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4 CONTENTS

abstract

We have studied and simulated the dynamics of spiking neuronal networks on the specific
framework of the model called BMS-model. We have choose particular types of the synpases
and structure of network, i.e., the so called BMS -Laplacian NN on a T2 tori. We took special
attention to understand the behavior of dynamical characteristics in presence of constant
external input. We have found a great influence of stimuli in this type of model and network.
Moreover we have characterised the creation of an more sensible region in the parameter
space when an input is applied that we have called High- Input region. This region is richer
in dynamical modes and the characteristic values of system may variate strongly there. We
propose some specific theoretical results we have found and understand during the work and
finally we comment some future lines of research in the subject.



CHAPTER 1

MODELING WITH NEURONAL NETWORKS

1.1 Introduction

Understanding the functioning of central nervous systems is a complex task that at the present
time combines different scientific disciplines, from pure to applied sciences, most of times
with different questions and motivations. However, standard lines of thought trying to resolve
this problem can be elucidated ([1]), the basis consisting in:

• Finding out its general structure and its hierarchical organization until it most elemen-
tary component.

• Understanding what this units are made of and what they are made for, or more specif-
ically how their presence or their absence manifests in the whole system. Usually this
is done by analysing the effects and response of the system caused by defined stimula-
tions.

Neuronal Networks (NN) models belong to a class of models where the units have the prin-
cipal role and each unit is a network of more elemental components i.e. neurons.

Before going further we would like to note briefly the assumptions and biological de-
tails that define the domain of validity of this approach . First, although the biochemical
process regulating the neurons are essential for the correct function of the system, we as-
sume them not to be -in first approximation- responsables of the more complex neuronal
process. Second, (following [1]), since the high number of neurons present in networks it
is plausible that the genome do not controls so lower hierarchical levels like biochemical
process in the neuron. Moreover, since so many neurons die at every moment, its individual
role should be negligible. This leaded Cragg and Temperly to the idea that properties of the
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6 CHAPTER 1. MODELING WITH NEURONAL NETWORKS

next level, i.e., neuronal networks, comes from a collective behaviour 1. However, biological
evidence shows that a higher level, the role of this networks becomes weaker and genetics
role increases. As a result of this arguments, taken as a smalls parts of larger and higher
hierarchical systems conforming the central nervous system, the NN are a valid basic unit of
analysis and also a compulsory description level since the formulation of a theory of larger
systems requires at least at the beginning the study of its basic units isolated. Nevertheless,
it remains yet finding out the nature of the turning point between the regime of simple net-
works and the organized higher structures whose conformation is controlled by the genome
of the specific animal specie.Finally, we should remark that at this level a NN model based
on interactions between neurones, is neglecting effects of secondary interactions between
neurones (as graded potentials) and is faced with recent evidence that suggest other compo-
nents as dendrites or glia cells to be directed involved in high level process.

Anyway, behind the comprehension of a large variety of the cerebral process like learn-
ing, memory, recognition or even more complex task combining different levels as vision rest
a vast domain of applications, including neuronal machines called neurocomputers. Beyond
this domain, one could expect that new methods and extensions of the existent ones for NN
can be applied also to the study of other scientific problems in many fields of Knowledge
which can be described as composed systems with non trivial dynamics as for example the
Regulatory Genetic Networks and the Social/Economic Networks 2.

1.2 Brief Survey of Neurobiology
After recognition of the nervous networks as responsible of transport and process of the in-
formation in most forms of animal life, it was Galvani in 1791 who discovered the electric
nature of nervous signals. But only until the early 20th century the anatomist Ramon y Ca-
jal showed that they were made of an assembly of well defined cells called neurons, which
communicate via localised electrical or chemical process called synapses3.See figure.

In the middle of the century, Hodgkin and Huxley explained the mechanism of creation
and propagation of neuronal electric signals. The lipidic cell membrane of many types of
cells contains voltage-gated ion channels which allow the cell to generate and propagate an
electrical impulse called action potential, as a result of the manipulation of charge imbalances

1Usually composed system exhibits collective emergent behaviours not present when observing individual
ones. More discussion about this point will be presented in third section about modeling and physics.

2In fact, that is the case and in both senses since theoretical analysis of other dynamical systems have been
applied to the study of NN. However, is pertinent to note that usually the characteristics and assumptions of
each domain and or model produce differences that make the extension to other domains or the applications of
known results a non-trivial task.

3Given the diversity of functions performed by neurons naturally there exists a wide variety in shape, size
and electrochemical properties in complex nervous systems as mammals
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between the interior and the exterior environment, 4 but before a detailed explanation of it
we describe an overall view of the neuronal transmission process.

Figure 1.1: General Diagram of a Neuron

Once the action potential also known as spike is created and it is transported by the soma
and the axon membrane until it reaches the axon terminal where it opens voltage-gated cal-
cium channels, allowing calcium ions to enter the terminal. Calcium causes synaptic vesicles
filled with neurotransmitter molecules to fuse with the membrane, releasing their contents
into the synaptic cleft. The neurotransmitters diffuse across the synaptic cleft and activate
receptors on the postsynaptic neuron, i.e., its dendrites.See figure. The synapses can be exci-
tatory or inhibitory and will increase or decrease activity in the target neuron.This process is
one way since axon do not posses chemoreceptor nor dendrites can secrete neurotransmitters.
However, as there are neurones from 1 or 2 to over 1000 dendritic branches and similarly
dendrites receiving thousands of synapses, all type of network is theoretically possible.

We describe in general terms the action potential process. Briefly, when an stimuli open
some sodium-ion channels it causes a depolarization of the potential difference produced by
the normal concentration differences of potasium an sodium ions inside and outside the cell.
If this initial depolarization overpass a threshold value, more sodium channels get opened
causing a bigger depolarization that reaches peak while the sodium channels get inactivated
and potasium channels get opened to redistribute the ion flux repolarizating the cell and
returning to the initial resting potential. After this process that takes about 100 ms, the
sodium-channels rest inactivated and then less sensitive to stimuli for about 5ms producing
what is known as the refractory period where the generation of another spike is very much
difficult and then less probable. The next figure contains the schematic action potential and
the graph of an actual recording of one.

4This action potential may be quite different between types of cells (see Wikipedia) so we will refer always
to Neuronal Action Potentials
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Figure 1.2: General Diagram of a synaptic junction

1.3 Neuronal Networks, Mathemathical Modeling and Physics
The most basic model of a NN based on neurons as logical gates, i.e. with only two possi-
ble internal states was devised by Pitts and McCulloch in 1943. A neuron has a few entries
provided by the outputs of other neurons. These inputs are summed up and then determine
the state of the neuron by comparison respect to a certain threshold value: If signal is larger
than the threshold the neurone is active; otherwise it is inactive.After the Hodgkin-Huxley
model (for details [2]), a more accurate description of each neuron was possible, specifically
the action potential nature, including as most important improvements the explicit inclusion
of time and explicit time evolving value of Voltage of membrane Potential and Inputs to the
neuron.

If we imagine the neuron description level as an axe going from binary state to the
Hodgkin-Huxley model, there is on the other side another axe we could call neuron popula-
tion where the lowest level is a single isolated neuron, then a few neurones, then including
weakly coupled populations and finally a big population. Moreover, considering differents
models for the synapse, i.e. the types of interaction, one have a third axe. Obviously, for
each ensemble of coordinates in the description axe coordinate system may exist languages
and methods more appropriated than others going from dynamical systems and bifurcation
theory to Ergodic theory, probability theory and statistical mechanics, including graph theory
and others.We remark also that changing the neuron population may produce collective be-
haviour effects emerging from non-linearity of equations or simply by large number effects
that hide some individual properties but enhance other ones.

As another important issue, if we take in account that biological systems are noisy it
seems natural to include a new category of models including noise. However, it is the usual
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Figure 1.3: General Diagram of action potential

behaviour of noisy systems that average properties of the collective system are not affected
if the noise intensity does not exceed certain level. By this way it is reasonable and justified
at least in a approximated level the study of networks without including the noisy nature of
its elements.

Finally, an obligated question in every modeling, more particularly in biological sciences
is : which time model is more appropriated, a continuous one or a discrete one? And if
we chose a discrete model, what is the correct characteristic time of the model. Obviously,
the answer depends of the specific subject and its experimental evidence. But even restrict-
ing ourselves to the NN Modeling the question is very wide. We will comment in the next
chapter some ideas about this issue for the specific case of the BMS-NN following [3].

1.4 Neuronal Models

1.4.1 Introduction
As we have described above, a neuron will usually fire an action potential or spike when
its membrane potential reaches a certain threshold value. The mechanism well understood
and modeled give raise to a set of differential equations, known as the Hodgkin-Huxley
equations, which involve the different neuron parameters and dynamic variables. However,
since it is a hard task, working with this equations must be justified by specific interest as
response of parameter of neuron to a medication etc, and on the other hand, Neuronal Models
not including explicitly biophysical mechanisms responsible of the spike event are more
treatable and not far from the experimental evidence. Moreover, scientific NN community
agrees on the fact that most part of information transmitted in a NN is contained in the spike
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sequences5.
A convenient an simple assembly of models producing spikes is are called Integrate-Fire

models (IF), which define the spike event when the membrane potential reach the threshold
and then the potential is reset to a value below the threshold potential. In that way, this
models are left with the simpler task of modeling dynamics of membrane potential below
the threshold which can be done at different complexity levels but anyway avoiding an exact
description of the action potential

1.4.2 A brief introduction to Integrate-and-Fire Models

The basic leaky IF model -known also as passive IF- was proposed by Lapicque in 1907.
In it, active membranes conductance are ignored, so the entire membrane conductance and
synaptic inputs are modeled by leakage term which let us with 6 an equivalently electrical
RC circuit equation with the resistor and the capacitor in parallel connection. That give us in
the standard form:

τm
du
dt

= EL − u(t) + RmI(t) (1.1)

where EL is the resting potential of the cell, taken usually null, u(t) refers the membrane
potential, Rm is the assumed total membrane resistance, I(t) is the total current ( i.e, IR as-
sociated by the Ohm law to the resistance and potential value, and the IC associated to the
capacitor, so IC = C du

dt , and finally τm ≡ RmC, with the obviously condition that when u(t)
reaches the threshold it resets to a certain value below threshold potential.

There are some remarkable characteristics. First, this model is exactly solvable. Second,
after the time t f of reaching the threshold, the membrane potential rest in the reset value
while the spike is produced and the refractory period completed. Then, one could consider
spikes as formal events characterized by the ’firing time’ t f

7 which indeed relate the model
to an alternative approach to the study of neuronal dynamics based on the ’firing rates’ and
that is actually the natural way the experimental data comes out([5],[6]).

Moreover, it is easy to model a network of IF neurons. Consider the neuron i receives
the spikes input coming from other neurons and the total current Ii(t) is the sum of spikes
coming from each neuron j connected to i. Modeling the synapses, as commented earlier,
is not a trivial issue and may change properties and even the mathematical tools to be used.
Nevertheless, as it seems a flexible way to create different types networks and the easiest one

5This change of description is quite far to be trivial,cause information could be encoded also by delay timing
and other properties, but going further is out of the scope of this memories. For a detailed revision, cfr [3] and
references therein.

6For details cfr. [5]
7this propriety relies on the fact that the dynamics is deterministic
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also, a quite usual way is to use a Ji j weight, roughly modeling each synaptic connexion

Ii(t) =
∑

j

Ji j

N( j)∑
n( j)=1

α(t − tn( j)); (1.2)

where tn( j) is the n-th time of firing of neuron j, α(t) is a function modeling the spike8 and
the

∑N
n a small time integration.

Finally, there exists more general versions of the IF models [2] an others

τm
du
dt

= F(u(t)) + G(u(t))I(t) (1.3)

where F,G are non linear functions of u.

1.5 BMS NN Model: Context and Theoretical Results

The Beslon-Mazet-Soula(BMS) NN model, is a time discrete (Euler scheme) IF model, but
in spite of the delicate questions concerning biological interpretations raised by the simplifi-
cations, especially time discretisation, it reveals some features (see theorems below) which
may extend largely the scope of methods from dynamical systems theory, ergodic theory and
statistical physics to look for answer important questions as:

• Which is the dynamics of a particular network and its relation with a transport-diffusion
scheme?

• What is the relation between an stimulus (input) on the spiking sequences displayed
by the NN?

• How to measure the information of a spiking sequence?

• What is the effect of stochastic perturbations (noise) in the BMS model? Is it similar
to the effect of considering Brownian Noise in the continuous time IF NN models?

In this work we are concerned especially with the first two questions.
An Euler scheme formal time discretisation of (1.1) yields

V(t + dt) = V(t)
(
1 −

dt
τ

)
+

I(t)
C

dt (1.4)

8see footnote 1.4.1
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Then, setting dt = 1, which means choosing the time step, i.e, the model sampling time scale
dt smaller than all characteristic times scales in the model9 and defining γ ≡ 1− 1

τ
, we obtain

V(t + 1) = γV(t) +
I(t)
C

(1.5)

This discretisation imposes to the the circuit characteristic time τ ≡ RC that τ ≥ 1 thus
γ ∈ [0, 1]. Also we shall rescale units to make C = 1.

As in the continuous time IF model, a positive real number θ denotes the ’firing threshold
value and this equation holds for V(t) < θ. The firing of neuron is described now by

V(t(k)) ≥ θ

V(t(k) + 1) = Vreset + I(t(k)) (1.6)

where, from now, we shall consider the reset potential Vreset = 0. At this point we note
that the firing is not instantaneous, since the membrane potential is over the threshold during
the time interval

[
t(k), t(k)+ 1

[
.We shall conveniently introduce the function Z[x] = χ(x ≥ θ)

where χ is the indicatrix function, i.e, Z[x] = 1 whenever x ≥ θ and Z[x] = 0 otherwise
which allows to write the neuron evolution before and after the spike event (1.5,1.5) in a
unique equation

V(t + 1) = γV(t)(1 − Z[V(t)]) + I(t) (1.7)

1.5.1 Model Definition
The dimension of the NN is defined as the number N of neurons that compose it. The
synaptic connexion from neuron j et i (i.e axon terminals of j et dendrites of i) is modeled by
the synaptic weight Wi j so it is called ’excitatory’ or ’inhibitory’ whereas Wi j > 0 or Wi j < 0
respectively and it is nul if neuron j do not has action over neuron i. As consequence, the
Wi j compose the named ’weight (N × N) matrix’ W which defines an oriented and signed
graph known as the ’NN associated to W’ with vertex i = 1 . . .N representing the neurons
an oriented signed edge j −→ (±)i whenever Wi j is not nul. Then, is W who contents the
Network structure information.

Now, each vertex (neuron) i is characterized by a real variable Vi called ’the membrane
potential of i’ which satisfies 1.7 for the same threshold value and evolve synchronously. The
function Z[Vi(t)] is called the ’firing state of neuron i at time t so when its value is 1 one say
that neuron i ’fires’ otherwise i is quiescent. Each ’total current’ term Ii(t) is composed by the
’external current10 applied to the neuron i’ denoted as Iext

i and the quantity called ’Synaptic
current’

I s
i (V(t)) =

N∑
j=1

Wi j Z[V j(t)] (1.8)

9However, this point requires a more extensive discussion , cfr [3].
10Rigorously, a potential since we divide it by a capacity C set equal to 1.
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where by notation V(t) = {Vi(t)}Ni=1 is the vector of membrane potentials. Finally, putting all
together, the synchronous dynamics of the BMS NN model is given by:

V(t + 1) = F(V(t)), (1.9)

Fi(V(t)) = γVi(t)(1 − Z[Vi(t)]) +

N∑
j=1

Wi j Z[V j(t)] + Iext
i (t); i = 1 . . .N (1.10)

We will restrict ourselves to the autonomous BMS model, i.e, with no explicit time
dependency, thus, Iext

i must be is constant, however the extension of some results to non-
autonomous cases has been discussed in [3].

1.5.2 Preliminary Results (from Cessac [3])

Lemma 1. Since γ < 1 on can restrict the configuration space to a compact set M =[
Vmin,Vmax

]N such that F(M) ⊂ M where

Vmin = min

0, 1
1 − γ

[
min

i=1,...N

∑
j|Wi j<0

Wi j + Iext
i

] (1.11)

Vmax = max

0, 1
1 − γ

[
max

i=1,...N

∑
j|Wi j>0

Wi j + Iext
i

] (1.12)

(1.13)

Definition 1. Dividing the interval
[
Vmin,Vmax

]
in B0 =

[
Vmin, θ

)
and B1 =

[
θ,Vmax]

]
creates

the so called ’ natural partition’ of the configuration space defined as follows. Call Λ =

{0, 1}N and let η = η1 . . . ηN ∈ Λ that is a N-dimensional vector of binary components called
the spiking state. ThenM =

⋃
η∈Λ where

Mη = {V ∈ M|Vi ∈ Bηi} (1.14)

We note that this partition has a simple Cartesian product structure which each domain
is an hypercube with edges parallels to the coordinates directions. Nevertheless, we remark
that this is not a Markov partition of the configuration space for the map F.

Proposition 1. Denote Fη the restriction of the evolution map F to the domain Mη. Then
whatever η ∈ Λ

i Fη is affine and differentiable in the interior of its domainMη.

ii Fη is a contraction with coefficient γ(1 − ηi) in the direction i.
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iii Denote Fηi the i-th component of Fη. then

F(Mη) =

N∏
i=1

Fηi(Bηi) (1.15)

Definition 2. The singularity set for the map Fis define as

S = {V ∈ M|∃i,Vi = θ} (1.16)

This set is a finite union of N − 1 hyperplanes corresponding to faces of the hypercubes.
We say that S is small because in metric sense it has null Lebesgue measure and in topolog-
ical sense it is non residual. Since F is discontinuous in S it has an important effect in the
dynamics. Indeed, any taking an open ball set centered in a vector V in the configuration
space such that the ball do not intersects S will be contracted every iteration and asymp-
totically will be indistinguishable of the trajectory of the vector V.On the other hand if it
intersects the singularity for any two vectors arbitrarily close but with with different asso-
ciated η (in one component), the distance between their iteration rest finite. This effect is
known as weak initial condition sensitive effect because it only happens when the singularity
set is crossed.

1.5.3 Asymptotic Dynamics
Definition 3. The attracting set Ais the largest invariant set such that there exists an open set
A ⊂ U such that

A =
⋂
t=0∞

Ft(U) (1.17)

Indeed, A may be empty but for most cases we expect the asymptotic dynamics be con-
tained there. As noted in [3], when A is not empty the ω-limit set, the set of accumulation
points of Ft(M) is the closure of A.

Definition 4. The distance between the forward trajectory of a initial vector V(0) and the set
S is defined as d(V+, S ) = inft≥0 mini=1,...N |Vi(t) − θ|

In the same way we can define the distance of the ω-limit set to the singularity taking
dAS = d(ω(M), S ) = infV∈ω(M) d(V+, S ). The next results are what make us to simulate the
last quantity defined.

Proposition 2. If d(V+, S ) > ε > 0 then V(0) has a local stable manifold of diameter ε.

Theorem 1. If dAS = d(ω(M), S ) > ε > 0 then:
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i There exists a finite Markov partition encoding symbolically the dynamics on ω(M). This
partition is constructed with a refinement of the natural partition, where the elements
have the form ω(M) ∩

⋂T
t=0 F−t[Mηt] and have diameter ≤ ε.

ii The parameter T, in the previous item depends on d(ω(M), S ) and T → ∞when d(ω(M), S )→
∞.

iii ω(M), S ) is a finite union of stable periodic orbits with finite period.

With this Markov partition we are able to construct a transition graph, with a transition
matrix associated, but we remark this is not the transition graph we construct in the appli-
cation section since we are concerned first with the natural partition an how it may contains
different type of orbits and then the simulation of dAS to find the regions where the com-
plexity increases as dAS → 0.

Finally we would like to note as is done in [3] that the quantity Td = 2N log(dAS )
log(γ) is an upper

bound of the nnumber of Markov partition elements and hence of the maximal period of
orbits.



CHAPTER 2

APPLICATION: THE BMS LAPLACIAN NN MODEL IN A
T 2 CHAIN

2.1 Context and Motivations
The BMS LAPLACIAN, is defined is an specific BMS model where each neuron has sym-
metric excitatory synapses for each of its neighbors while also it present an auto-inhibitory
spiking activity twice strong i.e

Wi±1,i = α, Wii = −2α, andWi j = 0 other synapses ∀i = 1, . . . ,N

where we use the convention for neuron N that N + 1 ≡ 1 and for neuron 1 that 0 ≡ N
to establish a closed chain configured as a T2 Tori. The selection of this type of model has
some specific motivations we exposed below and its similarity with the discrete definition
of a Laplacian operator on a 1-D space is not casual. Anyway, it is clear that having a 1-D
type structure with just few connections an almost all of same type and intensity make it a
suitable easier one to start an specific study of BMS models but capable of contain non trivial
dynamics.
The first reason two choose this type of BMS model is in order to study (in future work)
based in the work of Vieville and Kornprobst ([4])its relation with the variational approach
to modeling cortical maps with feedbacks. Basically, a cortical map models the central sys-
tem process as computations of ’maps’ of quantitative values which according to generative
approaches can be modeled as an optimization problem relating the input proposed with the
output achieved by the system ([4]). Then, the cited authors have implemented this opti-
mization problem using a discrete network which results in a system of coupled linearized
differential equations. Finally they state that it appears deterministic spiking neuronal net-
works can be linked to the specifications proposed by this representation of the optimisation
problem for cortical maps. Since the cortical map modeling finally relates input-output we

16
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look for response about if an spiking NN model achieve similar results and what conditions
relates the input and output response in such type of spiking models as the BMS.

Secondly, as the transport phenomena or diffusion in usual physical systems can be re-
lated with a variational principle, we would like to know also if a transport-type BMS model
may hide too a variational principle controlling its general evolution. Moreover, a future
work may include the study of statistical distribution of orbits and related issues concerning
a variational principle formulation.

2.2 The N=3 Case

For the explicit analysis of this type of BMS-Model we shall bound optimally the config-
uration space as it simplifies considerably the task of identifying correctly all the possible
different dynamical regimes. However, as it would appear, when an external input is present
it reveals the interdependencies between the bounds (a type of broken symmetry effect) that
might become hard to manipulate manually for general input configurations and also for
simple input configurations but acting on NN (even smaller ones) with more than 2 active
-i.e. non null- synaptic connexions per neuron. As a previous remark-result our way of pro-
ceeding is not really applicable in order to optimize a reliable simulation. The configuration
space will be denoted generally as M =

�3
i=1

[
Vmin,i,Vmax,i

]
. We shall also write Zi ≡ Z

[
Vi

]
,

the 23 spiking states (vertex) labeled j = 4Z1 + 2Z2 + Z1 and its corresponding sets in M
denoted as η j.

Figure 2.1: General Diagram of the N=3 BMS Laplacian Tori

2.2.1 Non External Input

Here we have for i = 1, 2, 3:

Vmin,i = −2α Vmax,i = γθ + 2α with Vmax,i ≥ θ (2.1)
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In this case (no input) Vmin,Vmax do not depends of index i so we may drop it. We define then

C1 = γVmin + α C2 = γθ + α (2.2)
C3 = γVmin + 2α C4 = γθ + 2α (2.3)

The case Vmax < θ is irrelevant so we focus on Vmax ≥ θ. Then, the mapping of M by one
iteration of F is totally described as:

η0 ≡
[
Vmin, θ

[
×

[
Vmin, θ

[
×

[
Vmin, θ

[
F(η0) ≡

[
γVmin, γθ

[
×

[
γVmin, γθ

[
×

[
γVmin, γθ

[
⊂ η0

(2.4)

η1 ≡
[
Vmin, θ

[
×

[
Vmin, θ

[
×

[
θ,Vmax

]
F(η1) ≡

[
C1,C2

[
×

[
C1,C2

[
× {−2α} (2.5)

η2 ≡
[
Vmin, θ

[
×

[
θ,Vmax

]
×

[
Vmin, θ

]
F(η2) ≡

[
C1,C2

[
× {−2α} ×

[
C1,C2

[
(2.6)

η3 ≡
[
Vmin, θ

[
×

[
θ,Vmax

]
×

[
θ,Vmax

]
F(η3) ≡

[
C3,C4

[
× {−α} × {−α} (2.7)

η4 ≡
[
θ,Vmax

]
×

[
Vmin, θ

[
×

[
Vmin, θ

[
F(η4) ≡ {−2α} ×

[
C1,C2

[
×

[
C1,C2

[
(2.8)

η5 ≡
[
θ,Vmax

]
×

[
Vmin, θ

[
×

[
θ,Vmax

]
F(η5) ≡ {−α} ×

[
C3,C4

[
× {−α} (2.9)

η6 ≡
[
θ,Vmax

]
×

[
θ,Vmax

]
×

[
Vmin, θ

[
F(η6) ≡ {−α} × {−α} ×

[
C3,C4

[
(2.10)

η7 ≡
[
θ,Vmax

]
×

[
θ,Vmax

]
×

[
θ,Vmax

]
F(η7) ≡ {0} × {0} × {0} ⊂ η0 (2.11)

(2.12)

The position of the all constants C j respect to the threshold value (here θ = 1) corresponds to
a partition of the parameter space as shown in figure 2.2. Then, on can calculate the transition
graph of the system for each region as shown in figure 2.3. We should remember, that our
partition {ηi}is not a Markov partition for the system so this graphs will not generate the code
for applying the symbolic dynamics methods.

Since the dynamics is contracting for every region no intersecting the singularity set S ,we
deduce from graphs of figure 2.3 that only initial states never passing through η0 can survive
the neuronal death in the case of non external input. Moreover, although it is not evident
from the graphs, no orbits of period greater than 3 can be generated in this case. This result
is establish below as a two lemmas and as we suspect, this is the mechanism who prohibits
the existence of orbits of period P > N for T2-Networks without external input1.

Lemma 2. Let be N = 3 the size of BMS-Laplacian NN on a T2 Tori. Let be ηa → ηb → ηc

a valid sequence of spiking states for the system such that

i Any spiking state ηi of the sequence is the ’zero spikes’ state (noted usually η0).

ii Between the initial spiking state and the final one, all the neurons have fired only once
while its neighbors where quiescent.

1However its application is not straightforward before knowing the admitted transitions graphs for an spe-
cific N value. This fact makes us to wish try in the future to rewrite it in a more general way, to explain directly
that result.
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Figure 2.2: Dynamical different regions from equation.2.24 in the parameter space (γ, α)
(I = 0)

Then, in any orbit having the spiking sequence, the transition backward at fourth iteration,
i.e. ηc → ηb is forbidden

Proof. Let be t = 0 when the system is in state ηa,V(0) = (V1(0),V2(0),V3(0), ) the mem-
brane potential vector, and i the neuron firing at that time. Then

Vi(1) = −2α < θ while V j,k(1) = γV j(0) + α, j, k , i

Let be named k the index of the only neuron that fires at this iteration so

Vi(2) = −2αγ + α < θ, Vk(2) = −2α < θ, V j(2) = γ2V j(0) + γα + α with j , i, k

Finally, at this iteration third neuron fires and we have

Vi(3) = −2αγ2 + γα + α, Vk(3) = −2αγ + α, V j(3) = −2α

From the condition that k were the only neuron firing at second iteration we had −2αγ+α < θ
so the system can not go backward to the spiking state ηb. �
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Figure 2.3: Transition Graphs N=3 BMS-Laplacian corresponding figure 2.2
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Lemma 3. Let be N = 3 the size of BMS-Laplacian NN on a T2 Tori. Let be ηa → ηb a
valid transition of spiking states for the system such that the spiking state ηa has only one
firing neuron and on the other state the other two neurons fires. Then, the next transition is
ηb → η0 or ηb → ηa and if the latter the system is necessarily on this bi-periodic orbit for all
the subsequent times.

Proof. Let be t = 0 when the system is in state ηa,V(0) = (V1(0),V2(0),V3(0), ) the mem-
brane potential vector, and i, j the neurons firing at that time, k the other one. Then

Vi, j(1) = −α < θ while Vk(1) = γVk(0) + 2α ≥ θ

As K fires at this iteration, we have

Vi, j(2) = −αγ + α, Vk(2) = −2α

The first case is Vi, j(2) = −αγ + α < θ arriving to the neuronal death. On the second one
Vi, j(2) = −αγ + α ≥ θ (which by the way means α(1 − γ) ≥ θ), and as Vk(2) < θ we are on
the state ηb. Then, the next iteration will get us to

Vi, j(3) = −α, Vk(3) = −2αγ + 2α

and since from the last iteration ≥ α(1 − γ) < 2α(1 − γ), the system is in the state ηa. �

Applying this two lemmas to create the periodic sequences following transition graphs
on 2.3 we see that the maximal period is P = 3, e.g. one have that η1 → η2 in graph2.3(
G-D).It admits to go on η5 or going to η4. In the first case we arrive to the neuronal death
or on a bi-periodic orbit. On the other hand, going to η4 implies by 2 to go on a bi-periodic
orbit with η3 by 3or returning to η1 so the 3-orbit is created. As a final important remark
we note that a physical way to see this is thinking in the possible ways of periodic diffusion
of a ’perturbation’ (the spike) on an isolated T2 chain. On a 3-chain is quite transparent
that a perturbation transported normally can take at most 3 steps to come back to its initial
configuration. However on bigger chain, or only with our N-3 case lemmas, this fact becomes
less evident.

2.2.2 Input case Iext = (0, 0, Iext) with Iext < θ

The definitions of last section requires a modification. We will note Vmax,i
min,i
≡ Vmax

min
respectively

for i = 1, 2 and Vmax,3
min,3
≡ V I

max
min

. Then

Vmin = −2α; Vmax =


α

1−γ if Vmax < θ ∧ V I
max ≥ θ

γθ + α if Vmax ≥ θ ∧ V I
max ≥ θ

0 otherwise

(2.13)
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For i = 3 and restrained to the input intensity range, we have2

V I
min = −2α + I (2.14)

V I
max =


I

1−γ if Vmax < θ ∧ V I
max < θ

γθ + I if Vmax < θ ∧ V I
max ≥ θ

γθ + 2α + I if Vmax ≥ θ ∧ V I
max ≥ θ

(2.15)

We note here, that the optimal bounds of configuration space for the neurons with input are
related to those of neuron without input, since they depends of the dynamic of the network
itself, i.e. for a single neuron if its neighbors can or not fire will change the limit values
that its membrane potential can take but also if neuron can fire, it will modify the limit val-
ues of those of its neighbors. To resume, the input signal has created an asymmetry since
the position of the bounds respect the threshold value is not anymore the same for all neurons.

The definitions of eq.2.2 remaining unchanged, we add now the following definitions

D1 = γV I
min + I D2 = γθ + I (2.16)

D3 = γV I
min + α + I D4 = γθ + α + I (2.17)

D5 = γV I
min + 2α + I D6 = γθ + 2α + I (2.18)

Let’s start the analysis with the case Vmax < θ. Here, neurons i = 1, 2 can not fire and the
right inequality condition equivalent (see eq. 2.14) to I > θ(1 − γ) and when it is satisfied,
the dynamics may admit the transition η0 → η1. More explicitly the dynamical mapping is

η0 ≡
[
Vmin,Vmax

]
×

[
Vmin,Vmax

]
×

[
V I

min, θ
[

F(η0) ≡
[
γVmin, γVmax

]
×

[
γVmin, γVmax

]
×

[
D1,D2

[
(2.19)

η1 ≡
[
Vmin,Vmax

]
×

[
Vmin,Vmax

]
×

[
θV I

max
]

F(η1) ≡
[
γVmin, γVmax

]
×

[
γVmin, γVmax

]
× {−2α + I} ⊂ η0 (2.20)

The parameter space as showed below is then divided in 3 regions depending of the relations

C ≡ D2 < θ (2.21)
A ≡ D2 ≥ θ ∧ D1 < θ (2.22)
B ≡ D2 ≥ θ ∧ D1 ≥ θ (2.23)

where all are considered for an specific value I. We must remark that in 2.22, as D1 < D2

then the relation D1 < θ is implicitly contained while its other sense forbidden. The cor-
responding dynamical transition graphs are show in fig 2.5. However this interface evolves
with the change of I value as shown in fig 2.6.
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Figure 2.4: Different dynamical regions from eq.2.19-2.20 in the parameter space(γ, α) for
the case Vmax < θ ≤ V I

max with I = 0.4

As is easily inferred, the regions (A,B) in fig 2.4,2.6 do not exist if I = 0 since the tran-
sition η0 → η1 is allowed only if D2 ≥ θ and that, only may happens at the right side of
the straight γ = 1 − I. Thus initially the parameter region space for this case is controlled
by a transition graph of type (C) where only the neuronal death is possible. We remark also
that while region (B) is a biperiodic one, the region (A) is enough complex since it permits
the neurons stay in η0 a finite time before coming back to η1 creating in that way orbits of
all different periods adjusting the parameters γ, α. This statement is con sequence of a more
general result about the firing time that will be formally exposed in next section.However,
we would like to note that in the latter case, V I

max = D2, which is in fact the lowest value
of V I

max when still remaining at a higher value than threshold. Indeed, we have just put in
evidence on a very specific case the fact that whenever D2 ≥ θ transitions from η0 (i.e., the
state where any neuron is firing) to another different spike state region are admitted. As con-
sequence is this condition who ’measure’ how ’strong’ is actually the external current value.
As consequence, we shall name ’high input region’ and ’low input region’ respectively the
parameter regions defined by the condition D2 ≥ θ ⇔ I > θ(1 − γ).

2We remark that the structure of the system manifest in the equations the impossibility of the case V I
max <

θ ≤ Vmax, but more general couplings may permit this case.
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Figure 2.5: Transition Graphs from eq 2.19,for regions A,B,C corresponding figure2.4
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I = 0.7 et 0.99

In next cases we shall try to label this 2 main regions by coloring it as follows
Now we shall examine the more complex case θ ≤ Vmax < V I

max. The mapping is de-
scribed by the set of regions defined as follows:

η0 ≡
[
Vmin, θ

[
×

[
Vmin, θ

[
×

[
V I

min, θ
[

F(η0) ≡
[
γVmin, γθ

[
×

[
γVmin, γθ

[
×

[
D1,D2

[
(2.24)

η1 ≡
[
Vmin, θ

[
×

[
Vmin, θ

[
×

[
θ,V I

max
]

F(η1) ≡
[
C1,C2

[
×

[
C1,C2

[
× {−2α + I} (2.25)

η2 ≡
[
Vmin, θ

[
×

[
θ,Vmax

]
×

[
V I

min, θ
]

F(η2) ≡
[
C1,C2

[
× {−2α} ×

[
D3,D4

[
(2.26)

η3 ≡
[
Vmin, θ

[
×

[
θ,Vmax

]
×

[
θ,V I

max
]

F(η3) ≡
[
C3,C4

[
× {−α} × {−α + I} (2.27)

η4 ≡
[
θ,Vmax

]
×

[
Vmin, θ

[
×

[
V I

min, θ
[

F(η4) ≡ {−2α} ×
[
C1,C2

[
×

[
D3,D4

[
(2.28)

η5 ≡
[
θ,Vmax

]
×

[
Vmin, θ

[
×

[
θ,V I

max
]

F(η5) ≡ {−α} ×
[
C3,C4

[
× {−α + I} (2.29)

η6 ≡
[
θ,Vmax

]
×

[
θ,Vmax

]
×

[
V I

min, θ
[

F(η6) ≡ {−α} × {−α} ×
[
D5,D6

[
(2.30)

η7 ≡
[
θ,Vmax

]
×

[
θ,Vmax

]
×

[
θ,V I

max
]

F(η7) ≡ {0} × {0} × {I} ⊂ η0 (2.31)

The change of the mapping as function of the parameter γ, α, I can be seen looking at the
behavior of the constants

{
C j,Dk

}
respect the threshold. The set of fig.2.30-3.2(at the end of

document) try to resume it.
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Two main differences with the Fig2.3 must be remarked. First, the apparition of new config-
uration for higher values of I = 0.5 since the sign of some equations is inversed, specifically
those of D3,D5. Second, in the case without input the asymptote of C1 in γ = 0.5 had no
effect on the system (i.e., each pair of regions B − C, F − G, I − J composed indeed a sin-
gle region with only one corresponding transition graph) it was marked anyway because in
the input case, they are not trivially the same parameter region. Indeed after certain I value
where for D3 there are present 2 disconnected curves at every side of the asymptote, the
inequality relations D3 < θ and D3 > θ have its positions (below or above) respect the curve
D3 = θ inversed at each side of the asymptote.

From the point of view of the transition graphs associated to each region in figures 2.30-
3.2 respect those of figure 2.3 associated of figure 2.2, we can establish its differences in a
general framework. The transition graphs in the case of input will present in general the same
structure than those without input but transition graphs for regions in the high input region
will present the edges of the state η0 as one of the cases in figure 2.5, i.e., with an allowed
transition from η0 to the state η1. The type of difference is that in the non input case, when the
transition η2 → η1 was allowed, its inverse transition and the transitions η2 → η4, η1 → η4

with their respective inverse, and η1 → η6, η2 → η5, η4 → η3 were also allowed. Moreover,
the transition from this states to the neuronal death η4,2,1 → η0 used to disappear together. In
the input case, when transition η2 → η1 is allowed the transition η4 → η1 will be necessarily
allowed too, while the others transitions mentioned may remain forbidden or be allowed as
a complete set (i.e., all or any). Additionally the drop of the transitions η4,2,1 → η0 is not
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neither simultaneous. The same manner, transitions η6 → η1, η3 → η4 and η5 → η2 used to
appear simultaneously in the graphs of figure 2.3, but now the first in appear is η6 → η1 and
the other two eventually in another region will be added to the graph at same time. Inversely,
the first in disappear is η6 → η0 and then η5,3 → η0 disappear of the graph. To resume, what
is important here is the apparition of transitions from η0 and the no apparition of new loops
apart of the possible one on η0, i.e., η0 → η0.

As an example we have constructed the transition graph for the region Y , noted in
figure2.30(I = 0.8). From the dynamical point of view this is the region the most com-
plex cause as it has the maximum of allowed transition between states and every state can to
η0 and then go out to begin another different route. As we showed, entering to η0 with the
loop active and also the ability of going out to η1 may create orbits of all periods adjusting
the parameters α, γ of the network.

Figure 2.8: Transition Graphs from eq ??,for regions Y corresponding figure2.30

2.3 Some other Theoretical Results

Definition 5. We will note int the following, the total current to neuron i at time t the quantity

It
i (Z(t)) =

N∑
j=1

Wi j Z[V j(t)] + Ii = −2αZ[Vi(t)] + α
(
Z[Vi+1(t)] + Z[Vi−1(t)]

)
+ Ii

≡ −2αZi(t) + α
(
Zi+1(t) + Zi−1(t)

)
+ Ii (2.32)
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2.3.1 Transition Graphs and Firing Time
Lemma 4. Let be N the size of a T2-BMS-Laplacian NN. Suppose there is a set of neu-
rons(not necessarily consecutive) indexed by its position number i which is exposed to a
constant external input signals Ii. Then, if any of the input signal Ik is such that Ik > θ(1−γ),
there will exist at least one allowed transition ’zero spike’ state noted η0 and the a spiking
state with its spike component k non null.

Proof. Since in state η0 no one fires, the interval
[
Vmin,k, θ

]
is mapped on

[
γVmin,k + Ik, γθ+ Ik

]
,

and from the hypothesis it follows that γθ + Ik ≥ θ. �

For identical consecutive inputs signals values satisfying the condition of the lemma,
between neurons i, i + k. Moreover supposed that γVmin, j + I < θ for all neurons in receiving
the input. Then, will have a transition graph as in figure 2.9

Figure 2.9: Transition Graphs exemplifying the application of Lemma 4 in a particular input
case

Definition 6. The neuronal death VDis the defined as the stationary state with no spiking
activity so it can be formally expressed by

Ft
D(VD) = VD ∀t ≥ 1 (2.33)
FD(Vi) = γVi + Iext

i (2.34)

Where the second equation describes explicitly that no spike is produced during the evolu-
tion.

Lemma 5. Let be N the size of a T2-BMS NN. Suppose there is a set of neurons(not necessar-
ily consecutive) indexed by its position number i which is exposed to a constant external input
signals Ii. As consequence of lemma4, if any of the input signals Ik is such that Ik > θ(1 − γ)
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the system can not get to the neuronal death. Indeed, the firing time of the the neuron k,
noted τk has an upper bound given by

τk =
θ(1 − γ) − Ik

(Vmin(1 − γ) − Ik) log(γ)
(2.35)

Proof. The longest time to fire is when the neuron do not receive any excitatory spike i.e,
I s
k(t) = 0 ∀t > 0. Thus its membrane potential after a time t is done by Vk(t) = γtVk(0) +

I 1−γt

1−γ . Taking the care of correct sign operations, then resolving for t with the condition
Vk(t) = θ and maximizing it inside the configuration space, we get to the result. �

We note that the last lemma, is related with some results of Cessac, where the author
showed the existence of ghost orbits for the condition I = θ(1 − γ), i.e., the orbits taking
infinite time to fire(??).

Lemma 6. Let be N the size of a T2-BMS-Laplacian NN. Suppose there is a set of neu-
rons(not necessarily consecutive) indexed by its position number i which is exposed to a
constant external input signals Ii. If all of the input signals Ik are such that Ik < θ(1 − γ)
the system is able to get to the neuronal death. Moreover the membrane potential values of
neurons for this state are

VD, i =

0 if Iext
i = 0

Iext
i

1−γ otherwise
(2.36)

Proof. For no spiking activity we have the membrane potential after a time t is done by
Vk(t) = γtVk(0) + I 1−γt

1−γ . As the neuronal death is the limit of this evolution, all the configura-

tion space will be contracted to the point 0 if I = 0 or to Iext
i

1−γ otherwise. �

Definition 7. We will note in the following, the accumulated synaptic input current to neuron
i from time 0 to time t the quantity

Ji(t) = α

t∑
n=1

γt−n(Zi+1(k) + Zi−1(k)
)

(2.37)

Thus the membrane potential at time t of a neuron i that has produced it last fire at time
t = 0 is done by

Vi(t) =

t∑
n=1

γt−n
t−1∏
k=n

(
1 − Zi(k)

)
I s
i (Z(n − 1)) =

Ii

1 − γ
− γt−1

( Iiγ

1 − γ
+ 2α

)
+ Ji(t) (2.38)

Proposition 3. Let be τm
i+1, τ

n
i−1 the notation for the m-th and n-th firing times of neurons

i + 1, i − 1 respectively. We have

Ji(t) = α
∑

{0≤τm
i+1≤t−1}

+γτ
m
i+1 + α

∑
{0≤τn

i−1≤t−1}

γτ
n
i−1 (2.39)
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then, it may be written as

Ji(t) = α
∑

{m∈{0,...,t−1}:
Zi+1(m)=1}

γm + α +
∑

{m∈{0,...,t−1}:
Zi+1(m)=1}

γn (2.40)

and now we can see that

0 ≤ Ji(t) ≤
2α(1 − γt)

1 − γ
<

2α
1 − γ

, t < ∞ (2.41)

Proposition 4. The function defined as

τi = inf
t>0

{
Ii

1 − γ
− γt−1

( Iiγ

1 − γ
+ 2α

)
+ Ji(t) ≥ θ

}
= inf

t>0

{
t ≥ 1 +

1
log(γ)

log
(

Ii + (1 − γ)(Ji(t) − θ)
Iiγ + 2α(1 − γ)

)}
(2.42)

is a function of raster plot, i.e., it maps the firing times of the system

From last proposition on can construct the raster plots in a direct way computing all
possibilities. Anyway, it shows us that the dynamic is periodic at the asymptotic limit except
if τi = ∞ that means it is a ghost orbit. Moreover, the period distribution is controlled by the
Input Ii.

2.3.2 The minimal distance attractor-threshold: dAS

The first case we consider is the neuronal death where naturally, the minimal distance to
threshold is min(1, 1 − I

1−γ ), where the second option comes from the case where input is
present but its intensity is such that I < θ(1 − γ) so not sufficient to take out the system from
the η0 state when it falls there. As the periodic orbit cases are more elaborated, for clarity we
should discuss the input and non input cases separately beginning with the non input case.
Suppose that for a P-periodic orbit , all neurones have fired at least once3. Suppose then,
that the neuron k is the one in the orbit who gets closest to the threshold and name τ the time
elapsed since its last firing time and the instant it arrives to the closest position. Thus, by
hypothesis 1 ≤ τ ≤ P. If τ = 1 that means that Vk(τ) = Jk(Z(τ − 1)) = 0,−αor − 2α and
the minimum distance value may be dAS = 1, 1 + α, 1 + 2α respectively. More generally,
Vk(τ) =

∏τ
k=1 γ

τ−kJk(Zk(τ − k)). so the minimal distance is dAS = |θ − Vkτ|. As we do not
know the spiking sequences of all periodic orbits generated before simulate the dynamics we
can not predict the form of the dAS dependences. However, we can use this construction to

3This assumption is almost an unproved lemma since except in presence of a very particular input signal,
we find difficult to imagine any type regular diffusion of a perturbation in a chain that do not pass never through
some sites of the chain.
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explain any behavior founded. Moreover, we can can anticipate that for a fixed γ value dAS
is a linear-piecewise continuous function of the α parameter. However, as simulation shows,
the minimal size of a linear interval may be quite small.

For an specific case, lets assume that the system admits bi-periodic orbits in certain[
αmin, αmax

]
region. Then, the dynamics of neuron k is necessarily one fire time(by hypoth-

esis of non null activity) and one quiescent time. At the quiescent time as showed above,
dAS ≥ θ so it cannot produce a null value. For the firing time, there are nine different pos-
sible configurations, that depends of the specific spiking pattern of each possible bi-periodic
orbit. Two of them can not produce the values lower than dAS = 1. The straightforward
computation of the relevant ones yields

dAS =



θ − 2α(1 − γ)
θ − α(1 − 2γ)
θ − α(2 − γ)
θ − α(1 − γ)
θ + 2αγ
θ − αγ
θ − 2α
θ − α

We plot in figure ?? the conditions annulling dAS at some region of the parameter space
γ, α. Some of this curves will correspond for more larger regions to the dAS zero values
than the others as the creation of the bi-periodic orbits associated to the others may be not
allowed everywhere. Also, this curves will not correspond to dAS zeros in regions where
exist orbits of other periods that may have closer values to threshold than those of bi-periodic
orbits. As an example, we found in the N = 5 simulation dAS zero values that are at same
α values predicted by this equations, but when we look dAS as a function of α for a fixed γ
value the slope do not corresponds to the predicted for any of this equations, so we realize
that that zero curve coincides in its α solution values to those equation dAS = 0 but its slope
is different as it correspond to an orbit of greater period with another Vk(τ) form. Now, for
the case of input, this method remains applicable but, now we will have to different type of
neurons and so its Ji(t) will be different, letting doubling the number of terms appearing in
the set of possible dAS values. 2.3.2 for one only value of external input, or multiplying it
by the number of different input intensities. The, as seen from simulations, the input regime
present a more complex structure with much more ’dAS = 0 curves in the parameter space.
Anyway, for a fixed γ value the character piecewise-linear is conserved .

2.3.3 Te minimal distance external input-discharge probability: dIP

The minimization of the distance to input is at this moment a question that requires more
reflection as it is a harder question without any previous specific theoretical result. Indeed it
seems at first look, that no answer can be done in a very general framework. However we
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Figure 2.10: Curves for the condition dAS = 0 assuming only all bi-periodic orbits allowed

would like to set here some ideas that have been explored and the knowledge they have left
us.

Definition 8. The vector PD is the set of discharge probability values of the network, defined
as:

PDi = lim
T→∞

1
T

T∑
t=0

Zi ∀i = 1, . . .N (2.43)

and in a P-periodic orbit, one can drop the limit while replacing T by the value P. Thus,
every PDi is equal to the fraction mi/P where mi is the number of times the neuron i has fired
during the whole orbit.

Definition 9. The distance between an Input Iext and the vector PD which is calculated at
the system with the same input is noted as dIP and the defined

N∑
i=1

(Ii − PDi)2 (2.44)
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From the local perspective, not knowing the attractor set of the system before simulating
it, we may ask for the best and the worst case of activity induced given an specific intensity
of the step-shaped constant external input with the restriction I < θ. The best case is that of
neurons which receive input firing at least every two iterations. Since for any such neuron
we have after firing Jk(t) is equal to one o the values −2α + I,−α + I, I, we take the lowest
one and suppose neuron do not receive any spike at next iteration letting the input to guar-
anteer by itself the spiking every two times. This yields to the condition I ≥ θ+2αγ

1+γ
. This is

obviously an overestimation since dynamics involves neighbors neurones receiving also the
input so therefore contributing with their spikes to maintain the high activity. This is why
this condition actually implies PDi ≥ 1/2. Subsequently, for the worst case we take the case
where the neuron has received all the possible spikes and the input signal but they still are
insufficient to guaranteer the spike every two times. This yields us to the condition I < θ−2α

1+γ

which will imply necessarily PDi < 1/2. This bounds will be important at the time of look
for regions in the parameter space α, γ higher an lower activity for a fixed Input intensity
value.

From a global point of view, we think about doing an statistic analysis of the activity of
th NN. In this idea, for an step shaped-input we would wish be able to treat the neurons as
two different groups: those which have external input an those which do not. Unfortunately,
we can not do that since neurons in the borders of the input-and no input region (In a T2

chain, they are 4, two with their own stimuli and one neighbor stimulated while the other
not, and the other two without any own stimuli and one neighbor stimulated while the other
not 4). Now we have two ways of avoiding this frontier problem;

• First one, supposed the system large enough to neglect this border effects, i.e., N →
larger such that if k is the index of the middle frontier

∑N−1
i=2,i,k,k+1(PDi− Ii)2 � 2PDN +

2PD1 since neurons 1,N define always the second frontier between input and no input
region. Then we can neglect the different terms

• Or suppose the coupling constant, here, the α value who quantifies the spike force,
is such that α � θ. Then the influence of neighbors everywhere is weak an we can
assume PDN ≈ PDN−1 and PD1 ≈ PD2. In this way, we are not neglecting but correctly
including the terms in the created groups.

As a remark, before continuing we can say that the second method is robust while the first
one not, in the sense of network structure, cause if it changes i.e., we change the weight
matrix, adding some other non null components, the number of frontier neurons may be
rapidly increased invalidating our approximation of neglecting the frontier terms.

4Here, someone could say they are all different, since this difference will logically propagates to all neurons
in the chain making them all differents a cause of their neighbor. It is true, but here we are concerned first with
the first order effects, so we consider every neuron inside each of the two regions at exception of the border one
as having identical neighbors
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After assuming one of the two alternatives as hypothesis we can write

dIP =


N
2

(
n̄
P

)2
+ N

2

(
I − m̄

P

)2
if N is even

N−1
2

(
n̄
P

)2
+ N+1

2

(
I − m̄

P

)2
if N is odd

(2.45)

where n̄, m̄ are the average number of spikes during a whole orbit of neurons without stimuli
and with stimuli respectively.

How to proceed now without knowing explicitly the spike sequence of orbits? We begin
with the heuristic result that as larger the Network 5, larger the set of available periods. We
understand this, actually as the number of different ’spike trains’ or perturbations patterns
that may travel periodically in the chain, like the increasing of the number of available vi-
brating modes on a excited string as the length of the string is increased. On the other hand
we know from the proposition of firing time that when the system is allowed simultaneously
to stay and to go out of the ’zero spike’ state it can take every possible period orbit value,
but more over, from the lemma of transition graph and the transition graph example in figure
2.9, we might accept that almost every average activity values of spiking neurons can be
obtained by going out from η0 and coming back to it from very specific spiking states. We
could, expect even more, saying that all averages firing activities of neurones without input
can be obtained with any period value. For this we should admit that a period cycle were
almost completely conformed but at the end something failed and it fall to the neuronal death
to going out sometime after. Although, this analysis is nor rigorous neither formally stated,
we believe it may justify that we treat n̄, m̄ as free variables that may be adjusted to find the
minimal orbit. Since this proceeding depends of allowing any P-periodic orbit, were are in
the high input regime.

The figures 2.11-2.12 show in a density plot, the dIP value calculated with the prece-
dent reasoning. With remark the displacement of the lowest value region (in black) with
the change of input value. As a final idea, we propose the use of the limit conditions of
the local point of view to improve this approximation since one should try to minimize the
function using Lagrange multipliers for taking account of the limit values of the PDi and a
more reliable characterization of the lowest value region. However this step is only useful
when α is little since the region of parameter space I, γ between the conditions I ≥ θ+2αγ

1+γ

and I < θ−2α
1+γ

where no bound can be a priori imposed on the PDi values, covers quickly the
parameter space [0, 1]I × [0, 1]γ and when α = 0.5 this region is already completely inside
the non-specific bound region.

5Indeed we are on a large one in order to be able to do statistics over it
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Figure 2.11: Density plot for dIP value with section 1.3.3 assumptions, I=0.5

2.4 Simulation and Numerical Results

2.4.1 The Simulation Problems
When dealing with NN, where the number of neurons is expected to be large, in order to have
an reliable but also optimal simulation, it is important to have a good control of the parame-
ters concerning the quality of the data given by the simulation, and therefore its dependences
of the other Network parameters as size, synaptic weight etc. In BMS model these issues are
crucial.

Beginning with a fixed size network, the simulation, in its simplest scheme is intended
to run for different values (most as possible) of parameters α, γ and for each combination of
them, to run over different values (restricted in the sub-threshold region) of the intensity for
a step-shaped, constant in time, external current Iext , as it was considered in the last section.
The simulation confidence, is controlled by the following 2 quantities:

i The ’number of Initial conditions’ (NBCI), to be take randomly inside the N-dimensional
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Figure 2.12: Density plot for dIP value with section 1.3.3 assumptions, I=0.9

space of membrane potential values, they are supposed to exhaust all the different attrac-
tors of the system.

ii The ’transient time’ (T), who makes evolve the system in order to eliminate non-steady
behaviors before the analysis of the forward orbit.

Is it possible to determinate ab-initium if NBCI and T are fixed values or if there exist
dependencies of the other parameters (N, α, γ, Iext )? Obviously, the answer will depends of
what we are looking for, i.e in our case, to characterize the NN and its response to the input
signal, by computing the minimum distance of the attractor set to threshold and the distance
between the external Input signal and the response (output) signal. However, as we shall
discuss an analytical answer may not exist or rest only as an estimation.

The first difficult is dealing with the neuronal death state and the non steady-spike se-
quence supposed to be complete between the lapse we defined as ’transient time’.We know
that the system may goes to neuronal death or periodic activity. but almost always passing
through a sequence of non-steady spiking sequence that depends on the initial condition.
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However, the stationary state of periodic orbit will not be found never before all neurons
have fired at least once and using results of the last section we know that the time all neurons
take to discharge at least once may be arbitrary large and indeed grows exponentially with γ.

Therefore, the election of a transient time instead of being meaningful becomes delicate
since one can not be sure of the value at which we began to look for the period of the orbit6.
The natural option to assume ’ad-hoc’ period = 1 for this cases will let us with a not opti-
mal code to differentiate neuronal death of larger period orbits in large size systems, since
simulations shows BMS Laplacian NN has natural orbits of order of its sizes. Moreover, tak-
ing that solution will leave unrecognizable regions with orbits of periods of order 2NTD ([3]) 7.

To resume the problem, we can not know a priori, how long the non-steady spiking se-
quence, which depends of the IC can take to dissapear and get to neuronal death or onto
a periodic orbit, cause the raster plot function associated will contain dependencies of the
initial condition itself and anyway it contains the term J that has inside actually the informa-
tion of the dynamics of all the network. The final consequence of this it that chossing any
transient value will create inevitably a dependence of the NBCI value to be taken. We shall
try to show below how it happens.

Suppose now that when simulating, we take a transient time and NBCI fixed values.
Then, we will take randomly many ICs and hopefully all of them go onto an steady periodic
orbit or inside our ’numerical neuronal death’ i.e.- a N-dimensional ball centered in the neu-
ronal death vector as defined in2.33 and of radii ε 10−8- in time inferior than our transient
time. Then the vectV taken for characterize the forward orbit will give us a reliable values.
But, taking much more ICs we can overpass our chance and fall on a weird initial condition
V(0) which at a the after the transient time is not yet a point inside the possibles steady states
of the system nor a vector ε close to the neuronal death state. Wherever this vector is go-
ing, the simplest and fastest one algorithm to find the period will fail (and without a careful
code it will go onto an infinite loop)and moreover the simulation may give wrong values in
the other quantities computed as they mostly will include values of the non-steady behavior
lapse.

The only way we find to treated this problem of the transient time at simulation is man-
ually fixing the transient time and NBCI values in a way the transient time be high enough
to handle the number of random NBCI proposed and do that for each region of the space
or parameters. As the we believe, this method can be accomplished successfully in the case
of BMS Laplacian because the α dependence is very weak a cause of the ’always excita-

6Clearly, taking a ’wrong’ membrane potential vector V as reference for looking its period, will gives us no
period if it is actually going to neuronal death.

7This last argument may be more relevant in other types of BMS models since as we know the BMS
Laplacian at this level of external input restriction does not present this higher order periodic orbits type.
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tory character’ of synapses since they can make fire easily the neighbors in most part of the
range α considered thus conducing very quickly to the stable periodic orbits. In that way, we
look for a a transient time only in function of the parameter γ. Nevertheless note that this is
not the best situation we can hope for a simulation since we remember the first firing time
depends of γ in an exponential way so the transient time too. As consequence it would be
difficult to simulate larger networks for the complete range of the γ parameter. We include
the curve of the suitable transient times and NBCIs values found for a reliable simulation or
N = 5-network.
However, a clear answer about why a manually fixing of this values may be acceptably done
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Figure 2.13: Curve of NBCI and respective transient time found for a suitable simulation of
a N=6 BMS-Laplacian Network

is mostly related with the second major problem of simulating every (in general) BMS model.
This problem comes out from the fact we do not know the order of the Markov partition of
the membrane potential N-dimensional space before computing the dAS . Therefore, certain
parameter regions may need higher NBCI in order to exhaust completely the attractor set
and finally compute its lower dAS and the orbit responsible of it. Then, for this regions we
would be obligated to increase the transient time in order to eliminate non-steady behavior
results as discussed above.
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To determine if we have choose a good NBCI to exhaust the attractor set, we simulate
one γ, α point of fixed size network with a very high NBCI value. Then we take a more
acceptable in a numerical sense, NBCI value for simulate more the surrounding regions
expecting obtain similar characteristic values. If the results shows large differences between
the characteristic system values obtained and those produced with the last simulation, we
increase the NBCI until the results are similar and this is robust in NBCI.Then we look for
a lower transient value capable of contain all non-steady behaviors produced with that NBCI
and after find it we are ready to simulate all the region optimally, i.e, taking many closer
points in the parameter space.

2.4.2 Simulation Results

The following results corresponds to a simulations run for N = 5 and some explicitly noted
for N=8. When an input is present its form is done by I = (0, 0, I, I, I), i.e., the neurons 1, 2
do not have input while the neurons 3, 4, 5 has the same intensity input value. Most of results
use the density color map(DCM) where a 3-D data set is plotted as mapped on 2-D region
using a color scale to represent the third coordinate. This results very useful since to study
a very irregular 2-D surface is from far more difficult. Nevertheless this technique is not
directly clear since the number of colors it used to map is normally 256, so that might hide
information were the third coordinate takes a lot of different but closer values. As we shall
see, a map only for that region is the solution to visualize particular structures 8. We note in
figure 2.14 that the distribution of curves dAS = 0 is very similar a those plotted theoretically
in section 1.3.2. We see in the figure 2.15 the period distribution in the parameter space. We
note in figure 2.16 the strong influence of stimuli in the the distribution of curves dAS = 0.
We note also the more complex regime after γ = 0.6 as predicted theoretically in section
1.3.2.In next figure taking a view on a fixed γ value we show that the surface is not regular,
and is more complex than we initially believe and even more if we take an input slightly
higher. We take a general zoom of the high input region, and look at the minimal dAS and
the period distribution of the corresponding orbit. But we can retire the zoom and look for
the period of the corresponding orbit in all the simulated region in figure 2.20. We realize
that even, while the distance to the attractor stay stable in value, the period of the orbit is
now aleatory distributed between orbits of period 8 and 4.

Figures 2.21,2.22 show that the high input region (I > θ(1 − γ) presents more complex
behavior. We may take a zoom for the high input region to see its complexity in an explicit
way( figures 2.23,2.24.

In figure2.25 we show all the discharge probabilities for a fixed Input and γ values.
First we confirm that the activity of neurons depends of the type of neighbors they have

8Even if the number of colors used to map had not limits, the eye resolution and the number of pixels of the
display screen are limiting factors to see an arbitrary set of 3-D data.
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Figure 2.14: Density Color Map (DCM) of the minimal distance between atracttor -threshold
for a 5-BMS-Laplacian NN with non external input.

as mentioned in section 1.3.3. That let us with only three different discharge probabili-
ties.Nevertheless in most part of the parameter space region, the minimal dIP is achieved
by an orbit with the same activity for all the stimulated neurons. Moreover, we note that for
weaker synapses the activity of the neurons without stimuli can remain null but for stronger
synapses this is not possible. Finally, a surprising result is that in the α region where the
minimizing orbit present null activity in the neurons without stimuli, the activity in the neu-
rons with stimuli can became lower and still minimising the dIP value. This effect is the
competition between parameters that allow or not certain orbits to exist. We prefer postpone
the DCM of the three different Discharge Probabilities to the end, and continue here with
another important result.
Now we look at a following set of graphics for a N=8 Network. We show the minimal dis-
tance dIP for to fixed αvalues in all the range of the parameter γ but for different inputs in
each graph. We have already shown in a the 5-Network that in the high input region the com-
plexity in the parameter space is higher and here is verified too but what we want to show is
that for certain Input values the complexity region presents a similar behavior in the values
distribution but for a more higher input value the distribution of values of the dIP change
radically its form. Another fact we would like to note is that at each specific input value, in
a fixed γ value the period for the lower α parameter is inferior or equal to the corresponding
to the higher α value. This is shown in figure 2.29 only for the input value I = 0.8. What
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Figure 2.15: DCM of the Period of the orbit producing the minimal dAS in figure 2.14.

this shows is that for weaker synapses the complexity of the neuronal activities produced are
lower those of the strong ones.
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Figure 2.16: Density Color Map (DCM) of the minimal distance between attractor -threshold
for a 5-BMS-Laplacian NN with Input I=0.4
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Figure 2.17: minimal distance between attractor -threshold for a 5-BMS-Laplacian NN with
Input I=0.4,0.5 and γ = 0.66.
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Figure 2.20: DCM of the period of the orbit corresponding to minimal distance between
attractor -threshold for a 5-BMS-Laplacian NN with Input I=0.4

Figure 2.21: DCM of the minimal distance Input-Discharge Probability for a 5-BMS-
Laplacian NN with Input I=0.4
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Figure 2.22: DCM of the period of the orbit corresponding to the minimal dIP in figure 2.21
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Figure 2.23: DCM of the minimal distance between Input and discharge Probability for a
5-BMS-Laplacian NN with Input I = 0.4
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Input-Discharge Probability for a 5-BMS-Laplacian NN with Input I=0.4



2.4. SIMULATION AND NUMERICAL RESULTS 49

Figure 2.25: Discharge Probability of the 5 neurons of a BMS-Laplacian NN with Input
I=0.4 from the orbits that minimize the distance with the Input vector
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Figure 2.26: DCM for the 3 different discharge probabilities that minimize the distance to
the output in N = 5 BMS Laplacian NN with I = 0.4
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Figure 2.30: Diagrams of dynamical regions from eq 2.24 in the parameter space (γ, α) for
different I values. (continuing next page)
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Figure 2.31: continuation(see figure 2.30 caption)
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3.1 Conclusions
• We have verified at least numerically that in the BMS-Laplacian Model without ap-

plied external current, the minimal dAS and dIP are produced by orbits of period
equal or lower than the Network size. As we have demonstrated that no orbits of pe-
riod greater than N can not exits for N = 3-networks, we are induce to believe that this
result is general for arbitrary size networks.

• We have demonstrated that in the BMS-Laplacian Model, the NN is very sensible to
stimuli and it can cause many effects as:

i Make the distribution of the orbits that produce the minimal dAS randomly in
certain regions of parameter space in even sized Networks.

ii If I > θ(1 − γ) they exist periodic orbits of period as large as one may want
adjusting the parameter values.

• We conclude then that the BMS-Laplacian model has periodic dynamic except for a
generic set of the configuration space, in all the parameter space simulated region.
Nevertheless, the structure of the ω-limit set is complex and depends in a strong way
of the parameter space and the input intensity value.

• After looking to numerical results and previous theoretical analysis, we do not see in
clear way to related the minimization of dIP and dAS . But here we can state two
numerical facts:

i Anyway, it is true that satisfying the condition I > θ(1−γ) means in both cases to
open the door to more complex parameter space distribution characteristics since
it is the condition allowing the creation of more complex orbits.

ii The weaker the spikes , i.e., lower α value, more complexity is present in the
dAS value, i.e., more irregular an variable the distribution of values in the pa-
rameter space, while the dIP value on the other hand becomes simpler ( in the
same sense); and vice versa. This fact can be viewed as follows: if Spikes action
is strong the membrane potential values will be mostly far from threshold except
after spikes, and any way they will present a smaller set of possible membrane
potential values since the firing activity is high and we mean frequent so the evo-
lution of the membrane potential value has really few possibilities before being
reset have. On the other hand a higher spike activity reflects on a higher number
of orbits and periods as seen from the period distribution in figure 2.29 and that
led the system produce more different values of the distance to the input signal.

• Simulations with higher Input values, shows the existence of another regime of be-
havior in the parameter space. This regime has not been yet well characterized nor
understood.
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3.2 Future work on the BMS-Models
• We would like to extend the results and prove formally some results for an arbitrary

size Network with more even active synapses meaning more richer structures.

• We are highly interested also in the synaptic plasticity effects, that is, when the network
can make evolve its synapses. So the model parameter α will be function of time and
we can look how is its evolution if the network who is summited to an external constant
input try to minimize the dIP that is, produce and output as similar as possible to the
input signal.

• A more profound numerical an theoretical work focus on the results of Vieville and
Kornprobst, to well understand the output or response signal given an specific input on
an spiking Neuronal Network.

• Develop of some ideas concerning the spiking NN as a transport phenomena with
maybe some specific type of distribution associated to its final states.
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Figure 3.1: continuation
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Figure 3.2: End of figure set 2.30.
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Listings

The principal program

# i n c l u d e < s t d i o . h>
# i n c l u d e <math . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e < f l o a t . h>
# i n c l u d e < t ime . h>
# i n c l u d e ” f n j c −4. c ”
i n t main ( vo id )
{

i n t M[ 4 ] , NCI [ 3 ] [ 1 0 ] , t r a n s i t [ 3 ] [ 1 0 ] ;
do ub l e In [ 4 ] ;
i n t i , k , qmax , t , t au , i n p u t , ASper , IPpe r , l , per , i 0 ;
do ub l e ∗V, ∗Vp , ∗ Vin , Vmin , Vmax , ∗ V0as , ∗ V0ip , ∗ Vtrans , ∗VevolAS , ∗ VevolIP ; / / P o t e n t i e l s de membrane a t , t +1
do ub l e ∗PD, ∗PD0 ;
FILE ∗ fdp , ∗ fhp ;
c h a r c h a i n e a t t [ 1 0 0 ] , c h a i n e t r a j [ 1 0 0 ] , compor tement [ 1 0 0 ] , c h a i n e a c t m o y [ 1 0 0 ] , g r a p h c o d i n g [ 1 0 0 ] , d e c h a r g e [ 1 0 0 ] ;
c h a r c h a i n e a t t 2 [ 1 0 0 ] , c h a i n e t r a j 2 [ 1 0 0 ] , cha ineac tmoy2 [ 1 0 0 ] , g r a p h c o d i n g 2 [ 1 0 0 ] ;
do ub l e e t , sum0 , d i s t a n c e i p , d i s t , d i s t 1 ;
do ub l e d i s t a n c e a s , d i s tA , d i s tA1 , Imax ;

M[ 0 ] = 5 ; / ∗M[ 1 ] = 6 ; ∗ / M[ 1 ] = 8 ; M[ 2 ] = 1 0 ;
In [ 0 ] = 0 . 0 1 ; In [ 1 ] = 0 . 2 8 ; In [ 2 ] = 0 . 4 ; In [ 3 ] = 0 . 8 ;

NCI [ 0 ] [ 0 ] = 1 5 0 ; NCI [ 0 ] [ 1 ] = 2 0 0 ; NCI [ 0 ] [ 2 ] = 3 5 0 ; NCI [ 0 ] [ 3 ] = 5 0 0 ;
NCI [ 0 ] [ 4 ] = 1 5 0 0 ; NCI [ 0 ] [ 5 ] = 5 0 0 0 ;

NCI [ 0 ] [ 6 ] = 5 0 0 0 ; NCI [ 0 ] [ 7 ] = 5 0 0 0 ;

65
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t r a n s i t [ 0 ] [ 0 ] = 1 5 ; t r a n s i t [ 0 ] [ 1 ] = 2 0 ; t r a n s i t [ 0 ] [ 2 ] = 2 5 ; t r a n s i t [ 0 ] [ 3 ] = 3 0 ; t r a n s i t [ 0 ] [ 4 ] = 4 0 ; t r a n s i t [ 0 ] [ 5 ] = 5 0 ;
t r a n s i t [ 0 ] [ 6 ] = 1 5 ; t r a n s i t [ 0 ] [ 7 ] = 2 0 0 0 ;
NCI [ 1 ] [ 0 ] = 1 0 0 0 ; NCI [ 1 ] [ 1 ] = 1 0 0 0 ; NCI [ 1 ] [ 2 ] = 1 0 0 0 ; NCI [ 1 ] [ 3 ] = 2 0 0 0 ; NCI [ 1 ] [ 4 ] = 3 0 0 0 ; NCI [ 1 ] [ 5 ] = 5 0 0 0 ;
NCI [ 1 ] [ 6 ] = 1 0 0 0 0 ; NCI [ 1 ] [ 7 ] = 1 0 0 0 0 ; NCI [ 1 ] [ 8 ] = 1 0 0 0 0 ; NCI [ 1 ] [ 9 ] = 1 0 0 0 0 ;
t r a n s i t [ 1 ] [ 0 ] = 2 0 + 1 0 ; t r a n s i t [ 1 ] [1 ]=15+7+15 ; t r a n s i t [1 ] [2 ]=20+7+20 ; t r a n s i t [1 ] [3 ]=25+7+30 ; t r a n s i t [1 ] [4 ]=32+7+40 ;
t r a n s i t [ 1 ] [5 ]=44+7+50 ; t r a n s i t [1 ] [6 ]=63+7+60 ; t r a n s i t [1 ] [7 ]=97+7+70 ; t r a n s i t [1 ] [8 ]=205+7+80 ; t r a n s i t [ 1 ] [ 9 ] = 5 0 0 + 7 ;
NCI [ 2 ] [ 0 ] = 1 0 0 0 0 ; NCI [ 2 ] [ 1 ] = 5 0 0 0 0 ; NCI [ 2 ] [ 2 ] = 2 0 0 0 0 ; NCI [ 2 ] [ 3 ] = 2 5 0 0 0 ; NCI [ 2 ] [ 4 ] = 2 7 0 0 0 ; NCI [ 2 ] [ 5 ] = 3 0 0 0 0 ;
NCI [ 2 ] [ 6 ] = 3 5 0 0 0 ; NCI [ 2 ] [ 7 ] = 1 0 0 0 0 0 ;
t r a n s i t [ 2 ] [ 0 ] = 1 9 ; t r a n s i t [ 2 ] [ 1 ] = 2 0 ; t r a n s i t [ 2 ] [ 2 ] = 3 0 ; t r a n s i t [ 2 ] [ 3 ] = 4 0 ; t r a n s i t [ 2 ] [ 4 ] = 5 0 ; t r a n s i t [ 2 ] [ 5 ] = 6 0 ;
t r a n s i t [ 2 ] [ 6 ] = 8 5 ; t r a n s i t [ 2 ] [ 7 ] = 1 0 0 ;
t h e t a = 1 . 0 ; e p s i l o n = 0 . 5 ;

f o r ( i n p u t =1; i n p u t <2; i n p u t ++){
f o r ( l =1; l <2; l ++){

N=M[ l ] ;
s r a n d 4 8 ( t ime (NULL ) ) ;
T=20∗N ; / / Duree de l a p l a g e t e m p o r e l l e ou e s t c a l c u l e e l a d i s t a n c e
I=VALLOC(N, d ou b l e ) ;
V=VALLOC(N, d ou b l e ) ;
Vp=VALLOC(N, d ou b l e ) ;
Vin=VALLOC(N, d ou b l e ) ;
VevolAS=VALLOC(N, d ou b l e ) ;
VevolIP=VALLOC(N, d ou b l e ) ;
PD0=VALLOC(N, d ou b l e ) ;
V0ip=VALLOC(N, dou b l e ) ;
V0as=VALLOC(N, dou b l e ) ;

i f ( i n p u t ) {
f o r ( i 0 =1; i0 <4; i 0 ++){ Imax= In [ i 0 ] ;

f o r ( k =0; k<N; k ++){
i f ( k< ( i n t ) f l o o r ( ( ( do ub l e ) N / 2 . 0 ) ) ) { I [ k ] = 0 . 0 ; }
e l s e { I [ k ]= Imax ; }
p r i n t f (”% l g \ t ” , I [ k ] ) ;

}

s p r i n t f ( comportement , ” da t a −28 /DP− I n p u t%lg N%d ” , I [N−1] ,N ) ;
fdp= fopen ( comportement , ”w” ) ;

s p r i n t f ( decha rge , ” da t a −28 / P r o b D e c I n p u t%lg N%d ” , I [N−1] ,N ) ;
fhp= fopen ( decha rge , ”w” ) ;
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f o r ( r =0; r <450; r ++){
gamm= 0 . 0 1 + ( 0 . 0 0 2 )∗ r ;

i f (gamm<=0 . 1 ) {NBCI=NCI [ l ] [ 0 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 0 ] ; }
e l s e i f (gamm>0.1 && gamm<=0 . 2 ) {NBCI=NCI [ l ] [ 1 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 1 ] ; }

e l s e i f (gamm>0.2 && gamm<=0 . 3 ) {NBCI=NCI [ l ] [ 2 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 2 ] ; }
e l s e i f (gamm>0.3 && gamm<=0 . 4 ) { NBCI=NCI [ l ] [ 3 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 3 ] ; }
e l s e i f (gamm>0.4 && gamm<=0 . 5 ) {NBCI=NCI [ l ] [ 4 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 4 ] ; }

e l s e i f (gamm>0.5 && gamm<=0 . 6 ) { NBCI=NCI [ l ] [ 5 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 5 ] ; }
e l s e i f (gamm>0.6 && gamm<=0 . 7 ) { NBCI=NCI [ l ] [ 6 ] ;

t r a n s i t o i r e = t r a n s i t [ l ] [ 6 ] ; }
e l s e i f (gamm>0.7 && gamm<=0 . 8 ) { NBCI=NCI [ l ] [ 7 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 7 ] ; }
e l s e i f (gamm>0.8 && gamm< 0 . 9 ) { NBCI=NCI [ l ] [ 8 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 8 ] ; }
e l s e i f (gamm>=0.9 && gamm<0 . 9 3 ) { NBCI=NCI [ l ] [ 8 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 8 ] + 1 2 0 ; }
e l s e {NBCI=NCI [ l ] [ 9 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 9 ] ; }

qmax=NBCI ;
f o r ( s =0; s <2; s ++){

a l p h a =0 .3+0 .5∗ s ;
s p r i n t f ( c h a i n e t r a j , ” da t a −28 /1 e T r a j e c t o i r e I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;
s p r i n t f ( c h a i n e a t t , ” da t a −28 /1 e T r a j M o y I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;
s p r i n t f ( cha ineac tmoy , ” da t a −28 /1 e a c t m o y I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;
s p r i n t f ( g r aphcod ing , ” da t a −28 /1 e c o d e I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;

s p r i n t f ( c h a i n e t r a j 2 , ” da t a −28 /2 e T r a j e c t o i r e I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;
s p r i n t f ( c h a i n e a t t 2 , ” da t a −28 /2 e T r a j M o y I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;
s p r i n t f ( cha ineac tmoy2 , ” da t a −28 /2 e a c t m o y I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;
s p r i n t f ( g raphcod ing2 , ” da t a −28 /2 e c o d e I n p u t%l g a l p h a%lg gamma%lg N%d ” , I [N−1] , a lpha , gamm ,N ) ;

W= c r e e r r e s e a u P P V 1 D (N, a l p h a ) ;
Vmax=gamm∗ t h e t a +2∗ a l p h a+Imax ;
Vmin=−2.0∗ a l p h a ;

e t = 0 . 0 ;
sum0 = 0 . 0 ;
d i s t =20;
d i s t A =20;
t a u =0;

do { / / Cond I n i t
f o r ( i =0; i <N; i ++)Vin [ i ]=Vmin+(Vmax−Vmin )∗ drand48 ( ) ;



68 BIBLIOGRAPHY

V t r a n s=Trans ( Vin ) ;
p e r= p e r i o d e ( V t r a n s ) ;

d i s t a n c e a s =d i s t a n c e A S ( Vt rans , p e r ) ;
d i s t A 1=d i s t A ;
d i s t A=min ( d i s tA , d i s t a n c e a s ) ;

i f ( d i s t A 1 != d i s t A ) f o r ( k =0; k<N; k ++){
V0as [ k ]= V t r a n s [ k ] ;
VevolAS [ k ]= Vin [ k ] ;

}

PD=ProbDec ( Vt rans , p e r ) ;
d i s t a n c e i p =d i s t a n c e I P D (PD , I ) ;
sum0= d i s t a n c e i p + sum0 ;
e t = d i s t a n c e i p ∗ d i s t a n c e i p + e t ;

d i s t 1 = d i s t ;
d i s t =min ( d i s t , d i s t a n c e i p ) ;

i f ( d i s t 1 != d i s t ) f o r ( k =0; k<N; k ++){
V0ip [ k ]= V t r a n s [ k ] ;
VevolIP [ k ]= Vin [ k ] ;
PD0 [ k ]=PD[ k ] ;

}

t a u ++;

f r e e (PD ) ;
f r e e ( V t r a n s ) ;

} w h i l e ( t au <qmax ) ;

sum0=sum0 / ( ( do ub l e ) qmax ) ;
e t = s q r t ( f a b s ( e t / ( ( do ub l e ) qmax)−sum0∗sum0 ) ) ;

ASper= p e r i o d e ( V0as ) ;
I P p e r= p e r i o d e ( V0ip ) ;

i f ( ASper>N) {
a t t r a c t e u r ( c h a i n e a t t , c h a i n e t r a j , g r aphcod ing , VevolAS , t r a n s i t o i r e +ASper +1 ) ;
a t t r a c t e u r ( c h a i n e a t t 2 , c h a i n e t r a j 2 , g raphcod ing2 , V0as , t r a n s i t o i r e +ASper +1 ) ;
/ / ActMoy ( cha ineac tmoy , Vevol , t r a n s i t o i r e +ASper +1 ) ;
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/ / a t t r a c t e u r ( c h a i n e a t t , c h a i n e t r a j , g r aphcod ing , V0as , ASper ) ;
/ / ActMoy ( cha ineac tmoy , V0as , ASper ) ;

}

i f ( IPpe r >N) {
a t t r a c t e u r ( c h a i n e a t t 2 , c h a i n e t r a j 2 , g raphcod ing2 , VevolIP , t r a n s i t o i r e + I P p e r +1 ) ;
/ / ActMoy ( cha ineac tmoy , Vevol , I P p e r+ t r a n s i t o i r e ) ;
/ / a t t r a c t e u r ( c h a i n e a t t , c h a i n e t r a j , g r aphcod ing , V0ip , I P p e r ) ;
/ / ActMoy ( cha ineac tmoy , V0ip , I P p e r ) ;

}

f p r i n t f ( fdp ,”% l g \ t %l g \ t %l g \ t %d \ t %l g \ t
%l g \ t %l g \ t %d \ t %l g \n ” , gamm , a lpha , d i s tA , ASper , d i s t , sum0 , e t , IPpe r , PD0 [ 0 ] ) ;

/ / p r i n t f (”% l g \ t %l g \ t %l g \ t %d \ t %l g \ t %l g \ t %l g \ t
%d \ t %l g \n ” , gamm , a lpha , d i s tA , ASper , d i s t , sum0 , e t , IPpe r , PD0 [ 0 ] ) ;

f p r i n t f ( fhp ,”% l g \ t%l g \ t%l g \ t ” , I [N−1] ,gamm , a l p h a ) ;
f o r ( k =0; k<N; k ++){ f p r i n t f ( fhp ,”% l g \ t ” , PD0 [ k ] ) ; }
f p r i n t f ( fhp , ” \ n ” ) ;

f o r ( i =0; i <N; i ++) f r e e (W[ i ] ) ; f r e e (W) ;
} / / FIN BOUCLE ALPHA

f p r i n t f ( fdp , ” \ n ” ) ; / / ISOLIGNES
p r i n t f ( ”N %d , i n p u t %d gamma %l g (%d ) c i c l o f i n a l i z a d o \n ” ,N, i0 , gamm , r ) ;
f p r i n t f ( fhp , ” \ n ” ) ; / / ISOLIGNES pour PD0 f i l e

} / / b o u c l e s r−gamma
f c l o s e ( fhp ) ;

} / / b o u c l e s I n p u t s
}

e l s e {
s p r i n t f ( comportement , ” da t a −28 /DP−BMSLap N%d ” ,N ) ;
fdp= fopen ( comportement , ”w” ) ;

f o r ( k =0; k<N; k++) I [ k ] = 0 . 0 ;
f o r ( r =0; r <450; r ++){

gamm=0.01+ 0 .0 02∗ r ;

i f (gamm<=0 . 1 ) {NBCI=NCI [ l ] [ 0 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 0 ] ; }
e l s e i f (gamm>0.1 && gamm<=0 . 2 ) {NBCI=NCI [ l ] [ 1 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 1 ] ; }
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e l s e i f (gamm>0.2 && gamm<=0 . 3 ) {NBCI=NCI [ l ] [ 2 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 2 ] ; }
e l s e i f (gamm>0.3 && gamm<=0 . 4 ) { NBCI=NCI [ l ] [ 3 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 3 ] ; }
e l s e i f (gamm>0.4 && gamm<=0 . 5 ) {NBCI=NCI [ l ] [ 4 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 4 ] ; }
e l s e i f (gamm>0.5 && gamm<=0 . 6 ) { NBCI=NCI [ l ] [ 5 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 5 ] ; }
e l s e i f (gamm>0.6 && gamm<=0 . 7 ) { NBCI=NCI [ l ] [ 6 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 6 ] ; }
e l s e i f (gamm>0.7 && gamm<=0 . 8 ) { NBCI=NCI [ l ] [ 7 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 7 ] ; }
e l s e i f (gamm>0.8 && gamm<=0 . 9 ) { NBCI=NCI [ l ] [ 8 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 8 ] ; }
e l s e i f (gamm>=0.9 && gamm<=0 .93 ) { NBCI=NCI [ l ] [ 8 ] ;

t r a n s i t o i r e = t r a n s i t [ l ] [ 8 ] + 1 2 0 ; }
e l s e i f (gamm>0.93 && gamm<=0 .96 ) { NBCI=NCI [ l ] [ 9 ] ;

t r a n s i t o i r e = t r a n s i t [ l ] [ 9 ] + 2 0 0 ; }
e l s e {NBCI=NCI [ l ] [ 9 ] ; t r a n s i t o i r e = t r a n s i t [ l ] [ 9 ] + 1 0 0 0 ; }

qmax=NBCI ;

f o r ( s =0; s <2; s ++){
a l p h a =0 .3+0 .5∗ s ;

s p r i n t f ( c h a i n e t r a j , ” da t a −24 / e T r a j e c t o i r e B M S L a p l a c i e n a l p h a%lg gamma%lg N%d ” , a lpha , gamm ,N ) ;
s p r i n t f ( c h a i n e a t t , ” da t a −24 / eTra jMoy BMSLaplac ien a lpha%lg gamma%lg N%d ” , a lpha , gamm ,N ) ;
s p r i n t f ( cha ineac tmoy , ” da t a −24 / eac tmoy BMSLap lac i en a lpha%lg gamma%lg N%d ” , a lpha , gamm ,N ) ;
s p r i n t f ( g r aphcod ing , ” da t a −24 / ecode BMSLap lac i en a lpha%lg gamma%lg N%d ” , a lpha , gamm ,N ) ;

W= c r e e r r e s e a u P P V 1 D (N, a l p h a ) ;
Vmax=min (gamm∗ t h e t a +2∗ a lpha , ( 2 ∗ a l p h a ) / ( 1 . 0 −gamm ) ) ;
Vmin=−2.0∗ a l p h a ;

e t = 0 . 0 ;
sum0 = 0 . 0 ;

d i s t =20;
d i s t A =20;
t a u =0;

do { / / Cond I n i t
f o r ( i =0; i <N; i ++)Vin [ i ]=Vmin+(Vmax−Vmin )∗ drand48 ( ) ;

V t r a n s=Trans ( Vin ) ;
p e r= p e r i o d e ( V t r a n s ) ;

d i s t a n c e a s =d i s t a n c e A S ( Vt rans , p e r ) ;
d i s t A 1=d i s t A ;
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d i s t A=min ( d i s tA , d i s t a n c e a s ) ;

i f ( d i s t A 1 != d i s t A ) f o r ( k =0; k<N; k ++){
V0as [ k ]= V t r a n s [ k ] ;
VevolAS [ k ]= Vin [ k ] ;
/ / PD0 [ k ]=PD[ k ] ;

}

t a u ++;

f r e e ( V t r a n s ) ;

} w h i l e ( t au <qmax ) ;

/ / f o r ( k =0; k<N; k++) p r i n t f (”% l g \ t ” , V0as [ k ] ) ;
ASper= p e r i o d e ( V0as ) ;
/ / p r i n t f ( ” \ n%d\n ” , ASper ) ;

/ / a t t r a c t e u r ( c h a i n e a t t , c h a i n e t r a j , g r aphcod ing , VevolAS , t r a n s i t o i r e +ASper +1 ) ;
f p r i n t f ( fdp ,”% l g \ t %l g \ t %l g \ t %d \n ” , gamm , a lpha , d i s tA , ASper ) ;
/ / p r i n t f (”% l g \ t %l g \ t %l g \ t %d \n ” , gamm , a lpha , d i s tA , ASper ) ;

f o r ( i =0; i <N; i ++) f r e e (W[ i ] ) ; f r e e (W) ;
} / / FIN BOUCLE ALPHA

f p r i n t f ( fdp , ” \ n ” ) ; / / ISOLIGNES

/ / f p r i n t f ( fhp , ” \ n ” ) ; / / ISOLIGNES pour PD0 f i l e
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p r i n t f ( ”N %d , i n p u t %d gamma %l g (%d ) c i c l o f i n a l i z a d o \n ” ,N, i n p u t , gamm , r ) ;

} / / b o u c l e s r−gamma

}

f r e e (V ) ;
f r e e ( Vp ) ;
f r e e ( I ) ;
f r e e ( Vin ) ;
f r e e ( VevolAS ) ;
f r e e ( VevolIP ) ;

f r e e ( V0as ) ;
f r e e ( V0ip ) ;

f r e e ( PD0 ) ;

f c l o s e ( fdp ) ;
} / / b o u c l e s N

} / / i n p u t
r e t u r n EXIT SUCCESS ;
}

The Subroutines program

# i n c l u d e ” Param . h ”
# i n c l u d e ” F o n c t i o n s . h ”

/∗∗∗∗∗∗∗∗∗∗ Macros ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

# d e f i n e s i g n e ( r ) ( ( ( r ) < 0 . 0 ) ? −1.0 : 1 . 0 )
# d e f i n e max ( a , b ) ( ( ( a ) >( b ) ) ? ( a ) : ( b ) )
# d e f i n e min ( a , b ) ( ( ( a )<=( b ) ) ? ( a ) : ( b ) )

# d e f i n e VALLOC( n , t y p e ) ( ( t y p e ∗ ) mva l loc ( ( n ) , s i z e o f ( t y p e ) ) )
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vo id ∗mval loc ( s i z e t n , s i z e t t a i l l e )

{

vo id ∗p ;

p= c a l l o c ( n , t a i l l e ) ;

i f ( p == NULL)
{

p r i n t f ( ” A l l o c a t i o n i m p o s s i b l e (%d o c t e t s ) \n ” , n ∗ t a i l l e ) ;
e x i t ( 1 ) ;

}

e l s e
{

/ / p r i n t f ( ” Adres se p o i n t e u r a l l o u e \ t %X \n ” , p ) ;
r e t u r n p ;

}

}

/ ∗ ∗ c r e a t i o n d ’ un r e s e a u L a p l a c i e n 1D

nombre de s i t e s N
d imens ion de l a m a t r i c e des p o i d s Nˆ2
I n t e n s i t e a l p h a
∗∗∗∗ /

do ub l e ∗∗ c r e e r r e s e a u P P V 1 D ( i n t N, do ub l e a l p h a )

{

do ub l e ∗∗ J ;
i n t k ;

J=VALLOC(N, d ou b l e ∗ ) ;

f o r ( k =0; k<N; k++)
{

J [ k ]=VALLOC(N, d ou b l e ) ;
J [ k ] [ ( N+k−1)%N]= a l p h a ; / / Gauche
J [ k ] [ ( k+1)%N]= a l p h a ; / / D r o i t e
J [ k ] [ k]=−2∗ a l p h a ;
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}

/ / e c r i m a t ( J , N,N ) ;
r e t u r n ( J ) ;

}

/∗∗∗∗∗∗ Un pas de temps de l a dynamique ∗∗∗∗∗∗∗∗ /

vo id F ( do ub l e ∗Vv , do ub l e ∗Vvp )
{

r e g i s t e r i n t i , j ;
do ub l e sum ;

f o r ( i =0; i <N; i ++)
{

Vvp [ i ]= I [ i ] ;
sum = 0 . 0 ;
f o r ( j =0; j <N; j ++) i f ( Vv [ j ]>= t h e t a ) sum+=W[ i ] [ j ] ;
i f ( Vv [ i ]>= t h e t a ) Vvp [ i ]+=sum ;
e l s e Vvp [ i ]+=gamm∗Vv [ i ]+sum ;

}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗TRANSITOIRE∗∗∗∗∗∗∗∗∗∗∗∗∗ /

do ub l e ∗ Trans ( do ub l e ∗ V)
{

r e g i s t e r i n t k , j ;
i n t t , t e s t , i ;
do ub l e ∗Vv , ∗Vvp , ∗ temp ;

Vv=VALLOC(N, d ou b l e ) ;
Vvp=VALLOC(N, d ou b l e ) ;
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f o r ( i =0; i <N; i ++)Vv [ i ]=V[ i ] ;
t =0; t e s t =0;
/ / f o r ( i =0; i <N; i ++) p r i n t f (”% l g \ t ” ,Vv [ i ] ) ;
/ / p r i n t f ( ” \ n t r a n s ha l e i d o e s t e v i n \n ” ) ;

do {
F ( Vv , Vvp ) ;

temp=Vvp ;
Vvp=Vv ;
Vv=temp ;

t ++;
} w h i l e ( t < t r a n s i t o i r e ) ;

/ / f o r ( i =0; i <N; i ++) p r i n t f (”% l g \ t ” ,Vv [ i ] ) ;
/ / p r i n t f ( ” \ n t r a n s t r a n s m i t e e s t e V t r a n s \n ” ) ;
f r e e ( Vvp ) ;

r e t u r n Vv ;

/ / f r e e ( Vv ) ; ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ prob Decharge ∗∗∗∗∗∗∗∗∗∗∗∗∗ /

do ub l e ∗ ProbDec ( do ub l e ∗ Vtrans , i n t t a u )
{

r e g i s t e r i n t k , j ;
i n t t , t e s t , i ;
do ub l e ∗summ , ∗Vv , ∗Vvp , ∗ temp ;

summ=VALLOC(N, d ou b l e ) ;
Vv=VALLOC(N, d ou b l e ) ;
Vvp=VALLOC(N, d ou b l e ) ;

f o r ( j =0; j <N; j ++){
Vv [ j ]= V t r a n s [ j ] ;
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summ[ j ] = 0 . 0 ;
}

t =0;

do {
F ( Vv , Vvp ) ;

temp=Vvp ;
Vvp=Vv ;
Vv=temp ;
f o r ( k =0; k<N; k ++){

i f ( Vv [ k]>= t h e t a ) { summ[ k ] = 1 . 0 / ( ( d ou b l e ) t a u )+summ[ k ] ; }

}

t ++;
} w h i l e ( t < t a u ) ;

f r e e ( Vv ) ; f r e e ( Vvp ) ;

r e t u r n summ ;

/ / f r e e ( summ ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗ d i s t a n c e I P D ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

do ub l e d i s t a n c e I P D ( d oub l e ∗PD , do ub l e ∗ I )

{ r e g i s t e r i n t k ;
do ub l e sum1 ;
sum1 = 0 . 0 ;

f o r ( k =0; k<N; k ++){ sum1=sum1+(PD[ k]− I [ k ] ) ∗ ( PD[ k]− I [ k ] ) ;
}
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r e t u r n sum1 ;

}

/∗∗∗∗ R e p r e s e n t a t i o n a t t r a c t e u r ∗ ∗ ∗ /

vo id a t t r a c t e u r ( c h a r chainemoy [ ] , c h a r c h a i n e t r a j [ ] , c h a r g r a p h c o d i n g [ ] , d ou b l e ∗ V, i n t t a u )
{

do ub l e m, mp , mmoy , mmax ;
i n t t =0;
r e g i s t e r i n t i , k ;
do ub l e ∗Vv , ∗Vvp , ∗ temp ;
i n t ∗ code1 ;
/ / do ub l e ∗xmoy ;
FILE ∗ fpmoy , ∗ f p t r a j , ∗ f pc od e ;

p r i n t f ( ” R e p r e s e n t a t i o n de l ’ a t t r a c t e u r \n ” ) ;

/ / xmoy=VALLOC(N, dou b l e ) ;
Vv=VALLOC(N, dou b l e ) ; Vvp=VALLOC(N, d ou b l e ) ;
code1=VALLOC(N, i n t ) ;

f o r ( i =0; i <N; i ++) Vv [ i ]=V[ i ] ;

mmoy= 0 . 0 ; mmax= 0 . 0 ;

/ / s r a n d 4 8 ( t ime (NULL ) ) ;
/ / f o r ( k =0; k<N; k++) ( ( d rand48 ( ) > 0 . 5 ) ? (V[ k ]= t h e t a ∗(1+ drand48 ( ) ) ) : (V[ k ]= t h e t a ∗(1− drand48 ( ) ) ) ) ;
/ / f o r ( k =0; k<N; k++) V[ k ]=2 . 0∗ drand48 ( ) ;

/∗∗∗∗∗∗∗ T r a j e c t o i r e ∗∗∗∗ /

m=0;
f o r ( k =0; k<N; k++) m+=Vvp [ k ] ;
m=m / ( d ou b l e )N;
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t =0;

fpmoy= fopen ( chainemoy , ”w” ) ;
f p t r a j = fopen ( c h a i n e t r a j , ”w” ) ;
f pc od e= fopen ( g raphcod ing , ”w” ) ;

do
{

mp=0;
F ( Vv , Vvp ) ;

f p r i n t f ( f p t r a j ,”%d\ t ” , t ) ;

f o r ( k =0; k<N; k ++){
i f ( Vv [ k]>= t h e t a ) { code1 [ k ] = 1 ; }
e l s e { code1 [ k ] = 0 ; }
f p r i n t f ( fpcode ,”%d \ t %d \ t %d \n ” , t , k , code1 [ k ] ) ;
f p r i n t f ( f p t r a j ,”% l g \ t ” ,Vv [ k ] ) ;
mp+=Vv [ k ] ;

}

f p r i n t f ( f p t r a j , ” \ n ” ) ;
f p r i n t f ( fpcode , ” \ n ” ) ;

mp=mp / ( d ou b l e )N;

f p r i n t f ( fpmoy ,”%d \ t %l g \ t %l g \n ” , t ,m, mp ) ;
m=mp ;

/ / f o r ( k =0; k<N; k++) xmoy [ k ]+=( do ub l e ) ( Vv [ k]>= t h e t a ) ;

temp=Vv ;
Vv=Vvp ;
Vvp=temp ;

t ++;
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} w h i l e ( t < t a u ) ;

/ / f p r i n t f ( fpmoy , ” \ n \n # ACTIVITE MOYEN \n # ” ) ;

/ / f o r ( k =0; k<N; k++) f p r i n t f ( fpmoy , ” %l g \ t ” , xmoy [ k ] / ( do ub l e ) T ) ;
f p r i n t f ( fpmoy , ” \n ” ) ;
f p r i n t f ( fpcode , ” \ n ” ) ;
f p r i n t f ( f p t r a j , ” \ n ” ) ;

f c l o s e ( fpmoy ) ;
f c l o s e ( f p t r a j ) ;
f c l o s e ( f p co de ) ;
f r e e ( Vv ) ; f r e e ( Vvp ) ; f r e e ( code1 ) ;

/ / f r e e ( xmoy ) ;
}

/∗∗∗∗ A c t i v i t e moyenne ∗ ∗ ∗ /

vo id ActMoy ( c h a r c h a i n e [ ] , d oub l e ∗ V, i n t t a u )
{

FILE ∗ fp ;
do ub l e ∗xmoy , ∗ temp , ∗Vv , ∗Vvp ;
r e g i s t e r i n t i , k , t ;

p r i n t f ( ” A c t i v i t moyenne \n ” ) ;
xmoy=VALLOC(N, d ou b l e ) ;
Vv=VALLOC(N, d ou b l e ) ; Vvp=VALLOC(N, d ou b l e ) ;
f o r ( i =0; i <N; i ++) Vv [ i ]=V[ i ] ;

/∗∗∗∗∗∗∗ T r a j e c t o i r e ∗∗∗∗ /

t =1;

do
{
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F ( Vv , Vvp ) ;

f o r ( k =0; k<N; k++)
xmoy [ k ]+=( do ub l e ) ( Vv [ k]>= t h e t a ) ;

temp=Vvp ;
Vvp=Vv ;
Vv=temp ;

t ++;

}

w h i l e ( t < t a u ) ;

fp= fopen ( cha ine , ” a ” ) ;
f o r ( k =0; k<N; k++) f p r i n t f ( fp ,”% l g \n ” , xmoy [ k ] / ( do ub l e ) t a u ) ;

f p r i n t f ( fp , ” \ n ” ) ;
f c l o s e ( fp ) ;

f r e e ( xmoy ) ;
f r e e ( Vv ) ; f r e e ( Vvp ) ;

}

do ub l e d i s t a n c e A S ( d oub l e ∗Vtrans , i n t t ime )
{

i n t t , i , t e s t ;
do ub l e ∗Vv , ∗Vvp , ∗ temp ;
r e g i s t e r i n t k ;
do ub l e d i s t a n , r e s t , d ;
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Vv=VALLOC(N, d ou b l e ) ; Vvp=VALLOC(N, d ou b l e ) ;

f o r ( i =0; i <N; i ++)Vv [ i ]= V t r a n s [ i ] ;

d i s t a n =2 0 0 . 0 ;

t =0;

/ / f o r ( k =0; k<N; k++) p r i n t f (”% l g \ t ” , V t r a n s [ k ] ) ;

do {

F ( Vv , Vvp ) ;

temp=Vvp ;
Vvp=Vv ;
Vv=temp ;

f o r ( k =0; k<N; k ++){
d= d i s t a n ;
r e s t = f a b s ( t h e t a −Vv [ k ] ) ;
d i s t a n =min ( d , r e s t ) ;
}

/ / p r i n t f (”−−−−−−% l g \ t %d ” , d i s t a n , t ) ;

t ++;
}

w h i l e ( t < t ime +1 ) ;
/ / p r i n t f ( ” \ n ” ) ;
f r e e ( Vvp ) ; f r e e ( Vv ) ;

r e t u r n d i s t a n ;
}

/∗∗∗∗ C a l c u l de Vmax ∗ ∗ ∗ /

do ub l e VM( d oub le ∗∗ J i j )
{
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do ub l e Vm=0 .0 , sum ;
i n t i , j ;

f o r ( i =0; i <N; i ++)
{

sum = 0 . 0 ;
f o r ( j =0; j <N; j ++)

i f ( J i j [ i ] [ j ] >=0.0) sum+= J i j [ i ] [ j ] ;
Vm=max ( sum ,Vm) ;

}

i f ( I [N−1]>1E−6)Vm=Vm+ I [N−1 ] ;
r e t u r n Vm/ ( 1 . 0 −gamm ) ;

}

/∗∗∗∗ C a l c u l de Vsup pour l q t r a j e c t o i r e X∗ ∗ ∗ /

do ub l e VS( do ub l e ∗X)
{

do ub l e Vs = 0 . 0 ;
do ub l e ∗Vv=VALLOC(N, d ou b l e ) , ∗Vvp=VALLOC(N, d ou b l e ) , ∗ temp ;
i n t i , t ;

f o r ( i =0; i <N; i ++) Vv [ i ]=X[ i ] ;

t =0;

/ / Tracage ( c h a i n e t , ” t r a n s i t o i r e s −−−>”);

/ ∗ ∗ ∗ C a l c u l des t r a n s i t o i r e s ∗ ∗ /

do
{

F ( Vv , Vvp ) ;

temp=Vvp ;
Vvp=Vv ;
Vv=temp ;
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t ++;

}

w h i l e ( t < t r a n s i t o i r e ) ;

/ / Tracage ( c h a i n e t , ” F a i t \n ” ) ;

/∗∗∗∗∗∗∗ T r a j e c t o i r e ∗∗∗∗ /

t =1;

do
{

f o r ( i =0; i <N; i ++) Vs=max ( Vs , Vv [ i ] ) ;

F ( Vv , Vvp ) ;

temp=Vv ;
Vv=Vvp ;
Vvp=temp ;

t ++;

}

w h i l e ( t <T ) ;

f r e e ( Vv ) ; f r e e ( Vvp ) ;

r e t u r n Vs ;
}

/∗∗∗∗∗∗ P e r i o d e d ’ une t r a j e c t o i r e ∗∗∗∗∗ /
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i n t p e r i o d e ( dou b l e ∗ V)
{

i n t i , t , j , t e s t , t e s t 2 , t e s t a , t e s t b ;
do ub l e ∗Vv , ∗Vvp , ∗ temp , x ;

Vv=VALLOC(N, dou b l e ) ;
Vvp=VALLOC(N, d ou b l e ) ;

/ ∗ ∗ ∗ C a l c u l p e r i o d e ∗ ∗ ∗ /

f o r ( i =0; i <N; i ++){ Vv [ i ]=V[ i ] ;
}

/ ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ t e s t mort n e u r o n e l ∗∗∗∗∗∗∗∗∗∗∗∗∗
t e s t 2 =1;
i =0;
F ( Vv , Vvp ) ;

temp=Vvp ;
Vvp=Vv ;
Vv=temp ;

w h i l e ( i <N) {
t e s t 2 =( f a b s ( Vv [ i ]−Vvp [ i ]) <1E−5 ) ;

i ++;
}

i f ( t e s t 2 ) { t =2;
t e s t =1;
}

e l s e { t =1;
t e s t =0;

}

∗ /

t =1;
do
{

F ( Vv , Vvp ) ;
temp=Vvp ;
Vvp=Vv ;
Vv=temp ;
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i =0; t e s t =1;

w h i l e ( ( i <N)&&( t e s t ) )

{

x= f a b s ( Vv [ i ]−V[ i ] ) ;

/ / t e s t a =(1E−16<x ) ;
t e s t b =(x<=1E−8 ) ;

t e s t = t e s t b ;
/ / p r i n t f (”% l g %d %d \ t ” , x , t e s t , t e s t b ) ;
i ++;

}

t ++;

} w h i l e ( ( t <T)&&(! t e s t ) ) ;

f r e e ( Vv ) ; f r e e ( Vvp ) ;

r e t u r n t −1;
}

/∗∗∗∗∗∗ P e r i o d e d ’ une t r a j e c t o i r e ∗∗∗∗∗ /

i n t p e r i o d e b ( dou b l e ∗ V)
{

i n t i , t , j , t e s t , t e s t 2 , t e s t a , t e s t b ;
do ub l e ∗Vv , ∗Vvp , ∗ temp , x ;

Vv=VALLOC(N, dou b l e ) ;
Vvp=VALLOC(N, d ou b l e ) ;

/ ∗ ∗ ∗ C a l c u l p e r i o d e ∗ ∗ ∗ /

f o r ( i =0; i <N; i ++){ Vv [ i ]=V[ i ] ;
/ / p r i n t f (”%20.10 f \ t ” ,Vv [ i ] ) ;

}
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/ / p r i n t f ( ” \ n ” ) ;
/ ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ t e s t mort n e u r o n e l ∗∗∗∗∗∗∗∗∗∗∗∗∗
t e s t 2 =1;
i =0;
F ( Vv , Vvp ) ;

temp=Vvp ;
Vvp=Vv ;
Vv=temp ;

w h i l e ( i <N) {
t e s t 2 =( f a b s ( Vv [ i ]−Vvp [ i ]) <1E−5 ) ;

i ++;
}

i f ( t e s t 2 ) { t =2;
t e s t =1;
}

e l s e { t =1;
t e s t =0;

}

∗ /

t =1;

do
{

F ( Vv , Vvp ) ;
temp=Vvp ;
Vvp=Vv ;
Vv=temp ;

i =0; t e s t =1;

w h i l e ( ( i <N)&&( t e s t ) )

{

x= f a b s ( Vv [ i ]−V[ i ] ) ;

/ / t e s t a =(1E−16<x ) ;
t e s t b =(x<=1E−8 ) ;
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t e s t = t e s t b ;
i f ( ! t e s t b ) { p r i n t f (”%20.10 f \ t ” ,Vv [ i ] ) ;

p r i n t f (”%d %l g %d %d \ t ” , i , x , t e s t , t e s t b ) ; }
i ++;

}

t ++;

} w h i l e ( ( t <T)&&(! t e s t ) ) ;

f r e e ( Vv ) ; f r e e ( Vvp ) ;

r e t u r n t −1;
}

The Funtions header

t y p e d e f s t r u c t MAILLON
{

/ / do ub l e ∗nom ;
do ub l e nom ;
i n t c o u n t ;
s t r u c t MAILLON ∗ p r e c ;
s t r u c t MAILLON ∗ s u i v ;

} m a i l l o n ;
/ ∗ ∗ ∗ F o n c t i o n s ∗ ∗ ∗ /

do ub l e ∗∗ c r e e r r e s e a u f c ( i n t , double , d ou b l e ) ;
do ub l e ∗∗ c r e e r r e s e a u P P V 1 D ( i n t , do ub l e ) ;
vo id F ( do ub l e ∗V, d oub l e ∗Vp ) ;
vo id a t t r a c t e u r ( c h a r chainemoy [ ] , c h a r c h a i n e t r a j [ ] , c h a r g r a p h c o d i n g [ ] , d ou b l e ∗ V, i n t p e r ) ;
vo id ActMoy ( c h a r c h a i n e [ ] , d oub l e ∗ V, i n t p e r ) ;
do ub l e d i s t a n c e A S ( d oub l e ∗V, i n t t a u ) ;
do ub l e VM( do ub le ∗∗ J i j ) ;
do ub l e ∗ ProbDec ( do ub l e ∗V, i n t t a u ) ;
do ub l e d i s t a n c e I P D ( d oub l e ∗V, d oub l e ∗ I ) ;


