
The Level Set Tree on Meshes

Julie Digne, Jean-Michel Morel
CMLA, ENS Cachan, CNRS, UniverSud,

61 Avenue du Président Wilson,
F-94230 Cachan

digne@cmla.ens-cachan.fr

morel@cmla.ens-cachan.fr

Nicolas Audfray, Charyar Mehdi-Souzani
LURPA, ENS Cachan, Univ. Paris Sud 11,

61 Avenue du Président Wilson,
F-94230 Cachan

audfray@lurpa.ens-cachan.fr

souzani@lurpa.ens-cachan.fr

Abstract

Given a scalar function defined on a meshed surface,
its level set component tree can be computed by a fast al-
gorithm. This tree structure allows for an adaptation to
meshes of the Maximally Stable Extremal Regions (MSER)
method. Applied to the mesh curvature, this algorithm ex-
tracts significant curvature level lines and segments 3D sur-
faces into smooth parts separated by curves with high cur-
vature. Segmentation results are shown on high resolution
meshes of archaeological and industrial pieces. They com-
pare favorably with MSER segmentations of pictures of the
same objects.

1. Introduction

Segmenting meshes or point clouds into their signifi-
cant parts is a basic but still challenging problem. Robust
shape descriptors are required for most applications such as
facet classification, shape registration, mesh simplification
or shape retrieval. To this aim, the “crest lines” detection
plays a role analogous to edge detection in image analy-
sis. Crest lines are usually defined as the loci of directional
extrema of curvature. Ridge (resp. valley) points can be
defined as points where the maximum principal curvature
takes a positive maximum (resp. negative minimum) along
the line tangent to its eigenvector.

This notion being closely linked to the surface curvature,
robust curvature estimators are needed. Curvatures can be
computed by surface regression [5], by discrete schemes us-
ing the mesh triangle geometry [27], or by computing the
surface tensor [32]. One of the most used curvature esti-
mation method is [34], where curvatures are estimated by
drawing curves on the mesh surface (see [22] for an adapta-
tion to point clouds). Other mesh based methods use the an-
gles between adjacent mesh triangles to determine the cur-
vature [10],[16].

Most crest extraction methods detect and link the points
where the derivative of the curvature crosses zero. These
methods are usually defined on meshes, but can be adapted
to raw point clouds [23],[2],[35],[30], [8],[15]. In [7], po-
tential features are extracted by regressing surfaces near
those points, estimating the number of fitted surfaces, and
deducing the feature type. The idea of using feature lines
for surface segmentation was investigated in [33] and sug-
gested in [17]. Regression free methods include [14], where
the analysis of the surface local covariance matrix leads to
point classification, or [31] where a multi-scale approach
is introduced, yielding good results for mechanical shapes.
Indeed, texture features are detected at fine scale, whereas
at coarse scale the features describe shape geometry and are
more robust. Recent research has also made an amazing
progress in the rendering of viewpoint dependent apparent
edges [9], [18].

Crest lines have, however, two limitations. The first
is that these lines are often obtained by computing degree
three derivatives, which is not an easy task for noisy or tex-
tured surfaces. The second is that crest points must be con-
nected by some heuristic linkage. The final crest lines being
often open or broken, they do not provide a surface segmen-
tation.

Analogous problems arise in image analysis withedge
detection. Image analysis therefore also usessegmentation
methods dividing the image into regions separated by closed
curves. One of the most reliable ways to define such closed
curves is to extract the contrasted level lines. The level lines
are the boundaries of connected components of upper (or
lower) level sets. They inherit from these connected com-
ponents an inclusion tree structure (fig.1). This structure
was calledTree of Shapesin [1], and a fast algorithm com-
puting them, theFast Level Set Transformis given in [28].

For an imageI defined on a domainD and with values
in R the level sets with levelλ are

Fλ = {x ∈ D|I(x) ≥ λ} (upper level set)

Fλ = {x ∈ D|I(x) ≤ λ} (lower level set)

If λ′ > λ, thenFλ
′

⊂ Fλ and each connected component
of Fλ

′

is contained in one connected component ofFλ. The
set of connected components of upper (resp. lower) level
sets partially ordered by inclusion is therefore a tree. The
shape tree proposed in [28] is a fusion of both trees.

The level sets can be represented by their borders∂Fλ

and∂Fλ which are unions of closed Jordan curves, the im-
agelevel lines. Several methods have been proposed to se-
lect the relevant level lines. A definition of meaningful level
lines is given in [3], [11]. More recently the MSER method
introduced the same objects with different names: the con-
nected components of upper or lower level sets are called
extremal regions (ER). The ones with best contrasted level
lines are calledmaximally stable extremal regions (MSER)
[25]. The extraction of significant level lines to segment
data is so useful that it has been extended to 3D medical
imaging to extract meaningful level surfaces [4],[26], and
to video analysis [13], where extremal regions are tracked
from frame to frame.

To the best of our knowledge these level line techniques
have not yet been extended to meshes. The reason could be
the lack of straightforward intrinsic scalar functions linked
to a mesh, (such as the grey level for images). But there are
actually such functions on meshes, the simplest one being
the mean curvature. Several methods have already consid-
ered the curvature level lines and the umbilical points, but
mostly from a theoretical point of view [19],[6] and [24].
But curvature level lines have not yet been studied as valu-
able feature lines, or used for surface segmentation. The
goal of the present paper is to describe an algorithm com-
puting all conspicuous curvature level lines, and to give ex-
perimental evidence that the method detects valuable mesh
features.

In a way, the present work extends [21] and [36]. In
these works, the surface is (implicitly) decomposed into a
smooth base and a height value in the normal direction.
Then the edges or iso-contours of this height are extracted.
The Mesh-MSER framework considers this same situation
in a more general setting : a surface with any scalar function
defined on it. As will be shown in Fig.8, results compara-
ble to the results of [36] can be obtained by a significantly
simpler and more general procedure.

The remainder of this paper is divided as follows: Sec-
tion 2 recalls the image MSER method, discusses its adap-
tation to meshes, and gives the algorithm building the level
set component tree. Section3 describes the algorithm ex-
tracting maximally stable extremal regions from this tree.
Section4 shows results on various simple and complex
scanned objects, discusses strategies for level line selection,
and compares 3D Mesh-MSER results to 2D MSER results
on pictures of the scanned objects.

2. Mesh Extremal Regions

2.1. Definition of MSER for 2D images [25]

Let I be a real function defined on an image domain
D ⊂ Z

2. MSER needs an adjacency relationA for el-
ements ofI, and usually chooses a 4 or 8 connectivity.
The boundary∂N of any setN ⊂ D is defined as{q ∈
D \ Q | ∃p ∈ Q, pAq}. An Extremal RegionN is a re-
gion such that for everyp ∈ N and everyq ∈ ∂N one has
I(p) > I(q) (maximum extremal region) orI(p) < I(q)
(minimum extremal region). To defineMaximally Stable
Extremal Regions (MSER), consider a sequence(Ni)i of
nested extremal regions (Ni+1 ⊂ Ni). A region Ni∗ in
the sequence is maximally stable iff itsarea change rate
q(i) =

|Ni−δ|−|Ni+δ|
|Ni|

has a local minimum ati∗. The small
variationδ > 0 is a parameter of the method.

The detection of MSER proceeds by:
1. sorting pixels by intensity;
2. iteratively placing pixels in the image and updating the

list of connected components and their areas;
3. selecting intensity levels that are local minima of the

area change rate as thresholds, producing MSERs.
In a more formal way, the method uses the fact that upper
level setsFk = {p|I(p) ≥ k} are ordered by inclusion:
Fk+1 ⊂ Fk. One calls extremal region any connected com-
ponent of some level set. For each connected component
Nk of the level setEk, eitherk = kmin, in which case
Nk is the whole image domain, or there exists a connected
componentNi of the upper level setFi such thati < k and
Nk ⊂ Ni. Thus the set of extremal regions is a rooted tree
[1] called (upper)level set component tree. Its dual tree is
the (lower) level set component tree. The fastest compo-
nent tree method seem to be [29]. It is its tree structure that
allows the fast selection of MSERs [13].

We will now adapt these definitions to the case of
meshes.

2.2. Level set trees: an extension to 3D meshes

Let (V, T) be a set of vertices and triangles sampled from
a 2-manifoldM embedded in the 3D Euclidean spaceR

3.
Points ofv ∈ V are linked to other points ofV by edges
forming trianglest ∈ T . We will assume that each edge
is adjacent to either one or two triangles, so that each point
belongs to at least one triangle. This means that there is no
orphan edge and no orphan point, and that the mesh has no
edge adjacent to three triangles. In other terms, the mesh is
a manifold.

To define a level set tree we need a real function defined
on the mesh. The functionH : V → R associating with
each vertexv its mean curvatureH(v) will be our exam-
ple throughout the paper. Mesh regions will be defined as
unions of mesh triangles. A level set tree requires a topol-
ogy and therefore an adjacency relation on the mesh. Two

2

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

1

0

0

A (level0)

B (level1)

Figure 1. Example of a binary image (left) and its component tree
(right). NodeA is the father ofB andB contains a hole

triangles will be called adjacent if they share an edge. With
this definition, analogous to 4-connectivity on 2D images,
two regions sharing a vertex but no edge are disconnected.
The main differences with the two-dimensional case are that
the mesh itself can be disconnected, and that it usually con-
tains scanning holes. If the mesh is disconnected the com-
ponent tree is a forest. The algorithm will process indepen-
dently each tree. Section3.3 will explain how to handle
scanning holes.

As for images, connected components of upper level sets
can contain topological holes which are themselves con-
nected components of lower level sets (fig.1). Monasse
[28] therefore proposed to build anshape tree, which is a
fusion of the upper level set component tree with the lower
level set component tree. Since an upper component tree is
faster to build, and since it is the appropriate object to per-
form MSER extraction on the mesh, we will limit ourselves
to the upper component tree.

2.3. Building the component tree for meshes

SetΛ = {h1 < h2 < · · · < hn} a set of quantized
values ofH on V . The trianglest ∈ T will be ordered by
settingLevel(t) = max{k|minv∈t(H(v)) ≥ hk}. Refer-
ring to the 2D case, we can say that the triangles play the
roles of pixels and that the real function used for building
the component tree isLevel(t). Algorithm 1 describes the
construction of the tree of level set components onT .

Theorem 1. Assume that the mesh(V, T) is a manifold
(meaning that each edge is shared by at most two triangles).
Then the list of nodes and father-child relations created by
Algorithm 1 gives the graph of connected components of
level sets ofH a mapping defined onM. This graph is a
forest (meaning that the constructed graph has no cycles).

Sketch of Proof . For simplicity, in the algorithm and in
the comments below,k denotes the levelhk. Only the or-
der of the levels matters, and it is reflected byk. Algorithm
1 is strongly based on the triangle processing order from
higher to lower levels. Indeed, while the algorithm is build-
ing nodes at levelk, the only previously built nodes have a
higher level. This fact is used for expanding the node: the
expansion of a levelk node is performed by successively
adding the not previously added neighboring triangles of
level k to the node triangle set. When expanding a new
nodeNnew, we may encounter triangles already processed

Algorithm 1 : Building the Component Tree Forest
Data: A list of the mesh trianglesF tagged with their

levels
Result: The component tree forest{F(M)}
Compute the levels of all triangles;1

SortF in decreasing level order;2

Set all triangle markers toactive;3

for t ∈ F andt is activedo4

k = t→ level;5

Create an empty nodeNnew;6

E = {t};7

while E is not emptydo8

Remove and return the first elementt of E;9

Gett1, t2, t3 the neighbors oft;10

for i = 1 · · · 3 do11

if ti is inactive andti → level == k then12

Add ti to the setE;13

end14

if ti → level > k then15

Get the nodeN containingti;16

GetP the last built ancestor ofN ;17

if P → level = k then18

Merge nodeP into Nnew;19

else20

P.father = Nnew;21

Add P to Nnew ’s children;22

end23

|Nnew| ← |Nnew|+ |P |;24

end25

end26

Mark t as inactive;27

Add t to the set of triangles ofNnew;28

|Nnew| ← |Nnew|+ Area(t);29

end30

end31

(line 15) and belonging to a nodeN at levell (then neces-
sarily l > k; otherwise the node would not have yet been
created). By going up in the parent-child relation, we can
retrieveP (line 17), the last created ancestor ofN (which
can beN itself if it has no parent). For the same reason as
before,P ’s level must be superior or equal tok. If P has the
same level ask, then it belongs to the same node, and one
can merge both nodes (line19) by merging their triangle
sets and addingP ’s children to the set ofNnew ’s children
(and then deletingP). If P has a level larger thank, thenP

is a child ofNnew (line 21), and we can setP ’s father to be
Nnew and addP to the set ofNnew ’s children.

During the construction of each node, track is kept of
the triangles which are contained in this node, but not in its
children. This way, each triangle belongs to a single node.

3

The algorithm also keeps track of the areaA (sum of the
areas of triangles belonging to the node and to its descen-
dants) while building the tree. This information is used in
Mesh-MSER.

Algorithm 1 being similar to [29], the complexity of
building the forest is also quasi-linear. Indeed, it startsby
sorting the triangles, anO(N log N) step. When expand-
ing a node, the computationally demanding case is when
the encountered triangle belongs to an already created node.
This requires finding the last created ancestor, which entails
some traversing node operations, merge triangle lists (con-
stant time) and add areas (1 operation). Since each trian-
gle is processed only once, the total complexity is roughly
N log N .

There are as many trees in the forest as nodes with no
parent. By arguments similar to [28] one can prove:

Theorem 2. Any quantized scalar functionH on a mani-
fold mesh(V, T) can be reconstructed from its component
tree. This means that no information is lost onH in the
component tree.

Assume the quantized levels ofH arehk, k = 1, · · · , n.
We want to extract local maximal elements (in the MSER
sense) in the level set tree ofH . Call δ > 0 the level
step used for computing the stability coefficient of a node
Nhk

at levelhk. The set of test levelsh1 < · · · < hn

must therefore be complemented with all levels(hi+δ) and
(hi − δ). For each nodeNhi

, going up in the tree hierarchy
yields its descendantNhi+δ with level hi + δ, and going
down yields its ascendantNhi−δ with level hi − δ. Once
these nodes are at hand, the stability coefficient is simply

q(Nhi
) =

|Nhi−δ|−|Nhi+δ|

|Nhi
| . For simplicity, we assumed in

the previous relation thatNhi
only has one descendant with

level hi + δ, which is not necessarily true. In the case of
multiple descendants with levelhi + δ, the sum of their ar-
eas is used instead of|Nhi+δ|. Remark thatNhi−δ is not
necessarily the father ofNhi

, since there is no condition on
the size ofδ relatively tomini(hi+1−hi). For the same rea-
sonNhi+δ is not necessarily a son ofNhi

. This is why we
must go up and down father-son relations in the component
tree.

3. Extracting maximally stable regions from
the component tree

3.1. Mesh-MSER: the algorithm

Algorithm 2 describes how to extract maximally stable
extremal regions (MSERs). Starting from the component
tree, this is an easy task. The tree structure gives a quick
access to the area variations betweenNhi+δ ⊂ Nhi

⊂
Nhi−δ. When computing the stability coefficient, topolog-
ical changes are authorized by the algorithm, whereas the

original image-MSER technique only compares nodes on
branches with no bifurcation. This way more lines are found
than in the original 2D image method. The node merg-
ing procedure (2) is also standard. It generates a subtree
whose nodes are exclusively the maximally stable regions.
Merging a nodeNhi+1

into its fatherNhi
requires a) re-

movingNhi+1
from the set ofNhi

’s children, b) adding all
of Nhi+1

’s children toNhi
’s children, c) setting their father

to beNhi
, d) merging the list of triangles and e) updating

the areas accordingly.

Algorithm 2 : Mesh-MSER
Data: δ a step for computing stability coefficients and

a set of levelsh1 < · · · < hn

Result: A labeling of the triangles and the borders of
the detected MSERs

Build the component tree with levelshi ± δ;1

for each tree nodeNhi
(wherehi is the node level)do2

Look for all descendants ofNhi
with levelhi + δ3

and the sum of their areasAhi+δ;
Look for the ascendant ofNhi

with levelhi − δ4

and its areaAhi−δ;

q(Nhi
) =

Ahi−δ−Ahi+δ

A(Nhi
) ;5

end6

for each nodeNhi
do7

Getqhi+1
the minimal stability of the descendants8

of Nhi
with levelhi+1;

Getqhi−1
the stability of theNhi

’s ascendant with9

levelhi−1;
if q(Nhi

) < qhi+1
andq(Nhi

) < qhi−1
then10

Select NodeNhi
;11

end12

end13

for all non selected tree nodesN do14

Merge the nodeN with its father;1616

end17

Associate to each triangle the index of the node with18

highest level containing it;

3.2. Triangle Classification

Each selected node being given an indexl, algorithm2
yields a triangle classificationL which, with any trianglet
of the mesh, associates the label of the highest node con-
taining the triangle (ie the label of the node with highest
level containing the triangle). Because of the tree structure,
it may occur that two triangles with labell are not connected
by triangles with labell. Then the node must be split into
different parts with different labels.

4

Figure 2. Extracting the border of a region (the region border with
no interpolation at all is shown in the blue, and the interpolated
region border is the dotted green line). Notice that a part ofboth
borders coincide with the mesh border

3.3. Border Extraction from selected region

Extracting the borders of each selected region is a simple
task using the available list of triangles for each node. From
this list one can extract those which share an edge with a
triangle of lesser level. This yields a set of border edges
which can be linked. Since we are dealing with meshes
built on raw point sets with a triangulation method which
does not fill in the scanning holes, the component border
line may encounter a scanning hole. To extract the line,
we first extract the setB of edges belonging to at least one
triangle of the connected component which is either a hole
border or a component border. Starting from an edge of
B which is not a hole border, a line is extended by linking
edges fromB. This way only closed contour lines are built,
which are not hole borders, but can partially coincide with
hole borders.

4. Implementation and results

In the experiments herewith, the functionH on the mesh
will be the mean curvature. Choosing the levelshi is an-
other question. Since curvatures are real numbers and are
estimated only up to a given estimation error depending on
the curvature estimation method, using all levels for thehi

would not be a good solution. The adopted solution is to use
equally spaced bins andδ equal to the quantization step.

The Mesh-MSER algorithm was implemented in C++.
On a1.5 GHz dual core laptop, without any particular ef-
fort on code optimization, the whole process lasts for less
than one minute for a500000 vertices mesh. All shapes pre-
sented in this section (with the exception of the Stanford Ur-
bis Romae pieces) were acquired using a triangulation laser
scanner which yielded a high precision dense point cloud
(with some acquisition holes though, as can be noticed on
fig. 4). The non-oriented point cloud was first oriented, its
curvature computed at all raw points, and an interpolating
mesh built using the method described in [12].

4.1. Results on mechanical and geometrical shapes

The first experiment is a sanity check on simple a dia-
mond shaped volumetric pattern (fig.3) with 150k vertices
and400k triangles. Mesh-MSER surrounds all geometri-
cally relevant areas, namely the facets and a single con-
nected region containing all vertices. It could be objected

Figure 3. Classification by Mesh-MSER Analysis of a diamond
shaped pattern (400k triangles).

(a) Picture (b) MSER (c) Picture (d) MSER

Figure 5. Maximally stable curvature level lines of “La damede
Brassempouy”. Some lines on the above figure appear to be open
because of the cropping into front and back part)

that a single threshold on the curvature would have sufficed
to obtain the facets. But, even in that simple case, it was not
obvious to predict the right curvature threshold. Further-
more, a simple curvature threshold would have delivered
many small extremal regions due to noise inside the facets,
which are actually fused to the facets by Mesh-MSER. The
second industrial example is a mesh acquired from a water
pump (2.5 million vertices,4 million triangles), whose the
mesh was again built directly on the raw data. This object
has many acquisition holes (see fig.4). The final classi-
fication gives some200 regions. For better visualization
random colors were given to the regions. The algorithm
automatically separated edges from plane or curved parts.
The segmentation of such a huge cloud into only 200 re-
gions promises to enable a further model analysis, facet by
facet.

4.2. Archeological pieces: comparative results

The next test (fig.5) was performed on a good quality
mould of an archaeological piece, which was subjected to
a massive scan followed by Mesh-MSER. Mesh and cur-
vatures were obtained using [12]. This small prehistorical
figurine (23.000 B.C.), “La Dame de Brassempouy” is only
2 centimeters tall. The mesh has approximately300k ver-
tices and500k triangles. Notice how each detail of the hair
dress is segmented out.

This preliminary exploration of the capabilities of Mesh-
MSER was continued on the Stanford Forma Urbis Romae

5

Figure 4. Classification by MSER Analysis (From top to bottom: picture of the object; obtained mesh; MSER segmentation; MSER
borders)

database, containing hundreds of archaeological artifacts
coming from a broken stone map of Roma (see [20]). A
challenge of this project is to solve the jigsaw puzzle and
rebuild the map. It is a crucial test for the Mesh-MSER
method to check whether or not it extracts the engraved
symbols and drawings figuring the town map, and whether
it does it better than what can be done with 2D-MSER or
with a Canny edge detector from simple photographs. Pic-
tures of fragments 10g and 31u are given along with the re-
sult of MSER extraction on figs7 and6. The experiment of
fig. 6(b) shows Mesh-MSER working on these engravings
with a high performance, comparable to the best 2D image
MSER performance on pictures containing high contrasted
trademarks and logos [25]. Indeed, all visible symbols and
all features of the map plan are faithfully extracted, with
very few outliers.

This experiment can be pushed further. Indeed, the
pieces being rather flat, a direct comparison of 2D- and
Mesh-MSER on their main facet makes sense. The Mesh-
MSER result compares advantageously to 2D level line or
edge extraction methods applied to a picture of the same ob-
ject (fig. 6 (a)). The comparison shows that it is far more
reliable to detect boundaries on the 3D mesh.

Finally, several strategies for extracting curvature level
lines on meshes are compared on fig.7 with fragment
10g of the Stanford Urbis Romae database. Here again
the Mesh-MSER results seem to be complete, accurate, and
without outliers. The experiment compares the choice of
curvature level lines made by MSER with a simple thresh-
old based on level line length. Although this choice indeed
removes noisy level lines, it also loses many meaningful
ones, and adds anyway a spurious threshold parameter.

To compare the obtained results with those presented in
[36], the same data set point (a fragment of antique vase)
was used. The mentioned reference is very similar in scopes
to MSER: it proposed to make a sort of two scale analysis
on a mesh by defining a “base” and “height function”. The
lines shown in [36] are level lines of the height function.
The base is implicitly defined by its gradient, by a sophisti-
cated variational procedure. Here we used a similar height
function to get a relevant comparison. The height func-
tion is defined as the difference between the surface and its

smoothed out version by a large scale mean curvature mo-
tion. The Mesh MSER method can then be directly applied
(fig. 8) on this scalar function.

5. Conclusion

This paper introduced a fast level set tree method, Mesh-
MSER, applicable to any scalar function defined on a mesh.
This method is a direct extension of classic 2D image anal-
ysis tools building trees of level sets components or of level
lines. Using the fact that the curvature is the most straight-
forward scalar function defined from and on a mesh, the
method was used to segment meshes into maximally stable
extremal regions (MSERs) of the curvature. Future work
will focus on the exploitation of this structure. Indeed the
experiments clearly point out the possibility of using the de-
tected curves and regions to perform pattern recognition of
complex objects such as the Urbis Romae fragments. On the
other hand the method provides automatic segmentations of
industrial objects into edge parts and parts with constant or
slowly varying curvature, for which spline or conical mod-
els should easily be estimated.
Acknowledgements Pictures and scans of the Stanford
Forma Urbis Romae are used with permission of Professor
Marc Levoy (Stanford Digital Forma Urbis Romae Project).
The vase model is property of Laboratory of Computer
Graphics & Multimedia at the Technion and the Zinman In-
stitute of Archaeology, University of Haifa.

References

[1] C. Ballester, V. Caselles, and P. Monasse. The tree of shapes
of an image.ESAIM: COCV, 9:1–18, 2003.1, 2

[2] A. Belyaev and E. V. Anoshkina.Mathematics of Surfaces
XI, IMA Conf. on Mathematics of Surfaces, chapter Detec-
tion of Surface Creases in Range Data. Springer, 2005.1

[3] F. Cao, P. Musé, and F. Sur. Extracting meaningful curves
from images.J. Math. Im. Vis., 22(2-3):159–181, 2005.2

[4] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees
in all dimensions. InSODA ’00, pages 918–926, Philadel-
phia, PA, USA, 2000. SIAM.2

[5] F. Cazals and M. Pouget. Estimating differential quantities
using polynomial fitting of osculating jets. InSGP ’03, pages
177–187, 2003.1

6

(a) Picture of fragment 10g (b) Selecting only lines with length above100

(c) Selecting only lines with length above10000 (d) MSER Selection

Figure 7. Comparison between several strategies for extracting level lines: a) Picture of fragment 10g of Stanford FUR database ; b) and c)
level lines with length above a given threshold; d) Mesh-MSER: its selection is definitely much more accurate, misses no apparent detail
and gives very few outliers

(a) Original object (b) Mesh-MSER selection

Figure 8. Result of Mesh-MSER on a vase model. Compare with results provided in [36] and [21]: results segment the shape into the relief
and the base .

[6] W. Che, J.-C. Paul, and X. Zhang. Lines of curvature and
umbilical points for implicit surfaces.Comput. Aided Geom.
Des., 24(7):395–409, 2007.2

[7] J. I. Daniels, L. K. Ha, T. Ochotta, and C. T. Silva. Robust
smooth feature extraction from point clouds. InSMI ’07,
pages 123–136, Washington DC, 2007. IEEE.1

[8] J. I. Daniels, L. K. Ha, T. Ochotta, and C. T. Silva. Spline-
based feature curves from point-sampled geometry.Vis.
Comput., 24(6):449–462, 2008.1

[9] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. San-
tella. Suggestive contours for conveying shape.ACM Trans.
Graph., 22(3):848–855, 2003.1

[10] K. Demarsin, D. Vanderstraeten, T. Volodine, and D. Roose.
Detection of closed sharp feature lines in point clouds for
reverse engineering applications. InGMP06, pages 571–577,
2006.1

[11] A. Desolneux, L. Moisan, and J. Morel. Edge detection by
Helmholtz principle.J. Math. Im. Vis., 14(3):271–284, 2001.
2, 8

[12] J. Digne, J. Morel, C. Mehdi-Souzani, and C. Lartigue. Scale
space meshing of raw data point sets. preprint CMLA - ENS
Cachan, October 2009.5

[13] M. Donoser and H. Bischof. Efficient maximally stable ex-
tremal region (MSER) tracking. InIEEE CVPR 2006, vol-

7

(a) Original picture of fragment 31u

(b) Mesh-MSER result

(c) Meaningful level lines [11] of the original picture

(d) Canny edge detector on the original picture
Figure 6. Picture (a) of fragment 31u of Stanford FUR database
and its Mesh-MSER result (b). This result can be compared with
the 2D-MSER result (c) on a good quality picture of the same frag-
ment [11], and with the result of a Canny edge detector applied to
the same picture (d). The comparison gives a sweeping advantage
to Mesh-MSER. Indeed, 2D-MSER misses parts and keeps noisy
level lines. Canny’s detector has many outliers and yields anyway
no segmentation. Similar experiments on artificial renderings of
the mesh gave no better results

ume 1, pages 553–560, 2006.2
[14] S. Gumhold, X. Wang, and R. McLeod. Feature extrac-

tion from point clouds. InProc. 10th International Meshing
Roundtable, 2001.1

[15] K. Hildebrandt, K. Polthier, and M. Wardetzky. Smooth fea-
ture lines on surface meshes. InSGP ’05, page 85, 2005.
1

[16] A. Hubeli, K. Meyer, and M. Gross. Mesh edge detection.
In Proc. Workshop Lake Tahoe, Lake Tahoe City, California,
USA, January 2000.1

[17] V. Interrante, H. Fuchs, and S. Pizer. Enhancing transparent
skin surfaces with ridge and valley lines. InVIS ’95, page 52,

Washington DC, 1995. IEEE Computer Society.1
[18] T. Judd, F. Durand, and E. Adelson. Apparent ridges for line

drawing.ACM Trans. Graph., 26(3):19, 2007.1
[19] E. Kalogerakis, D. Nowrouzezahrai, P. Simari, and K. Singh.

Extracting lines of curvature from noisy point cloud.
Computer-Aided Design, 41(4):282 – 292, 2009.2

[20] D. Koller, J. Trimble, T. Najbjerg, N. Gelfand, and M. Levoy.
Fragments of the city: Stanford’s digital Forma Urbis Romae
project. InProc. Third Williams Symposium on Classical Ar-
chitecture, Journal of Roman Archaeology Suppl. 61, pages
pp. 237–252, 2006.6

[21] M. Kolomenkin, I. Shimshoni, and A. Tal. On edge detection
on surfaces. InCVPR, pages 2767–2774, 2009.2, 7

[22] C. Lange and K. Polthier. Anisotropic smoothing of point
sets.Comput. Aided Geom. Des., 22(7):680–692, 2005.1

[23] R. Lengagne, P. Fua, and O. Monga. Using crest lines to
guide surface reconstruction from stereo. InICPR ’96: Vol-
ume I, page 9, Washington, DC, USA, 1996. IEEE.1

[24] T. Maekawa, F.-E. Wolter, and N. M. Patrikalakis. Umbilics
and lines of curvature for shape interrogation.Comput. Aided
Geom. Des., 13(2):133–161, 1996.2

[25] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. In
In British Machine Vision Conference, volume 1, pages 384–
393, 2002.2, 6

[26] E. Meinhardt, E. Zacur, A. F. Frangi, and V. Caselles. 3D
edge detection by selection of level surface patches.J. Math.
Im. Vis., 34(1):1–16, 2009.2

[27] M. Meyer, M. Desbrun, P. Schröder, and A. Barr. Discrete
differential geometry operators for triangulated 2-manifolds.
In International Workshop on Visualization and Mathemat-
ics, 2002.1

[28] P. Monasse and F. Guichard. Fast computation of a contrast-
invariant image representation.IEEE I.P., 9:860–872, 1998.
1, 2, 3, 4

[29] L. Najman and M. Couprie. Quasi-linear algorithm for the
component tree. InIn SPIE Vision Geometry XII, pages 98–
107, 2004.2, 4

[30] Y. Ohtake, A. Belyaev, and H. Seidel. Ridge-valley lines
on meshes via implicit surface fitting.ACM Trans. Graph.,
23(3):609–612, 2004.1

[31] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature ex-
traction on point-sampled surfaces. InComputer Graphics
Forum, volume 22, pages 281–289, september 2003.1

[32] S. Rusinkiewicz. Estimating curvatures and their derivatives
on triangle meshes. In3DPVT ’04, pages 486–493, Wash-
ington DC, 2004.1

[33] G. Stylianou and G. Farin. Crest lines for surface segmenta-
tion and flattening.IEEE TVCG, 10(5):536–544, 2004.1

[34] G. Taubin. Estimating the tensor of curvature of a surface
from a polyhedral approximation. InICCV ’95, page 902,
Washington DC, 1995.1

[35] S. Yoshizawa, A. Belyaev, and H. Seidel. Fast and robust
detection of crest lines on meshes. InSPM ’05, pages 227–
232, New York, 2005. ACM Press.1

[36] R. Zatzarinni, A. Tal, and A. Shamir. Relief analysis and
extraction.ACM Trans. Graph., 28(5):1–9, 2009.2, 6, 7

8

