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Abstract We study the composition operators f �→ f ◦ φ on generalized analytic
function spaces named generalized Hardy spaces, on bounded domains of C, for
holomorphic functions φ with uniformly bounded derivative. In particular, we provide
necessary and/or sufficient conditions onφ, depending on the geometry of the domains,
ensuring that these operators are bounded, invertible, or isometric.
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1 Introduction

The present work aims at generalizing properties of composition operators on Hardy
spaces of domains of the complex plane to the framework of generalizedHardy spaces.
Generalized analytic functions, among which pseudo-holomorphic functions, were
considered a long time ago, see [9,34]. More recently, they were studied in [22], in
particular because of their links with classical partial differential equations (PDEs)
in mathematical physics, like the conductivity or Schrödinger equations, see [2], [3,
Lem. 2.1]. By generalized analytic functions, we mean solutions (as distributions) to
the following ∂-type equations (real linear conjugate Beltrami and Schrödinger type
elliptic PDEs):

∂ f = ν∂ f or ∂w = αw,

without loss of generality [9]. For specific classes of dilation coefficients ν, α, these
two PDEs are equivalent to each other, as follows from a trick going back to Bers and
Nirenberg, see (13) below.

They are also related to the complex linearBeltrami equation and to quasi-conformal
applications [1]. Properties of associated (normed) Hardy classes H p

ν and Gp
α have

been established in [6,7,14] for 1 < p < ∞. These classes seem to have been
introduced in [26] for simply connected domains. They share many properties of
the classical Hardy spaces of analytic (holomorphic) functions (for α ≡ 0 ≡ ν). The
proofs of these properties rely on the factorization result from [9], which was extended
in [5–7] to Gp

α functions, through classical Hardy spaces H p. Note that important
applications of these classes come fromDirichlet–Neumann boundary value problems
and Cauchy type transmission issues for the elliptic conductivity PDE ∇ · (σ ∇u) = 0
with conductivity σ = (1 − ν) (1 + ν)−1 in domains of R

2 � C, see [2,7]. Indeed,
on simply-connected domains, solutions u coincide with real–parts of solutions f to
∂ f = ν∂ f . In particular, this links Calderón’s inverse conductivity problem to similar
issues for the real linear conjugate Beltrami equation, as in [3]. Further, these new
Hardy classes furnish a suitable framework in order to state and solve families of best
constrained approximation issues (bounded extremal problems) from partial boundary
values, see [14,17], that are givenbyDirichlet–Neumannboundary conditions, through
generalized harmonic conjugation or Hilbert transform.
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Composition Operators on Generalized Hardy Spaces 1735

In the Hilbertian setting p = 2, constructive aspects are available for particular
conductivity coefficients ν, for which bases of H2

ν may be explicitly constructed, in the
disk or the annulus, see [16,17]. In the annular setting, and in toroidal coordinates, this
allows to tackle a free boundary problem related to plasma confinement in tokamaks.
Concerning realistic geometries, properties of composition operators on generalized
Hardy classes may provide a selection of conformal maps from the disk or circular
domains.

The present work is a study of some properties of composition operators on these
Hardy classes. Let � ⊂ C be a domain. Hardy spaces H p

ν (�) of solutions to the
conjugate Beltrami equation ∂ f = ν∂ f a.e. on � are first considered when � is the
unit discD or the annulusA = {z ∈ C : r0 < |z| < 1}. A way to define those spaces in
general bounded Dini-smooth domains is to use their conformal invariance property,
see [6]. More precisely, if �1 and �2 are two bounded Dini-smooth domains and φ a
conformalmap from�1 onto�2, then f is in H p

ν (�2), with ν ∈ W 1,∞
R

(�2) if and only

if f ◦φ is in H p
ν◦φ(�1) and ν◦φ ∈ W 1,∞

R
(�1). In terms of operator, if φ : �1 → �2 is

an analytic conformal map, the composition operatorCφ : f �−→ f ◦φ maps H p
ν (�2)

onto H p
ν◦φ(�1). Similar results hold in Gp

α Hardy spaces of solutions to ∂w = αw.
Suppose now that the composition map φ : �1 → �2 is a function in

W 1,∞(�1,�2) and analytic in �1, what can we say about Cφ( f ) = f ◦ φ when
f ∈ H p

ν (�2) in terms of operator properties? This operator has been widely studied
in the case of analytic Hardy spaces (i.e. ν ≡ 0) when�1 = �2 = D giving character-
izations of composition operators that are invertible in [27], isometric in [18], similar
to isometries in [8], and compact in [31,33], for example. Fewer results are known
concerning composition operators on H p spaces of an annulus. However, one can find
in [11] a sufficient condition on φ for the boundedness of Cφ and a characterization
of Hilbert–Schmidt composition operators.

In more general (non smooth) simply connected domains, boundedness and com-
pactness properties of composition operators on Hardy spaces are established in
[19,33]. Note that, in this context, several definitions of Hardy spaces can be con-
sidered [13, Ch.10].

The study of composition operators has been generalized to many other spaces of
analytic functions, such as Dirichlet or Bergman spaces, see [24,32] and the references
therein.

In this paper,we study someproperties, namelyboundedness, invertibility, isometry,
for the composition operator defined on the generalized Hardy space H p

ν (�) and
Gp

α(�)where� is a boundedDini-smooth domain (most of the time,�will be the unit
disc D or the annulus A). Compactness issues will be dealt with in a subsequent paper.

In Sect. 2, we provide some notations. Definitions of generalized Hardy classes
for bounded Dini-smooth domains, together with some of their properties are given
in Sect. 3. Section 4 is devoted to boundedness results for composition operators
on generalized Hardy classes H p

ν and Gp
α for 1 < p < ∞. Section 5 is related

to their invertibility, while isometric composition operators are studied in Sect. 6 on
generalized Hardy classes of the disk and the annulus. There, Theorems 1 and 3 appear
to be new in H p(A) as well. A conclusion is written in Sect. 7 in which we discuss
the extension of some results to generalized Hardy spaces over arbitrary domains.
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1736 J. Leblond et al.

2 Definitions and Notations

In this paper, wewill denote by� a connected open subset of the complex planeC (also
called a domain of C), by ∂� its boundary, by D the unit disc and by T = ∂D the unit
circle. For 0 < r0 < 1, let A be the annulus {z ∈ C : r0 < |z| < 1} = D ∩ (C\r0D),
the boundary of which is ∂A = T ∪ Tr0 , where Tr0 is the circle of radius r0. More
generally, we will consider a circular domain G defined as follows

G = D\
N−1⋃

j=0

(a j + r jD), (1)

where N ≥ 2, a j ∈ D, 0 < r j < 1, 0 ≤ j ≤ N − 1. Its boundary is

∂G = T ∪
N−1⋃

j=0

(a j + Tr j )

where the circles a j + Tr j for 0 ≤ j ≤ N − 1 have a negative orientation whereas T

has the positive orientation. Note that for N = 2 and a0 = 0, G is the annulus A.
A domain � of C is Dini-smooth if and only if its boundary ∂� is a finite union

of Jordan curves with non-singular Dini-smooth parametrization. We recall that a
function f is said to beDini-smooth if its derivative isDini-continuous, i.e. itsmodulus
of continuity ω f is such that

∫ ε

0

ω f (t)

t
dt < ∞, for some ε > 0.

Recall that, if � is a bounded Dini-smooth domain, there exists a circular domain G

and a conformal map φ between G and � which extends continuously to a homeo-
morphism between G and �, while the derivatives of φ also extend continuously to G

[6, Lem. A.1]. If E, F are two Banach spaces, L(E, F) denotes the space of bounded
linear maps from E to F , and T ∈ L(E, F) is an isometry if and only if, for all x ∈ E ,
‖T x‖F = ‖x‖E .

If A( f ) and B( f ) are quantities depending on a function f ranging in a set E , we
will write A( f ) � B( f )when there is a positive constantC such that A( f ) ≤ CB( f )
for all f ∈ E . We will say that A( f ) ∼ B( f ) if there is C > 0 such that C−1B( f ) ≤
A( f ) ≤ CB( f ) for all f ∈ E .

The Lebesgue measure (on the complex plane or in the 1-dimensional case) will
be denoted by m. For 1 ≤ p ≤ ∞, L p(�) designates the classical Lebesgue space of
functions defined on � with respect to m, equipped with the classical norm.

We denote byD(�) the space of smooth functions with compact support in �. Let
D′(�) be its dual space which is the space of distributions on �.

For 1 ≤ p ≤ ∞, we recall that the Sobolev space W 1,p(�) is the space of all
complex valued functions f ∈ L p(�) with distributional derivatives in L p(�). The
space W 1,p(�) is equipped with the norm

Author's personal copy



Composition Operators on Generalized Hardy Spaces 1737

‖ f ‖W 1,p(�) = ‖ f ‖L p(�) + ‖∂ f ‖L p(�) + ‖∂ f ‖L p(�),

where the operators ∂ and ∂ are defined, in the sense of distributions: for allφ ∈ D(�),

〈∂ f, φ〉 = −
∫

f ∂φ, 〈∂ f, φ〉 = −
∫

f ∂φ,

with ∂ = 1
2 (∂x − i∂y) and ∂ = 1

2 (∂x + i∂y).
Note that, when� isC1 (in particular, when� is Dini-smooth),W 1,∞(�) coincides

with the space of Lipschitz functions on� [15, Thm 4, Sec 5.8].Wewill write L p
�2

(�)

and W 1,p
�2

(�) to specify that the functions have values in �2 ⊂ C.

3 Generalized Hardy Spaces

3.1 Hardy Spaces

For a detailed study of classical Hardy spaces H p(�) of analytic functions in � ⊂ C,
we refer to [13,20], and to [29] for annular domains. Let us briefly recall here some
basic facts needed in the sequel, see [23] for more details.

For 1 ≤ p ≤ ∞, any function f ∈ H p(D) has a non-tangential limit a.e. on T

which we call the trace of f and is denoted by tr f . For all f ∈ H p(D), we have that
tr f ∈ H p(T) where H p(T) is the strict subspace of L p(T):

H p(T) =
{
h ∈ L p(T), ĥ(n) = 1

2π

∫ 2π

0
h(eit )e−int dt = 0, n < 0

}
.

More precisely, H p(D) is isomorphic to H p(T) and ‖ f ‖H p(D) = ‖tr f ‖L p(T),
which allows us to identify the two spaces H p(D) and H p(T).

The space H p(A) can be identified to H p(∂A) via the isomorphic isomorphism
f ∈ H p(A) �−→ tr f ∈ H p(∂A) and thus ‖ f ‖H p(A) = ‖tr f ‖L p(∂A). Likewise,
following [29], the space H p(A) of the annulus A = D\r0 D can be identified to
H p(∂A) via the isomorphic isomorphism f ∈ H p(A) �−→ tr f ∈ H p(∂A):

H p(∂A) =
{
h ∈ L p(∂A), ĥ|T(n) = rn0 ĥ|r0T(n), n ∈ Z

}
.

From the fact that | f |p is a subharmonic function when f is analytic on any domain
� ⊂ C, classes of analytic functions have been introduced using harmonic majorants
(see [28]) extending the definition of Hardy spaces to general domains in C. More
precisely, for 1 ≤ p < ∞ and z0 ∈ �, H p(�) is defined as the space of analytic
functions f on � such that there exists a harmonic function u : � −→ [0,∞) such
that for z ∈ �

| f (z)|p ≤ u(z).

Author's personal copy



1738 J. Leblond et al.

The space is equipped with the norm

inf
{
u(z0)

1/p, | f |p ≤ u for u harmonic function in �
}

.

Remark 1 1. It follows from the Harnack inequality [4, 3.6,Ch.3], that different
choices of z0 give rise to equivalent norms in H p(�).

2. If� = D orA, the two definitions of Hardy spaces coincide and the two previously
defined norms on H p(�) are equivalent.

3.2 Definitions of Generalized Hardy Spaces

Let 1 < p < ∞ and ν ∈ W 1,∞
R

(D) such that ‖ν‖L∞(D) ≤ κ with κ ∈ (0, 1). The
generalized Hardy space of the unit disc H p

ν (D) was first defined in [26] and then in
[7] as the collection of all measurable functions f : D −→ C such that ∂ f = ν ∂ f in
the sense of distributions in D and

‖ f ‖H p
ν (D) :=

(
ess sup0<r<1

1

2π

∫ 2π

0
| f (reit )|pdt

)1/p

< ∞. (2)

The definition was extended, in [14], to the annulus A: for ν ∈ W 1,r
R

(A), r ∈ (2,∞),
H p

ν (A) is the space of functions f : A → C such that ∂ f = ν ∂ f in the sense of
distribution in A and satisfying

‖ f ‖H p
ν (A) :=

(
ess supr0<r<1

1

2π

∫ 2π

0
| f (reit )|pdt

)1/p

< ∞. (3)

Now, let � ⊂ C be a Dini-smooth domain and ν such that

ν ∈ W 1,∞
R

(�), ‖ν‖L∞(�) ≤ κ, with κ ∈ (0, 1). (4)

The definition of H p
ν (�) was further extended to this case in [6], where the norm is

defined by

‖g‖H p
ν (�) := sup

n∈N
‖g‖L p(∂�n), (5)

where (�n)n is a fixed sequence of domains such that �n ⊂ � and ∂�n is a finite
union of rectifiable Jordan curves of uniformly bounded length, such that each compact
subset of � is eventually contained in �n for n large enough. We refer to [6] for the
existence of such sequence.

In parallel with Hardy spaces H p
ν (�) (with � equal to D, A or more generally to

a Dini-smooth domain), Hardy spaces Gp
α(�) were defined in [6,7,14,26] for α ∈

L∞(�) as the collection of measurable functions w : � → C such that ∂w = α w in
D′(�) and
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Composition Operators on Generalized Hardy Spaces 1739

‖w‖Gp
α (�) =

(
ess supρ<r<1

1

2π

∫ 2π

0
|w(reit )|pdt

)1/p

< ∞, (6)

with ρ = 0 if � = D and ρ = r0 if � = A. More generally, if � is a Dini-smooth
domain, the essential supremum is taken over all the L p(∂�n) norm of w for n ∈ N.

Remark 2 The generalized Hardy spaces H p
ν (�) and Gp

α(�) are real Banach spaces
(note that when ν = 0 or α = 0 respectively, they are complex Banach spaces).

Recall that if� is a bounded Dini-smooth domain, a function g lying in generalized
Hardy spaces H p

ν (�) or Gp
α(�) has a non-tangential limit a.e. on ∂� which is called

the trace of g is denoted by tr g ∈ L p(∂�) and

‖g‖H p
ν (�) ∼ ‖tr g‖L p(∂�), (7)

(see [6,7,14]). We will denote by tr (H p
ν (�)) the space of traces of H p

ν (�)-functions;
it is a strict subspace of L p(∂�). Note also that g �→ ‖tr g‖L p(∂�) is a norm on H p

ν (�),
equivalent to the one given by (5). However, contrary to the case of Hardy spaces of
analytic functions of the disk, ‖·‖H p

ν (D) and ‖ tr ·‖L p(T) are not equal in general (see
(7)).

Finally, functions in H p
ν (�) and Gp

α(�) are continuous in �:

Lemma 1 Let � ⊂ C be a bounded Dini-smooth domain, ν ∈ W 1,∞
R

(�) meeting (4)
and α ∈ L∞(�). Then, all functions in G p

α(�) and H p
ν (�) are continuous in �.

Proof Indeed, let ω ∈ Gp
α(�). By [6, Prop. 3.2], ω = es F with s ∈ C(�) (since

s ∈ W 1,r (�) for some r > 2) and F ∈ H p(�). Thus, ω is continuous in �. If
f ∈ H p

ν (�) and ω = J −1(g), then ω ∈ Gp
α(�) is continuous in � and since ν is

continuous and (4) holds, f ∈ C(�). ��
As in the analytic case [13, Ch.10], generalized Hardy classes E p

ν (�) (respectively
F p

α (�)) can be defined as the space of measurable functions f (respectively w) on �

solving

∂ f = ν ∂ f in D′(�), (8)

respectively

∂w = α w in D′(�), (9)

and for which there exists a harmonic function u : � → [0,+∞) such that

| f (z)|p ≤ u(z) (10)

(respectively (10) holds for w) for almost every z ∈ �. Fix a point z0 ∈ �. The space
is equipped with the norm

‖ f ‖E p
ν (�):= inf

{
u1/p(z0), u : � → [0,+∞) harmonic in � such that (10) holds

}
.

(11)
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1740 J. Leblond et al.

Observe that in the above definitions, different values of z0 give rise to equivalent
norms as in Remark 1. We first check:

Proposition 1 1. The map f �→ ‖ f ‖E p
ν (�) is a norm on E p

ν (�).

2. The analogous conclusion holds for F p
α (�).

Proof It is plain to see that ‖·‖E p
ν (�) is positively homogeneous of degree 1 and

subadditive. Assume now that ‖ f ‖E p
ν (�) = 0. That f = 0 follows at once from the

fact that, if (u j ) j≥1 is a sequence of nonnegative harmonic functions on � such that
u j (z0) → 0, j → ∞, for z0 ∈ � from definition of E p

ν (�), then u j (z) → 0, j → ∞,
for all z ∈ �. To check this fact, define

A := {
z ∈ �; u j (z) → 0

}
.

The Harnack inequality [4, 3.6,Ch.3] shows at once that A is open in �. If B = �\A,
then the Harnack inequality also shows that B is open. Because z0 ∈ A �= ∅ and � is
connected, then A = �, which proves point 1 and, similarly, point 2. ��
Remark 3 As [6, Thm 3.5, (ii)] shows, when � is a Dini-smooth domain, ν meets (4)
and α ∈ L∞(�), H p

ν (�) = E p
ν (�) and Gp

α(�) = F p
α (�), with equivalent norms. In

this case, if � is Dini-smooth, then, for w ∈ Gp
α(�) we have that

‖w‖Gp
α (�) ∼ inf u1/p(z0),

where u and the infimum are taken as in the definition of F p
α (�). The same stands for

f ∈ H p
ν (�).

Let ν satisfying assumption (4) and α ∈ L∞(�) associated with ν in the sense that

α = −∂ν

1 − ν2
, (12)

Now, let us recall the link between H p
ν and Gp

α functions [6,7].

Proposition 2 A function f : � → C belongs to H p
ν (�) if and only if

w = J ( f ) := f − ν f√
1 − ν2

(13)

belongs to G p
α(�). One has ‖ f ‖H p

ν (�) ∼ ‖w‖Gp
α (�).

Proof That f solves (8) if and only ifw solves (9) was checked in [6,7]. That | f |p has
a harmonic majorant if and only if the same holds for |w|p and ‖ f ‖E p

ν (�) ∼ ‖w‖F p
α (�)

are straightforward consequences of (13) and assumption (4). ��
Proposition 2 immediately yields:

Lemma 2 Let ν, ν̃ satisfying (4) and α, α̃ associated with ν (resp. ν̃) as in Eq. (12).
Then, T ∈ L(H p

ν (�), H p
ν̃ (�)) if and only if T̃ ∈ L(Gp

α(�),Gp
α̃ (�)) where J̃ T =

T̃J , and J̃ is the R-linear isomorphism from H p
ν̃ (D) onto G p

α̃ (�) defined by (13)
with ν replaced by ν̃.
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Composition Operators on Generalized Hardy Spaces 1741

4 Boundedness of Composition Operators on Generalized Hardy Spaces

Let �1,�2 be two bounded Dini-smooth domains in C, ν defined on �2 satisfying
assumption (4), and φ satisfying:

φ : �1 → �2 analytic with φ ∈ W 1,∞
�2

(�1). (14)

We consider the composition operator Cφ defined on H p
ν (�2) by Cφ( f ) = f ◦ φ.

Observe first that ν ◦ φ ∈ W 1,∞
R

(�1) since ν and φ are Lipschitz functions in �2
and �1 respectively and ‖ν ◦ φ‖L∞(�1)

≤ κ; hence ν ◦ φ satisfies (4) on �1.

Proposition 3 The composition operator Cφ : H p
ν (�2) → H p

ν◦φ(�1) is continuous.

Proof Let f ∈ H p
ν (�2). Observe that f ◦ φ is a Lebesgue measurable function on

�1 and, since ∂φ = 0 in �1,

∂( f ◦ φ) = [(∂ f ) ◦ φ]∂(φ) = (ν ◦ φ)[∂ f ◦ φ]∂(φ)

= (ν ◦ φ)(∂ f ◦ φ)∂φ = (ν ◦ φ)∂( f ◦ φ),

(equalities are considered in the sense of distributions). Now, if u is any harmonic
majorant of | f |p in �2, then u ◦ φ is a harmonic majorant of | f ◦ φ|p in �1, which
proves that Cφ( f ) ∈ H p

ν◦φ(�1). Moreover, by the Harnack inequality applied in �2,

∥∥Cφ( f )
∥∥
H p

ν◦φ(�1)
≤ u(φ(z0))

1/p ≤ C u(z0)
1/p,

for z0 ∈ �2 as in definition of E p
ν , and where the constant C depends on �2, z0 and

φ(z0) but not on u, so that, taking the infimum over all harmonic functions u ≥ | f |p
in �2, one concludes

∥∥Cφ( f )
∥∥
H p

ν◦φ(�1)
� ‖ f ‖H p

ν (�2)
.

��
Remark 4 In the case where �1 = �2 = D, if H p

ν (D) and H p
ν◦φ(D) are equipped

with the norms given by (11), the following upper bound for the operator norm of Cφ

holds:

‖Cφ‖ ≤
(
1 + |φ(0)|
1 − |φ(0)|

)1/p

.

Indeed, if u is as before, one obtains

u ◦ φ(0) = 1

2π

∫ 2π

0

1 − |φ(0)|2
|eit − φ(0)|2 u(eit )dt

≤ 1 + |φ(0)|
1 − |φ(0)|

1

2π

∫ 2π

0
u(eit )dt = 1 + |φ(0)|

1 − |φ(0)|u(0).

Author's personal copy



1742 J. Leblond et al.

In the doubly-connected case, assume that � = A. Let z0 ∈ A and ψ be an analytic
function from D onto A such that ψ(0) = z0. Arguing as in [11], we obtain an
“explicit” upper bound for

∥∥Cφ

∥∥. Indeed, let u be as before. Using the harmonicity of
u ◦ ψ in D, for all s such that ψ(s) = φ(z0), one has, for all r ∈ (|s| , 1),

u(φ(z0)) = u(ψ(s)) = 1

2π

∫ 2π

0
Re

(
r eit + s

r eit − s

)
u ◦ ψ(r eit )dt

≤ r + |s|
r − |s|u(ψ(0)) = r + |s|

r − |s|u(z0).

Letting r tend to 1, we obtain

u(φ(z0)) ≤ inf
s∈ψ−1(φ(z0))

1 + |s|
1 − |s| . u(z0),

which, with definition of E p
ν (�), yields ‖Cφ‖ ≤

(
inf

s∈ψ−1(φ(z0))

1 + |s|
1 − |s|

)1/p

.

In the sequel, when necessary, wewill consider the composition operator defined on
Gp

α spaces instead of H p
ν spaces. The next lemma shows that a composition operator

defined on H p
ν spaces is R-isomorphic to a composition operator on Gp

α spaces.

Lemma 3 Let ν (resp. φ) satisfying (4) (resp. (14)). The composition operator Cφ

mapping H p
ν (�2) to H p

ν̃ (�1) with ν̃ = ν ◦ φ is then equivalent to the composition
operator C̃φ mapping G p

α(�2) to G
p
α̃ (�1), where α̃ is associated with ν̃ through (12).

Moreover,

α̃ = (α ◦ φ)∂φ. (15)

In other words, for J , J̃ defined as in Lemma 2, we have the following commutative
diagram:

H p
ν (�2)

Cφ−−−−→ H p
ν̃ (�1)

J
⏐⏐� J̃

⏐⏐�

Gp
α(�2)

C̃φ−−−−→ Gp
α̃ (�1)

Proof The inverse of J is given by (see [7]):

J −1 : w ∈ Gp
α(�2) �−→ f = w + ν w√

1 − ν2
∈ H p

ν (�2). (16)

Note that

α̃ = −∂ν̃

1 − ν̃2
= −∂(ν ◦ φ)

1 − ν2 ◦ φ
= −[(∂ν) ◦ φ]∂φ

1 − ν2 ◦ φ
= (α ◦ φ)∂φ,
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and J̃ is also an R-linear isomorphism from H p
ν̃ (�1) onto Gp

α̃ (�1). Now, for any
f ∈ H p

ν (�2), we have that

J̃ (Cφ( f )) = f ◦ φ − (ν ◦ φ) f ◦ φ√
1 − ν2 ◦ φ

=
[

f − ν f√
1 − ν2

]
◦ φ = C̃φ(J ( f )).

��

5 Invertibility of the Composition Operator on H p
ν (�)

In this section, we characterize invertible composition operators between H p
ν spaces.

We will need an observation on the extension of a function ν meeting condition (4).
Before stating it, let us recall that, if �1 and �2 are open subsets of C, the notation
�1 ⊂⊂ �2 means that �1 is a compact included in �2.

Lemma 4 Let �1 ⊂⊂ �2 ⊂ C be bounded domains and ν be a Lipschitz function
on �1 meeting condition (4). There exists a Lipschitz function ν̃ on C such that:
1. ν̃(z) = ν(z) for all z ∈ �1,

2. the support of ν̃ is a compact included in �2,

3. ‖̃ν‖L∞(C) < 1.

Proof Extend first ν to a compactly supported Lipschitz function on C, denoted by
ν1. There exists an open set �3 such that �1 ⊂⊂ �3 ⊂⊂ �2 and ‖ν1‖L∞(�3) < 1.
Let χ ∈ D(C) be such that 0 ≤ χ(z) ≤ 1 for all z ∈ C, χ(z) = 1 for all z ∈ �1 and
χ(z) = 0 for all z /∈ �3. The function ν̃ := χν1 satisfies all the requirements. ��

Let 1 < p < +∞, � ⊂ C be a bounded Dini-smooth domain and ν meet (4).
For z ∈ �, let Eν

z , Fν
z be the real-valued evaluation maps at z defined on H p

ν (�) and
Gp

α(�) by

Eν
z ( f ) := Re f (z) and Fν

z ( f ) := Im f (z) for all f ∈ H p
ν (�), f ∈ Gp

α(�).

Proposition 4 For z ∈ �, the evaluation maps Eν
z and Fν

z are continuous on H p
ν (�)

and G p
α(�).

Proof Let f ∈ H p
ν (�) and z ∈ �. By definition of the norm in H p

ν (�), there exists
a harmonic function u in � such that | f |p ≤ u in � with u1/p(z0) � ‖ f ‖H p

ν (�) for a
fixed z0 ∈ �. The Harnack inequality then yields

| f (z)| ≤ u1/p(z) � u1/p(z0) � ‖ f ‖H p
ν (�)

and thus we have

|Re f (z)| � ‖ f ‖H p
ν (�) and |Im f (z)| � ‖ f ‖H p

ν (�) ,

which ends the proof. ��
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For the characterization of invertible composition operators on H p
ν spaces, we will

need the fact that H p
ν (�) separates points in �, when � is a Dini-smooth domain:

Lemma 5 Assume that � ⊂ C is a bounded Dini-smooth domain. Let z1 �= z2 ∈ �.
Then, there exists f ∈ H p

ν (�) such that f (z1) �= f (z2).

Proof There exists F ∈ H p(�) such that F(z1) = 0 and F(z2) �= 0 (take, for
instance, F(z) = z − z1). By Theorem 4, there exists s ∈ W 1,r (�), for some r ∈
(2,+∞) such that w = es F ∈ Gp

α(�). One has w(z1) = 0 and w(z2) �= 0. If
f := J −1(w) = w+νw√

1−ν2
, f ∈ H p

ν (�) by Proposition 2, f (z1) = 0 and f (z2) �= 0,
since ‖ν‖L∞(�) < 1. ��

Wewill also use in the sequel a regularity result for a solution of a Dirichlet problem
for Eq. (8), where the boundary data is C1 and only prescribed on one curve of ∂� :

Lemma 6 Let � ⊂ C be a bounded n-connected Dini-smooth domain. Write ∂� =
∪n

j=0� j , where the � j are pairwise disjoint Jordan curves. Fix j ∈ {0, . . . , n}. Let ν
meet (4) and ψ ∈ C1

R
(� j ). There exists f ∈ H p

ν (�) such that Re tr f = ψ on � j

and ‖ f ‖H p
ν (�) � ‖ψ‖L p(� j )

. Moreover, f ∈ C(�).

Proof Step 1: Let us first assume that � = D. Since ψ ∈ W 1−1/q,q
R

(T) for some
q > max(2, p), the result [7, Thm 4.1.1] shows that there exists f ∈ W 1,q(D) solving
∂ f = ν∂ f in D with Re tr f = ψ on T. By [7, Prop. 4.3.3], f ∈ Hq

ν (D) ⊂ H p
ν (D),

and since q > 2, f is continuous on D.

Step 2: Assume that � = C\r0D for some r0 ∈ (0, 1). Let ψ ∈ C1
R
(r0T). For all

z ∈ T, define ψ̃(z) := ψ
(
r0
z

)
and, for all z ∈ D, define ν̃(z) := ν

(
r0
z

)
. Step 1

yields a function f̃ ∈ H p
ν̃ (D), continuous on D, such that Re tr f̃ = ψ̃ on T. Define

now f (z) := f̃
(
r0
z

)
for all z ∈ �. Then, f ∈ H p

ν (�), f is continuous on � and

Re tr f = ψ on r0T.

Step 3: Assume now that � = G is a circular domain, as in (1). Extend ν to a
function ν̃ ∈ W 1,∞

R
(C) satisfying the properties of Lemma 4. If ψ ∈ C1

R
(T), step

1 provides a function f ∈ H p
ν̃ (D), continuous on D, and such that Re tr f = ψ on

T. The restriction of f to G belongs to H p
ν (G) and satisfies all the requirements. If

ψ ∈ C1
R
(a j + r jT), argue similarly using Step 2 instead of Step 1.

Step 4: Finally, in the general case where � is a Dini-smooth n-connected domain, �
is conformally equivalent to a circular domain G, via a conformal map which is C1

up to the boundary of �, and we conclude the proof using Step 3. ��
Let �1,�2 be domains in C and φ : �1 → �2 be analytic with φ ∈ W 1,∞

�2
(�1).

The adjoint of the operator Cφ will play an important role in the following arguments.
Note first that, by Proposition 3, C∗

φ is a bounded linear operator from (H p
ν◦φ(�1))

′ to
(H p

ν (�2))
′. Moreover:

Lemma 7 For all z ∈ �1, C∗
φ(Eν◦φ

z ) = Eν
φ(z) and C

∗
φ(Fν◦φ

z ) = Fν
φ(z).
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Proof Let f ∈ H p
ν (�2). Then

〈C∗
φ(Eν◦φ

z ), f 〉 = 〈Eν◦φ
z ,Cφ( f )〉 = 〈Eν◦φ

z , f ◦ φ〉 = Re f (φ(z)) = 〈Eν
φ(z), f 〉,

and the argument is analogous for Fν
z . ��

Theorem 1 Assume that �1,�2 are bounded Dini-smooth domains. Then, the com-
position operator Cφ : H p

ν (�2) → H p
ν◦φ(�1) is invertible if, and only if, φ is a

bijection from �1 onto �2.

Proof Some ideas of this proof are inspired by [10, Thm 2.1]. If φ is invertible, then
Cφ−1 = (Cφ)−1.

Assume conversely that Cφ is invertible. Since Cφ is one-to-one with closed range,
for all L ∈ (H p

ν◦φ(�1))
′, one has

∥∥∥C∗
φL

∥∥∥
(H p

ν (�2))′
� ‖L‖(H p

ν◦φ(�1))′ . (17)

Let z1, z2 ∈ �1 be such that φ(z1) = φ(z2). Then, by Lemma 7,

C∗
φ(Eν◦φ

z1 ) = Eν
φ(z1)

= Eν
φ(z2)

= C∗
φ(Eν◦φ

z2 ).

Since C∗
φ is invertible, it follows that Eν◦φ

z1 = Eν◦φ
z2 . Similarly, Fν◦φ

z1 = Fν◦φ
z2 , so that

z1 = z2 by Lemma 5, and φ is univalent.
Now, suppose that φ is not surjective. We claim that

∂φ(�1) ∩ �2 �= ∅. (18)

Indeed, since φ is analytic and not constant in �1, it is an open mapping, so that
�2 = φ(�1) ∪ (�2 ∩ ∂φ(�1)) ∪ (�2\φ(�1)), the union being disjoint. Assume now
by contradiction that (18) is false. Then �2 is the union of the two disjoints open sets
in �2, φ(�1) and �2\φ(�1). One clearly has φ(�1) �= ∅. The connectedness of �2
therefore yields that �2\φ(�1) = ∅. In other words,

�2 ⊂ φ(�1). (19)

But since φ is assumed not to be surjective, there exists a ∈ �2\φ(�1), and (19)
shows that a ∈ �2 ∩∂φ(�1), which gives a contradiction, since we assumed that (18)
was false. Finally, (18) is proved.

Let a ∈ ∂φ(�1) ∩ �2 and (zn)n∈N be a sequence of �1 such that

φ(zn) −→
n→∞ a.

Up to a subsequence, there exists z ∈ �1 such that zn −→
n→∞ z. Note that z ∈ ∂�1,

otherwise φ(z) = a which is impossible (indeed, since a ∈ ∂φ(�1) and φ(�1) is
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open, thus a /∈ φ(�1)). Write ∂�1 = ∪n
j=0� j , where the � j are pairwise disjoint

Jordan curves, so that z ∈ �m for some m ∈ {0, . . . , n}.
Now, we claim that

‖Eν◦φ
zn ‖(H p

ν◦φ(�1))′ −→
n→∞ +∞.

Indeed, by the very definition of the norm in (H p
ν◦φ(�1))

′,

‖Eν◦φ
zn ‖(H p

ν◦φ(�1))′ = sup
g∈H p

ν◦φ(�1)

‖tr g‖p≤1

|Re g(zn)|. (20)

For any k ∈ N, there is fk ∈ H p
ν◦φ(�1) such that | fk(zn)| −→

n→∞ k and‖ fk‖H p
ν◦φ(�1)

≤ 1.

Indeed, let ψk ∈ C1
R
(�m) be such that |ψk(z)| = 2k and ‖ψk‖L p(�m ) ≤ 1

C , where
C is the implicit constant in Lemma 6. It follows from Lemma 6 that there is fk ∈
H p

ν◦φ(�1), continuous on �1, such that Re tr( fk) = ψk on �m and ‖ fk‖H p
ν◦φ(�1)

≤ 1.

Observe that, since fk is continuous in�1, |Re fk(zn)| → |ψk(z)|. As a consequence,
there is Nk ∈ N such that

|Re fk(zn)| ≥ k

for all n ≥ Nk . Therefore, by (20),

‖Eν◦φ
zn ‖(H p

ν◦φ(�1))′ ≥ k, n ≥ Nk .

Thus, ‖Eν◦φ
zn ‖(H p

ν◦φ(�1))′ → ∞ as n → ∞, as claimed.

Moreover, by Lemma 1, for all g ∈ H p
ν (�2), Eν

φ(zn)
(g) −→

n→∞ Eν
a (g) which proves

that

sup
n∈N

|Eν
φ(zn)(g)| < ∞.

It follows from the Banach–Steinhaus theorem that the ‖Eν
φ(zn)

‖(H p
ν (�2))′ are uni-

formly bounded. Thus, we have that

‖C∗
φ(Eν◦φ

zn )‖(H p
ν (�2))′

‖Eν◦φ
zn ‖(H p

ν◦φ(�1))′
=

∥∥∥Eν
φ(zn)

∥∥∥
(H p

ν (�2))′

‖Eν◦φ
zn ‖(H p

ν◦φ(�1))′
−→
n→∞ 0,

which contradicts (17). We conclude that φ is surjective. ��
Remark 5 1. To our knowledge, the conclusion of Theorem 1 is new, even for Hardy

spaces of analytic functions when �1 or �2 are multi-connected.
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2. The proof of Theorem 1 does not use the explicit description of the dual of H p
ν (�2)

and H p
ν◦φ(�1). Such a description exists when �1 and �2 are simply connected

(see [7, Thm 4.6.1]).
3. The proof of Theorem 1 shows, in particular, that if Cφ is one-to-one, then so is φ.

It follows easily from Theorem 1 and Lemma 3 that:

Corollary 1 Let �1,�2 be bounded Dini-smooth domains and φ ∈ W 1,∞
�2

(�1) be

analytic in �1. Let α ∈ L∞(�2). Then Cφ : Gp
α(�2) → Gp

α̃
(�1) is an isomorphism

if and only if φ is a bijection from �1 onto �2.

The characterizations given in Theorem 1 and Corollary 1 are the same as in the
analytic case when � = D (see [30]).

6 Isometries and Composition Operators on Generalized Hardy Spaces

Throughout this section, � will denote the unit disc D or the annulus A and Gp
α(�) is

equipped with the norm [see (7)]:

‖ω‖Gp
α (�) := ‖tr ω‖L p(∂�)

The arguments below rely on the following observation:

Lemma 8 Let � be the unit disc D or the annulus A, φ : � → � be a function in
W 1,∞

� (�) analytic in � and α ∈ L∞(�). Assume that Cφ is an isometry from Gp
α(�)

to G p
α̃
(�). Then φ(∂�) ⊂ ∂�.

Proof Assume by contradiction that the conclusion does not hold, so that there exists
B0 ⊂ ∂� with m(B0) > 0 such that φ(B0) ⊂ �.

For � = A, either B0 is entirely contained in T or in r0T or there exists a Borel set
B � B0 of positive Lebesguemeasure such that B ⊂ T. For the last case, we still write
B0 instead of B and we can assume without loss of generality that B0 ⊂ T. Indeed, if
B0 ⊂ r0T, it is enough to use the composition with the inversion Inv : z �→ r0

z since
it is easy to check that the composition operator CInv is a unitary operator (invertible
and isometric) on Gp

α(�) using [6, Prop. 3.2].
The following argument is reminiscent of [8]. Let φ1 := φ and φn+1 := φ ◦ φn for

all integer n ≥ 1. Note that φk(B0) ⊂ � for all k ≥ 1. For all integer n ≥ 1, define

Bn := {z ∈ ∂�; φn(z) ∈ B0} .

Observe that the Bn are pairwise disjoint. Indeed, if z ∈ Bn ∩ Bm �= ∅ with n > m,
then

φn(z) ∈ B0 and φm(z) ∈ B0,
so that

φn−m(φm(z)) = φn(z) ∈ B0 ∩ φn−m(B0) ⊂ B0 ∩ � = ∅,

which is impossible.
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Fix a function F ∈ H p(�) such that

|tr F |
{

=1 on B0

≤1/2 on ∂�\B0.
(21)

We claim that such a function exists.
Indeed, if � is the unit disc D, the outer function F defined as follows

F(z) = exp

(
1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |g(eiθ )|dθ

)
, z ∈ D, (22)

with g ∈ L p(T) such that |g| = 1 on B0 and |g| = 1
2 on ∂�\B0 satisfies the required

conditions.
If � = A, we consider the function f ∈ H p(D) defined as in Eq. (22) and

g : A → C is the restriction of f to A. Observe that g is in H p(A) for each p, since
|g|p = | f |p ≤ u, where u is a harmonic function in D. Set M = maxTr0

|g|. Now let
g̃n(z) = zng(z), then for z ∈ T we have

|̃gn(z)| = |zng(z)| = |g(z)| =
{
1 for z ∈ B0
1
2 for z ∈ T\B0

.

For z ∈ Tr0 , we get

|̃gn(z)| = |zng(z)| = |rn0 | · |g(z)| ≤ rn0 M.

Now, r0 < 1 so pick N large enough to ensure that r N0 M < 1/2, and F = g̃N has the
requested properties.

Now, for all integer j ≥ 1, F j ∈ H p(�) and

lim
j→+∞

∥∥∥F j
∥∥∥
p

H p(�)
= m(B0).

Moreover, by the maximum principle, since F is not constant in �,

|F(z)| < 1 for all z ∈ �. (23)

By [5, Thm 1] and Theorem 4, for all j ≥ 1, there exists a function s j ∈ C(�) (indeed,
s j ∈ W 1,r (�) for some r > 2) with Re s j = 0 on ∂� such that

w j := es j F j ∈ Gp
α(�) and

∥∥s j
∥∥
L∞(�)

≤ 4 ‖α‖L∞(�) .
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Thus, since Re ps j = 0 on ∂�,

∥∥w j
∥∥p
G p

α (�)
=

∫

∂�

∣∣tr w j
∣∣p =

∫

∂�

∣∣eps j
∣∣ |tr F | j p

=
∫

∂�

|tr F | j p =
∥∥∥F j

∥∥∥
p

H p(�)
→ m(B0). (24)

Let α̃0 := α̃ = (α ◦ φ)∂φ and α̃n+1 := (̃αn ◦ φ)∂φ, n ∈ N. Since Cφ is an isometry
from Gp

α(�) to Gp
α̃
(�), for all integers n, j ≥ 1,

∥∥(Cφ)nw j
∥∥p
G p

α̃n
(�)

= ∥∥w j
∥∥p
G p

α (�)
. (25)

But

(Cφ)nw j = w j ◦ φn . (26)

For all z ∈ Bn , φn(z) ∈ B0 so that, for all j, n ≥ 1,

∣∣tr w j ◦ φn(z)
∣∣ = |tr F(φn(z))| j = 1. (27)

For all z ∈ ∂�\Bn , φn(z) ∈ �\B0, so that

∣∣w j ◦ φn(z)
∣∣ ≤ e4‖α‖L∞(�) |F(φn(z))| j (28)

if φn(z) ∈ � and

∣∣tr w j ◦ φn(z)
∣∣ ≤ e4‖α‖L∞(�) |tr F(φn(z))| j (29)

if φn(z) ∈ ∂�\B0. Gathering (21), (23), (25), (26), (27), (28) and (29), one obtains,
by the dominated convergence theorem,

lim
j→+∞

∥∥ω j
∥∥p
G p

α (�)
= m(Bn). (30)

Comparing (24) and (30) yields m(Bn) = m(B0) for all integer n ≥ 1. Since
m(B0) > 0 and the Bn are pairwise disjoint, we reach a contradiction. Finally,
φ(∂�) ⊂ ∂�. ��

6.1 Simply Connected Domains

We can now state:

Theorem 2 Let φ : D → D satisfying (14), let α ∈ L∞(D) and the associated α̃

given by (15). Then the following assertions are equivalent:
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1. Cφ is an isometry from Gp
α(D) to G p

α̃
(D),

2. Cφ is an isometry from H p(D) to H p(D),

3. φ(0) = 0 and φ(T) ⊂ T.

Proof The equivalence between 2 and 3 is contained in [18, Thm 1]. We now prove
that 1 and 2 are equivalent. Assume first thatCφ is an isometry fromGp

α(D) toGp
α̃
(D).

Let F ∈ H p(D). By [5, Thm 1], there exists s ∈ C(D) such that Re s = 0 on T and
w := es F ∈ Gp

α(D). Then, since φ(T) ⊂ T by Lemma 8, one obtains

∥∥CφF
∥∥
H p(D)

= ∥∥Cφw
∥∥
Gp

α̃ (D)
= ‖w‖Gp

α (D) = ‖F‖H p(D) .

Assume now that Cφ is an isometry on H p(D). Then 3 holds, so that φ(T) ⊂ T. Let
w ∈ Gp

α(D). Pick up s ∈ C(D) and F ∈ H p(D) such that w = es F , with Re s = 0
on T. Since |es | = 1 on T and φ(T) ⊂ T,

‖w ◦ φ‖Gp
α̃ (D) = ∥∥es◦φF ◦ φ

∥∥
Gp

α (D)
= ‖F ◦ φ‖H p(D) = ‖F‖H p(D) = ‖w‖Gp

α (D) .

��
Remark 6 The conclusion of Theorem 2 shows that Cφ is an isometry on H p(D) if
and only if it is an isometry from Gp

α(D) to Gp
α̃
(D) for all functions α ∈ L∞(D) and

associated α̃ given by (15).

Corollary 2 Let φ : D → D be a function satisfying (14), α ∈ L∞(D) and the
associated α̃ given by (15). Then Cφ is an isometry from Gp

α(D) onto Gp
α̃
(D) if and

only if there exists λ ∈ C with |λ| = 1 such that φ(z) = λz for all z ∈ D.

Proof Assume that Cφ is an isometry from Gp
α onto G p

α̃
. Then Cφ is an isomorphism

from Gp
α onto G p

α̃
, and Theorem 1 shows that φ is bijective from D to D. Moreover,

Theorem 2 yields φ(0) = 0 and φ(T) ⊂ T. These conditions on φ imply that there
exists λ ∈ C with |λ| = 1 such that φ(z) = λz. The converse is obvious. ��
Remark 7 Note that the domain under consideration in Theorem 2 is the unit disk D.
One may wonder how to extend the conclusion of Theorem 2 to the case of simply-
connected Dini-smooth domains. A natural way to try to do this is to use conformal
maps. If φ is an analytic bijection from D to D, it is a simple observation ([13, Ch. 10],

[33, Prop. 1.2]) that f �→ ( f ◦ φ)(φ′)
1
p , which is a weighted composition operator, is

an isometry from H p(D) onto itself. This observation extends to the case where φ is
an analytic bijection from D to any simply connected domain � � C. But even in the
Dini-smooth case and for Hardy spaces of analytic functions, this does not seem to
provide a necessary and sufficient condition on φ which ensures that the unweighted
composition operator f �→ f ◦ φ is an isometry on H p(�).

Note that the weighted composition operator f �→ ( f ◦φ)(φ′)
1
p plays an important

role in the study of composition operators on Hardy spaces of analytic functions on
arbitrary simply connected domains of C [19,33], starting from the corresponding
study on D.
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Let us now turn to the isometry property for the composition operator on H p
ν (D).

Proposition 5 Let φ : D → D be a function in W 1,∞(D) analytic in D. If Cφ is an
isometry from H p

ν (D) to H p
ν◦φ(D), then φ(T) ⊂ T and φ(0) = 0.

Proof Assume that Cφ is an isometry from H p
ν (D) to H p

ν◦φ(D). We first claim that

there exists C > 0 such that, for all w ∈ Gp
α(D) and all integer n ≥ 1,

C−1 ‖tr w‖L p(T) ≤ ‖tr (w ◦ φn)‖L p(T) ≤ C ‖tr w‖L p(T) , (31)

where, as in the proof of Lemma 8, φ1 := φ and φn+1 := φ ◦ φn for all integer n ≥ 1.
Indeed, let w ∈ Gp

α(D) and set f := w+νw√
1−ν2

. Then, since ‖ν‖L∞(D) < 1, one has, for

almost every z ∈ T,

|tr w(z)| ∼ |tr f (z)| . (32)

As a consequence,

‖tr w‖L p(T) ∼ ‖tr f ‖L p(T) (33)

and, for all n ≥ 1,

‖tr (w ◦ φn)‖L p(T) ∼ ‖tr ( f ◦ φn)‖L p(T) , (34)

where the implicit constant in (34) does not depend on n. Since Cφ is an isometry on
H p

ν (D), it follows that, for all n ≥ 1,

‖tr ( f ◦ φn)‖L p(T) = ‖tr f ‖L p(T) , (35)

and (33), (34) and (35) yield (31).
Let us now establish that φ(T) ⊂ T. Argue by contradiction and let Bn (for all

n ≥ 0) as in the proof of Lemma 8. Consider a function F ∈ H p(D) and define the
functions s j and w j as in the proof of Lemma 8. By (31), for all integers n, j ≥ 1,

∥∥tr w j ◦ φn
∥∥p
L p(T)

∼ ∥∥tr w j
∥∥p
L p(T)

. (36)

But, as already seen,

∥∥tr w j ◦ φn
∥∥p
L p(T)

→ m(Bn),

so that, by (36), m(Bn) � m(B0) for all integer n ≥ 1. Since m(B0) > 0 and the Bn

are pairwise disjoint, we reach a contradiction. Finally, φ(T) ⊂ T.
Let us now prove that φ(0) = 0. Recall now that, since Cφ is an isometry, for all

functions f, g ∈ H p
ν (D), see [25, Lem. 1.1]:

∫

T

(tr f ◦ φ) |tr g ◦ φ|p−2 tr g ◦ φ =
∫

T

tr f |tr g|p−2 tr g . (37)
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Applying (37) with g = 1, one obtains, for all f ∈ H p
ν (D),

∫

T

(tr f ◦ φ) =
∫

T

tr f. (38)

Let u ∈ L p
R
(T) and f ∈ H p

ν (D) such that Re tr f = u. Taking the real part in the
both sides of (38) yields

∫

T

u ◦ φ =
∫

T

u. (39)

Since this is true for all u ∈ L p
R
(T), one obtains that (38) holds for all f ∈ H p(D)

(write tr f = u+ iv and apply (39) with u and v), and this yields φ(0) = 0 ( f (z) = z
in (38)). ��

As a corollary of Proposition 5, we characterize isometries from H p
ν (D) onto

H p
ν◦φ(D):

Corollary 3 Let φ : D → D be a function in W 1,∞(D) analytic in D. Then Cφ is an
isometry from H p

ν (D) onto H p
ν◦φ(D) if and only if there exists λ ∈ C with |λ| = 1

such that φ(z) = λz for all z ∈ D.

Proof Proposition 5 shows that φ(T) ⊂ T and φ(0) = 0, Theorem 1 ensures that φ

is a bijection from D onto D, and the conclusion readily follows. ��
Note that we do not know how to characterize those composition operators which

are isometries from H p
ν (D) to H p

ν◦φ(D).

6.2 Doubly-Connected Domains

In the annular case, we obtain a complete description of the composition operators
which are isometries on generalized Hardy spaces on A. Before stating this result, we
check:

Lemma 9 Let φ : A → A be analytic with φ ∈ W 1,∞
A

(A).

1. If Cφ is an isometry from Gp
α(A) into G p

α̃
(A), then φ(∂A) ⊂ ∂A.

2. If Cφ is an isometry from H p
ν (A) into H p

ν̃
(A), then φ(∂A) ⊂ ∂A.

Proof Item 1 is already stated in Lemma 8. For item 2, notice that, ifCφ is an isometry
from H p

ν (A) into H p
ν̃

(A), then there exists C > 0 such that, for all w ∈ Gp
α(A),

C−1 ‖tr w‖L p(∂A) ≤ ‖tr (w ◦ φn)‖L p(∂A) ≤ C ‖tr w‖L p(∂A) . (40)

Arguing as in the proof of Proposition 5, one concludes that φ(∂A) ⊂ ∂A. ��
We can now state and prove our description of the composition operators which are

isometries on generalized Hardy spaces on A:
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Theorem 3 Let φ : A → A be analytic with φ ∈ W 1,∞
A

(A), α ∈ L∞(A) and ν

meeting (4). The following conditions are equivalent:

1. Cφ is an isometry from H p(A) into H p(A),

2. Cφ is an isometry from Gp
α(A) into G p

α̃
(A),

3. Cφ is an isometry from H p
ν (A) into H p

ν̃
(A),

4. either there exists λ ∈ C of unit modulus such that φ(z) = λz for all z ∈ A, or
there exists μ ∈ C of unit modulus such that φ(z) = μ r0

z for all z ∈ A.

Note that, even for Hardy spaces of analytic functions on A, the characterization
of isometries on H p given in Theorem 3, items 1 and 4, is new.

The proof of Theorem 3 uses:

Proposition 6 Let φ : A → A be a non-constant continuous function holomorphic
in A. Assume that φ(∂A) ⊂ ∂A. Then:
1. either there exists λ ∈ C with |λ| = 1 such that φ(z) = λz for all z ∈ A,

2. or there exists λ ∈ C with |λ| = 1 such that φ(z) = λ r0
z for all z ∈ A.

Proof Observe first that φ(r0T) ⊂ r0T or φ(r0T) ⊂ T. Indeed, φ(r0T) = (φ(r0T) ∩
r0T) ∪ (φ(r0T) ∩ T). Since r0T is connected and φ is continuous on r0T, φ(r0T) is
also connected and the conclusion readily follows, since φ(r0T)∩r0T and φ(r0T)∩T

are disjoint closed subsets of φ(r0T). Replacing φ by r0
φ
, we may and do assume that

φ(r0T) ⊂ r0T.
Arguing similarly, one obtains that φ(T) ⊂ T or φ(T) ⊂ r0T. If φ(T) ⊂ r0T,

one has |φ| = r0 on ∂A, and the maximum principle, applied to φ and 1
φ
, entails

|φ| = r0 in A. Therefore, by the strong maximum principle, φ is constant in A, which
is impossible by the assumptions on φ. Thus, φ(T) ⊂ T.

Now, if h(z) := φ(z)
z for all z ∈ A, the function h is continuous in A, holomorphic

inA and satisfies |h(z)| = 1 for all z ∈ ∂A. As before, the maximum principle applied
with h and 1

h ensures that h is constant in A, which ends the proof. ��
Let us now turn to the proof of Theorem 3.

Proof Assume that 1 holds. Since φ(∂A) ⊂ ∂A (by Lemma 9) and φ is one-to-one
(by item 3 in Remark 5), Proposition 6 shows that 4 also holds. Conversely, it is clear
that 4 implies 1, 2 and 3.

Assume now that 2 holds. An analogous argument ensures that 4 holds, so that 1 is
satisfied. Similarly, if 3 holds, then 4 and therefore 1 are satisfied. ��

7 Conclusion

7.1 Some Results on Arbitrary Domains

We discuss below how to extend the definition of generalized Hardy spaces over
arbitrary domains and which results on composition operators on such spaces remain
true.
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Let � ⊂ C be a connected open subset of the complex plane. There are two natural
ways to define generalized Hardy spaces on �: the first one by means of harmonic
majorants and the second one by introducing Smirnov type generalized Hardy spaces.
The introduction of Smirnov classes for pseudo-analytic functions immediately leads
to many questions on the property of functions of such spaces (the existence of a trace
on the boundary, for example). Moreover, the boundedness of composition operators
on such spaces is not guaranteed (see [33] for the analytic case). We intend to deal
with composition operators on generalized Hardy spaces of Smirnov type on arbitrary
domains in a future work. Note that when � is a Dini-smooth domain, as already
pointed out in Remark 3, all these spaces coincide.

However, one can easily extend someproperties of the composition operator defined
on the first type of generalized Hardy spaces on an arbitrary connected domain �. Let
ν ∈ W 1,∞

R
(�) meeting condition (4). As in Sect. 3.2, we define E p

ν (�) and F p
α (�)

by (8), (9), (10) and their associated norm by (11) and

‖w‖F p
α (�) := inf

{
u1/p(z0), u : � → [0,+∞) harmonic in � such that (10) holds

}
.

Remark 8 The arguments of the proof of Proposition 1 still show that ‖.‖E p
ν (�) and

‖.‖F p
α (�) are norms on E p

ν (�) and F p
α (�) respectively.

As in the analytic case [13], one can give a characterization of E p
ν (�) and F p

α (�)

in the finitely-connected case. Recall [21, Chapter 5, Paragraph 6, Theorem 2] that a
bounded, finitely-connected domain �, such that ∂� is the union of a finite number
of disjoint Jordan loops, is conformally equivalent to a circular domain.

Lemma 10 Assume that � � C is a bounded, finitely-connected domain, such that
∂� is the union of a finite number of disjoint Jordan loops. Let G be a circular domain
and φ : D → � be a holomorphic bijection. Let ν ∈ W 1,∞(�) meet (4), α ∈ L∞(�)

and α̃ = (α ◦ φ)∂φ. Then:
1. f ∈ E p

ν (�) if and only if f ◦ φ ∈ H p
ν◦φ(G),

2. w ∈ F p
α (�) if and only if w ◦ φ ∈ Gp

α̃ (G).

Proof Indeed, if f ∈ E p
ν (�), then f ◦ φ solves (8) in G with ν ◦ φ instead of ν (see

the proof of Proposition 3 above). Moreover, if u is a harmonic function in � such
that | f |p ≤ u, then u ◦ φ is a harmonic function in G and | f ◦ φ|p ≤ u ◦ φ, so that
f ◦ φ ∈ H p

ν◦φ(G). The converse, as well as the case of F p
α , are analogous. ��

It is obvious that the composition operator Cφ : E p
ν (�2) −→ E p

ν◦φ(�1)

(respectively F p
α (�2) → F p

α̃ (�1)) is bounded when φ : �1 → �2 is analytic,

φ ∈ W 1,∞
�1

(�2) and �1, �2 are connected open subsets of C.
Necessary and sufficient conditions for the invertibility of the composition operator

on E p
ν (�) and F p

α (�) when � is a simply connected domain can be obtained. In this
case, Theorem 1 and Corollary 1 are expressed as follows.

Corollary 4 Let �1,�2 � C. Assume that, for i = 1, 2, �i is a bounded, finitely-
connected domain, such that ∂� is the union of a finite number of disjoint Jordan
loops. Let φ ∈ W 1,∞

�2
(�1) be analytic in �1.
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1. Let α ∈ L∞(�2). Then Cφ : F p
α (�2) → F p

α̃
(�1) is an isomorphism if and only

if φ is a bijection from �1 onto �2.
2. Let ν ∈ W 1,∞(�2) meet (4). Then the composition operator Cφ : E p

ν (�2) →
E p

ν◦φ(�1) is invertible if, and only if, φ is a bijection from �1 onto �2.

Proof Let ψ1 : G1 → �1 and ψ2 : G2 → �2 be analytic bijections where G1
and G2 are appropriate circular domains. Assume that Cφ : F p

α (�2) → F p
α̃

(�1) is
an isomorphism. Then C

ψ−1
2 ◦φ◦ψ1

: Gp
α◦ψ1

(G1) → Gp
α̃◦ψ2

(G2) is an isomorphism.

Corollary 2 entails that ψ−1
2 ◦ φ ◦ ψ1 is a bijection from G1 onto G2, which shows

that φ is a bijection from �1 onto �2. The proof of 2 is similar. ��
The extension of our results on isometries (Sect. 6) to more general domains is

more delicate (recall that, for instance, the results in Sect. 6 are limited to the case
where � = D or � = A).

7.2 Related Issues

We extended to the case of generalized Hardy spaces some well-known properties of
composition operators on classical Hardy spaces of analytic functions H p for 1 <

p < ∞. Some questions are still open. As mentioned before, it would be interesting
to give a complete characterization of isometries among those composition operators
on H p

ν (D) spaces.
We intend to tackle compactness issues in a forthcoming work. In particular, we

proved that the compactness of Cφ on generalized Hardy spaces is equivalent to the
same property on H p, in smooth simply-connected domains [12, Thm3.12], [31]. The
case of multiply-connected situations deserves further investigation. Finally, Sect. 7.1
points out many questions related to the definition of generalized Hardy spaces over
general domains, the introduction of Smirnov classes for pseudo-analytic functions
and the extension of some results on composition operators for arbitrary domains on
which we will focus in a future work.

Acknowledgments The authors would like to thank the referee for interesting suggestions.

Appendix: Factorization Results

We extend below [5, Thm 1] to the case of n-connected Dini smooth domains. Theo-
rem 4 may be seen as a converse to the factorization result [6, Prop. 3.2], see [23] for
more details. It is a straightforward generalization of a factorization result on general-
izedHardy spaces on simply connected domains; however, the authors could not locate
such a factorization for multiply connected Dini-smooth domains in the literature. For
that reason, we give a short proof of this extension.

Theorem 4 Let � ⊂ C be a n-connected Dini smooth domain. Let F ∈ H p(�),

α ∈ L∞(�). There exists a function s ∈ W 1,r (�) for all r ∈ (2,+∞) such that
tr Re s = 0 on ∂�, w = es F and ‖s‖W 1,r (�) � ‖α‖L∞(�) .
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The proof is inspired by the one of [5, Thm 1]. By conformal invariance, it is enough
to deal with the case where � = G is a circular domain. We first assume that α ∈
W 1,2(G)∩ L∞(G). For all ϕ ∈ W 1,2

R
(G), let G(ϕ) ∈ W 1,2

0,R(G) be the unique solution
of

�(G(ϕ)) = Im
(
∂(αe−2iϕ)

)
.

We claim:

Lemma 11 The operator G is bounded from W 1,2
R

(G) from W 2,2
R

(G) and compact

from W 1,2
R

(G) to W 1,2
R

(G).

Proof Let ϕ ∈ W 1,2
R

(G). As in [5], ∂(αe−2iϕ) ∈ L2(G) and
∥∥∂(αe−2iϕ)

∥∥
L2(G)

�
‖ϕ‖W 1,2(G). It is therefore enough to show that the operator T , which, to any function

ψ ∈ L2
R
(G), associates the solution h ∈ W 1,2

0,R(G) of �ψ = h is continuous from

L2(G) to W 2,2(G), which is nothing but the standard W 2,2 regularity estimate for
second order elliptic equations (see [15, Sec. 6.3,Thm 4] and note that G is C2).
This shows that G is bounded from W 1,2

R
(G) from W 2,2

R
(G), and its compactness on

W 1,2
R

(G) follows then from the Rellich–Kondrachov theorem. ��
Proof of Theorem 4 As in the proof of [5, Thm 1], Lemma 11 entails thatG has a fixed
point in W 1,2

R
(�), which yields the conclusion of Theorem 4 when α ∈ W 1,2(�) ∩

L∞(�), and a limiting procedure ends the proof. ��
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