k=0

γk(X) + K[qk](X) =
∞∑

k=0

γk(X) + qk(X)

|X|2k+n−2

=
∞∑

k=0

rkγk(σ ) + r−(k+n−2)qk(σ ), γk, qk ∈ Hk. (3.9)

By Proposition 2, the condition for ∇g to lie in H 2(G) is that

∞∑
k=0

k2‖γk‖2
2 < +∞ and

∞∑
k=0

(k/ρ)2‖qk‖2
2 < +∞.

In particular when n = 3, we obtain in place of (3.7), with g0 given by (3.9):

m(2m + 1)
[
1 + γρ2m

]∫
S

γm pm

= (m + 1)(2m + 1)
[
1 + γρ−2(m+1)

]∫
S

qm pm

=
∫

S

m(f0 + (m + 1)φf )pm + γ

∫
ρS

m(ψ0 + (m + 1)φψ)pm, (3.10)

for prescribed functions F , 	 as (3.8) with K = S and J = ρS:

F = (f0,∇Sφf )|S , 	 = (ψ0,∇Sφψ)|ρS
.
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So, for K = S, we see that, as in the two-dimensional situation of the annulus [19, 24],
the Toeplitz operator T is already diagonal with respect to the orthonormal basis of
spherical harmonics, which makes the numerical calculation of G0 particularly easy
to implement.

4 Numerical Computations

Let g be a function harmonic in a domain D ⊂ R
3. Assume that we are given mea-

surements g and ∂ng on K ⊂ ∂D, from which we wish to reconstruct the function g.
We will consider the following situations, as in Sects. 3.2 and 3.3:

(i) D = B, K = S+ ⊂ S, J = S− ⊂ S;
(ii) D = G, K = S ⊂ ∂G, J = ρS ⊂ ∂G.

Assume also, in (3.8), the data to be given on K by the trace there of their decom-
positions into spherical harmonics:

φf =
( ∞∑

k=0

ϕk

)
|K

, f0 =
( ∞∑

k=0

δk

)
|K

while ψ0 = 0, φψ = 0 on J . (4.1)

4.1 Situation (i)

Looking at the decomposition (3.4) of g0 where ∇g0 solves BEP(2,S) in R
3, that is,

g0 solves (3.7) for each pm ∈ Hm and all m, with data given on K = S+ and J = S−
as traces of functions in L2(S) by (4.1), we get:

m(2m + 1)

∫
S

γm pm + (γ − 1)

∞∑
k=0

[
m(m + k + 1)

∫
S+

γkpm +
∫

∂S+
γk∂x3pm

]

=
∫

S+
m(f0 + (m + 1)φf )pm +

∫
∂S+

φf ∂x3pm

=
∞∑

k=0

[∫
S+

m(δk + (m + 1)ϕk)pm +
∫

∂S+
ϕk∂x3pm

]
.

We express these quantities in terms of the basis of spherical harmonics on S:

γk(X) = γk(r, σ ) = rk
k∑

i=−k

αi
kY

i
k (σ ),

where Y i
m are the 2m + 1 Legendre polynomials of degree m, [5, 15], which are

pairwise orthogonal in L2(S). Choosing

pm(X) = rmY
j
m(σ ),

for some j ∈ {−m, . . . ,m}, we can rewrite the terms involving the unknown quanti-
ties (αi

k) in the above equation as:
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m(2m + 1)α
j
m + (γ − 1)

∞∑
k=0

k∑
i=−k

αi
k

[
m(m + k + 1)

∫
S+

Y i
k (σ )Y

j
m(σ )dσ

+
∫

∂S+
Y i

k (τ ) ∂x3(Y
j
m)(τ ) dτ

]

and analogously for the right-hand side with the given data on S+:

φf (σ ) =
∞∑

k=0

k∑
i=−k

μi
kY

i
k (σ ), f0(σ ) =

∞∑
k=0

k∑
i=−k

νi
kY

i
k (σ ) (4.2)

which can be written as:

∞∑
k=0

k∑
i=−k

[
mνi

k

∫
S+

Y i
k (σ )Y

j
m(σ )dσ

+ μi
k

(
m(m + 1)

∫
S+

Y i
k (σ )Y

j
m(σ )dσ +

∫
∂S+

Y i
k (τ ) ∂x3(Y

j
m)(τ ) dτ

)]
.

The computations are then performed by truncating the decomposition of g, f0 and
φf on the basis, and by solving the obtained system of linear equations.

Observe that though the following computations already give a good illustration of
the method, a full analysis of the numerical behaviour of the approximation scheme
is still to be made, especially for data arising in applications. Some simplifications
do arise in the case of S+, due to the symmetry properties of the functions (Y i

k ), even
though they do not form an orthogonal basis when restricted to the hemisphere.

Assume now that we are given on K = S+ the trace and the trace of the normal
derivative for the function (harmonic in B):

g(X) =
3∑

i=1

|X|
|X − Mi |X|2| , φf = g|S+ , f0 = (∂ng)|S+ ,

where

M1 =
⎛
⎝0.1

0.2
0.2

⎞
⎠ , M2 =

⎛
⎝ 0.2

0.2
0.25

⎞
⎠ , M3 =

⎛
⎝ 0.2

0.25
0.3

⎞
⎠ .

Here as γ → 0, we obtain exact recovery of g because ∇g ∈ H 2. However, g|K also
coincides with the trace on K (F = ∇g|K ) of a function with singularities Mi in B,
namely

3∑
i=1

1

|X − Mi | .

Figure 1 shows a comparison between the function g0 on S+ and the approxima-
tions produced as γ → 0. The present computations were performed using the above
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Fig. 1 Solution g0 compared to the function g on K = S+

procedure in Matlab. It is seen that for sufficiently small γ we obtain very good
recovery on S+.

4.2 Situation (ii)

In the shell, taking the decomposition (3.9) of g0 where ∇g0 solves BEP(2,G) in R
3

with data on S, we get from (3.10) that:

m(2m + 1)
[
1 + γρ2m

]∫
S

γm pm

= (m + 1)(2m + 1)
[
1 + γρ−2(m+1)

]∫
S

qm pm

=
∫

S

m(f0 + (m + 1)φf )pm.
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In this diagonal case, we simply get from (4.1) with K = S and J = ρS that, for every
m ≥ 0:

γm = δm + (m + 1)ϕm

(2m + 1)[1 + γρ2m] , qm = m(δm + (m + 1)ϕm)

(m + 1)(2m + 1)[1 + γρ−2(m+1)] . (4.3)

Observe that whenever F = ∇g|S ∈ H 2(G)|S :

g|S = φf =
∞∑

k=0

ϕk, ∂ng|S = f0 =
∞∑

k=0

δk

with g as in (3.9), we directly obtain the relations (corresponding to the case where
γ = 0 in (4.3)):

γk + qk = ϕk,

kγk − (k + 1)qk = δk,

which give:

γk = (k + 1)ϕk + δk

2k + 1
,

qk = kϕk − δk

2k + 1
.

We assume that we are given on K = S the trace and the trace of the normal derivative
of the function (harmonic in G = B \ 0.9B̄):

g(X) =
3∑

i=1

1

|X − Mi | ,

where the Mi are the same as in Situation (i).
Figure 2 shows a comparison between the function g0 on S and the approximations

produced as γ → 0. It is seen once more that, for sufficiently small γ , we obtain very
good recovery on S.

In this situation, the computations using a basis of spherical harmonics proceed as
follows:

γk(X) = γk(r, σ ) = rk

k∑
i=−k

αi
kY

i
k (σ ), qk(X) = qk(r, σ ) = rk

k∑
i=−k

βi
kY

i
k (σ ),

or

g(r, σ ) =
∞∑

k=0

(
rk

k∑
i=−k

αi
kY

i
k (σ ) + r−(k+1)

k∑
i=−k

βi
kY

i
k (σ )

)
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Fig. 2 Solution g0 compared to the function g on K = S

while φf and f0 are defined on S by (4.2). This gives:

αi
k + βi

k = μi
k,

kαi
k − (k + 1)βi

k = νi
k.

This gives the unknown coefficients αi
k and βi

k by:

αi
k = k + 1

2k + 1
μi

k + 1

2k + 1
νi
k,

βi
k = k

2k + 1
μi

k − 1

2k + 1
νi
k.

We have harmonic extensions of the spherical harmonics, namely (rkY i
k )

k
i=−k , the ho-

mogeneous harmonic polynomials of degree k defined inside B, and (r−(k+1)Y i
k )

k
i=−k ,
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the homogeneous “anti-harmonic” polynomials defined on the complement of B.
Also,

∂n(r
k Y i

k )|S = k Y i
k , ∂n(r

−(k+1) Y i
k )|S = −(k + 1)Y i

k .

5 Conclusions

Although we have formulated our approximation problems in terms of spheres and
spherical shells, being driven by concrete applications, it is clear that analogous
problems can be considered on a half-space such as R

n+ = {x = (x1, . . . , xn) ∈ R
n :

x1 > 0} (indeed much of the work of Stein and Weiss [25–27] was first expressed in
this context).

Further work in this direction will focus on a more detailed numerical analysis
of the approximation scheme introduced in this paper. Further extensions to D = G,
K = S+ ⊂ ∂S ⊂ ∂G are also of scientific importance. The main technical difficulties,
as in Sect. 4.1 above, lie in the calculation of the decomposition of the solution into
spherical harmonics.
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